COMPUTER SCIENCE 111

Ken Steiglitz
Jeff Blum
Rich Feit

Jonathan Thompson

CS-TR-346-91
September 1991

ABSTRACT

This is the lab manual for COS 111, an introductory course in computer science for
liberal arts students, as it was taught for the first time in the fall semester of 1991. It
includes a general introduction, topic outline, a set of nine laboratory exercises for the
NeXT, and a collection of CheatSheets that provide supporting material for the labs. The
lab topics are:

(1) Introduction,

(2) Communications [news, mail, ftp, telnet],

(3) Graphics [PostScript, 1pr, Edit, Yap, TopDraw, etc.],
(4) Presentation [WriteNow, troff, etc.]

(5) Sound [SoundEditor],

(6) Programming in C,

(7) Selection sort,

(8) More sound, using C, and

(9) Information processing [grep, wc, sort].

The lectures themselves included an introduction to complexity theory [big-oh notation,
analysis of sorting, etc.] and computability theory [Turing machines, the halting problem,
etc.].

,‘\;

=
i

Copyright © 1991 by Ken Steiglitz, Jeff Blum, Rich Feit, and Jonathan Thompson. All Rights Reserved.

NeXT, NeXTcube, NeXTstation, NeXTdimension, Digital Librarian, Digital Webster, Interface Builder, Lip Service,
NeXTmail, and Workspace Manager are trademarks of NeXT, Inc. NeXTstep and the Next logo are a registered
trademarks of NeXT, Inc. Display PostScript and PostScript are registered trademarks of Adobe Systems Incorp-
orated. IBM is a registered trademark of Internation Business Machines. Macintosh is a registered trademark of
Apple Computer, Inc. TopDraw is a trademark of Media Logic Incorporated. UNIX is a registered trademark of
ATA&T. WriteNow is a trademark of T/Maker Company. All other trademarks belong to their respective owners.

INTRODUCTION

(by Ken Steiglitz)

1. General Comments

This course is intended for non-science, non-engineering students with little
or no computer experience or knowledge. The ideal student has not used com-
puters at all, or, better yet, has a vague fear of them. You’re going to have a lot of
stuff thrown at you, but | hope that by the end of the course you're at home with
computers and the ideas that go along with them. If | do my job right, you'll
become an enthusiastic computer user for the rest of your life.

The class material will combine two interleaving threads'. The first of these,
the Practical Thread, will directly support the labs, where you will get your own
hands on computers. The lab assignments and their cheatsheets were
developed in the summer of 1991 by three Princeton undergraduates: Jeff Blum,
Rich Feit, and Jon Thompson. Their goal is to expose you to a wide a variety of
useful applications in a stimulating, friendly computing environment. They largely
determine the overall shape of the course. You'll be using the NeXT machine,
which has good graphics, sound, lots of interesting programs, but at the same
time allows you to get close to what's really happening when you want to. Each
week I'll cover topics that will help with the labs.

We've taken care to make the labs do-able in the allotted time of two or two-
and-a-half hours. They have a basic part, which everyone should do, plus plenty
of extra material to challenge the budding hacker. The general spirit of the labs is
non-threatening and free; we'll have more to say about the ethos of computer
users later.

The other thread of the course, what I'll call the Theoretical Thread, is
about how computers came to be, why they’re built the way they are, and what
they are and are not capable of doing. | hope to talk about what they’ll be like in
the future, but of course that’s risky business. | include in this thread software as
well as hardware. As we will see, both aspects of computers are dominated by
the idea of hierarchical structure. Layer upon layer, structure within structure,
we’ll keep coming back to these ideas.

The theoretical thread includes some of what computer scientists call ‘com-
putability theory’ and ‘complexity theory’. This is the theory of what can be com-
puted and what cannot, and how long it takes to compute things when they can.
Although this is strictly speaking a ‘mathematical’ theory, we will be able to get
very far using just common sense.

! threadt
fthred/ n. [USENET, GEnie, CI$] Common abbreviation of
‘topic thread’, a more or less continuous chain of postings on a
single topic.
— The Jargon File, (copyright) Eric S. Raymond, version 2.8.2, March 25, 1991.

8 5

Throughout the course we’ll touch on ways that computers affect people and
their institutions. | encourage you to explore this area as the course progresses,
and hope some of you will find good topics for midterm papers here. Of course
computers have affected almost every area of human enterprise: music, graphic
arts, literature, economics, medicine, law, and so on. | particularly want to raise
the important issues of privacy and civil rights; this will be good discussion
material for the precepts.

2. Schedule
Week Tuesday guest Lab # Lab
1 Sept. 17 -
2 24 1 introduction
3 Oct. 1 Phillips 2 communication
4 8 Sorensen 3 graphics
5 15 Sedgewick 4 text presentation
6 22 - MIDTERM PAPER DUE
S v e . kT break
7 Nov. 3] Lansky 5 sound
8 12 Hanrahan 6 C programming
9 19 Dobkin 7 selection sort
10 - L S N ! T . Thanksgiving
11 Dec. 3 Munro 8 ein
12 10 9 information processing
16 last meeting (Monday)

3. Mechanics

The class meets twice a week for lectures, and has two sections of precepts
and two sections of labs. Each week you should attend both lectures, one lab (if
there is one that week), and one precept. The lectures meet twice a week, Tues-
day and Thursday mornings, 10:30 - 11:50, in the small auditorium, Computer
Science Building. The first week we’ll schedule the one-hour precept sections so
that everyone can attend one a week. We’'ll also schedule 2.5 hour lab sections,
which meet in the NeXT cluster, Room 001, Computer Science Building.

Grades Grades will have three components: (1) each lab assignment will have
work to complete and hand in (mostly electronically); (2) there will be a paper due
at midterm; and (3) a term paper due at the end of the term. Notice that the
grade is based completely on products that you produce.

Lectures The lectures themselves will cover the practical and theoretical
threads we discussed. I'll start with the material you need to get the most out of
the coming labs. | plan to interleave the topics to keep people awake, and also to
give you an appreciation of how wide the subject of computer science is. (Actu-
ally, ‘lectures’ is an overly formal term, but seems to be institutionally entrenched;
| prefer to think of them as classes.) I've also lined up seven guests who use

computers in interesting ways:

Dick Phillips multimedia presentation
Vibeke Sorensen visual art
Robert Sedgewick producing a book

Paul Lansky computer music

Pat Hanrahan new input/output devices

David Dobkin programs and life

lan Munro the Oxford English Dictionary project

They’re leaders in their fields, doing exciting things. Dick Phillips is from Los
Alamos National Labs. Vibeke Sorensen is Artist and Director at the Computer
Animation Laboratory, California Institute of the Arts, Valencia, CA, and also a
Visiting Lecturer in the Computer Science Department. lan Munro is professor of
computer science at the University of Waterloo. Paul Lansky is professor of
music here, the others homegrown professors of computer science.

Precepts The precepts will be devoted first to topics that spill over from the
busy lecture schedule, and then to discussion of any other topics that seem like
they need more attention — questions you may have about lecture material or
readings, problems you may have with the labs, issues you want to raise from the
news, from science fiction, the business world, and so on. Following the lab
schedule, the first few precepts in the second half of the term will concentrate on
programming. We’'ll also use some precept time to discuss your choice of topics
for the midterm and term papers.

Labs In the past, introductory computer courses were really just programming
courses, and the labs were traditional programming assignments: “Write a pro-
gram to do this, write a program to do that.” | think this approach is outdated. For
one thing, there is a lot more about computer science that | want to teach besides
programming. For another, the boundary between what is programming and what
is not has become blurred. Two out of the nine labs are devoted to programming
explicitly, but programming is sneaked in throughout the term, in forms you may
not recognize. Today, programming is more a way of thinking than the act of
writing code.

As I've mentioned, the labs are the backbone of the course. Rich Feit, Jeff
Blum, and Jon Thompson worked hard to make these labs clear, efficiently
instructive, and fun. If you find bugs, or have suggestions for improvements on
the labs, please send email to them and me (flames — /dev/null?). There will

2flame: v. 1. To post an email message intended to insult and
provoke. ...
/dev/nult /dev-nuhl/ [from the UNIX null device, used as a data
sink] n. A notional ‘black hole’ in any information space being
discussed, used or referred to. A controversial posting, for
example, might end "Kudos to rasputin @kremlin.org, flames to
/dev/null”. See {bit bucket}, {null device}.
— The Jargon File, (copyright) Eric S. Raymond, version 2.8.2, March 25, 1991.

-4 -

always be a TA available to help you during scheduled labs. If you get stuck at
other times, see the TA during office hours, see me during office hours, send
email to anybody, ask your neighbor. Lab assignments will be due at
prespecified times, and you’ll learn how to submit them electronically both to save
paper, and to turn in sound and video.

Midterm paper The midterm paper will give you a chance to show off your skills
at document preparation, and to research some area that interests you. | ask that
the presentation use the tools you'll learn to work with on the NeXT machine,
insofar as they are appropriate to the presentation of the material. Here’s a
chance to be creative. Pick an adventurous, weird, or controversial topic. Make
the presentation as snappy as you can. Incorporate graphics of different types,
and even, if you want to read ahead, sound.

Term paper The most obvious thing to do for a term paper is keep working on
your midterm paper. In fact, you may want to consider your midterm paper as a
proposal for your term paper. On the other hand, you will have been exposed to
more applications and you’ll know a lot more when you come to choose your term
paper project. In particular, you won't get to making sound or programming till
after midterm break. All | ask is that the paper represent a substantial investiga-
tion of some aspect of computers that interests you. You can take one of the labs
and keep running with it, you can find a computer project of your own, or you can
do a paper that doesn'’t directly involve running programs. A study of some theory
would fall into the last category, for example. Some suggestions for midterm or
term papers are given in the next section. They are representative of topics |
would choose, and they are only meant to stimulate your thinking.

4. Paper topics, samples

1. Read the book called “The psychology of everyday things,” by Donald A.
Norman, New York : Basic Books, 1988. (Find the call number using the
Online Catalog.) This book makes you look at the devices you deal with
every day in a new way. Apply some of the techniques of criticism and
analysis to the computer programs you will be using. For example, use three
different editors and compare how well they help you avoid errors (or
encourage you to make them). Explain why | hate vi. Explain what is beauti-
ful about UNIX and what is terrible. Compare troff and TeX from the per-
spective of this book.

2. People tend to communicate quite differently in email than in person, or on
the telephone. Do some experiments to see whether you observe this. Com-
pare with the talk program. Do a literature search and see what you can find
out about the influence of medium on style of communication.

3. People with an interest in games should have no problem finding interesting
paper topics. Chess has been used as a testing ground for computers since
the early days, and was mentioned in Turing’s paper on computers and
thought (Handout [Tu2]). There are regular computer chess tournaments,
and frequent matches between people and computers. There are also an

+ B

amazing variety of games available for free, for money, of all degrees of
complexity. You might be interested in studying the sociology of gamesters,
the impact of games on people’s psychology and behavior, or the economics
of the computer game industry, for example.

4. Research the early history of electronic music, back to the time when com-
posers painted on sound tracks by hand. You might concentrate on tracing
the effects of technological advances and the time delays for those effects.

5. Research and report on the use of computers in some particular field that
interests you: plastic surgery, consumer audio electronics, medical diag-
nosis, aids to the handicapped, epidemiology, banking, gambling, baseball ...
You get the idea — anything at all.

5. Authenticity

You wouldn’t want to take a French course without hearing natives speak,
and you wouldn’t want to take a poetry course where the poems had been edited
for simplicity. So I've tried hard to stick with the real stuff in this course. In that
sense the course is like Capretz's French in Action, an immersion course. I'll be
passing out readings to supplement the lectures; I've tried to include especially
significant papers, often of great historical interest.

For example, one of the handouts is Turing’s 1936 paper on computable
numbers [Tu1] — probably the most famous paper in all of computer science.
You'll read at least the beginning of it, and we’'ll try to get at the essence of what
Turing was thinking about. This is a major intellectual achievement, coming to
grips with the problem of what computation really is — back when there weren’t
even any computers! The paper will seem opaque, abstract, and irrelevant. But
its ideas have influenced basic thinking about computers more than any other
single paper. Every educated person should know what a Turing Machine is and
why it's important.

When we talk about printing, we’ll show you PostScript. That’s the language
printers understand. Other programs generate PostScript from your hints, but
PostScript is the real thing.

When we do some programming, we’ll use the language called C. That's
what most computer scientists consider the real language, the language that God
speaks instead of Hebrew. Likewise, the operating system underlying the NeXT
Machine is UNIX, the operating system of choice among connoisseurs. When-
ever possible we’ll go to the source and read the masters.

The NeXT machine itself is a departure from the usual sheltered environ-
ment of the users’ world. It is Steve Jobs’ vision of where computers are going.
(Steve Jobs is founder of Apple Computer, Inc. and NeXT, Inc.) Some hackers
consider it clunky, without enough horsepower, but it is ideal for exploring shared
tools in a computer world with images and sound.

6. Why Compute?

| want to provide a little background and perspective by discussing the rea-
sons people use computers — you might want to think about where your per-
sonal goals and interests fit in. I'll try to do it roughly in increasing order of
difficulty and challenge.

At the simplest level, computers are used to keep records, like bank state-
ments, airline reservations, library withdrawals, and so on. This is the most easily
observed use of computers, and no one can avoid bumping into computers used
as record keepers all day long, especially in the business world. Because these
applications are usually simple, this level has been the first to be exploited on a
large scale.

It's interesting to observe that computer applications at this simplest level of
record-keeping, together with modern communication, gives us electronic mail
and networked news and bulletin boards, the computer applications that are so
popular right now, and the ones that have led to the development of rich sub-
cultures of users. Each news group ties together hundreds or thousands of peo-
ple in a way not possible a few years ago, and the rate of exchanging information
and opinion appears to be accelerating.

For example, | regularly read rec.radio.shortwave (see the news
CheatSheet). From that group | learned | can get shortwave schedules from an
anonymous ftp site (see the fip CheatSheet) in Finland, and satellite photos of
the US every hour from one in lllinois. | can also find out which radios are the
best deals for the money, which stores are having sales, when there’s a geomag-
netic storm approaching, how to protect my radio’s input stage from lightning, and
on and on. Not to mention the discussion of what happened to Radio Moscow
during the attempted coup, or what service of the BBC Gorbachev listened to in
captivity.

At the next level of computer application (the ordering of levels is a bit arbi-
trary) comes signal processing. | have to admit to a bias in this direction, this
being my first love and the subject of my dissertation. Here come the applications
where computers are used to transmit, code, decode, combine, mutilate, and
enhance sound and pictures. If someday robots are equipped with eyes and ears,
signal processing will be necessary to deal with the sense data. (Maybe some
day tastes? smells? feelings?) Signals require tremendous amounts of data to
represent them. This will be brought home to you when you start digitizing sound
and run out of room on your disk. We'll talk about how the information is stored
and sheer volume. We'll also have guests who deal with applications of signal
processing in the arts, a graphic artist (Vibeke Sorensen) and a composer of
music (Paul Lansky).

The next level, somewhat less visible to the general public than the first two,
is what is usually called ‘scientific computing’. At this level, computers do arith-
metic, as in the first level, but they do more complicated things that are useful to
scientists. For example, scientists use computers to solve the differential equa-
tions that describe fluid motion so they can predict the weather, or design air-
planes, or understand how speech sounds are produced in the vocal tract. Or

=Pu

they analyze vibrating systems to predict the effect of earthquakes on buildings,
or the noise levels inside your car, or the way a trombone works. In contrast with
the record-keeping applications, these tasks usually push computers to their lim-
its, and are challenging computer manufacturers to constantly produce faster and
bigger machines. Today these applications are also one of the main reasons
manufacturers and researchers are struggling to build systems where many com-
puters can operate on the same problem simultaneously (parallel computation).
Also in contrast with record-keeping, many scientific computing problems remain
unsolved because computers are not fast or big enough. In some areas, like fluid
dynamics and astronomy, it is unclear if some of the important computational
problems will ever be solved!

Some problems that push the limits of computers are a little different from
the scientific applications just mentioned because they don't deal with arithmetic
in the usual way. They use ‘discrete mathematics’, and deal with objects like
schedules, arrangements, and graphs. This field is called combinatorial optimiza-
tion, and I'll talk it about it more later in the term.

The next level of computation has been the subject of a great deal of discus-
sion, exploitation in the media, and general ballyhoo, but is really in its very early
stages. This is the use of computers to ‘think’. (When you get to the lab where
you learn how to play sounds, don’t forget to listen to the files called Hal02.snd,
Hal03.snd etc. in our /LocalLibrary/Sounds. Do you know where Hal comes
from and how he got his name?) Alan Turing formulates and discusses the ques-
tion of whether computers can think or not in Handout [Tu2]. The paper is famous
as the one in which the ‘Turing Test’ is introduced, and | think you'll enjoy reading
it. It's not only brilliant; it's quirky. This last level of computer application brings
us to the edge of today’s thinking about what computers are capable of. Nobody
really knows where we are headed or how far we’ll go.

7. Topic Outline by Week

Week | Lab Practical Theoretical Handouts
1 - command-line vs. graphical | binary numbers, storage | [Tu2]
interfaces, windows, UNIX direc- | volume, trees
tory structure, simple commands
(Is, cp, mv, etc.), source/object
distinction, man
2 Introduction networks, mail systems, fip, tel- | concept of an algorithm, selec- | [MT, KI]
net tion sort, bubble sort
3 Communica- bitmapped vs. object-oriented | merge sort, nlogn analysis, big- | [LP]
tions representations oh notation, Towers of Hanoi
4 Graphics sharing and combining tools. | analog/digital, noise, gates, | [Ba, vN]
UNIX pipes, history, more, tail, | hardware
we, grep; NeXT tools.
5 Presentation arrays, stacks, implementation | sampling, quantization [Ho]
of recursion
6 - digital sound, digital pictures, file | big-oh notation, survey of | [Ka]
formats operations-research type prob-
lems with applications
7 Sound C-syntax, libraries, variables, | idea of problem reduction, P, | [Kn1]
for— loops NP-completeness
8 C Program- | more C, conditionals, types languages, assemblers and | [Di, Kn2]
ming compilers
9 Selection Sort | more C, functions, recursive | tree searching, game playing [Th]
functions
10 - profiling, programming structure, | sound sampling, aliasing, fre- | [As]
discipline, software develop- | quency concepts, filtering
ment, viruses
1 ein indexing, searching, hashing sound synthesis techniques, | [FM]
speech
12 Information sound files, formats Turing Machines, computability [Tul]
Processing -

8. Handouts

[As]

[Ba]

I. Asimov, “Robbie,” reprinted with an introduction in the collection of
Asimov stories I, robot, Fawcett Publications, 1950. This was originally
published as “Strange Playfellow,” Super Science Stories, 1940.

C. Babbage, “On the mathematical powers of the calculating engine,”
unpublished manuscript (Dec. 1837) in the Buxton Collection, Museum
of the History of Science, Oxford University. Reprinted with introductory
material in The origins of digital computers, B. Randell (ed.), Springer-

[Di]

[FM]

[Ho]

[Ka]

[K1]

[Kn1]

[Kn2]

[LP]

[MT]

< B«

Verlag, Berlin, 1982 (third edition).

Also included is the report of the committee that was formed to evaluate
the feasibility of constructing the machine, a later report by Babbage’s
son, Major-General H. P. Babbage, with the decimals of multiples of ©
printed (with printing errors caused by weak springs), and a report of the
successful construction of a difference engine in 1991 (3 tons!).

E. W. Dijkstra, “Go To statement considered harmful,” Comm. ACM,
vol. 11, no. 3, pp. 147-148, March 1968.

This short note triggered a revolution in programming style, one that was
perhaps waiting to happen.

G. C. Fox and P. C. Messina, “Advanced computer architectures,”
Scientific American, vol. 257, no. 4, pp. 67-74, Oct. 1987.

J. E. Hopcroft, “Turing machines,” Scientific American, p. 86, May 1984.

The concept introduced in [Tu1], revisited with the perspective of a lead-
ing computer scientist, 44 years later.

R. Karp, “Combinatorics, complexity, and randomness,” Comm. ACM,
vol. 29, no. 2, pp. 98-111, Feb. 1986.

D. V. Klein, “ ‘Foiling the cracker’: a survey of, and improvements to,
password security,” unnumbered technical report, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, 1991.

You may decide to change your password after reading this one.

D. E. Knuth, “Von Neumann’s first computer program,” Computing Sur-
veys, vol. 2, no. 4, pp. 247-260, Dec. 1970.

D. E. Knuth, “Computer programming as an art,” the 1974 Turing Award
Lecture, reprinted in ACM Turing award lectures: the first twenty years
(1966-1985), pp. 33-46, ACM Press, New York, NY, 1987.

Actually, handouts [Th] and [Ka] are also Turing Award lectures and are
in this volume. It is a good source of general and reflective articles by
pioneers.

H. R. Lewis and C. H. Papadimitriou, “The efficiency of algorithms,”
Scientific American, p. 96, Jan. 1978.

R. Morris and K. Thompson, “Password security: a case history,”
Comm. ACM, vol. 22, no. 11, pp. 594-597, Nov. 1979.

Compare the timing estimates in this paper with those in [KIl], a scant

[Th]

[Tul]

[Tu2]

[VN]

Thanks

= §0i=

twelve years later!

K. Thompson, “Reflections on trusting trust,” Comm. ACM, vol. 27, no.
8, pp. 761-763, Aug. 1984.

A. M. Turing, “On computable numbers, with an application to the
Entscheidungsproblem,” Proc. London Math. Soc., ser. 2, vol. 42
(1936-7), pp. 230-265; corrections, ibid, vol. 43 (1937), pp. 544-546.
Reprinted in The undecidable, M. Davis (ed.), Raven Press, Hewlett,
NY, 1965.

A highly technical paper — read as much as you can or want to.

A. M. Turing, “Computing machinery and intelligence,” Mind, vol. 59, pp.
433-460, Oct. 1950. Reprinted in Computers and thought, E. A. Feigen-
baum and J. Feldman (eds.), Krieger Publishing, Malabar, FL, 1981.

J. von Neumann, “Computing machines in general,” First of Five lec-
tures delivered at the University of lllinois, Dec. 1949. This edited ver-
sion of a manuscript in Theory of self-reproducing automata, J. von Neu-
mann, (A. W. Burks, ed.), Univ. of lllinois Press, Urbana, IL, 1966.

Many colleagues and friends contributed ideas to this project. The list is too
long to put here, but we especially want to thank Profs. Appel, Dobkin, Hanrahan,
Lansky, Sedgewick, the CIT staff, and Dean Eva Gossman.

TA Overview

Hahaha. So, you got roped into TAing COS111, eh? Well, hopefully this section will
help you understand what’s going on a little better.

First off, we would like to emphasize one thing about COS111. It is intended not only to
give students useful knowledge about computers, but interest them as well. When the
two goals interfere with one another, we feel that the latter should take precedence. If
students get very turned off by computers, this is far more damaging than if they don’t
know how to use a certain UNIX command. This may be difficult to keep in mind during
the course, but it is nonetheless important.

The structure of the labs should be pretty obvious from reading through them. There
are several points worth mentioning here, however.

Keep It Electronic!

The introduction mentions immersion as an important part of learning. To continue
in this vein, try never to do something manually for the class that can be done
electronically. Strive to place documentation online and use e-mail as much as
possible. Commenting on each lab, for example, could easily be done via e-mail.
While correcting, simply store all comments, efc. in a file that you can mail to the
students when you are finished. Be creative. You may want to form an incentive
such as building a list of people who use NeXT mail. These people can be mailed
documents, etc. along with their grading, while the others will receive text only. Of
course, students should not be strongly penalized for not using NeXTmail, but | think
you understand the sort of idea we are driving at—practice what you preach.

End-of-Term Procedure

We have tried to arrange the disk quota for the cs111 account so that none of the
student’s stuff will have to be thrown away. We thought it might be nice for you to
tar and compress all their files at the end of the course and give them back, along
with your comments if you did them electronically. We leave it up to you how to do
this. If all else fails, you can just have each student bring in a floppy disk and copy
their work onto it.

Formatting Of The Materials

The labs and CheatSheets for this course are all done according to a fairly rigorous
style and formatting. Whenever we agreed or had no opinion about a style question,
we stuck with the NeXT Style Guide from June, 1990. For formatting, we pretty
much forged our own methods. There is a file called indents.wn in the Labs-
general directory that contains the indentation and bulleted list formats along with
the headers and footers containing page numbers, etc. If you Copy&Paste rulers
from this document, you will find it easy to standardize formats. Good deal. The line
on the bottom of indents.wn is a small line that we used between paragraphs and
minor headings. Normal (2-return) spaces were used only between major sections
and between the heading and the first line. Good luck! | am sure that if you look
hard enough you will find discrepancies in our adherence to these standards. Oh
well. We admit we are not perfect.

1 TA Overview

The Handin Procedure

When students turn in their homework electronically, it will show up in the directory
~cs111/submit/userid/<assignment#>. The only difficult part of this procedure is
the handling of late assignments, explained below.

If the dummy file ~cs111/submit/userid/<assignmenti#> is readable by the
students, then they will be able to submit into their normal submission directory,
~cs111/submit/userid/<assignment#>. If this file is not readable, then the student
will be told that the files will be submitted late. If the student tells the program to go
ahead, the files (tarred and compressed) will go into a directory called
~cs111/submit/userid/<assignmenti>_late.

You must alter the ~cs111/submit_time/accept_<assignment#> files manually at
the proper times or figure out a way to do it automatically. Either chmod them so
they are not readable by the students, or remove them entirely.

When you are ready to grade the assignment, you must untar and uncompress
the submitted files. We have written a shell script called unveil that will do this
automatically. If the student has multiple submissions, it will untar and
uncompress them in order, giving you the last version of each submitted file. The
late files will be placed in the late directory, and the on-time files will be placed in the
normal directory. The syntax for unveil is as follows:

/u/cslll/bin/unveil <assignment-number> <userid>
This will take care of that student’s files. If you want to unveil just one specific file,
the syntax is:
/u/cslll/bin/unveil <filename>

This should be all that you need to know about submitting and the handing in. If not,
then you can trace through the scripts and C code to figure it out, just as we did. :-)

TA Overview 2

Lab Philosophy

If you have one phrase echoing through your head during these labs, it should be this:
“It can’t hurt!”

You can’t hurt anyone by pressing that button. The computer won’t blow up if you type
that command. And it certainly can’t hurt to submit incomplete work.

The philosophy of these labs is much the same as that of the lectures. We’re going to
throw a lot of material at you, and you’ll come across everything from the blatantly
obvious to the near-incomprehensible. Your task is to absorb everything you can.

The advantage to this method is the kind of computer experience you will have under
your belt at the end of the course. This is the Real Stuff. Although there’s a limit to how
deep we can take you in the time allotted, your breadth of experience will most likely
dwarf that of the average sophomore computer science major. UNIX, PostScript, C,
graphics, sound... each of these topics will mean something to you. We’ll give you the
authentic material, not the Cliff's Notes.

The most important thing you’ll learn (by experience only), is that computers are the
most harmless of all creatures. They only do exactly what you tell them to do, and the
worst thing you’ll experience at their hands is frustration.

On to specifics...

In order to give you an idea of what we feel you can accomplish in two and a half
hours, and in order to keep the more difficult topics optional, we divided each lab into
three main sections: Procedure, Above and Beyond, and For Further
Exploration.

We tried to make the Procedure of each lab short enough that everyone would get
through it. If you hit the two-hour mark, though, and you're only half-way through the
lab, it's possible that we miscalculated. Even if you're the only one in the whole
class who isn’t done, it's much, much better to be thorough with whatever you can
get to. The absolute worst thing you could do is hurry to get through this section. If
you don’t absorb everything as best as you can, you may as well have skipped the
entire lab.

Hopefully, everyone will have a chance to try something from the Above and
Beyond section of each lab. Some of the activities in this section are more basic
(but perhaps less educational) than those found in the main Procedure; others are
more advanced — and usually more fun. Do anything here, in any order. If you
finish only a small part of a section, hand in what you have! Improvise! If you find
something enjoyable that fits in with the lab, hand in results from that, too. Turnitin
even if it doesn’t really fit in!

Finally, the For Further Exploration section is meant for those who find the lab
especially interesting. It's mainly for your own enrichment or enjoyment. You might
wind up in the library, or you might just find yourself doodling around with an
intriguing program.

1 Lab Philosophy

CheatSheets
CheatSheets were divorced from the lab Procedure for two reasons:

* To teach you concepts and skills which you can apply outside of any specific
lab. This is to give you a taste of the real world... where you won’t be working
within the framework of a “lab.”

* To keep the lab structure clear — it's easy to lose the structure of a lab amidst
an involved tutorial for an application.

Before each lab, go down the list of required CheatSheets and read each one.

Unfortunately, if you don’t read these beforehand, you will probably feel lost and
frustrated at some point in the lab. Don’t try to memorize everything, but make sure

to pick out the important concepts.
Grades

For better or for worse, everyone will receive a grade based on the work they do. So
follow this basic tenet: HAND IN ANYTHING YOU DO. Anything. A valiant attempt
that fails is as good (gradewise) as its successful counterpart.

You'll learn in the first lab how to submit things electronically. From then on, if you
generate a funky picture, or a startling sound, or weird results from a program, hand

itin. It can’t hurt.

That's all. Good luck, smile : -) , take a deep breath, and go to it.

Lab Philosophy 2

Welcome to the NeXT

When you first enter room 001 of the Computer Science building, you will be greeted by
20 black computers. The NeXT computer is known for its excellent graphical user
interface, as well as its special treatment of sound. All of the machines are connected
to an international network called, conveniently enough, the Internet, so all can be used
to reach throughout the world.

How to Login
The first thing you will see on the screen of your NeXT computer is this box:

There should be a blinking cursor in the Name field; go ahead and type your userid —
the name the friendly people over at 87 Prospect gave you — and press the <Return>
key. This will move the cursor into the Password field; here you should type the
secret password that you chose when you signed up for your account. Don’t worry
about hiding the screen from everyone because the computer won't display what you
type in this field. Type the <Return> key again, and if all went well, the login box will
disappear and you will hear some noises coming from the computer’s disk drive. If
you mistyped either your userid or password, the box will shake and reset itself,
forcing you to type everything over. (You should mess up once anyway; it looks
great!)

The NeXT Screen

The monitor is the physical device which houses the computer screen — the display
that you read. There are quite a few parts to the screen on the NeXT. Some of the
more useful items include the File Viewer, the Dock, and the Menu. The first time
you start up the NeXT computer, your computer screen will look awfully bare, but as
time goes on, it can get rather complex:

1 Welcome to the NeXT

This is —>
the Menu
area

An open
Terminal —>
window
running

net news

The Digital
Webster —>
finding a
definition

This is the file viewer: the top part is called the shelf,
the middle part is the icon path, and the bottom part

J is the browser

File Vi e

When you start up your computer for the first time, you should recognize only the
File Viewer and the Menu, as well as the top and bottom items on the Dock from
your own screen. These items will be explained in a short while, but first...

Controlling your environment

There are two input devices that you will use to control the NeXT computer. The
keyboard, which is much like a typewriter, is covered in its own CheatSheet. The
other input method is a special tool that goes along very well with the type of

graphical display used by the NeXT, a pointing device. Several different types of

pointing devices exist, but the most common kind is called a mouse: f This small
mechanism moves an onscreen arrow (the cursor) as you move the mouse across

the table. There are a few fundamental mouse operations that you should know:

» click quickly push and release the left button on the mouse once.

common use: selecting objects.

*» double-click push the left mouse button twice in rapid succession.

common use: opening an application or folder, selecting a single word.

* click-drag push the left mouse button down, hold it, and move the mouse.

common usage: moving objects, selecting text.

e drag same as click-drag.

Welcome to the NeXT 2

<— This is
the area
known as
the Dock

* shift-click hold down the shift key and click the left mouse button.
common usage: selecting multiple objects.

« control-click hold down the control key and click the left mouse button.
common usage: <none> (it's uncommon).

* Alternate-click hold down the Alternate key, and click the left mouse button.
common usage: <none> (it's also uncommon).

Note: these terms can be intermixed, as in shift-click-drag, which means hold
down the shift key, click and hold the button, and move the mouse.

The mouse is often used for selecting text. To do this, just drag over the textyou
want to select. It will become highlighted, like this:
The selected text is now ready for manipulation (i.e. font change size change
deletion...)

The File System - Your Everyday Hierarchy

Information in a UNIX system is stored in files, which are much like
ordinary office files. Each file has a name, contents, a place to
keep it, and some administrative information such as who owns it
and how big it is. A file might contain a letter, or a list of names and
addresses, or the source statements of a program, or data to be
used by a program, or even programs in their executable form and
other non-textual material.

— Kernighan and Pike, The UNIX Programming Environment

Just as important as knowing what a file is is knowing where to find it. If UNIX
systems stored all files in the same location, there would be chaos. Imagine trying to
find one particular file from a list of one hundred, or one thousand, or the much more
likely one hundred thousand files that exist on just this university’s computer alone.

To avoid this mass confusion, computer files, like office files, are grouped together
by subject. The office files are placed in folders; the computer files are placed in
directories. This folder/directory analogy is so consistent that the NeXT shows a
picture of a folder for a directory’s icon.

When you set up your account on the university’s computer, you were given your
own directory (folder) which is named after your userid. Since all of the files stored
inside your directory should be your own, it is logical to have them all grouped
together. Furthermore, directories can contain other directories. Every single
student’s directory is inside another directory called u which, on a NeXT, is inside
even another directory called / (slash), or root, which is the biggest directory there
is.

From this very highest level, every directory as well as every file can be accessed by
following the proper 'path’. In fact, to describe the location of a file, most people will
just describe it in relation to the root. So if | want to tell you where the word
processor WriteNow is, | would tell you to look in /NextApps. The / symbol means
start at the top of the directory structure. NextApps is the name of one of the
directories underneath this top level, and WriteNow is inside that directory. To get

3 Welcome to the NeXT

to this point from anywhere in the system, you just have to go up to the root and
then back down, following the given path:

A Simplified View of
a NeXT’s Directory
Structure:

If you follow the diagram and start at the root (on NeXT machines, the icon for the
root directory shows a NeXT computer with the computer’'s name undemeath it) and

go left to NextApps, then go to the right, you will find WriteNow.app!

By the way, this type of tree structure is found in almost all computers, not just the
NeXT. The difference is in the way the computer interacts with you, showing
pictures instead of text. (This is where the term GUI comes from: Graphical User
Interface). Instead of just text controlling the machine, icons are used to make the
system easier to use. For example, if you were moving in and out of directories and
applications in a text-based system, you might get lost trying to keep track of which
directory you were in. Fortunately, the NeXT has a built in display to instantly tell
you where you’re located, and what file, if any, is selected. This information is
presented in the middle section of the File Viewer. If, for example, you wanted to
look up a quotation in the Oxford Book of Quotations, your path would look like this:

e

GQuotations

The information presented is pretty straightforward: you are on the computer
toimpossible, inside NextApps, with the application Quotations selected. In order
to go back up the tree, just click any item in the path and it will take you back up to
that level. So if you wanted to return to the root directory, you would in this case
click the toimpossible icon. This is one of the major advantages of a GUl—relaying
information such as this in an easy-to-understand format and allowing intuitive
access to all parts of the computer system.

Welcome to the NeXT 4

Manipulating Windows

Just about every application that you run on a NeXT will have at least one window
associated with it. Each separate window inside an application has its own features,
controls, etc., and each can be moved around and placed where you find it to be
most convenient.

Miniaturize button Title bar

e i

XJ<— Close button

SampleWindow —

This is some text to put ina
window. This is some text to put
in awindow. This is some text to
putin awindow. This is some text
to putin awindow. This is some
text to put in awindow. This is
some text to put in awmduw

Scroll buttons —

Vertical resize bar Horizontal resize bar

Things to do with a window:

* Move the window around on the screen by dragging the title bar at the top. When
the window is where you want it, release the mouse button.

* Resize the window by dragging either the horizontal or vertical resize bar at the
bottom of the window.

» If the window can be scrolled, it will have a scroller along the left side (or at the
bottom); you can click-drag the scroll knob of the scroller to view different parts of
the window contents, or you can click the scroll buttons to scroll a little bit at a time.

* Clicking the miniaturize button in the upper-left corner of the window turns it into a
“miniwindow” or icon, which should appear along the bottom of your screen. You
can get the full window back by double-clicking the icon.

« Clicking the close button in the upper-right corner of the window will destroy the
wmdow and close the document in it. If the X inside the close button is broken, like

4, the document in the window contains unsaved changes, and you'll be
asked whether you want to save the document before closing.

Buttons, Radio Buttons, and Switches

Sometimes applications will have windows with various controls that will allow you to
toggle various settings in the program. These usually take the form of a button, a
radio button, or a switch. To operate one of these, move the mouse cursor over to
the item and click it. If you click a button, the function that is printed on the button

5 Welcome to the NeXT

will execute. If you click a radio button, the white dot will move from one well to the
other. Note that only one well in a group of radio buttons can have the white dot in it.
If you click an empty box, a check will appear in the box, signalling that it is now on.
If the switch was on when you clicked it, it will turn off.

The Application Dock

At some point, you will come across an application that is so useful that you wish
you didn’t have to move all the way to /This/ls/Quite/Far/Down/The/Tree.app each
time you wanted to run it. The solution is to move the application over to the
Application Dock (or just Dock). This area, on the right of your screen, can hold up
to 13 icons, two of which are preset: the Workspace icon (upper right corner) and
the recycler (lower right corner).

To insert a new item, find its real location, then drag its icon over to the right of the
screen to the desired location. The icon should lock into place. Whenever you want
to run this particular application, just double-click its icon in the Dock. To remove an
unwanted item, drag it out of the Dock area and it should disappear. (Make sure the
application isn’t running when you try to do this, or it will just fly back into place).
You can easily tell if an application in your Dock is running or not by looking in the
lower-left corner of its icon. If three dots are present, then the program is not
running; if they are missing, then it is.

The Menu

The menu houses all of the possible things you could ever want to do in a particular
application. (Well, a lot of things anyway...) It enables you to start a new document,
save a sound you just made, print out a picture you drew, or quit that boring game
that only /ooked like fun. Every program has a menu which can, at the absolute
least, be used to quit. More likely though, it will have many options, some of which
are revealed by looking at sub-menus (designated by an arrow to the right of the
menu option). To get to these sub-menus, just click the main menu item that you
would like to look at (for example, File) and it will pop up. As soon as you click
another choice in the main menu, the sub-menu will disappear.

Welcome to the NeXT 6

| Workspace

Each menu (including any sub-menu) is its own little window, so each can be moved
anywhere on the screen. A snazzy little feature is that a sub-menu can be ‘torn off’,
meaning you can grab it as a separate window and move it away from the primary
menu. This way, it won’t close when you move on to something else in the main
menu.

Opening and Saving Files

There are two ways you can open a file that you created with a particular application.
The first way is to move in the File Viewer to the directory that contains the file you
made, and double-click it. The NeXT will automatically start up the application that
created the file and load it. The other way to open your file is to start up the
particular application, move to the submenu that will allow you to open files in this
application, usually either the File, Document or Window menu (which one
depends on each individual application) and choose Open.... A window will appear
that looks similar to this:

You can move up and down the directory tree by using the arrows at the far left of
the window, and scroll through each individual directory by moving the scroll knob.
As soon as you see the file that you want, either double-click the name in the
browser, or click the name then the OK button in the lower-right corner. The
application will open your document.

7 Welcome to the NeXT

When you want to save a file, there are also several options. If you created a new
file and want to save it for the first time, choose the Save As... option in one of the
submenus (again, most likely either File, Document or Window). A window similar
to the Open window will pop up. Move to the directory where you want your file to
be located and type a descriptive filename. If the filename that you pick already
exists, another window will open up, asking you if you want to Replace the other file
or Cancel the operation. If you replace it, the old file will be wiped away; if you
cancel, you can enter a different filename.

To save a file that already has a name, open up the appropriate menu and choose
Save. This will automatically update your file. Keep in mind that just because you
already have a filename, you might not want to Save and overwrite your copy on
disk. If you made any changes to your file that you aren’t sure you will like, you can
still select the Save as... option and save under a new name. This way, you can
keep the last several versions of a file you have been working on and if something
doesn’t work out, you can always go back to a previous version.

Ack! Get Me Out of Here! (or How to Logout)

To log out:

« Save everything you are working on (once you quit, it's gone forever unless you
saved it!).

* Click the File Viewer and go to the File Viewer’'s menu.
* Click Logout.
* When asked if you really want to log out, click the OK button.

Welcome to the NeXT 8

COSs111

BiCapitalization: adj. The act said to have been performed on
trademarks such as NeXT, {NeWS]}, VisiCalc, FrameMaker,
TKlsolver, WriteNow and others which have been raised above
the hoi polloi of common coinage by nonstandard capitalization.
Too many {marketroid} types think this sort of thing is really
cute, even the 2,317th time they do it.

—Hacker’s Jargon File

Welcome to your test drive of the NeXT computer. Just as you would take a new car
to its limit, we want you to take the NeXT to the limit. There are a few things that you
have to get used to first, such as moving around and understanding all of the parts on
the screen. But once that is under control, we want you to explore and discover what
extras are included in this model. Have fun!

Purpose

* Learn some basics about the NeXT computer.
» Learn how to navigate around the NeXT computer.

Materials
For this lab (and all future labs), you will need the following items:

* An account on the NeXT computers
* This lab notebook

References

Required CheatSheets

* Welcome to the NeXT
* Printing

* Terminal

* handin

Helpful Cheatsheets

* Keyboard
* WriteNow
* UNIX

Procedure
* Log in to your account.
* Explore the directory structure, moving up and down through various directories.

* Find the WriteNow application (in /NextApps).
* Place WriteNow onto the application dock.

* Move to the c¢s111 home directory by going to the Workspace Menu and choosing
Finder from the Tools sub-menu. Once the Finder window opens, click and hold
the pop-up list that says Find File. This will open up several other choices; move
the mouse down to Find User and release the mouse button. Type “cs111” and
press <return>.

* From the cs111 directory, move down into the directory Labs, then to the 1-Intro
directory. To describe this location in the future, we will just say “go to
~cs111/Labs/1-Introduction.”

1 Lab #1-Introduction

» Double-click questionnaire.wn (if a notice comes up saying the file is locked, click
the Open Copy button).

» Using the mouse, move to each question and answer it with the appropriate
information.

* Click Document from WriteNow’s menu. This will open up a sub-menu. From
here, click Save As... and a new window will pop up which has a button in the
lower right corner labeled Home. Click the button. This tells the computer to move
to your own directory for saving files. Now type “question” and it will save your
personalized questionnaire to a file named question.wn in your account. (The .wn
ending, which is placed there automatically, lets the computer know your file is a
WriteNow document.) As a general note, it is good practice to save your files as
often as possible, just in case the computer should crash.

* Go back to the WriteNow menu and click Print... to print out your document. If you
ever need to turn in a hardcopy of your work, this is the way to do it. For more
information, read the Printing CheatSheet.

» Choose Quit from the WriteNow menu.
* Open up a Terminal window (it is located in /NextApps).

* Type ~cs111/bin/addpath . This command will run the program called addpath
located in the bin directory of cs111. The addpath program will modify your path
variable to tell the computer to look in ~cs111/bin every time that you type a
command. Therefore you will not have to type the directory name explicitly when
you want to run a program located in ~¢s111/bin. For more information about
paths, see the UNIX cheatsheet.

* Type handin 1 questionnaire.wn. (If you didn’t type the addpath command from
the last step, you will have to type ~cs111/bin/handin whenever you want to run
the handin program.) The program just automatically forwarded the file
questionnaire.wn that you just created to the cs111 TA’s. The number 1 specifies
that you are turning assignments in for the first lab. Every time that you are
supposed to turn in your work electronically (which is most of the time), this is the
way to do it. For more information, read the handin CheatSheet.

* Log out.

What should be handed in

Your questionnaire should be turned in using the handin program.

Above and Beyond

If you get finished with all of the other parts of this lab and you still have some time,
you might want to explore the NeXT computer some more. There are quite a few
interesting applications available.

» Pretty Pictures: from the directory /LocalLibrary/lmages/Scene_screens, scroll
down the list until you find calvin.tiff. Double-click it and a background should

Lab #1-Introduction 2

show up on your screen. Look at the other files until you find a picture that you
like.

* Snazzy Sounds: move to /LocalLibrary/Sounds and find Sack_of_wet_mice.snd
towards the bottom of the list. Double-click it and you should be greeted with an
interesting statement. (If you can’t hear anything, or if the volume is too high, read
the Preferences CheatSheet to learn how to control the volume.)

* Groovy Games: To try your hand at some of these wonderful time-killers, go to
/LocalApps and double-click at least one of the following: BlastApp (similar to
Choplifter), BoinkOut (like Break Out), MazeWar (great with several people,
meaningless with one), Reversi (like Othello), and of course, Tetris.

For Further Exploration
* The CIT document entitled “Getting Started on a NeXT Computer”

* In /NextDeveloper/Demos there is an application that will show you around the
NeXT. Guided Tour.app is really fun to watch, but beware, you should have
everything saved before you run it because it automatically logs you out when it
starts.

3 Lab #1-Introduction

Lab #1—TA Sheet

August 23, 1991 - Jonathan Thompson

This lab will either be the easiest or the hardest to run, depending on how quickly the
students pick up the fundamental concepts presented. The lab is purposely short for
two reasons: to allow those students who have no idea what is going on to get the hang
of things, and to give the other students who finish the lab early an opportunity to go
exploring.

It is imperative that the students read Welcome to the NeXT in the beginning of the lab
manual. This covers all of the fundamentals from understanding how a Unix system is
set up to learning how to operate a mouse.

In the Above and Beyond section, the students play sounds out of the /LocalLibrary
directory. You will want to go around to each machine and make sure that the volume is
not muted and at an audible level. Fortunately, this is possible without having to log into
the machine:

Go to each NeXT and type the <Enter> key on the numeric keypad. If the volume is
set to a good level, you will hear the error beep. If you don’t hear anything, or the
sound is too soft, press the ‘up-volume’ key for a couple of seconds and then hit the
<Enter> key again. If you still don’t hear anything, try typing the command key and
the ‘down-volume’ key which toggles the mute function on and off, and hit the
<Enter> key yet again. Keep playing with these two commands until you get the
error beep to sound.

Make sure that the permissions are set so that the students will be able to have access
to the questionaire.wn file in ~cs111/Labs/1-Intro, but not the ability to write to it.

1 Lab #1-TA Sheet

snail-mail: n. Paper mail, as opposed to electronic. Sometimes
written as the single word ‘SnailMail’. One’s postal address is,
correspondingly, a ‘snail address’. Derives from earlier
coinage ‘USnail’ for which there have been parody posters and
stamps made. Oppose {email}.

email: /ee’'mayl/ 1. n. Electronic mail automatically passed through
computer networks and/or via modems common-carrier lines. Contrast
{snail-mail}, {paper-net}, {voice-net}. See {network
address}. 2. vt. To send email to a person.

—Hacker’s Jargon File

COSs111

Communication is part of being human. Banging away at a computer keyboard all night
may seem completely anti-social, but used properly, computers can greatly enhance
communication between people, especially over long distances. This lab will cover
several different ways of communicating and exploring via computer. When you are
finished, you should be better aware of the vast communication potential of the Internet
and be able to reach out to people across the globe. Armchair travel takes on a whole
new meaning when you can talk to people in Finland, Germany, and many other
countries at the drop of a hat.

Purpose

* To become an expert at e-mail.
* To learn to start and read news.

Materials
* An urge to explore the world.

References

Required CheatSheets
* Copy&Paste
* News
e Terminal
¢ E-mail
* WriteNow
* handin

Helpful CheatSheets
* UNIX
% ﬂp
* telnet
e talk

Online Help
* mail man page
* Help screen for Touch

Procedure
Log in to your account

Prepare a document for submitting your data
* Start WriteNow.
* Choose Save As... from the Document menu.
* Save this (currently empty) document as Communication.lab.wn.

This document is where you will Paste or type all of the data we ask you to hand
in. Most labs will be operated in a similar fashion. You will create one or more
documents to store your findings and proof of doing the lab, then use the handin
program to submit them before the due date. As you progress through each lab,

1 Lab #2-Communication

place any comments or revelations into a file as well. You can submit anything
you like...not just what we tell you to. Be bold!

Mail
* Open a Terminal window.
* E-mail your favorite quote to everyone in your row of computers.

Note: While you are withinmail, you will not be notified of any new mail you
receive. Therefore, you must quit and re-start mail in order to see if new mail
has arrived.

» Compile a list of the quotes you receive, placing yours first. You can easily do
this by using Copy&Paste to place them directly into Communication.lab.wn,
then rearrange them into the proper order using Cut&Paste.

* Save this file again. (So your changes to the document are on disk.)

News
e Start news (use rn)

* Read articles from at least 3 newsgroups. Possible choices (merely
suggestions):
* comp.sys.next (all about the NeXT computer)
* alt.stupidity (strange)
» alt.folklore.urban (very silly)
* rec.humor (not very funny for the most part)
« alt.flame (people yelling at each-other)
* alt.activism (issuesd&issues)

* Copy&Paste a few articles into Communication.lab.wn.
« Save your file again! (The more often you save, the safer you are.)
* Exit news

Before the deadline given to you, make sure you submit the
Communication.lab.wn document you created, as well as anything else you would
like us to see. Remember that the Above and Beyond section counts too!

Log out of the NeXT machine.

What should be handed in

* The quotes you collected, with yours first.

* Articles from 3 newsgroups of your choice.

All of this should be contained in Communication.lab.wn. Feel free to put any
other comments or findings there as well. If you don’t put it in this document, we will
probably never see it! Just make sure you submit it on time using the handin
program. Good luck!

Lab #2-Communication 2

If you get done with all of the above
Do this before the Above and Beyond section.

Telnet
* Choose a site to telnet to.
* Log onto the site as per the instructions for that site.

« If it is a BBS (bulletin board) set up an account.
* Get and handin proof that you were actually on another site. (Once again,

Copy&Paste this into Communication.lab.wn.)

Above and Beyond

Try anything you have time for, in any order.

NeXTmail

Want to send your voice in mail? There is an application on the NeXT that allows
you to send not just text as mail, but your voice as well. To try it out, find a willing
partner (victim) to send the voice mail to. Since this will goof up the normalmail
program, your partner must know that it is coming and use the same application

you do.
To send NeXT mail (with sound)

* Find the application Mail.app in /NextApps. Double-click it and choose
Send... from the Tools menu. You will be faced with a screen similar to the

following:

* Enter your partner’s e-mail address in the space marked To, and the subject

of the message in the Subject area. You can now type text in the window,
Copyé&Paste graphics, and of course, add sound. To include your voice,
click the Lip Service button in the window. Up comes a tape recorder-like

window:

3 Lab #2-Communication

* Click Record to begin recording your voice (the microphone is on the front

of the monitor), Stop when you are done speaking, and Insert to put the
recording into your mail.

If you want to modify the sound before sending it, click Edit. This is a fun
option to play with. All | will say is that you can Cut&Paste parts of the sound
to mutilate it however you like by selecting the piece of the sound you want to
fiddle with, and using the Cut and/or Copy options from the Edit menu. For
more information on digital sound, see the Sound cheatsheet.

* When the sound is finished, edited or not, and you have clicked Insert to put
it into your mail, a pair of lips will appear in your letter:

Sound in Maill

- oo The Lips

* The voice mail is ready to send, so click the Send button. Now it is your
partner’s turn to receive the mail.

To receive NeXT mail (with sound)

* First, load up Mail.app exactly as above, but instead of clicking Send, you
will need to open up your mailbox. If you do not see a window similar to the
following on your screen, follow the instructions below:

Lab #2-Communication 4

* Go to the Tools menu and choose Mailboxes...
* Click Active.mbox, then the Open button in the lower left-hand corner.
* The above window should soon appear.

* Once you have this window, read the mail you have received by performing
these steps:

» Click the mail header (the Amy L Szuchmaker line) to read the message.

* Double-click the lips to hear the voice message. Make sure your sound
is turned on, or you will not hear anything! See the Preferences
CheatSheet for more information.

If the Message that was sent to you does not appear in the header area, either
the mail is still in transit, or something went wrong. Depending on how much
sound and/or graphics were sent, it can take several minutes (possibly even 10 in
the worst case) for the mail to arrive. To force Mail.app to check if any new mail
has arrived, choose New Mail from the Utilities menu. If it is taking forever, you
may want to try a short voiceless message to make sure you are doing
everything else correctly. Repeat the steps from the beginning, but do not add
any voice to the message. If even this does not arrive, flag down a TA.

Talk

Writing mail to somebody is a great way to communicate, but it lacks the
immediacy of a face-to-face conversation. Unfortunately, we do not have the
facilities to do video teleconferencing, but you can write messages to another
person in real-time using a program called talk. See the talk CheatSheet to
learn to use it.

NewsGrazer

Sure, rn is fine for reading news, but just as NeXTmail takes normal mail several
steps further, there exists a NeXT application called NewsGrazer that takes rn
into another realm. It automatically checks for new news periodically; it offers
point&click simplicity rather than difficult-to-remember rn commands; it allows
you to move between articles with great flexibility.

5 Lab #2-Communication

Just so you are warned, NewsGrazer is one of the most controversial
newsreaders on the net since it allows RTF (Rich Text Format) postings, which
can contain graphics, sound, and different fonts—very similar to what NeXTmail
allows. Why is this controversial? It takes much more ‘bandwidth’ (time and
money) to distribute non-text articles than plain text ones. This angers some
people since they have to pay long distance phone charges to get their news.
Longer RTF postings can take quite a while to transfer, so these folks’ telephone
charges rise considerably. Nonetheless, if you avoid posting long RTF articles
nobody should get too upset. Just one other thing to keep in mind is that the
majority of people reading non-NeXT specific newsgroups will not be able to use
NewsGrazer since it is a NeXT application. Therefore, chances are that 90% of
the people reading your post will never have heard of RTF postings, and will see
gibberish on their screens.

Don’t let these warnings scare you away from using NewsGrazer. It will do plain-
text postings that are indistinguishable from normal posts. And even if you never
post anything, NewsGrazer offers so many advantages for reading news that is
worth checking out.

NewsGrazer is located in /LocalApps and is exceedingly simple to use. When it
starts, it will present a hierarchical list of newsgroups. If you want to get to
comp.sys.next.misc, for example, you would first click “comp” in the list, then
“sys” in the new list that appears, followed by “next” and “misc.” A list of articles
will appear in the upper right of the window. Click the one you want to read. The
article will show up in the large lower box!

Ftp

You know how to telnet to different places, but not how to get data from one
machine to another. Let’s say that someone tells you about a REALLY neat file
that you can use in your next PSY207 paper, but it's in Finland. Hmmm. If the
site in Finland is what is known as an “anynomous ftp site” you are in luck. All
this means is that you can use the £tp command to go to the site, log in
anonymously, and grab files. There are only a few commands that you need to
know, and all of them are either explained or discussed in the ftp CheatSheet.
If you are looking for programs for your own computer, ftp sites are a very
valuable resource since they often have the newest releases of free software.
See the ftp CheatSheet for some of the better sites to try.

Touch

Some clever person has created an application to make ftp far easier to use
than going through the above procedure. It adds a NeXT interface to ftpand
makes files from an ftp site appear to be in another File Viewer in your
Workspace. You can drag files from the ftp site to your directories and avoid all
the typing, etc. that plagues normal ftp. It will also take care of binary files for
you, so you do not have to worry about the binary command. However, the
main advantage Touch offers is the appearance that the ftp site’s files are
actually on your system. You can run applications, view text files, etc. as if they
were in a normal directory. In fact, you can even get to the files in a Terminal
window! Just cd to Amp/touchdir. The ftp site’s files will appear there.

Lab #2-Communication 6

To use this application, double-click Touch in /LocalApps. It will load and
present you with this window:

Touch

In the lower part of the window enter the name of the ftp site and the login
information you would normally use in ftp, then click the Login button. The
window will disappear and you will be placed in the Workspace. After a few
moments (be patient) the site should appear in its own mini-File Viewer. Use it
like the normal File Viewer to find the file(s) you want, then drag them into your
directory in the normal browser. It will say “copying” as if it were copying a
normal file. When this message disappears, it is finished, and you can
disconnect from the site. Double-click the Touch icon and click Logout in the
lower left of the window. In a few seconds the window should again look like the
above illustration. The second File Viewer will still be there, but the directory
called touchdir no longer exists since you logged out of the site. For this reason,
you may want to click the close box on the second File Viewer to get rid of it. If
you do not, it will just hang around being annoying, but do no other harm.

The only thing you must avoid while using Touch is choosing Update Viewers
from the View menu. This will crash the application force you to reboot.

For Further Exploration

The best way to learn about communication with computers is to go off exploring.
There is no real manual for scouring the net, just the accumulated wisdom of many
people. ftp to different places; use mail to its fullest; keep up with a few netnews
groups. If you stay involved with the Internet, you will eventually accumulate quite a
knowledge base. Since it is so large and diverse, few people, if any, ever master the
net. Use e-mail to communicate with your TA’s and professors. Contact friends at

7 Lab #2-Communication

other Universities. Play games at telnet sites. There are many documents on
specific aspects of the net, so try running an archie search on a topic you are
interested in, then ftp to the site and get the data. (Archie is explained in the
telnet CheatSheet.) Great exercise while getting the information you want!

One other thing to try...There is a chat system you can join that allows you to talk to
an entire group of people at once. Subject matter varies widely, depending on who
is on at the time and what subject groups exist at the site you visit. At the time of
this writing (8-25-91), the program to connect you up can be found in ~dcoster/bin
and is called irc. Therefore, to run it, type, ~dcoster/bin/irc. Unfortunately, it
only works on Phoenix, so you will have to telnet there before typing this. Go
ahead and run the program. Look around. You can try typing /help once you are
connected, but | make no guarantees that it will always work. This system seems to
change quickly, and sometimes doesn’t work how you expect it to. Also, you are
running it out of someone’s personal directory, so it may disappear at any moment.
You are on the edge...be adventurous and give it a try sometime. :-)

Lab #2-Communication 8

Lab #2—TA Sheet

8-22-91 Jeff Blum
Before this lab begins, you may want to go over Copy&Paste with the entire class
since it is nearly required for the lab. A quick demonstration may be in order to
achieve maximum clarity. This concept should be fully grasped before the lab to
avoid confusion on how to save stuff for submission. Our concept of what the
student should do is create a WriteNow document that they can Copy&Paste
material into as they progress through the lab. You can mention that this is probably
the best method, but do not stifle any other ideas they may have, as long as they
look like they will work. Your discretion.

The primary goal of this lab is probably getting the students to use e-mail as much
as possible, and learn to feel comfortable with it. Unfortunately, this lab will probably
be one of the rougher ones because it is the first lab where they are expected to
perform tasks that make use of the NeXT fundamentals. Most students will probably
still be a bit shakey on these important concepts, so expect a few problems. We
have included only two mandatory tasks in this lab: mail and news. telnet was
supposed to be required, but we felt that it was stretching the limits for this lab. If
even this seems to be too much, you may want to scale it back on the fly.
Remember one of the most important tenets of this course:

Computers are our friends!

Sacrifices in the amount of material covered may have to be made to meet this goal.
It would not do to have 30 frustrated students hating computers because they were
pushed to learn one more application.

| think you get the idea. Good luck!

1 Lab #2-TA Sheet

's Jargon file

ion}. —The Hacker

n. See {recurs

recursion

More and more of the world’s computing power is going into processing graphics. The
interface you use on the NeXT is a GUI—Graphical User Interface. Movies such as
Terminator Il use computer graphics for many of their special effects. Even the text that
you print out on laser printers is graphical since each character of a font is drawn using
a graphics package. In this lab you will learn to speak a common graphics language—
PostScript. You will also see demonstrations of color graphics, including real-time video
on the NeXTdimension computers in the back of the lab.

Purpose

* To learn the fundamentals of PostScript for several reasons:
* It is what the NeXT computer uses to display everything on the screen.
* It is the language used in most laser printers to describe what to print.
* |t is a stack-based language, which is interesting in itself.

* To explore the current state of high-end graphics processing.

References

Required CheatSheets
* PostScript
* UNIX, especially the section on 1pr.
* Edit
* Yap
* TopDraw

Helpful CheatSheets
* Recursion

Online Help
* man page for 1pr
* Help within TopDraw—<click Help... in the main menu.

Procedure

Log in to a NeXT

PostScript
* Start Yap.

* Draw a nifty picture, using PostScript. (See the PostScript CheatSheet for some
examples.) From Yap, save it in your directory as postscript.ps. This will be
submitted later, after you have printed it out and looked at it.

* Open a Terminal window.

* Use 1pr to send the PostScript file you just saved directly to the printer. This is
to show you that this is indeed the language the printer uses. It is going directly
there!

» Start TopDraw and create a simple drawing similar to the one you created using
PostScript.

1 Lab #3-Graphics

» Save the drawing in one of your directories by choosing Export... from the File
menu. Use the filename TopDraw.drawing.topdraw, and make sure the EPS
icon (toward the bottom of the panel) is highlighted. If it is not, click it. This will
ensure you are saving in a PostScript format. You will submit this file later, so
don't lose track of it!

¢ Load the file from within Edit :
« Start Edit by double-clicking it in /NextApps.
* Choose Open... from the File menu.
* Find your file, click it so it is selected, then click the OK button.

* Realize that hey...this looks extraordinarily similar to (although longer than) the
stuff you wrote in the PostScript section...

Congratulations. You can now speak the same language as the printer. Many
Macintosh, NeXT and IBM laser printers use this language, so most drawing
programs do nothing more than take what you draw and translate it into
PostScript. You now know how to cut out the middle man and talk directly to the
printer!

Nifty graphics & video

* Meet the TA in the back of the room to see the graphics demos on one of the
color NeXTdimensions. Bring popcorn.

Do not forget to tumn in all of the material listed below before the given due date!

Log out of the machine.

What should be handed in

* Your PostScript drawing(s). (postscript.ps and any others you create)

* Your TopDraw masterpiece (TopDraw.drawing.topdraw)

* Anything you do in any other sections of this lab, or anything else you want us to
see. We're not picky!

Above and Beyond

Try anything you have time for, in any order.

More PostScript
Go for it. Do anything you want in PostScript, but go beyond the simple drawings
in the mandatory part of the lab. Try some of the more advanced PostScript
operators, especially the ones for looping. If you really want to test your
knowledge of PostScript, try creating your own recursive picture. See the
Recursion CheatSheet for more information. You may not succeed in making a
real recursive drawing in the time you have, but you may still get interesting
results. Turn in anything you do, including non-working code. Recursion is
difficult, so a valiant attempt to use it will be smiled upon. A good exercise to try
is modifying the example code in the Recursion CheatSheet. Tell us what you try
to do, then include the modified code and your evaluation of the results it
produces. Good luck!

Lab #3-Graphics 2

Special Effects in TopDraw
Choose several advanced features of TopDraw and use them to create a drawing
that uses more than just basic shapes and fills. Possible choices:
* Effects from the Draw menu
» Skewing from the Transform menu
* Flipping from the Transform menu
* Placing text along a path as in the example below. (Just draw your path,
double-click it using the pointer tool, and type away!)

These are just some of the more obvious choices. Explore others! Also, don’t
forget to put your results into a file and use the handin program to turn them in!

For Further Exploration

More color graphics
If you want to see some more amazing color graphics, check out the Interactive
Computer Graphics Laboratory (ICGL). This lab contains many IRIS computers,
which are very fast graphics machines with some incredible demos installed.
They are located in E-Quad room B423. You can login with your normal userid
and password, but the operating system is different than the NeXT’s, so you will
have to pester a guru there to show you how to get to the demos. If there is
enough interest, perhaps a TA will go over for a few hours and show you some of
the better ones. Another neat feature of the IRIS computers is a flight simulator
called DOG, which allows you to fly against other humans in an aerial dogfight.
Amazing graphics, amazing game. It was banned a while back for using too
much computing power, so you can currently only fly a plane solo...no
dogfighting. Nonetheless, it is still quite a bit of fun.

3 Lab #3-Graphics

Lab #3—TA Sheet

8-23-91 Jeff Blum
This lab has the potential to be quite a bit of fun. Seeing computer novices at work
using powerful graphics tools should prove interesting, especially if they have never
done any computer graphics before.

Expect several people to bog down on the PostScript section of this lab. Since this
is probably their first exposure to any sort of programming, the key is for each
student to get results quickly. Encourage typing in one of the example programs
from the CheatSheet and changing parts of it. Students will probably become more
hyped if they see the results of their actions as soon as possible. After everyone
seems able to get results on screen, encourage experimentation. Quantity over
quality in the Postscript section of this lab may not be entirely bad. The next lab
(Presentation) will focus on more aesthetic presentation work, so this lab can be
more free and fun.

TopDraw should be a welcome relief to most students after they tire of Postscript. It
is quite powerful and easy to experiment with. Once again, let them go wild. If it
seems natural, you may want to start them cutting and pasting into other applications
to get them used to the idea. This will be important in the next lab, so why not start
early?

For color graphics on the NeXTdimensions, the best effect we have found is real-
time video. Just get a VCR and two RCA cables from Media Services in East Pyne,
hook it up to the NeXTdimension board in the back of a color cube, and run
/NextDeveloper/Demos/NeXTtv. This will allow you to display the video directly off
of the VCR— it is digitized in real time! For sound, you can either digitize it through
the microphone jack on the sound box, or use something like digital ears.
Otherwise, you can fudge and hook some (amplified) speakers up directly to the
audio output jacks on the back of the VCR. Cheap, but it works. The latter may
work out better since it is easier to implement and avoids digitizing delays that will
throw the audio out of synch with the video. Good luck, and arrive early to set this
one up!

Getting the VCR from Media Services needs advance planning. Ask several weeks
in advance since you will have to fill out a bunch of forms and work out logistical
details with them. Trust me. It is worth the trouble. Of course, if you own a VCR, it
would be easy to just drag it along for the labs, but | leave these decisions to you.

The last part of the Above and Beyond section is optional on your part. Since at
this time any really cool demos for the NeXT are hard to come by, and the IRIS
computers have a plethora of nifty ones, you may consider it worthwhile to take a
group over to ICGL for an optional get-together. You should probably go over and
pre-select the neat demos so you know what you are doing before shoving 20
impatient novice computer folks into a small room with you. Just a thought. :-)

In case you did not know, Buttonfly is the key to viewing most IRIS demos. The
people that staff ICGL are very helpful, so you can ask them for assistance if you get
stuck. BTW—If you have not seen the IRIS demos in action and flown in DOG then
you are in for a surprise as well!

1 Lab #3-TA Sheet

| | . ¢ |
COS111

[ab 4 -- Presentation

KISS Principle: n. "Keep It
Simple, Stupid." A maxim
often invoked when
discussing design to fend
off {creeping featurism} and
control development
complexity. Possibly
related to the {marketroid}
maxim on sales
presentations, "Keep It
Short and Simple."

‘ BONJOUR!

N\

Cover art by:

Rich Feit
O Jon Thompson
O Jeff Blum
@) With the help of GreyBoard.app

The computer is a powerful tool that can help you present your ideas with flair. A good
computer presentation can appear difficult to produce, but this is often not the case. In
this lab you will learn how to use several different applications on the NeXT computer to
create a single final product. Since this will combine the best aspects of several
powerful programs, the results should be fairly impressive.

Also in this lab you will experiment with a tool that attacks the problem of producing
nicely formatted text and equations from a very different angle than a typical NeXT
application. This tool is called trof f and was widely used in the past to do most text
and equation processing on UNIX machines. In fact, many people still use it today—
Professor Steiglitz wrote the Introduction to this lab manual entirely in trof £ and its
associated tools. In addition, UNIX documentation is still done in troff. So, even
though you may scoff at its primitive interface, it is still a very useful utility. Later in this
lab you may find that it is far better at creating equations than a modern word processor!

Purpose

This lab has two major goals:
1. To learn different forms of text processing
* Text formatting (troff)
* WYSIWYG (What You See Is What You Get)

2. To learn about integration between applications.

References

Required CheatSheets
* troff
* Edit
* WriteNow
* CheatSheets for the applications you choose.

Helpful CheatSheets
* UNIX
* handin
* Print

Other
* Manuals for the applications you use. (These can be found in the manual rack
near the door of the cluster.)

Procedure

Troff
« Start Edit, choose New from the File menu, and save the document that
appears as troff.paper. This is where you will type in your trof f code.

* Create a fairly simple document using troff. Use at least 3 of the following
troff features:
* centering
* title

1 Lab #4-Presentation

* author

* underline

» change the font (italic, bold, etc...)
* change the margins

* Insert an equation. (It need not be too complex.)
* Make sure it says “troff” somewhere near the top of the page.

* Save the troff file.

* Print out the document using the commands in the trof £ CheatSheet so you
can make sure it worked. If it did not, fix and reprint it until it is correct.
Remember to keep saving your changes, or they will not be printed or
submitted!

WYSIWYG
e Start WriteNow.

* Create a document as similar as possible to the trof f document you just
finished. (Including the equation...but don’t spend all day! hehehe)

* Make sure you put “WriteNow” somewhere near the top of the page.

* Save this file as WriteNow.paper.wn. You will submit it later. If you like, you
can print it to see how similar it actually is to the trof f document you created.

Integration
This section will introduce you to various applications on the NeXT and teach you
how to use more than one of them to produce a single final product. For
example, you can use the Improv application to produce a 3-dimensional bar
chart that you can then copy into a WriteNow document. (See the Improv
CheatSheet for an example!)

Each application you will be using has its own strong points. Your task is to
decide which parts are useful, then use them to their fullest in your final piece.
TopDraw, for example, is an excellent drawing program, but you would not want
to write a novel with it. WriteNow is good for text, but has almost no internal
graphics capabilities. However, you can use both of them to get a document with
excellent text and graphics.

* Use at least two different applications to produce one final product. We have
prepared CheatSheets for the following applications, but feel free to use
any that you like:
» WriteNow
* Improv
* TopDraw
* Diagram!
*Yap
» Scene
e Grab

Lab #4-Presentation 2

What should be handed in

* Your trof f document, troff.paper.
* Your WriteNow document, WriteNow.paper.wn.
* The document you created using at least two different applications.

Above and Beyond

GreyBoard

OK—this paragraph is being added soon before the final labs are printed out.
When this section was written, GreyBoard was a stable application—it always
worked. When we tried it recently, however, it failed to work at times, giving an
error about not being able to connect to a host. Hmmm. If this happens, just try
it a few times—it seems to work if you try it enough. If it continually malfunctions,
you may wish to skip this section.

This application can be incredibly amusing since it allows more than one person
to work on the same drawing at the same time. To use it, you will need a group
of people all logged into their NeXT accounts. Look in /LocalApps for the
application GreyBoard.app. One person in the group must start the application
and click the New Conf. button in the following window:

This will bring up a new “drawing board” to work in. The others in the group can
now start the same application and enter the name of the machine that the first
person is on in the “Join on Host Named” box. Click Join In to join the group.
There should be three windows, one large one for the drawing, one with the
drawing tools, and one that looks something like this:

~ Conference Attendees |

3 Lab #4-Presentation

As each participant joins in, a new silhouette will appear with their userid under it.
The head with the marker beneath it is the person who can currently modify the
picture. If you want the marker, click Request Marker, then when you want to
give it to the next person, click Release Marker. Draw to your heart’s content.
You can save the finished masterpiece, Copy&Paste data from other
applications, etc. Beware...these sessions usually turn out to be a bit on the silly
side. (e.g. the title page for this lab...)

ShowAndTell

ShowAndTell is the application used to make demonstrations like
GuidedTour.app. Using it, you can make your own presentations combining
action on the NeXT with simultaneous sound. The application is located in
/NextDeveloper/Demos, which is a polite way of saying that it isn’t perfect. It will
crash occasionally, and it does some strange things at times. Nonetheless, it is
fun to play around with. After starting the application, click record to begin
recording a new script. Any sounds you make will be picked up by the
microphone in the monitor, and anything you do on the computer (typing, moving
the mouse, opening applications, etc.) will be recorded for later replay. Click the
Stop button to end the recording, and Play to see what you have created.

Important Note!!!!l

It is important to realize that this application records what you are doing and not
the results of those actions. Therefore, if you are recording a script and double-
click an application’s icon, when you play back the script, you must have that icon
in exactly the same place on the screen. If it is not there, ShowAndTell will
double-click in that area anyway, and strange things will happen. Guaranteed.
The machine may crash, a different application may be started, whatever. On
the other hand, this should not stop you from experimenting. If the machine
blows up, who cares? Just reboot it. (See Emergency CheatSheet.)

For Further Exploration

This lab has shown you some of the tools and technical details that you can use to
create effective presentations. It did not, however, tell you what stylistic techniques
you can use, or how to arrange presentations effectively from an artistic standpoint.
Reviewing others’ presentations before making your own may be a good use of time.
If you see an advertisement that you really like, look at it and think about what
makes it attractive, then try to incorporate those elements in your own work. There
are even specific courses available for learning desktop publishing (DTP). Try
calling CIT (258-6028) and asking if they have any courses running in the near
future. Since you are a student, any course you take from them should be free.

Lab #4-Presentation 4

Lab #4—TA Sheet

8-23-91 Jeff Blum
If nothing else, students should find this lab useful to their academic careers. If they
take this lab seriously and actually try to walk away with a decent knowledge of the
material, they should be able to produce very nice presentations using the NeXT
computer. One of the goals in designing this lab was to keep it open-ended. Hence,
the students are given their choice of many different applications to exercise their
creativity; restrictions are at a minimum. On the other hand, this lack of restrictions
may confuse some people. They will possibly need a prod in the right direction—a
hint or suggestion at what they should try and do. Improvise.

There are two primary goals in this lab. The first is to learn about a primitive yet
powerful text formatter, t rof £. Hopefully by showing that this program (a standard
UNIX tool!) can outperform WriteNow when it comes to equations, they will get the
point that any application can have its strong points. In the meantime, they will have
learned a new skill that few people can claim: the ability to create a good-looking
document on a computer without using a word processor. This section will also
illustrate the two fundamental ways of working with text: formatting and WYSIWYG.

The second part will expand on the idea that each application has its strong points
by showing how to focus those strong points on one final goal. Hopefully, whether
they realize it or not, the students will glimpse the underlying structure of UNIX—
many small parts that work together to accomplish larger goals. If they truly catch
on, they should find themselves with a springboard for creating sophisticated
documents which they can use in their other courses throughout college.

Whew. You call this a lab of lofty goals? Well, if nothing else, students should

become interested by the realization that they will be able to outperform their
computer illiterate counterparts.

1 Lab #4-TA Sheet

Lab 5 - Sound

\\ //

0

When a computer records a sound, it merely samples what is going on at the
microphone and stores the information in a file — several thousand times per second.
Once the information is on the computer, you can edit it just as you edit other computer
files. Read on for a taste of the digital recording and editing of sound files...

Purpose

* To learn to record and play sounds from a Terminal window.
* To understand what'’s in a sound file.
* To learn how to manipulate soundfiles using SoundEditor.

Materials You Need

e Earphones!
* A cassette tape, if you want to have a recording of your sounds.

References

Required CheatSheets
* Preferences
* Sound
e UNIX
e SoundEditor

Helpful CheatSheets
» Storage
e rt.app
* SoundWorks

Online Help
* Help window (in the Info menu) for rt.app.
* Help window for SoundWorks.

Procedure

Setup
* Log in to a NeXT.

* Plug in your earphones in the back right of the monitor, under the picture of
headphones. You might have to walk around to the back and look for the jack.

* Open up a Terminal window.

* Use the Preferences application to set the volume, and turn the mute on so the
sound only comes through the headphones. Also, make sure you are in UNIX
Expert Mode so you can view hidden files and directories, such as /tmp.

* Finally, open up a WriteNow document and save it as sndstuff.wn. You'll use
this to Paste in text to hand in. Save it every once in a while (this is always a
good practice)

1 Lab #5-Sound

Playing sounds, recording your own

In general, sound files are HUGE. You'll probably run out of space if you try to
store too many of them in your home directory—remember that you have a disk
quota. But... every UNIX machine has its own built-in disk drive called /tmp with
lots of space available. In this lab, you'll save everything you do into /tmp, and
copy the important things to your home directory when you’re done. (Find out how
to use the co command in the UNIX CheatSheet.)

* cd to Aimp. If you want, you can use the mkdir command to make your own
subdirectory in which to store your sounds.

» First you need a way to play sounds. On the NeXT, there is a UNIX command
called sndplay. To testit out, type sndplay
~cslll/Labs/07-Sound/hello.snd — you should hear a short intro we
prepared for you.

* Now you get to record your own sounds. The easiest way is to use the
command sndrecord. Try it— type sndrecord <filename>, and follow the
instructions that appear. If you don’t end your filename with “.snd”, it will be
added for you (every NeXT sound must end in “.snd”). After you're done, the
computer will report the amount of information it recorded.

* Play your sound, and don't forget the “.snd” at the end! If you don't like it,
remove it with rm and give it another try.

* When you get a sound you like, rename it snd1.snd and save it into your home
directory so you can submit it later. You can use the mv (move) command to
accomplish this (nv <old filename> <new filename>).

Getting information about your sounds

* You can get some interesting information about a sound using the sndinfo
command. Type sndinfo <filename>, and five lines of information will pop
up, like so:

Filename: boxcars.snd

Size: 22784 bytes, 22784 samples, 2.844 seconds
Format: 8 bit muLaw

SamplingRate: 8012.821 Hz

Channels: 1

The Size (number of bytes) can be thought of as the number of characters the
computer stored on disk when it recorded your sound. Similarly, the number of
samples is the number of times the computer saved information from the
microphone.

The Format shows the method the computer used to store the sound
information. In this “mulLaw” format, the computer stored each sample as an 8-
bit number on a logarithmic scale.

The number of Channels tells you whether the sound is stereo (two channels,
with different sounds for each ear) or monophonic (one channel, with the same

Lab #5-Sound 2

sound played in each ear). Not surprisingly, stereo files take up twice as much
space as mono files do.

Finally, the SamplingRate is the number of times the computer saved
information each second. Multiply the sampling rate by the number of seconds
and you get the total number of samples.

Think about this for a moment: in the three seconds that the computer recorded
information, it stored over twenty-two thousand characters. That’s ten pages of
text! Furthermore, this is the lowest quality sound on the NeXT.

Recording CD-quality sound requires almost six times that much storage,
because the computer records information almost six times as fast. To record
one minute of CD-quality stereo sound would require over two hundred pages
of information. (ooh, aah!) Check out the Storage CheatSheet for more insight.

* Get information on your snd1.snd with sndinfo, and use Copy&Paste to
transfer the output into sndstuff.wn. Also give a rough estimate of how many
pages (at about 2200 characters per page) your sound would fill.

Playing with sounds in SoundEditor

* Launch the SoundEditor application, and open the sound you just created.
(Use Open... from the File menu.)

* Reverse the sound to hear yourself played backwards.
* Reverse the sound again, back to its original state.

* Your assignment is to hack up this sound until it is unrecognizable. (For
starters, though, you might want to get rid of any silence at the beginning or
end.) Deleting the whole thing doesn’t count. :-) Look for tips in the
SoundEditor CheatSheet.

* If you don’t like what you have done, you can close the sound without saving it,
and open up snd1.snd again. When you're done fiddling around, and you have
a sound that you like, choose Save As... (not Save) from the File menu, and
call your sound snd2.snd.

* Close up the editing window.

* That's all you have to do. But waitl Hopefully you have time left... find
something fun to do from the Above and Beyond section, and after you do
everything there :-), find something in For Further Exploration. Enjoy!

What should be handed in

* sndstuff.wn, including the output from the sndinfo command and possibly short
descriptions of your exploits in Above and Beyond.

* snd1.snd and snd2.snd.

* Any sounds you create in the Above and Beyond section.

3 Lab #5-Sound

Above and Beyond

Try anything you have time for, in any order.

Recording to and from the tape deck

To use the tape deck, you need to set up shop on the machine called page (the first
NeXT in the third row).

...from the computer to a tape
» Press RECORD on the tape deck.

* Press the PLAY button to start recording, and play sounds on the computer
as you normally would. The tape deck will record everything.

...from a tape to the computer

* Get to a Terminal window, and cd to the /tmp directory, so you have lots of
space in which to record your sounds.

* Type sndrecord -d <filename>. The -d option tells the computer to
record from the DSP port (see the Sound CheatSheet), where the computer
gets information from the cassette deck.

* Follow the instructions for sndrecord as you normally would, except
instead of speaking into the microphone, press PLAY () on the tape deck.

» Just a note of caution: sounds recorded from the tape deck are saved in the
highest-quality format with stereo. Use sndinfo to see how BIG they are.
If you don’t need your sound to be stereo, type sndconvert -c 1
<filename>. The -c 1 tells the computer to convert the sound to one
channel (monophonic). Saving the sound in monophonic format reduces
your chances of running out of room on the disk.

/LocalLibrary/Sounds

* Check out this directory! In/LocalLibrary/Sounds there are over 300 sounds
available for your listening pleasure.

* If you find a sound you like, you can save a copy into /tmp or your home
directory and play around with it in SoundEditor, rt.app, or SoundWorks.

Mixing Sounds with rt.app

Whether you're creating your own symphonic masterpiece or you just want to add
your own voice to your favorite song, you will want to learn how to mix sounds.
rt.app is the most powerful and fun mixing application around.

* You can record your own sounds to use, or you can use sounds from

/LocalLibrary/Sounds. If you choose to record your own, use sndrecord and
then follow the instructions below.

When you use sndrecord with the microphone, your sounds are recorded in a
format called “muLaw.” Since rt.app requires that your files be stored in a

Lab #5-Sound 4

different (“linear”) format, we wrote a short program called mu21inear which
will convert them for you.

* For any sounds you recorded yourself, type mu2linear <old filename>
<new filename>. The file you named <new filename> will be saved in
a format acceptable to rt.app.

* Read the rt.app CheatSheet, and make some wild sounds with playnote
commands. If something doesn’t work, go back to the general procedure in the
rt.app CheatSheet, or look in rt.app’s Help screen.

» Save any interesting sounds with Write mix to disk... in the Document menu.

Mixing and Altering Sounds with SoundWorks

Although SoundWorks is not as powerful as rt.app, it has a fantastic interface for
simply mixing two sounds together and for playing with glissandos (sliding up or
down the musical scale). To use this program, however, you must be working on the
NeXT machine called page.

 Read about mixing and the Effects Panel in the SoundWorks CheatSheet.
» Save some mixed sounds, and save some sounds which you changed with the
Effects Panel.
Hidden Messages

Recording artists have always had fun putting hidden messages in their work. The
Beatles did it when they went on a “Paul is dead” kick. Here’s an example from
Queen’s “Another One Bites the Dust.” Make your own judgement on this one.

* In SoundEditor, open up ~cs111/Labs/5-Sound/dust.snd. Listen to it.
* Reverse it, and try to find the message (it's hard to understand).
* For an clearer, eerier example, get a copy of the Beatles’ The White Album and
reverse a chunk of “Revolution Number Nine.” Turn me on, dead man.
Setting up a startup tune

Everyone with a UNIX account has a file which runs a set of commands for every

new Terminal window. It is called .login. Notice the “.” in front... that just means it
doesn’t show up (for convenience) when you type 1s to list the files in your home
directory. To include “.” files in a directory listing, type 1s -a.

* To add a sound to your startup routine, find .login in your home directory and
open it up in Edit (see the Edit CheatSheet).

* Add in a sndplay statement at the end, and save the file. Now, whenever you
open a new Terminal window, this sound will play.

* Take it out when it gets annoying.

5 Lab #5-Sound

For Further Exploration

* Check out Sing in /Net/dobro/musr/Apps/SPASM1.06. It... sings. Hint: find the
switch that toggles between Quiet and Sing, and switch it to Sing.

* Record some good-quality music from the tape deck, and use rt.app to create a
professional-sounding mix.

Lab #5-Sound 6

Lab #5 — TA Sheet
8-30-91 Rich Feit

Before the Lab

* Reboot each NeXT machine to clear tmp. Soundfiles take up LOTS of space.
* Bring extra earphones.

Things to Watch for

| think digital sound is fun by nature. To get the full benefit, though, the students
should understand concepts like samples, sampling rate, and channels. Hopefully
the Getting Information... section won't be too confusing, but be prepared to
answer any questions. You can always point them to the Sound CheatSheet for
more information.

In SoundEditor and SoundWorks, a good analogy for sound editing is text editing. |
tried to make that clear, but... you might have to demonstrate a Copy&Paste or two.

After that, the only thing everyone might need help with is rt.app. Familiarize
yourself with it, and look for errors in playnote commands (such as missing
parenthesis). Kent Dickey '92 and Professor Paul Lansky (music dept.) wrote rt, and
they could probably help if you find something weird.

| originally wrote this lab for use with SoundWorks, but the licensing fell through and
| discovered some really stupid bugs in the application anyway. If a bug-free version
ever comes out, SoundWorks might be a good thing to incorporate into the
Procedure.

Also, Professor Lansky told me about a new version of edsnd
(/Net/dobro/musr/Apps/edsndP) which seems to do much of what SoundWorks
was supposed to do. More importantly, it's stable, and it has a Help screen. You
might want to check it out.

1 Lab #5—TA Sheet

1 I i
4 COS111

LAB 6 - PROGRAMMING IN ...

C:n. 1. The third letter of the Latin alphabet. 2. ASCII #61000011. 3. The name of a
programming language designed by Dennis Ritchie during the early 1970s and immediately
used to re-implement {UNIX}. So called because many features derived from an earlier
interpreter named 'B’ in commemorations of *its* parent, BCPL; before Bjarne Stroustrup
settled the question by designing C++, there was a humorous debate over whether C’s
successor should be named 'D’ or 'P’. C became immensely popular outside Bell Labs
after about 1980 and is now the dominant language in systems and microcomputer
applications programming. See also {languages of choice}, {indent style}.

C is often described, with a mixture of fondness and disdain varying according to the
speaker, as "a language which combines all the elegance and power of assembly language
with the readability and maintainability of assembly language".

— Hacker’s Jargon File

The time will often arise when there is a specific task that you want the computer to do,
but there is no software to do the job. If you are lucky, you can afford to have a
programmer do the work for you, but if you are not you will either have to get along
without it or figure out how to solve the problem yourself. Since nobody can do without,
a little programming experience could be very useful.

Purpose

» To become at the absolute least passingly familiar with C.
* To learn how NeXT programmers make such uniform user interfaces.

References

Sample Programs

* A sample of all three programs will be available in the
~cs111/Labs/6—-CProgramming directory. These will be in executable form only,
S0 you can see how the output looks. After you have turned in your work, the TA’s
will give you a copy of the source code for the two C programs.

CheatSheets

* C - The Programmer’s Language of choice - 1 (Itis VERY IMPORTANT to read
this!)

Procedure

Preparation

* Open a WriteNow document and save it as cprog1.wn; you will paste your
Terminal window sessions into this file. Make sure that you save it every once
in a while.

Program 1

The first program might seem kind of silly, but it actually requires a fair amount of
knowledge such as where to type the program in, what to call it, what the basic
structure should be, and how to compile it and run it. The program has one goal:
print the words “hello, world” on the screen.

* Open a window in Edit.
* Type the following program in the Edit window:

#include <stdio.h> /*include standard library info*/
main() /*define a function named main*/
{

printf("hello, world\n"); /*call the library function printf.

\n represents a newline*/

1 Lab #6- Programming in C

Notice that the comments are short and to the point; this is typical style.

* Choose Save As... from the File menu and move to your own directory (if you
are not already there). Name the program world.c.

* Now open up a Terminal window

* Make sure you are in the same directory as your program and type lcc
world.c.

« After the compiler finishes and you get the prompt back, type a.out. Assuming
there were no errors, the computer should print the words “hello, world” on the
screen. Congratulations! You just successfully compiled and ran your first C
program.

* Copy everything that you did in the Terminal window into your WriteNow
document and save it.
Program 2

For this next program, instead of giving the code for you to type in, we will only
give you some specifications on how to make the program. The program is just
slightly more involved than the first; it will print out your name on the screen in a
mesmerizing pattern. To program this, you should employ a modular design
scheme, meaning create the program one step at time, making sure each part
works before going on to the next stage:

* Open up a new Edit window.
* Type in the appropriate #include statement (we only need stdio.h) at the top.

* Create the function main () which contains a command that will print out your
name.

* Save the program to a file printname1.c and compile and run it to make sure it
works.

* Now, insert a definition for the constant nux equal to 500 (or whatever), which
you will use in a for-loop.

* Declare an integer variable named ??? (pick a name), which you will use as the
counter in the loop.

» Make a for-loop from 1 to num around the print £ statement.
» Save the updated program as printname2.c and see if this version works.

* Now for the final part, just remove the \n from the print £ line and replace it with
2 or 3 spaces.

* Save as printname3.c, compile and run.

* Again, copy your Terminal window session into cprog1.wn and save it. For
brownie points, you can print out more or fewer lines by changing the value of
the constant num and recompiling the program. Feel free to add any
embellishments you want such as printing out the value of nuw, or adding a final

Lab #6-Programming in C -4

newline after the program is done with the for-loop. After these additional
changes, make sure that you save your updated version.

Program 3

Have you ever noticed how all applications that run on the NeXT have a similar
appearance? They all have a menu with certain items such as Info, Edit and
Quit; they all have windows with scroll bars, etc. To create such uniformity, most
NeXT-specific programs are created using an application called Interface Builder.
This application allows people to create very uniform front ends for their own
programs, as well as manipulate code in an easy manner. For the final part of
this lab, we are going to create our own simple yet exciting NeXT application.

* Run InterfaceBuilder in /NextApps.
* From the File menu, choose New Application.

» After a bit of whirring around, a blank application window will show up on the
screen entitled “My Window.”

* Reshape your window to an attractive size.

* From the Palettes window on the right of the screen, find the object called
“Button” and drag it over into your window.

* Enlarge or shrink the button to an attractive size.
* Double-click the word “Button” to change the name to “MySound”.

* After modifying the window and button to your liking, go down to the box in the
lower left of the screen. Click the sounds icon and a window will pop up with
many different sound files. Pick a sound file that you like and drag it onto the
button in your window.

* Choose Save As... from the File menu and name your program button in your
home directory.

* From the File menu, choose Project. A box will open up on the lower right of
the screen, asking you what type of program you are making. We are trying to
make an Application, which just so happens to be the default setting, so click
the OK button.

* One last time, go to the File menu. Choose Make from the list. Interface
Builder will now compile your application and make it executable.

* After it is finished compiling, quit or hide Interface Builder, go to your home
directory and double-click the program that you just created (Interface Builder
named it button.debug). A window identical to the one that you were just
working on should pop up. Now, click the button and voila!l The sound you
chose will play!

You are probably wondering what this third ‘program’ is doing in a lab about C.
Well, the fact is that everything you just did was is C, or rather an expanded
version of C. The particular version of C that the NeXT uses in the Interface
Builder is called Objective C, and contains as a subset of itself everything that
you have learned so far about C. But it also offers a lot more tools that allow you

3 Lab #6- Programming in C

do some prelty fancy stuff. (Just look at the majority of NeXT applications!) This
new type of C, including both Objective C and another called C++, is probably the
way the future of programming will go.

What should be handed in

Using handin, turn in the following files (working or not): world.c, printname1i.c,
printname2.c, printname3.c, button.debug, and cprog1.wn. Remember,
comments in your program are extremely beneficial; you should probably have at
least a few of them in your programs (hint, hint). Also, any embellishment is good,
but make sure you comment it. Good luck!

Above and Beyond

It's great having the computer talk to you, but it's even better if you can talk back to
it. C has several built in functions that allow you to get input from the keyboard, but
they aren’t particularly flexible. However, a little is better than none at all!

The function that we will use is called scanf. It works a lot like print£. Let me show
you:

#include <stdio.h> /* include standard library */
int i; /* variable to hold input */

main()

{
printf ("Enter a number of your choice: ");
scanf ("%d", &i) ; /* %d, same as printf */
printf ("You entered the number %d.\n",i);

}

When you run this (simple) program, it prints out the first line, then pauses, waiting
for you to enter a number. After you type in any number and press the <return> key,
it will print it back out to show you that it got it correctly. Notice that in both scant
and print £, we had to use a %4 to indicate that the variable i is an integer. Also
note that in scanf, we put an ampersand (&) in front of the variable name.

Open up the file printname3.c that you created in part two of this lab. Modify it so
that the user can tell the computer how many times to print out the name. To do
this, we need to:

* Take out the #define statement and replace it with an integer variable.

* Use aprintf at the top of main to let the user know what we are doing and ask for
the number of times to repeat.

* Use a scanf to get the number that the user types in.
* Change the for-loop so that it loops from 1 to the inputted value.

Save this new file as printnamed.c, and the corresponding Terminal session as

Lab #6-Programming in C 4

a&b.wn and handin the two files.

For Further Exploration

The Bible of C programming, Kernighan and Ritchie’s The C programming
Language, is an excellent reference source for the language. Since the book can
sometimes be a bit dense, especially for those without too much programming
experience, another book such as the The Waite Group’s The C Programming
Primer can also prove to be very useful.

5 Lab #6- Programming in C

Lab #6—TA Sheet

August 23, 1991 - Jonathan Thompson

This lab is most likely the first time that any of these students has ever programmed in
C. We need to be very careful that we ease into it gently.

It was mentioned in both the lab and in class that it is very important that students read
the first C programming cheatsheet and attend both lecture and precept. Certain key
ideas were presented that might seem very confusing to the uninitiated. These include,
for example, a discussion about what a library or variable is.

The most important thing to remember about this lab is to prevent the students from
getting frustrated! If students are worried about completing items on time, assure them
that there is no rush. It is a thousand times better for the student to really understand
what is going on if it takes him a bit longer to ‘get the hang of things’ than to rush
through to meet the deadline.

If any students come up with a ‘bug’ that they want help with, try to have them find it for
themselves. The best thing you can have them do is run through the thought
processes that went into making the program. Sometimes, speaking these out loud will
illuminate glaring gaps in their logic process. If the bugs are a bit more insidious, you
might want to be a bit more explicit in your help.

The program listing for printname3.c and printnamed4.c should be handed out to the
students after they have turned in the lab. Note that world.c is already in their manuals.

Make sure that permissions are set so that the students will be able to run hello,
printname3, printname4 and button.

1 Lab #6-TA Sheet

| 1
2 COS111

Lab 7 - Selection Sort

J|o|n[T[H]o|m[r s [o]n POOF! Jili[m[n]|n[ofo]ofr|s]T

bogo-sort: n. (var. ‘stupid-sort’) The archetypical perversely
awful algorithm (as opposed to {bubble sort}, which is merely the
generic *bad* algorithm). Bogo-sort is equivalent to throwing
a deck of cards in the air, picking them up, then testing whether
they are in order. If not, repeat. Used as a sort of canonical
example of awfulness. Usage: when one is looking at a program and
sees a dumb algorithm, one might say "Oh, | see, this program uses
bogo-sort." Compare {bogus}, {brute force}.

— Hacker Jargon File

It is often necessary for computer programs to sort large amounts of data. By sorting,
we mean placing the data (i.e. numbers, people’s last names, etc.) into some type of
order. Many different sorting algorithms (strategies for solving a problem) have been
created with varying performance characteristics. We are going to build our own sorting
program called "selection sort," which runs in time proportional to the number of
elements squared. It isn’t the fastest, but it is conceptually clearer than a lot of the other
sorting algorithms.

Purpose

* To learn how a simple sorting algorithm operates.
* To learn and use arrays and functions in C.

References

Sample Programs

» Sample output from the selection sort program will be available in
~cs111/Labs/7-Selection. After the lab is handed in, the program listing will be
handed out.

CheatSheets

* C - The Programmer’s Language of Choice - 2 (It is VERY IMPORTANT to read
this cheatsheet before coming to lab.)

Procedure

This sort uses the following idea: we look through an entire array of numbers, find
the smallest value and put this in the first location. We then find the second smallest
and put this in location two. If we continue this, we will eventually have a completely
sorted array. In a little more detail, the algorithm is:

1) Begin at the first element in the array.
2) Search through the entire array looking for the smallest item.
3) Exchange the smallest value found with the value at the first location.

4) Move forward one element in the array, effectively making the array one element
shorter.

5) Search for the new smallest item.

6) Switch it with the first array element in the shorter array (which is the second in
the full array).

7) Continue in this same manner until the entire array is in order.

A couple of examples might help to clear this up. For the first example, suppose that
we have 4 shoeboxes, each with a random card placed face down in it. To
implement our algorithm most effectively, we want to keep track of three things: the
smallest card found so far, the location of the smallest card found so far, and the

1 Lab #7-Selection Sort

place to put the smallest card.

We pick up the card in the first shoebox and look at it. It is the 8 of hearts. We
remember the card as the smallest element that we have found so far and the
first box as its location. We put the card face down back into its box and pick up
the card in box 2, a queen of hearts. This is greater than the first card that we
found, so we don’t change anything. We put the card back face down and go on
to the third box. There, we find a 2 of hearts. This is smaller than our previous
smallest card, so we remember this card and its location instead. Finally, we
move to box 4, and pick up a 10 of hearts. This is larger than the 2 of hearts we
found, so we place it back into its box face down. We now know the smallest
card in all four shoeboxes (2 of hearts) as well as its location (box 3), so we move
the card from box 3 to box 1 and the card that was in box 1 into box 3. Since the
first box is sorted we move it a little to the side so that it won't distract us.

We continue, following the above procedure by turning over the card in the first
box (originally the second). We find a queen of hearts and mark this down as the
smallest card found so far and box 2 as its location and move on. In box three,
we turn over an 8 of hearts. Since this is smaller than the queen, we change our
smallest card to the 8 and the smallest card’s location to box 3. After we replace
the card facedown in its box, we turn over the card in box 4, a 10 of hearts. This
is larger than the 8, so we ignore it. We have come to the end of the boxes, so it
is time to switch again. The smallest card is the 8 of hearts in box 3 and we want
to change it with the first box in our array, box 2. After exchanging these cards,
we continue with our sort, remembering to put the second box off to the side with
the first.

Tuming over the card in box three, we find (much to our surprise) a queen of
hearts. This is so far the smallest card and its location is box 3. Replace the
card facedown and pick up the card in box 4, the ten of hearts. This card is the
new smallest and its location is box 4. Again, we have finished all of the boxes,
so we now exchange the card in the smallest card location with the card in the
first box of our small array (box 3). After changing the cards we move box 3 over
to the side with the others.

Continuing on, we pick up the card in box 4 and discover that it is ... the queen of
hearts! This becomes the smallest card so far and its location is box 4. Since
this is the last box, we switch the card in box 4 with the card in the first box of our
array, which is also box 4. Obviously this doesn’t change anything, so we could
have stopped after the last step. (The only reason that | include this step here is
because a computer wouldn’t think of this as 'obvious’. You need to be specific
when you want the computer to do something, and even more specific when you
want it to stop.)

Grouping the boxes together again and flipping them over one at a time reveals
that the cards are: 2 of hearts, 8 of hearts, 10 of hearts, and queen of hearts, all
sorted.

For the second example, we’ll use less of an analogy and instead try to show the
algorithm a little more like the computer would sort the numbers .

Suppose that we have a 5-element array comprised of the following numbers: 7,
4,1, 8, 6, and the variables smal1val (the smallest value found so far), smalloc

Lab #7-Selection Sort 2

(the location of the smallest value found so far), and toput (the location the
smallest value found will be swapped into).

» Start at the first location with the element 7 (this is the smallest value so far, so
smallval =7, smalloc = 1, and toput = 1). Start searching through the array.

* At location two, we find the element 4 (which is smaller than 7) so we change
smallval t0 4 and smalloc 0 2 (toput stays the same).

* At location three we find the number 1 so we change smallval to 1 and smalloc
to 3.

* At location four the number (8) is larger than sma11val so we continue.

* At location five, the number (6) is also larger than sma11val, so there is no
change.

Now knowing the smallest value and its location, we just need to exchange it with
the element in position one:

* Move the value in location toput (the number 7) to the location smal1oc
(location 3).

* Place the value of smal1val (1) into the location toput.

114|786
« Initial array (X Sl
7l4]1]8]|s . "
1 417 |8 6 g
Second loop]
4
114|786
(7 14| 1]8]| 6]ty 7 b
T Li1]a4|l7]|8]s g.‘;ﬁ,
7141|868 &rﬂm‘- S 7
U (7T a7 e 6|2
714l 1]8]| 6] L1y kel
T T i
Third loop 1. 4|7|8]6s
First loop 714|1]|8]6 !.,"—:Hv—a] — bl
: 1 1 4|78 6|8y
7]14)118] 6 e L
o T T
(T11al6|a]7]8
* Moving values i o |
m Fourth loop T
1146|870
L Ll [of6]emm ' =

\1_—/ * Final sorted array

1:4i{6;7]8

We have just completed the first loop (the left-hand side of the diagram) of the
sort. We now want to repeat the above process, but without worrying about the

3 Lab #7-Selection Sort

first location because the smallest value is already in place. Therefore, we just
increase the value of toput to 2 and sort through the shorter array from 2 to 5.
And then 3 to 5, and on and on. The easiest way to make the computer do this is
to have two loops: one (the inner loop) controls the array that we are searching
through and the other (the outer loop) tells the computer what the inner loop’s
starting value should be. Note that the outer loop happens to control the variable
toput, t00. Itis the fact that we are using this two-loop method that makes the
program run in time proportional to the number of elements squared.

The finished program will need to do the following:
1) Print out a short description telling the user what the program is going to do.

2) Create the numbers to sort (use a random number generator), putting them in an
array of size given in a #define statement.

3) Print the numbers out so we know what they are.
4) Sort the numbers in the array.
5) Print the sorted numbers out so we know that it worked.

(It might be a good idea to use one or two functions, especially for steps that get
repeated (such as 3 and 5). Just do what you think is best and make sure to put in
lots of comments.) The modular method used in the last lab is probably the best
way to write this program:

* Create a program that will tell the user what the program will do. Compile and run.

* Next, have the program create the array of random numbers and print it out.
Again, check to make sure it works.

* Then, locate the smallest element in the array, move it to the first spot, and print
the value out. You should know what to do by now. :-)

* Finally, have it sort the entire array and print out the results.

After you have the entire program finished:

* For the first version of your program, have it sort 10 elements.

* When you have finished writing your program, save it to a file named select.c.

* Open a Terminal window and compile and run your program.

* Change your program so that it will sort 50 numbers. Save it, compile it, and run it.

* Copy your entire Terminal session, Paste it into a WriteNow document and save it
as cprog2.wn.

What should be handed in

Use the handin program to turn in both select.c (working or not) and cprog2.wn.
Don’t worry if you didn’t get the hang of everything. We realize that this is a difficult
assignment, especially since last week was most likely your first experience with C
programming.

Lab #7-Selection Sort 4

Above and Beyond

There is a Unix command called t ime that will act as a stopwatch and allow you to
see how long the execution of your program took. After you have your working
selection sort program, change the size of your array to 100. Compile for this value
and then at the prompt type:

time a.out

This will run your program normally, and at the end give you a brief description of the
amount of time it took to run:

0.030u 0.154s 0:00.43 41.8% 0+0k 0+0io Opf+0w

The number that we are interested in is the first one (the one which is underlined)
which tells us how long it took your program to run in user time (in this case, .03
seconds). Now, go back to your program and change the number of elements in the
array to 500 (this should be easy if you have a #define statement at the top of your
program!) and recompile and type time a.out again. This is great, except for the
fact that the program has to print out to the screen which can end up taking a lot of
time, especially for large arrays. To fix this, tell the program that you want all of the
screen output to go to the great VOID by typing:

time a.out > /dev/null

Now, you will just get the time that it takes for the program to sort the numbers and
you won't have to worry about the numbers flashing by your screen.

Open up an Edit window, type in the size of the array (in this case 500) and then
how long it took to run. Go back into your program and increase the size of the array
by 500, compile and time the program with output going to /dev/null. Again, record
the appropriate numbers in the Edit window. Repeat this until you get a decent sized
table (about 10 times). Save this table to a file and then go to /cs111/Apps and run
nxyplot. Select Open from the File menu and enter the name of the file you just
saved. The program will automatically plot all of the points for you, and you should
see something that resembles a quadratic curve!

Selection Sort

Time
8

10

We can therefore conclude that the selection sort takes time proportional to N2 to

5 Lab #7-Selection Sort

sort N numbers. From the File menu, choose Save to EPS, name your file nxy (it
will be named nxy.eps by nxyplot) and turn it in using handin.

For Further Exploration

* A book on the C programming language such as the infamous The C Programming
Language by Kernighan and Ritchie.

* An excellent book by Princeton’s own Robert Sedgewick, Algorithms in C. This
book (among other things) offers several good chapters on different sorting

techniques.

* An application that can help you to visualize different sorting algorithms (including
selection sort!) is SortinglnAction, located in ~cs111/Labs/7-Selection. This
application will graphically show you what goes on during a selection sort. Try
watching it with the Animate Compares switch on; you should be able to follow
what it is doing!

Lab #7-Selection Sort 6

Lab #7—TA Sheet

August 23, 1991 - Jonathan Thompson

Now we are really getting into some dangerous waters. It might be a lot to expect
students who have never programmed before last week to write a selection sort
program. | guess we'll see...

The difficulty for this lab is probably going to be due to the lack of understanding how
the selection sort algorithm works, or confusion about how functions and arrays work.
The former is covered (hopefully adequately :-)) in the lab itself. The latter is something
that both the C CheatSheet and the lectures should cover. However, if the need arises,
don’ t hesitate to explain either of them in your own words.

Debugging should be handled in the same manner as in Lab #6: let the students try to
uncover the bugs themselves, perhaps by letting them explain to you what their program
is trying to do. Since this program will be quite a bit more complex than the ‘hello, world’
program of lab 6, you might have a lot of people asking for help.

| suppose it is worth mentioning again that we are nottrying to frustrate people. If the
lab seems to be heading in that direction (i.e. everybody is having major difficulties),
perhaps a better tactic than throwing in the towel is to go through step by step how you
would make this program. It's very possible that they just might not have gotten enough
exposure to programming.

As far as preparation goes, you should print out enough copies of the program select.c
to hand everyone upon completion of their own program (presumably at the end of lab).

Make sure that permissions are set so that the students will be able to run select out of
the directory ~cs111/Labs/7-Prog2.

The file selout has times from our selection sort program. Open this file from within
nxyplot and you will see a quadratic curve.

1 Lab #7-TA Sheet

[b i i | | : B]
’ cos111

| ¥ | | =

Ri--i-chard E-e-e-ric Fei-ei-ei-t - -«

wugga wugga: /wuh’g* wuh’g*/ n. Imaginary sound that a computer
program makes as it labors with a tedious or difficult task.
Compare {cruncha cruncha cruncha}, {grind} (sense #4).

When the computer plays sounds, it sends numbers to the speaker thousands of times
per second. Each of these numbers , or samples, represents a desired position of the
speaker cone at the particular time the sample arrives. With ein, you can write a simple
(one or two line) C program that will do something to each sample before it gets passed
to the speaker. For example, if your program tells the computer to double the value of
each sample, the sound will come out twice as loud.

Purpose

* To analyze soundfiles using ein.
* To “filter” soundfiles using ein.

Materials

» Earphones!
* A cassette tape, if you want to have a recording of your sounds.

References

CheatSheets
* Sound
e Grab

Online Help
* Info window for ein — look for some familiar names at the top!

Procedure

Setup
* Log into a NeXT.
* Plug your earphones into the back of the monitor.

* ein is in /Net/dobro/musr/Apps. Find it in the File Viewer and drag it into your
icon dock.

* Pop open a Terminal window.

* Set the volume to a comfortable level, and make sure the speaker mute is on —
you can use the volume keys or the Preferences application.

* cd to tmp so you have room to record sounds.

* You need a few soundfiles to work with in ein. Use sndrecord <filename>.
For the first one, whistle a few notes. If you can’t whistle, get someone else to
do it for you. For the second one, just speak a few words.

* Finally, open up a WriteNow document and save it as einstuff.wn. You'll use
this to paste in pictures and text for submission. Save it every once in a while.

Lab #8-ein

Converting your sound to a different format

When you use sndrecord with the microphone, your sounds are recorded in a
format called muLaw. Unfortunately, ein needs its soundfiles to be stored in a
‘linear” format. Since you probably won't need proficiency in converting sounds, we
wrote a short program calledmu2linear (getit? mulLaw-to-linear?) which will
convert your sounds for you. Use it on both of your test sounds.

* Type mu2linear <old filename> <new filename>. Your sound is now
ready for ein.

Analyzing sounds with ein
* Double-click the ein application to open it up.
* Select New ein.script from the Window menu.

* For the moment, ignore the editing section and concentrate on this part:

* Everything you need in order to analyze your sounds is here. Click the Open
Input File button and find your sound (remember that it is in /tmp).

* Click the analyze input button. Three windows will pop up: SoundView, FFT,
and Spectrum.

The SoundView window should look familiar to you — it's a graph of the sound
waveform. It's especially useful in this lab to think of the waveform as a graph

of how far the speaker cone is pushed out over time — the top line shows how
far the cone is pushed out, and the bottom line shows how far it is pulled in.

The FFT tells you how much of each frequency appears in your sound. The
frequency is measured across the bottom in thousands of hertz (cycles per

second — see your Sound CheatSheet). For example, most of the frequencies
in this sound fall below 4000 Hertz:

[~ locallibrary/Soundsmoom__ooooh.snd - FFT

The higher levels at the left tell you that most of the sound'’s frequencies fall below 4000 Hertz.

Lab #8-ein 2

The Spectrum window shows you how much of each frequency can be heard at
each instant in the sound. It's much more revealing than a single FFT of the
entire sound. In fact, the Spectrum (technically a spectrogram) is really a series
of successive FFT's.

The vertical axis represents the frequency (measured in thousands of Hertz),
and the horizontal represents time. The darker it is at a certain height on the
graph, the more of that frequency there is. For example, here’s some poorly-
whistled R.E.M.:

You can follow the tune along the dark lines. Here is this Spectrum’s musical

counterpart: m .

o

* To find out the average frequency at any instant in your sound, click inside the
Spectrum window. The number labelled Mean tells you the average frequency
at the time labelled Seconds. For the example above, at 0.052 seconds the
average frequency is 2433 hertz.

Check out the Sound CheatSheet for more information.

* If your spectrum came out OK, you will want to save a copy to hand in. Go read
the (very short & simple) instructions in the Grab CheatSheet for copying a
snapshot of a window to the Pasteboard. Copy your Spectrum window, and
Paste it into einstuff.wn.

* Now click Open Input file, and open and analyze the sound which contains
your voice. Try to see how the Spectrum window corresponds to whatever you
said in your sample sound. Can you “follow” your voice in the Spectrum
window? Copy this Spectrum window into einstuff.wn.

* Which of the two windows — SoundView or Spectrum — gives you more useful
information? Type your insights into einstuff.wn.

Lab #8-ein

Tips for using ein

* Ein usually fills up the whole screen with its windows. When you want to do
something in another application, select Hide from ein’s menu. When you are
ready to return to ein, double-click ein’s icon.

* When you work with filtered sounds, you can always play the input sound with the
Play input file button, and the output file with the play button at the bottom of the
window.

* Also when you are filtering sounds, remember to change the number of seconds
in the box marked dur to equal the number of seconds in the box marked
duration.

Filtering sounds with ein

In order to apply the power of C to digital sound, ein adds a few predefined sound
variables and one special statement. In fact, ein is nothing more than a C
‘preprocessor” which passes most of what you type directly on to the C compiler.

The predefined y variable (an integer) corresponds directly to the position of the
speaker cone. The greater the value of y (above 0), the farther out the speaker
cone is pushed, and the smaller the value of y (below 0), the farther in it is pulled.

This is all that happens when you use ein: ein looks at each sample of an input
sound, one at a time. From each sample, it gets a value of vy, changes it in some
way, and saves the new value of y into an output sound. Hence the idea of
“filtering.”

Important: before you filter any input sound, change the number of seconds in the
box marked dur to equal the number of seconds in the box marked duration. If you
don’t, your output sound will probably be cut off at the end. Also, make sure that the
radio button marked use input file is selected.

* Let’s start with something that does nothing. Type
y=y *1;

in the editing window. Click the compile / run button, and wait for the computer
to play the sound through your “filter.” Be patient — remember that the
computer has to run this script on each of the thousands of samples in your
sound...

OK, so nothing exciting happened. The computer just took each y value from
the input sound and multiplied it by 1... leaving it in exactly the same condition
as it was in before. The point? To understand the idea of “filtering” each
sample of the sound.

* Change the script to
y = 1;
and click compile / run. What was the click you heard? This is still technically

Lab #8-ein 4

a “filter,” but this time the computer ignored the y values that it got from the
input sound. But what was that click? Put your thoughts on this into
einstuff.wn.

* Now change the first script to have ein square the y value of each sample. For
comparison, after you compile / run your filter, you can play the original file
utton, and the filtered output file with the | button at the

bottom of the window. In einstuff.wn, type in some ideas about what this filter
does. Hint: think about squaring a loud (large-valued) sample versus squaring
a soft (small-valued) sample. Which of the two would be accentuated? Use
Save As... to save whatever you came up with into square.ein.

* Ein’s only new statement is t ap, used to create a delay loop in your sound.
Since tap is best served by an example, open a new ein.script, type in this
script, and compile / run it on your voice sound:

tap 1 11000
y = S1;

The only thing this filter did to your sound was delay it by 11000 samples (about
half a second). Look for silence at the start of the waveform in the SoundView
window. When you typed tap 1 11000, ein stuck the value of y in a buffer
called s1, and told s1 to wait 11000 samples before letting v out again.

Here’s a diagram of what'’s going on, using the following filter as an example:

tap 1 3
y = S1;
sample # v input value (random in this case)
1 27
2 11
3 30
4 29
5 8
6 12

» What would happen if, instead of merely setting y equal to S1, you would add the
value of s1 to the value of y? Using the previous tap example as your guide, 1) set y
equal to the sum of y and s1, and 2) shorten the delay to about .1 or .2 seconds,
remembering that you are filtering 22050 samples per second. Run this script on your

5 Lab #8-ein

voice sound, and save the script in your home directory as feed_forward.ein with Save
As... .

You just made a feed-forward filter — it stored input from a sound and fed it in a tenth of
a second later.

* That's all! Hope you have time for everything in Above and Beyond.

What should be handed in

* einstuff.wn, containing:
* copies of the Spectrum windows of your whistling and speaking,
* your insights about the usefulness of the Spectrum as compared to the
SoundView,
« your explanation of the click heard with the scripty = 1;
» details (scripts and short descriptions) of your exploits in the Above and
Beyond section.
* square.ein
* feed-forward.ein
* Any sounds you produce in the Above and Beyond section.

Above and Beyond
Try anything you have time for, in any order.
Saving sounds you produce

« Before you click compile / run, go to the text box labelled outputfile and type in
the name you want the output sound to be saved as, then press <return>. Don't
forget to change the filename for each new sound!

Stereo

All you need in order to make stereo sounds in ein are two new variables: 1eft and
right. They each correspond to the position of a speaker cone, just as y did for
monophonic sounds. Follow along...

 Open up a new ein script and open an input sound to work on, just as you did
before.

* Be sure you have selected use input file in the Input file control section

* Check to be certain that the box labelled dur contains a number that’s as big as
the duration of the input sound.

» Select stereo in the lower left where you have a choice between mono and
stereo.

* Type this into the editing section:
right = y;

* Compile / Run your ein filter. Hopefully, you heard the sound played in your
right ear. The filter just took the y value it got from the input sound, and sent
that value to the right speaker.

Lab #8-ein 6

* Q: What will this do?

right =1 * y;
left = 1 * y;

A: not much... it will send the full sound to each of the speakers.

 Change the above filter so the right speaker receives 25% of the sound and the
left receives 75% of it.

* Remember variables from C? Type this in as your script:
float ramp_up, ramp_down;

ramp_up = t / nsamps;
ramp_do = 1 - ramp_up;

right = ramp_up * y;
left = ramp_down * y;

Three new things here:

1) the £loat declaration just tells the computer that ramp_up and
ramp_down are variables which can have decimal places attached to
them, such as 11.23.

2) as ein moves along, sample by sample, through your sound, it keeps track
of which sample you are on in the variable t. So, if the sampling rate is
22050 samples per second, and you have played through two seconds of
the sound, t will be 44100.

3) nsamps holds the total number of samples in the entire sound.

So, ramp_up starts out at 0, and grows to 1, while ramp_down starts out at 1,
and shrinks to 0. How will these variables affect your sound?

* Try the above filter on your sound. If you get something interesting, make note
of it in einstuff.wn. If you've learned how to save sounds produced with ein,
you can save this sound for submission.

* Imagine that you want to “echo” a sound from the right speaker to the left. You
need to 1) feed the y input directly into the right speaker (that’s the first thing
you did in this section), and 2) feed a delayed y value to the left speaker (you
learned how to produce a delayed y value earlier). Give it a shot, and save

anything you come up with to einstuff.wn. If it doesn’t work, explain what it did.

Feedback

* While your feed forward filter may have sounded neat, this feed-back loop will
sound ugly. To make a feed-back filter, all you have to do is switch the order of
the two statements in your feed forward script. Try it and wince! (Actually, it's
not that bad with the volume turned down.)

* Can you explain why switching the order of the two statements produces such
drastic results? Think about the significance of adding something to y before it
is saved in the tap buffer. Compare this to the feed forward loop, which adds
something to y aftery has been saved in the tap buffer. Look at the following
diagram, then save your insights into einstuff.wn.

Lab #8-ein

sample # | y input value (random in this case) Y=Y + 81;
1 27 Y =27 + 0;
2 11 y = 11 + 0;
3 30 y =30 + 0;
4 29 y =29 + 0;
5 8 y = 8 + 27;
6 12 Yy = 12 + 11;
2 19 Yy = 19 + 30
| 26 y = 26 + 29
4 14 Yy =14 + 35
5 32 y = 32 + 23
6 27 Y = 27 + 49;

s N P— -+ —

In this feed-back filter, first the delayed y value (S.i') is added to the y input, then y is saved back into the
lap buffer. Greater and greater values of y are added back in, until eventually all that's left is loud noise.

FM — Frequency Modulation

When Wynton Marsalis applies vibrato to a note, he lets it oscillate around some
basic frequency — the carrier frequency. Vibrato is basically all there is to
Frequency Modulation; your favorite FM station merely applies (extremely fast)
vibrato to the frequency you tune in at... the carrier frequency.

* Select Open... from ein’s menu, and find ~cs111/Labs/8-ein/fm.ein .

In the ein script you just opened, the variable carrier_frequency controls the
carrier frequency, and is initially set to 523 Hertz (roughly an octave above middle
C). The variable modulation_frequency is the rate of vibrato, measured in hertz
— the initial setting of 4 hertz produces four oscillations per second. Finally, the
variable modulation_amplitude controls how much the vibrato varies from the
carrier frequency. At the modulation amplitude’s initial setting of 1 hertz, the vibrato
will vary from 522 Hertz to 524 Hertz.

Lab #8-ein 8

If you have learned how to save sounds you produce with ein, feel free to save
anything funky for submission. Keep an eye out for pretty Spectrum windows, and
feel free to copy any into einstuff.wn using Grab.

* Compile / Run the ein script as shown (you don’t need an input file).

* Increase the amplitude of modulation (vibrato), so that the modulation is larger
and more noticeable. Compile / Run it again. What happens if you make the
modulator amplitude larger than the carrier frequency?

* Increase the modulator frequency to obtain faster vibrato. What happens if you
make the modulator frequency larger than the carrier frequency?

* Play around with all three variables and try to come up with both pleasant and
horrendous sounds. Save anything interesting that you come up with.

Vocal.ein

Imagine that you are standing in the middle of a street, singing “urrrrr....” At the
same time, a deep-voiced guy in Athens, GA strikes in with his own rendition of
“urrrrr....” Q: Frequency-wise, what do the two of you have in common? A: a
combination of three “formant” frequencies which are buried in your “urrr” sounds.
“Formants” are different resonant frequencies that show up in each human vowel
sound.

Here is an ein script which attempts to simulate human vowel sounds using these
three formant frequencies.

* From within ein, select Open... from the File menu and find
~cs111/Labs/8—ein/vocal.ein .

» Compile / Run the script as you see it. Can you hear the “urrr” sound?

* From within a Terminal window, sing an “urrr” sound and save it into a sound
file. Make it as close as possible to the “urrr” you heard in ein. After preparing
it with mu21inear, open the sound in ein with the Open input file button.

* Click the analyze input button, and drag the Spectrum window so you can see
the Spectrum you got when you ran the vocal.ein script. Do you notice any
similarities? One of the problems with computer-generated voices is that they
are sometimes too “pure.” Can you see this in the difference between the two
Spectrums?

* See if you can recreate any other human vowel sounds by changing the three
formant frequencies and the fundamental frequency. Any non-human vowel
sounds?

Lab #8-ein

For further exploration...

* Look in the library for articles on computer voice recognition. Now that you
(hopefully) have an idea what frequency spectrograms and FFT’s are, the articles
should make sense.

* In /Net/dobro/musr/Apps, look through some of the ein scripts in the ein.scripts
and ein2.scripts directories.

* If you have a lot of time, sit down with Bessie.app, in /Net/dobro/musr/Apps. If
you get through it all, you will have learned much of what there is to know about
FM synthesis.

Lab #8-ein 10

Lab #8 — TA Sheet

8-30-91 Rich Feit

Before the Lab

* Reboot each NeXT machine to clear /tmp. If you want, you can just check each
one to make sure there are a few megabytes free on each machine.

* Bring extra earphones.

Things to Watch for

You might want to try the lab yourself beforehand, just because ein isn’t a widely-
used application, and it might take a little while to get the hang of it.

The concepts here aren’t easy! Hopefully, in the section on analyzing sounds, the
students will ask you questions if they’re confused. More explanations appear in the
cheatsheet, but sometimes it’s easier to explain signal processing in person (so you
can wave your hands a bit).

In the filtering section, the students should know more than enough C to be
comfortable with the syntax. The difficult part may lie in understanding what
happens to the y value. An ein script works on each sample of the sound. If you are
filtering an input sound, ein takes a value of y from the sound, then modifies it from
there. It might have been better if ein assigned separate variables to the input y and
the output v, i.e.

y_out = y_in * 1;
Just watch out for a little confusion there.

The tap statement will probably create the most confusion, at least at the beginning.
This is where an explanation with a lot of handwaving will help. Maybe trace through
the diagram of the feed-forward filter with any student who is confused by it. Even
though it's not a terribly hard concept, | still get confused about it myself.

Finally, the two Above and Beyond sections for Vocal.ein and FM synthesis are
mainly meant for playing around. The student need not understand every single
fundamental concept for either of them.

A lot of this stuff appeared in MUS/COS 325. It’s not easy, so encourage the
students and remind them of this if they get frustrated.

1 Lab #8-TA Sheet

1881 by Edic 5. Raymond, Parmission ia make copies and derived works or nan-rofil use b granied as feng a3 his noice Is not removed. Inesducion sesses st
™ et s actualy 8 ooty neworked collection of 3
v insde of wern of s 4 rtiog e, B s s 16 AR Want B e yews ow. 17 specil vacabuary tagether — & heigs oy
o4 shertd ks 4 e dons. A 44 il Wl i B en (¢ g napprepriily) e ana s i etades s T and i nciusen, waugh, Wiy o1 s sevslmn
o scientnc W coda for ol ahered & Caltrana sole or ane of mpe Foni compaseions (€ w0 nackar
et ven 8 (Kiuge) ang ans is hat sty -nm-nunu-nn
of wis kind, of the I el W o ki gl e vy el use of angunge.
sursine Hackers, by comtras, regard siang farmation and use 13 o e ge-oiay]
16ge Pt bk R, Mot connections. - view in action. k3 4 com paan of Racher sieng n
B (N3 018 13 e e varmon s e v Thaugh the & rederance, R s mandid el the maievial
b anioyaa o of n e
have vkigent wawpeints i, ckground
dopenes & Niwmmmunm Agpondic B, Ihe Parken of J Random Hachar. Apensic
mer .u.a-.-n.-—.m.-—:-—-.—-.—-.. ianguage and
by Homat e s s e tetockon v esed Do’ arvo Pov snd g
A wimeut suske, anctes el dangy guege E

i i, e, ooF GO it iovend & Rusive, TR
munmci—ﬂn—-‘—-'— “Jargen Consvuclion” secion baiaw). in geners, we have canssernd
they are

e
o1 hom 4T WhenET B T, most Al et 3
-n-rln--a--mh-lrn-v- Seveves (151 Tha Samerd Al Lah has sactay ms -—-n--nmnnn-— rar SISl 1001 Send besans 4 shr TWENEE) e,
g dorn ».llpunhm I Apell 1883, T Fiewere Juphe

o By s i 13008 Fiw's ot nmmlulmlmnuml ke died oul. The bost, and o e ARPANET
e Pl (and rltnd ki B e A Kams s Agpands A] am 1 be 44 45 & 7 f 92rvd 431, 3 Nkl M
Tate version of mrgen-1 (a frw sbsole o e

4 naresing

mings. ying Fadiion: na ans ivabued reaized aL ha lm Jovt e widary M inflanca was i

:u-—n—n-n--—nnn—t-ﬁ-wuumwmw-—u:unu-umiumm.u«mmum.mm of hagkardom,

i 3 the Jargon Fis, having passed iram hing document 10 icon, ram ained #ssentaly untou ched o1 seven yaars. This revision contains newty 1N 4ee 1l of &

ne eahors ofSteew-1993). 4 arpes i about ot 008 S11he Stesie-1983 1xt am Ring some raming m aerial n & very few sniies Inkreduced i Steeie- 1983 which are . Thin new varsion casts & wider met than the oid jargo fe: ks aim 1315 cover natJust Al o POP-10 Nackar culire but o
410 UNIX comm e 1, bl 304CIa) 61313 Nive B4 #1 7834 1o CONSIjargon from s ey B PC iga fan warld. Where a term can be atributed i & partieuiar subCUTE

nicais. mllnlmnuﬂhw’--hpx sy ey o Calirn Barlaiey Camividge Thtunversy b Engiand (it e iy i Massachusens wners _WIT hagpems o be DEC The

usnass nstin af AlLab vy

nave
Corporation. Fairchild
Sen Sum

Intgeaations! 8 Staniors
e ot e TuRCyw W 61940, barl marad THRC 1 bom A “An Abrkiged Dictionary .u.mcl.,.\...-m--mnu.l—-nmnuocu Univaraky Y QUSEMET) envy, WP1 Warcuster Polyischnic Instiuis, sha of & very active commusity of PDB-10
TEROKPARC | NEROK Faie Conter, she of e T Sy 3 {UNDX), (PDP-10), #tc. : e i3 labeling wih Ay of hase aBYEAMIT
s conined W sartk MIT and Staniord”are in quie ganeral use We have wied 1o phe et e desiable. Erc 5. F
Il-awimnlmmmlmmﬂumlmmmmnnimml'ﬂ Dough we tabe pinasure b acknawiedging the 1pecis conwusion of ihe sther camutnars of S rie- 1883
date 61 e first e, “Don” emalus ¥ an

¢ utaned by MIT P pasaly 14 avty 2 Summer 190
e miond ' updeng e an-Bne vevien f e Jargens e reugh s beySnd PASE! PORCRSGR, S0 4 Oy 1.8 43 | St 10 iSRS and 20 8 et i et it S v’ s Tt Eamvyasiiiion S04 e

GuySiewie C, USENET, and

1870 fange o= ashed In ko v Jargan-1 which #nabled the e erged back imia man 5 end P o d M USENE

1001 0 Sy of Ml tnd ey mae USENET hasis acar

wdded. uy'
v #318 -m-wnw 323 envies. Varsion £.8.1, Mar 22 Major veraen 1 ‘91" (IT5) Jargen Fis, Wrgen-1. Maler wrson 2 #ncom oa sses revisiens by ESR (Eri 5.
sasistance from GLS (Guy L Stewss). s—n-um-u-‘w-‘ummnmww Usuaty imr po warsons, kaepin USENE Tirs tes many
o el come, and
Inguas conviied "0l soc aac Som» haged osImperes ot Adew e we & Labtacchia <Bai@ zurich oL R 40y~ LR
Ui Wi UNLE. Scancinavan cormytpancentFa Lideary (par@ sot.), mibor of e omariaon Swidan anputgs s baby s Thank: S
(ool n e Formai Th--_-u_hm-h-y
cury . asane trom iy e Y
s 200 sesign, Sand uryour rgonl We am raresed
ngs o spects not covered g unnuu-.-n-uu.- you have originated i they a paint wa
e endent oss) Tressonasets e e g, Tot opon - awnas
fumber. Read L pass & around, contribule — this s “your” menument! Jargen Censirustion

the POP.1 SPACE WAR hackers, and

‘o the Beire 10700
mnqru‘uur.mr Mast nm e for noises. Hackers alsa dusle ows. Ao & dockd e e uted 1l 8 Conversaton, e DISCETS o arking 6 [N Glren. s o n«m-mu-—mmu-mw am ples involve
; have

i, Qon), Pk, B

KR oy 18 OF DRt in 0r8 10 comvert an orlinary
23D Frob's Jourmaorsimply D Fras's. n«-mmmm—m-m-m-.wm P p -
Howavar, arms Bke ase 418 ofien mase up o the seur ol Shme Time 644 500 W04 Toree Skt Oéverrm oot Propery — Db ht Dupbenn
o S n Dugty JuciaH i oo e et e e ey O AR Fopo b . Toe - comanton g 1 word b g by appanig e
LISP convtnien of sopending the pradicatn } The question v oy e e gyt gt st el wekaeaude T K STU) Th ol g s
v JARGON THT agan, W e ot e bos o e

- T A (Humoreus) "Ves, the werld has & siate.” Gn the phone to Floride: Siate-p Florda?”
L whether sameons would e i share with him 4 twe-person-sized bowl of soup. m.bqwu-u‘s gt — GLS] e Rams.

arimithes, and evan axsemsler aocades are ind amusing ansiogies © them. Thus, (0 che ans uu»wnm-mnunlmnm{gmlmm-mm-—ﬁh.hl— Lﬂhyﬂlehl’ﬂu.-.un
™

outside of

and sae an 1 ks R0unt Bnd e Ses by e nding 8 damdad e cases (or vicw varsa). For mcampie, buceuse perous generous < generosty . Whats up? T he... | addad 10 T spnce yae e masg e sungroudeiens s guivg e .. mad el
e First E dkian co-authars, The bibiis graphy (Appendts C) ppe I21.aE 15 190 munof s coetams of e 1009 pagr soncn adted by Gy sy mare USENET S snd e ot Imea, 75054 worg, 400301 ChArRCINTE,
o S505 ot o 3135 st oo 1 14 100, By e 'USENET submlsmons marghd . et il hachh i habhs S s T e e et St o e ey P e e, e UL e st 0k e"""
1 =y s \ 1 * i
e 705 Sharwcers ana 1455 sy vorsin 14 e e O o o S b i T oy v pasets by By e, Mk B 518t s b m'.m...-mm..“.’.'m:..«n-.{il.f.'."" o ey e £ 71 1 18 I O e s Aemdant
s, 1 3 s rsen bom e TH 1602 ives.

s ‘o TS} Jargon Fie, jargon 1.
st ooy i oind D ey e Coars e M43 e e ans nd s v f
i comcae and st st Norcom: et <host B SETC com 2 o Mt

.."?-‘-m- B 7 2 St i e ey e o e
: :ﬁ‘%‘" m%gﬁ b g R

LN

One of the most exciting aspects of using computers today is the enormous amount of
information they make instantly available. As you may have seen in the communication
lab, you can connect to a computer in Europe and retrieve a document within a few
minutes.

OK, so you can grab the Bible from a computer in Finland and read it on line. You can
even print it out on a laser printer. But why not find a copy in the library and read it in
the solitude of the C floor?

Actually, if you merely intend to read it cover-to-cover, then the library might be a better
choice. The thing that makes researching on the computer a completely different
experience than a session in the depths of Firestone is the way the computer can
process (sort, filter, etc.) the information it's given. If, instead of simply reading the
Bible, you want to find out what it has to say about a specific subject, then you may
want to consider laking a trip to the NeXT cluster.

Given a computer and an Internet connection, you have at your fingertips more text than
you could read in a lifetime. And, you probably have more power and tools available
than you care to learn about. Don’t worry about it— this lab is more like a scavenger
hunt than in-depth training. Just keep your eyes open for something you feel you can
use in real life.

Purpose

* To learn how to search for specific subjects using NeXT'’s Digital Librarian.

* To learn a little more about UNIX — enough to help you in your researching.

* To understand why people bother to use UNIX instead of fancy, fast, easy-to-use
programs like Digital Librarian.

Materials

* Patience.

* Nelson’s concordance of the King James Bible, if you want to make sure the
computer doesn’t miss anything. Your TA will have it if Firestone lets it out of the
building.

References

Required CheatSheets
* Digital Librarian
* UNIX
* Grab

Online Help
* Librarian’s Help menu
* UNIX man pages for grep, wc, sort.

Procedure
Setup

1 Lab #9-Information Processing

¢ Log into a NeXT.

* Use the File Viewer to find Librarian.app in /NextApps. You might want to
drag it to the dock on the right-hand side of the screen. Otherwise, just
remember where it is.

* We have a folder called data deep in the cs111 home directory which is full of
materials for this lab. Because it can be a pain to find it each time you need it,
here’s a way to “fool” the computer into thinking that data is inside your home
directory: Pop open a Terminal window, and type

In -s ~cslll/Labs/9-info/data ~/data.

You just made a “soft link” from the data directory in ~cs111 to a data directory
in your home directory.

* Open up a WriteNow document and save it as datastuff.wn. You’ll use this to
paste in pictures and text for submission. Save it every once in a while.

Using Digital Librarian

Librarian is great if you need to quickly find a word in a set of documents. If you find
yourself surprised by how quickly Librarian finds information, read about indexing in
the Librarian CheatSheet.

* Inside your data directory there is a Librarian bookshelf called data.bshlf.
Double-click it to open it up, and read enough about Librarian to be able to
search for a word.

* Find the only document in any of the folders that contains the word “harbinger”.
Open up the document from Librarian, find “harbinger” in the text, and Copy the
line which contains it into datastuff.wn.

* Imagine that you are doing a study of wolves and how they are depicted in the
Bible and the Quran. Instead of sitting down with a copy of each in Firestone,
you decide to trek down to the NeXT cluster (it's worth the hike!) to gather your
information. Find every occurrence of the word “wolf” in both texts, and think
about doing this by hand. Here’s the catch: you must search both texts at the
same time, so your list looks like this:

Check out the Librarian cheatsheet or use the Help... menu if you don’t know
how to do this. When you get a similar list, use the Grab application to copy the
whole window into datastuff.wn.

Lab #9-Information Processing 2

Using UNIX to deal with information

Although Librarian is super-fast, it's not much good for anything but simple searches.
Hopefully this next section will fulfil both the second and third purposes of this lab.

* Get to a Terminal window, cd to your data directory, and then into the
shakespeare.txt directory.

* First you'll learn how to match — and surpass — Librarian’s search capabilities
with a single command: grep. Read about it in the UNIX CheatSheet, then find
the line which contains the phrase “honey secrets” in the file
Venus_and_Adonis. Already you have exceeded the abilities of Digital
Librarian, which refuses to look for whole phrases when it uses its indexing.
Copy the “honey secrets” line into datastuff.wn.

* Read about the use of “wildcards” in filenames (UNIX CheatSheet), and use
your newly-acquired knowledge to search for the only occurrence of “wary” in
any of the poetry in this directory. Copy the output into datastuff.wn.

* Read about the wc command, and use it to count the words in the file
A_Lovers_Complaint . Copy the number of words you get into datastuff.wn.

* cd to ~/data/bible.txt. Ancient scholars devoted years to counting the words
in the Bible, or analyzing the frequency of certain phrases. Using what you
know about filename “wildcards,” count all the words in the Bible, using one
command. It should take the computer about two minutes. Copy the total
number of words into datastuff.wn.

* If you haven'’t already, you're about to discover the beauty of UNIX. Read about
“pipes” in the UNIX cheatsheet. Is this sufficiently beautiful to excuse UNIX’s
surface unsightliness? (yes.)

* Find the total number of lines in the Bible which contain the word “silence”. First
you need to think of a command to search all of the files in this directory for
“silence,” — then you can pipe this command into wc. Copy the output into
datastuff.wn.

* cd to ~/data/democracy and try grepping all of the documents for the string
“free”. You will need to save this output into a file, BUT there’s an alternative to
Copy&Paste... read the tiny section of the UNIX CheatSheet about output
redirection. Then, save the output of this grep command into a file called
free.grep. (You'll hand this file in.)

Scavenger Hunt

Here’s a list of things to find. Use any tool you know of and skip any difficult item
before you get frustrated with it Use output redirection and/or Copy&Paste to add
anything and everything you find into a file called scavenger.txt (you can open up a
text document with the Edit application). Also, include the method you used to
obtain your results. And they’re off...!

* Remember the questionaire you filled out during the first lab? Your TA’s
compiled and typed in all of the data, in this form:

3 Lab #9-Information Processing

<word>: <list of people -userID’s- who said it this way>.

So, an entry for the word “heron” might look like this:
heron: jmstipe, mikemlls, pterbuck, billbery, jeffholt.

The file is called ~cs111/data/questions.txt. Your assignment: get a list of
people who share words in common with you.

* Find the name of the only document in the whole data directory which contains
the word “vicious”.

* Count the number of words in Shakespeare’s “The Phoenix and the Turtle” (it's
in the directory ~cs111/data/shakespeare.txt, and it's called
The_Phoenix_and_the_Turtle)

* Find the line in Shakespeare’s poetry which contains the word “murmur”. Do
the same for “reckoning” and “pelleted”.

» Somewhere in the ~/data/democracy directory we have hidden a small smiley-
face, like this guy: “:) . Find the line that contains it.

* Find the number of lines in the Bible which contain the string “swan”.

* Count the number of books in the Bible, using UNIX commands and pipes.

* Find the two lines in Shakespeare which have both “mind” and “body” in them.
* Using pipes, find the one book of the Quran which has 564 words.

What should be handed in

* datastuff.wn, including:

* The name of the document which contains the word “harbinger”.

* A copy of the Librarian window which you used to find “wolf” in the Bible and the
Quran.

* The line in Venus_and_Adonis which contains the phrase “honey secrets”.

* Every line in the directory of Shakespeare’s poetry which contains the word
“wary.”

* The number of words in “A Lover's Complaint.”

* A word count of the Bible.

* The number of lines in the Bible which contain the word “silence”.

» free.grep, containing every occurrence of the word “free” in the democracy
directory.

* scavenger.txt, containing anything you found in the scavenger hunt.

* A file called beyond.infolab.txt, containing text output from any of the Above and
beyond... sections, if you get to them.

Lab #9-Information Processing 4

Above and Beyond

Try anything you have time for, in any order.

More grep

* Type man grep, and find the section of the manual page that lists all the
various “flags” you can supply. The first flag you should see is -v. Copy the
list and save it for use in this section (you can print it out if you want).

To include “flags” in the grep statement, just type grep followed by a dash and
all the flags you want to use. For example, if | wanted to find just the names of
the files in the Yeats directory that contained the word ‘bid,” and | didn’t want to
worry about whether it was upper- or lowercase, | would type

grep -1i ’'bid’ data/Yeats/*

* Get a count of the number of lines with “dream” in MLK’s “| Have a Dream”

speech. The catch: you're not allowed use wc to count the lines, and you’re not
allowed to do it manually.

* Find the line number and the name of the document where this phrase can be
found: “l am from those rivers”.

* Find the only line with the word “me” in it. Unfortunately, there are more than 20
lines with words which contain “me,” like “mentioned” and “government.” Use
one of grep’s flags to find just “me”.

* Using two flags, get a count of the number of lines in Yeats’s “A Dramatic

Poem” which contain the word “a”. The poem is in a file called DramaticPoem
in the ~/data/Yeats directory.

* Get a list of all the file names in the ~/data/Yeats directory which contain the
word “want”’. Don't list the actual text... just find the names of the files.

Regular expressions

* Read about regular expressions in the UNIX CheatSheet.
* In the data directory, there is a subdirectory called Yeats. Find all the lines of

Yeats’s poetry which endin “run”. Paste everything appropriate into
beyond.data.txt.

* Find all the lines in the Constitution with 5-letter words which start in “s” and end
in “e”. Put spaces around your search-string if you don’t use grep -w!

* Find every line Shakespeare wrote that contains a word which starts with the
first letter of your first name, and ends with the last letter of your last name.
Hint: if you haven’t learned to use the -w option with grep, put spaces around
your search-string to make sure the computer only looks for whole words. In
beyond.data.txt, paste in your method and your results.

* In~/data/democracy/timeline, there is a timeline of events which the author
decided were relevant to democracy in the U.S. Here’s a sample line:

5 Lab #9-Information Processing

1692 Witch hunts in Salem, MA; 19 die

Your task is to find every event that occurred in a year ending in ‘0’ e.g., 1690.
You will have to use a regular expression that 1) looks at the beginning of each
line (where the year is), and 2) looks only at the last digit of each year.

Aliases

At some point in your UNIX career you might come across a sequence of commands
that you repeat often, and you'll wish for a way to execute these commands quickly
and easily. Fortunately there is a way: aliases.

* Read all about aliases in the UNIX Cheatsheet, and pay special attention to
argument-passing.

* The w command tells you what everyone is doing. Make an alias called (for
instance) doing which will tell you what a friend is up to when you type

doing <friend’s userid> .

You'll need to use w, grep, and pipes.

* Make an alias that will play /LocalLibrary/Sounds/Uh,_no,_no,....snd every
time you type oops .

* The echo command just prints out whatever you type (in quotes) after it. Using
pipes and the write command, make an alias that will send a friend the
message “What is up?” when you type

whatsup <userid>.

For Further Exploration

* Besides everything you can find in cs111’s data directory, Princeton has
Shakespeare’s complete works in the /NextLibrary/Literature/Shakespeare.

* Princeton also has The Oxford Dictionary of Quotations and Webster’s Dictionary
online. Both applications are in /NextApps, and both are intuitive and easy to use.
Although you probably won't need help, both have Help screens, too.

* If you're interested in learning more about UNIX, get Brian Kernighan and Rob
Pike's The UNIX Programming Environment. Look for it in the U-Store. It's very
well-written and clear, and the first few chapters assume you are a complete novice
(even if you are not).

Although you used UNIX quite a bit in this course, no labs were completely
dedicated to teaching it. Even if you just read the very first chapters of the book,
within a week UNIX will make more sense to you and seem much friendlier than it
possibly could now.

* At McGill University in Canada, there is a machine called Archie which can help
you find documents or programs at ftp sites. To get there, type telnet
quiche.cs.mcgill.ca , andloginas archie. To search for a word, type
prog <word>, or type help to get help. When you get a list of £tp sites that
have what you want, type exit to leave.

Lab #9-Information Processing 6

Lab #9 — TA Sheet

8-30-91 Rich Feit

Before the Lab

* If you can, get a copy of Nelson’s concordance to the King James Bible. It might
be interesting to compare this to grepping from the digital Bible.

* Remember those questionaires from the first lab? You get to enter all their data
into a file. Yeah! Actually, Jon wrote an interactive program called dataenter (in
our bin directory) that should make it a little less tedious. Supply this filename as
the output-file: ~/Labs/9-Info/data/questions.data. Check it when you're done to
make sure its format agrees with the format | described in the lab.

Things to Watch for

Originally, this lab was supposed to be about databases. It didn’t have much UNIX
in it. | realized, though, that everyone really shouldn’t get the impression that fancy
GUI applications are always better to use than UNIX. So... | added the third
purpose: to show the students why anyone would bother using UNIX tools instead of
NeXTstep applications. Hope it works...

One source of confusion | can think of is the directory structure. When they are
using grep, the students have to search directories of text files. They'll get strange
results if they search through RTF files. Be prepared to navigate them out of a
wrong directory if they’re lost.

Also, | didn’t always give instructions step-by-step in the Procedure, especially in
the Scavenger Hunt section. This way, when they figure out how to do something,
they experience the Thrill of discovery. Frustration is our enemy, though... remind
everyone to skip anything they find too difficult.

| hope the soft directory link | have them create at the beginning isn’t more trouble
than it's worth. You might have to help them if they put their link in the wrong place.

One more thing: Librarian may seem quirky, but it's not too bad. If a search doesn’t
produce anything, make sure the Preferences are set right.

1 Lab #9-TA Sheet

CheatSheet

Table of Contents

Binary Numbers

C The Programmer’s Language of Choice - 1
C The Programmer’s Language of Choice - 2
Copyé&Paste

Diagram!

Edit

Emergency

ftp

Grab

handin

Improv

Keyboard

Librarian

mail

News

Organizing Your Directory
PostScript

Preferences

Printing

Recursion

rt

Scene

Sound

SoundEditor
SoundWorks

Storage

talk

telnet

Terminal

TopDraw

troff

UNIX

Useful Stuff

Welcome to the NeXT (located in front of Lab #1)
WriteNow

Yap

CheatSheet Contents

Binary Numbers

Learning to Count

Counting is something you have done since you were a small child. But whether you
realize it or not, you have been using only one of an infinite number of counting
systems. We have ten fingers, so we count in base ten, where ten is the first
number that needs multiple digits. In a similar vein, computers have two “fingers:” 1
and 0. Electricity dictates this state of affairs since it is easy to have electricity in one
of these two states. Therefore, when a computer counts, it uses only two digits...0
and 1, or off and on. Let’s take a look at how we count, then compare this to how a
computer would do it in binary.

We can break up any number into the values of its individual digits. For example:

324 = 3*100 + 2*10 + 4*1
=300 + 20 +4
=324 (yup, it’s still 324!)

Any number can be broken up this way. Another way of writing this is to use powers
of ten, the base we are counting in.

324 = 3*102 + 2*101 + 4*100
=300+20+4
=324 (zowee! still 324!)

As you can see, a number can be broken up into its component digits multiplied by
the base with an exponent. (Remember 1’s place, 10’s place, 100’s place, etc?)
Base two (binary) numbers are broken up in exactly the same way. Let’s stick with
the same example, but this time write it in base two:

324 (base 10) = 101000100 (binary, base 2)
=1*28 4+ 0*27 + 126 4 0*25 + 0*24 + 023 4+ 1*22 4 0*21 4+ 0*20
=256+ 0+ 64 +0 +0 +0 +4
= 324 (base 10) (lo and behold...still 324!)

OK. Hopefully you have experienced a glimmer of understanding so far. Let's
change gears and look at this from another angle. Near the end of this CheatSheet
is a table of numbers in decimal and their binary equivalents. Try to count along with
it, and try translating other binary numbers you make up. A scientific calculator can
check your answers for you.

If this makes perfect sense to you, you have the idea. Great. If not, that's OK too.
Just trace through the binary numbers and break them down. 1011 in binary, for
example, is 8 + 0 + 2 + 1 = 11. Try it for the other numbers. Here is a handy chart
of the powers of 2 which you can use to convert binary numbers to decimal and vice-
versa.

2 to the: 0O 1 2 3 4 5 6 7T 8 -9 10 M 12
Decimal: 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

1 Binary Numbers

If You Understand Binary But Still Haven’t Had Enough

Try base 16 counting! This is called hexadecimal and is commonly used to
represent numbers to programmers. A hexadecimal number has fewer digits than its
binary equivalent, so programmers often prefer to see data in hexadecimal rather
than the space-inefficient binary format. If you are sharp, you are probably
wondering what happens when you get to 10 in hexadecimal. Since it is base 16,
there should be single digits all the way through 15. The remaining digits are A, B,
C, D, E and F. See the chart below and try to follow what is going on.

The Chart
Decimal (Base 10) Binary (Base 2) Hexadecimal (base 16)
0 0 0
1 1 1
2 10 2
3 11 3
4 100 4
5 101 5
6 110 6
7 111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F
16 10000 10
17 10001 11
26 11010 1A
27 11011 1B

New numbering systems are not easy if you are seeing them for the first time. The trick
for most people seems to be translating numbers between systems and looking at
charts like the one above until the idea clicks and they understand.

Binary Numbers 2

THE PROGRAMMER’S LANGUAGE OF CHOICE - 1

Although no programming language is perfect, C is regarded by many as coming pretty
damn close. C is used for programming a large portion of today’s commercial software,
is supported on almost every type of computer system, and is in fact the language that
was used to write the majority of UNIX. The main power of this language is its
modularity; there is not too much involved in the actual language, but a large number of
libraries have been created which include many prebuilt functions that are used over
and over again (for a definition of “library” and “function”, refer to your class notes). This
CheatSheet will attempt to explain some of the basics of the language, enabling you to
write some simple programs.

Where to Write Your Program

The simplest place is in an Edit window. Type your program as regular text and
save it to a file with a descriptive name and a “.c” on the end.

Basic Program Structure

All C programs have the same basic structure: they start off by saying what libraries
will be needed (if any), then go into definitions of constants, variables and functions
(if any), followed by the program itself (known as “main”), followed by the
programmer’s own functions which were defined at the top of the program. As an
example, look at the following skeleton:

#include <such_and _such_library.h> /* library section */
#define BIG 987654321 /* definition section */
int i; /* everything in /*...*/ is a comment! */

void my_function();

main() /* this is the ‘main’ part of the program */
{

printf(“blah”);

my_function() ;

}

void my_function() /* I wrote this function! */
{

printf(*hi~);

printf (“how are you?”);

i=14+1;

Notice that every command must be terminated by a semi-colon (but inciude and

1 C The Programmer’s Language of Choice - 1

define statements do not). If groups of commands go together, such as the three in
my_function Or the commands in main, they need to be contained inside braces.
This tells the program that they go together.

The /*. ..+, structure is a comment. Anything inside these will be ignored by the
compiler. Please note, the more good comments that you put in your program, the
easier it will be for both yourself and others to go back later and look at what you did.
Useless commenting, such as mentioning something that is very obvious, is not
good programming style. A good comment is something that explains how a tricky
command works or a description of what a function does.

The #define is a way that the computer can assign a word to a number value that
you might have to repeat in many different places throughout the program. In this
example, instead of typing 987654321 over and over, you just type s1c and the
computer automatically replaces it with whatever value was defined at the top. This
not only makes things go faster when you program, but it also makes things easier to
read. For example, the statement

circumference = 2 * PI * radius

is much better than

circumference = 2 * 3.1415926535 * radius.

To do this, just type the statement
#define PI 3.1415926535

at the top of your program. The asterisk is the computer’s way of multiplying.

(By the way, it is common practice to capitalize definitions, just so you or others don't
get confused later while reading the program.)

Another very big advantage of definitions is that it is possible to change their values
at the top of the program and they will change everywhere in the program. That is to
say, if the value of = were suddenly changed to 4.1415926535..., you would just
change it at the beginning of your program in the definition section instead of having
to go through the entire program and changing each “circumference = ...” line to the
new value.

Finally, a definition is known as a constant, which means its value can’t be changed
while the program is running. If you think you will need something whose value can
change, look at the next section...

Variables

A variable is an item in a C program that can take on different values throughout the
program. Whereas the constant r1 above could only have one value during the
execution of the program, a variable pi could have many different values, changing
whenever the program told it to. We will only be using integers in our programs. To
define an integer variable named bar, we would type:

int bar;

Right beneath the #define section. This tells the program to set aside enough room
for an integer to be stored at a place called ‘bar’. Anytime we want to access this

C The Programmer’s Language of Choice - 1 2

integer, all we have to do is call it by its name, much like we did with the definition of
pI above:

total = 7 * bar

This will place 7 times the value stored in var into a different variable named total.
If we just want to store a value in bar, we use the equal sign:

bar = 10;

Now, anytime we ask what value is in bar, the computer will respond ‘10". We
could of course change it to whatever we want, and the computer will reassign the
variable to the new value.

How to Put Words on the Screen

Information is sent to the screen via the printf command. This command has fairly
straightforward syntax, but when you first look at it, it may appear complex. A simple
example is to print out a phrase:

printf(“this is a phrase”);

This will print the words in quotations on the screen. However, any future printf's
will just get appended to the same line because we didn’t print out a carriage retum
after the line. To do this, we have the special symbol \n which stands for “newline”.
Therefore, to have our statement be on a line of its own, we have to type:

printf(*I am a phrase and I am on my own line!\n”);

Notice that no spaces are needed between the end of the line and the \n. Other
special characters are \t for tab and \\ to print the backslash itself.

Sometimes, you will want to output the value of an integer variable using the print £
statement. To do this, we use another special symbol, s4. Assuming we have two
variables side, and area, we could have some snazzy looking output by using the
print £ command:

printf(“The side of your square is %d centimeters\n”,side);
printf(“The area of the square is %d centimeters squared\n”,area)

Each time the print £ comes across a %4, it looks for something to put in its place,
namely the items following the quotation marks, separated by commas. It might be
easier to have this instead:

printf(“side: %d\tarea: %d\n”,side,area);

Although it looks quite confusing, it's quite simple when you take a closer look. It
starts out by printing the word “side” followed by a colon and then two spaces. The
command then comes across a %4 so looks past the entire statement to find the first
variable, side. Next, it reads the \t and tabs forward to put some space between
the first and second group, and prints out “area: ” followed by the variable area
(because that is the variable to replace the second 2d) followed by a newline to
prevent further output on the same line.

3 C The Programmer'’s Language of Choice - 1

The For Loop

There are several different loops in C, but the for loop is probably the most
frequently used and hence the one we discuss here. A loop is a method to have the
program do something over and over again. It is a lot better to enter code one time
and have the computer do it over and over again than to have to type it in multiple
times. If we wanted to print out a phrase 10 times, we would type this:

for (i =1; i <=10; i =i + 1) {
printf (#“This isn’t so bad.\n”");
}

The integer variable i (declared at the top of the program) gets set to 1 when the
loop is first run. Next, the loop tests to see if i is less than or equal to 10. Since it is,
the body of the loop is executed. It now goes to the third part of the loop which will
increase i by one, and then back to the second part to see if it still is less than or
equal to 10. This will continue until i has been increased to greater than 10.

Since the variable that we use as a counter is a regular integer variable, it can be
used in any expression in the body of the loop. So if we wanted to print out the
numbers from 1 to 10, we could type:

for (i =1; i «=10; 1i =i + 1) {
printf(#%d ~,i);

}

print (*\n*);

This will print out each number from 1 to 10 followed by two spaces, all on the same
line. Then, when it is finished, a newline character will be printed. (The newline is
not printed after each number because the for loop will only execute those
commands inside the braces.)

In case you haven't fully gotten it yet, the for loop has the following structure:

for (<initialization> ; <test for stopping> ; <update>) {
body of loop;

}
One last example is the loop

for (;3) {
printf(“Are we having fun yet?\n”");

}

Which prints the same line over and over again, and since there is no test for
stopping, will continue forever (typing control-c will cancel the program should you
ever do this).

Compiling and Running

After you have written a C program using the Edit window, save it using a fairly
descriptive filename with a “.c” on the end. (The “.c” ending is necessary to tell the
compiler that this file is a C program.) The next step is to actually compile the

C The Programmer’s Language of Choice - 1 4

program. When you typed your file, you made an ordinary text file. The compiler
reads that text file and translates what you typed into something the computer can
understand. The command to compile is fairly simple; from a Terminal window,

type:
lcc <filename> (remember the “.c™)

1cc stands for “local C compiler,” convenient. Assuming there are no errors, the
compiler will create an executable file called a.out that you can run. Note that every
time you compile a program, it creates a file called a.out which will overwrite your
previous version of the program. If you want to keep an older version of your
program, type mv a.out <new_name>. This will move a.out to the new name that you
picked. For more about mv, type man mv or see the UNIX CheatSheet.

If there are any errors in your program (a forgotten semi-colon or a misplaced
bracket for example), the compiler will print out an error message saying what was
wrong, what was expected and where the error occurred. Unfortunately, it is up to
you to go back and fix the problem. This step of going back and fixing problems is
called debugging and is what most programmers spend the majority of their time on.
Fortunately, it is a tad bit easier on the NeXT because you can keep both a Terminal
window and your Edit window open at the same time, allowing you to see your code
and the error messages at the same time. One other nice feature is that the Edit
program allows you to immediately jump to a particular line number in your program.
Choose Line Range... under the Find menu which is located in the Edit menu.
Trust me, having multiple windows is a whole lot better than switching back and forth
on a non-windowing system!

The Programmer’s Drinking Song:
“100 little bugs in the code,
100 bugs in the code,

Fix one bug, compile it again,
101 little bugs in the code.

101 little bugs in the code...”

- From a post to rec.humor

5 C The Programmer’s Language of Choice - 1

THE PROGRAMMER’S LANGUAGE OF CHOICE - 2

Now that you know some basic C commands, you should be able to write several
simple programs. There are a few more items, however, which can be very useful in
writing more complex programs.

Arrays

An array is a grouping of variables that has a fancy method of accessing the
information it contains. An entire array can be thought of as a street, and each
space in the array can be thought of as a house. If you want to leave something in a
particular mailbox, you just tell the computer which street and address you want. For
example, if this:

foo vawe | ool lof2]2|2]2]2 |2

Address: 0 1 2 3 4 5 6 7 8 9

was our array foo which has ten elements (0..9), we could leave something in spot 5
by saying:

foo[5] = 9;

Street Address

Which would make the array look like:

foo vave: | ol 0o ol alol2l2]2]2

Address: 0 1 2 3 4 5 6 7 8 9

We could later say

height = foo[5];

And the value returned to height would be whatever is stored inside the array at that
address (in this case, 9). Note that until we actually place a value in an array
location, we have no way to know what is there—hence the question marks.

If we wanted to switch elements in an array with each other, we need to do a little
more fancy work. Suppose that in foo[5] we have the number 9 and in foo[8] we
have 12. To interchange these values, we need to:

1 C The Programmer’s Language of Choice - 2

» Take one value and store it in a temporary location (i.e. a variable called
‘temp’).

» Copy the second value into the first value’s location.

* Place the value in temp into the second’s location.

In code it would look like this:

temp = foo[5];
foo[5] = fool[8];
foo[8] = temp;

If you think about it for a moment, you will realize that oo (8] is now the location with
the value 9 and foo[5] has the number 12.

The way to declare an array is similar to the way we declare a variable, except we
say how large we want the array structure to be. For example, to define the array
foo as it was described above, we would type:

int foo[10];

beneath the #define statements.The number in the brackets tells the computer that
you want to have an array of ten elements. In C, all arrays start at 0 and go up to
one less than the number you declared in the definition. Although this seems
strange, it really means that you are allocating 10 memory spots, labelled 0 through
9.

Conditional Statements

A conditional statement is a logical statement that can have one of two outputs,
either true or false. We've all seen them, even used them in our day to day life. An
example of a conditional is: IF it is raining. The statement is of course true if it is
precipitating, and false if it is not. Although this is fine and dandy, it is pointless
unless we have a course of action depending on the veracity of the statement. A
better statement is: IF it is raining, THEN | will use my umbrella. In C, there is a
similar structure that is used to check if a statement is true and then act onit. One
example is to see if a variable is less than some number. If it is, we can, for
example, print out the value of the number:

if (number < 20) {
printf (“The number is %d.\n”,number) ;
}

The expression inside the parentheses is the condition. If it is true, then the number
will be displayed. But what happens if the statement is false? In the above case,
nothing happens — the program will just skip the entire command much like the
‘raining’ example. If it isn’t raining (the statement is false) all we know is that we
won'’t use our umbrella; we're not quite sure what we will be using. If we want to
specify some alternative action, we would say: IF it is raining, THEN | will use my
umbrella, ELSE | will use my sunglasses. Now we know what happens if the
statement is either true or false. In C, it is the same:

C The Programmer’s Language of Choice - 2 2

if (number < 20) ({

printf (“The number is %d.\n”,number) ;
}
else {

printf (“That number is too big!\n”);
}

Now, no matter what number is, we know what will happen.
There are six different ‘operators’ that can be employed in a conditional expression:

(a==Db) true if a is equivalentto b

(al=b) true if a is not equivalent to b (! means not)

(a<b) true if a is less than b

(a>b) true if a is greater than b

(a <=Db) true if a is lesser than or equal to b

(a>=b) true if a is greater than or equal to b
Functions

A function in C is a self-contained segment of code that does “something.” The
printf command is a good example of a function: it takes a phrase in quotes as
input, and perhaps several variables that will be used in conjunction with the phrase,
and outputs the full phrase which goes to the screen. It is self-contained, because
we don't see any of the underlying workings, just the end result. To see why we use
functions, read on!

Suppose that we want to have a program that tells a joke. A good design would be
to have the program pretend that it was actually talking to the user. To do this, we
need to employ a loop that has delay function, allowing the user to have a pause
before hearing the punchline. This could be an example:

#include <stdio.h> /* standard library */
#define DELAY 5000000 /* delay (about 1.5 sec) */
int i; /* variable for the counter */
main()

{
printf("Hey, do you want to hear a joke?\n");
for (i = 1; i < DELAY; i = i+1) /* first delay loop */
7 /* does nothing */
printf("why did the whale cross the ocean?\n");
for (i=1; i < DELAY; i = i+l) /* second delay loop */
H /* does nothing */
printf ("To get to the other tide! (hehehe)\n");
}

This program prints out the first line, then has a delay, prints out the actual joke, has
another delay, and then reveals the punchline. Although this is a very short
program, there is a repetition which, in other circumstances, could make the program
much longer than it needs to be (imagine 10 jokes). A much better way to write this

3 C The Programmer’s Language of Choice - 2

program would be:

#include <stdio.h> /* standard library */
#define DELAY 5000000 /* delay (about 1.5 sec) */
void pause();
int i; /* variable for the counter */
main()
{
printf (*"Hey, do you want to hear a joke?\n");
pause() ; /* call the pause function */
printf("why did the whale cross the ocean?\n");
pause() ; /* pause again */
printf ("To get to the other tide! (hehehe)\n");
}
void pause() /* delay function */
{
for (i = 1; i < DELAY; i = i+1) /* for loop counts to DELAY */
; /* but does nothing else */

}

Now, the program is easier to read (a descriptive function name is much better than

a for loop with a comment after it) and if anything needs to be changed in the

function, you don’t have to go hunting through all the different areas in your program.

You change the function and you are finished.

Random Numbers

Random numbers can be very useful in many different types of programs, and if

nothing else, they provide an ideal way for programmers to generate large amounts
of varied data for testing algorithms. Even though these numbers are called random,
they are in fact anything but that. The computer uses a preset method for getting the
numbers, so although the numbers appear random the first time you see them, if the
same code is executed again, the numbers will reappear. Here is our “randomizer”:

#include <stdio.h>

#define MAXNUM 10 /* number of randoms to generate
#define RANGE 100 /* highest possible random number
int i; /* loop counter
int num; /* holds random number
main()

{

for (i = 1; i < MAXNUM; i=i+l) { /* loop to make and print nums

num = rand() % RANGE; /* actual "randomizer": [0..RANGE]
printf("%d *,num); /* print out the number with spaces
}
printf(*\n"); /* put the output on its own line

C The Programmer’s Language of Choice - 2 4

i
*/
*/
.y

*y
4
')

*f

And here is our output:

tome% lcc rand.c

tome% a.out

7 15 40 27 54 8 99 61 78
tome% a.out

75 15 40 27 54 8 99 61 78
tome%

For most applications, this non-randomness is not a problem. (Even though there is
a way to generate real random numbers if you actually need to.) To create an array
of random numbers, we could put the value num into an array of size vaxnum and we
would have some easily generated data for testing programs (hurrah!).

C The Programmer’s Language of Choice - 2

Copy&Paste

Moving data from place to place is a fundamental task for computers. Copy&Paste is a
primary means of data movement on the NeXT—especially between applications.
(Look at the fronts of the C and V keys!) The idea is simple—you have a “Pasteboard”
that you can copy data (text, pictures, etc.) onto. You can then take this data off of the
pasteboard and plop it down almost anywhere. The method is simple and applies
almost everywhere. There are four basic steps:

» Select the data you wish to Copy&Paste.

e Copy this data to the Pasteboard.

* Move to the area you want the data pasted.
» Paste the data.

From the NeXT Basics document you already know how to select text—drag over it. In
drawing programs, usually clicking an object will select it. Copying to the pasteboard is
simple—choose Copy from the Edit menu, which appears in nearly all applications.
Now move to the area where you want the data placed (start the application, enter the
document, whatever it takes) and choose Paste from the Edit menu. The text, picture,
or whatever should appear in a few moments. Done!

Example

Here is a quick, hands-on example of Copy&Paste for you to try:
* Open a new document in WriteNow.
* Type something random. (e.g. glurphlewambasmooklebrimbfoodle)
* Select part of the text by dragging over it with the mouse.
* Choose Copy from the Edit menu.
* Open up a new document.
» Choose Paste. The text you copied should appear.

This can be done between applications as well as between documents—just use
Copy as you normally would, switch to the application you want to Paste into, and
choose Paste. The data should soon appear in the document.

We used Copy&Paste extensively to make the labs and CheatSheets. All of the
graphics you see embedded in these documents were brought to you courtesy of two
simple operations—Copy and Paste. Hopefully you are getting the point that this
concept is very important to getting the most out of the NeXT computer. (And vital to
getting anywhere in this course...) Take the time to understand it fully. If you have
questions, ASK!

Cut&Paste

There is a close relative of Copy&Paste called Cut&Paste that you may also find
useful. The only difference between the two is that Cut will delete the selected
item/text, while Copy won’t. This makes sense, of course, if you think about the
names. Copy leaves the original, making a duplicate, while Cut snips the original
out. Cut is always found in the Edit menu near Copy. Try them both to see the
difference. To use it, just substitute Cut wherever you see Copy in the instructions
for Copy&Paste.

1 Copy&Paste

Diagram!
/LocalApps/Diagram.app

Diagram! does what its name implies—it creates diagrams. There are two main
features that distinguish Diagram! from a typical drawing program:

* If you draw a diagram interconnected with lines, then move any of the objects in the
diagram, the lines adjust so everything is still connected properly.

* The ability to link documents to the objects in your diagrams, creating a
hypermedia environment. Hypermedia is the idea that linear reading is
old—fashioned...instead of going from one page to the next, you follow a thread of
thought, jumping from place to place in different media.

Even though you can create the same results that Diagram! produces in other
applications, Diagram! is specifically tailored to the needs of creating a blueprint, design,
game plan, project, strategy, presentation, proposal, proposition, suggestion,
arrangement, order, ordering, contrivance, device, expedient, cabal, conspiracy, covin,
intrigue, machination, or practice. (Yes, | am using /NextApps/Webster and not being
at all subtle about it.)

Diagram! is object-oriented (just like TopDraw). It provides you with “Palettes” of
objects which you can drag into the document you are creating, then link them up with
lines. To make a line between two objects, drag from one to the other. Now
triple—click—drag one of the objects. The line will adjust according to where you move
the object! (If you do not understand what | am talking about, just try it; it is
self-explanatory once you see it.) To link a file (ie. text, sound, drawing) to an object,
simply find the file’s icon in the File Viewer and drag it onto the object to which you want

it linked. Voila! Now double-click the " that appears by the object and Diagram! will
load the linked document into the correct application and display it! Quite a bargain.

A good example of all these features is the Diagram! help system, which is done using
these methods. Choose Help... from the Info menu and follow the instructions. There
are also several Diagram! examples in /LocalLibrary/Diagram_Samples.

Diagram!

Edit

/NextApps/Edit

Edit is very useful application that acts much like a stripped down word processor. Why
would anyone want a stripped down word processor, you might ask? Word processors
such as WriteNow and WordPerfect insert lots of extra information dealing with how the
document should look, where tab stops are, where the margins are, etc.—not just the
text itself. Therefore, if you want to write a program or a file that is going to be used by
a UNIX tool such as 1cc or grep, you don’t want to deal with extraneous stuff...you just

want text, which is what makes Edit so practical.
You might want to move Edit to your dock, since you will probably find yourself using it
quite often.

Edit

Emergency

What do you do when the machine either stops dead or starts going wild? It is pretty
difficult to mess up a machine permanently, so don’t worry about that. Just follow these
steps, and you should be able to solve most common problems. If you have tried these
solutions and the problem still persists, ask a TA if one is around, and if not, call CIT at

8-6028.

An application is just sitting there, and the disk wheel keeps spinning. | can still get
to the Workspace Manager, but | cannot quit the application since as soon as | click
that application the disk wheel starts spinning again.

Solution 1:
Go to the Workspace Manager, and choose Processes... from the Tools menu. A
window will pop up with a list near the top which says, “Background.” Switch this to
“Applications.” It should now look like this:

Good. Find the offending application in the list and select it by clicking on it. Click
the kill icon, wait for the dialog box to pop up asking you if you really want to kill the
application, and click OK. In a few seconds, the application should be dead.

Problem 2:
The machine is totally dead. It will not do anything, and | have a window in the
middle of the screen saying, “System Panic.” Frankly, | just want to start over again
from scratch.

1 Emergency

Solution 2:
The easiest way to fix these problems is to reboot the machine (tell it to start over
again from scratch). Since you will be holding down three keys to do this, it is
commonly known as a “three finger salute” or a “Vulcan neck pinch.” To do it, hold
down both green command keys and press the single back quote key (the upper left
key on the keypad). A box will spring up on the middle of the screen. Type reboot
and press <Return>. It should reboot. If it does not, try this twice more. If it still
does not reboot, more drastic action is called for.

Try the following only as a last resort. This sequence will take the battle-axe
approach and really reboot the machine. Hold down the left Alternate and
Command keys, then press the asterisk (*) on the upper right of the keypad. The
screen should go blank, and the machine should reboot. This will take a while...be
patient.

Problem 3:
| am in a Terminal window and a UNIX program | am running will not stop.

Solution 3:
The traditional means of telling a UNIX program to stop executing is to press ctri-c.
(Hold down the control key while pressing “c”.) If this does not work, you will have to
kill the process. This is a bit involved, so follow closely!

* Open another Terminal window by choosing New from the Shell menu. Type
the following:

pPs -ux

* A list of your running processes will appear.
* Find the line with the runaway program’s name in the far right column.
* Read the process number in the second column on the same line. For example:

ford 4996 0.0 0.0 88 0 pb IW 16:57 0:00 ftp macbeth

is a process belonging to ford with process number 4996. His ftp to macbeth
has gone bonkers, so he has looked up this process and intends to ki1l it.

* Knowing the process-id from the second column, you can now type:
kill -9 4996
* POOF! The offending process is dead. Isn’t UNIX violent?

Emergency 2

ftp

ftp stands for “file transfer protocol,” which is just a way of moving files from one place
to another. Why would you want to move files to and from different computers?
Because there is TONS of information out there that can be obtained for free...if you
know how to get it.

The command itself is simple. Type ftp <address> in a Terminal shell window. This
will connect you to the site named <address>. To find a list of £tp site addresses,
look in the ~cs111/misc directory for the file ftplist.txt. grep will be an invaluable aid if
you know how to use it to search for a certain subject. Otherwise, just page through the
list until you find something that might be interesting.

After giving the ftp command, you will soon be given a 1ogin: prompt; type
anonymous . After you press <Return> it will tell you what to put for the password
(usually your userid). Congrats! You are logged into the site and ready to locate and
transfer the files you want. To locate documents, you can use several familiar UNIX
commands: cd, 1s, and 1s -F will all work. Most other commands will not.

Before discussing how to transfer files, you must first understand the binary
command. It is useful because there are two types of files you can transmit, and each
must be handled in a different way. To make a long story short, if the file is a program
you can run or it has a “.Z” on the end of its name, you must type binary before
starting the actual transfer. If you forget, everything will appear fine until you try and use
the file, when it will suddenly give you error messages. More later.

get is the ftp command that does all of the real work. Type get <filename> and
ftp transfers the file to your computer into whatever directory you happened to be in
when you gave the ftp command. Beware—large files can take quite a while to
transfer. Just be thankful that the NeXT is a multitasking machine so you can still work.

To leave the ftp site and quit the ftp program all in one fell swoop: type quit.

What do you do with the file once you have it? If it does not have a .Z or .tar on the end
of the filename, it is ready for use. If it does have a .Z, then it must be uncompressed.
Type, uncompress <filename> and the file will be ready to go. If you forgot to type
binary before ftping a file with a .Z on the end, the uncompress will fail and tell you
that the file is corrupt. Re-ftp the file and don't forget to type binary before getting
the file! If at any point the file has a .tar on the end, type tar xf <filename>. This
will extract many files from the .tar file, making them usable. Besides the list of ftp
sites we have already mentioned, we have also listed a few favorites below:

Address: Comments:
wuarchive.wustl.edu HUGE!
sonata.cc.purdue.edu NeXT stuff galore.
utsun.s.u-tokyo.ac.jp Well, it’s in Japan!
princeton.edu Rather close to home...

To look for a specific file, or files on a certain subject, you probably do not want to try all
the possible sites at random. The ftp list will give you a general idea of what is on
each site, but this information is sketchy at best. There is another resource you can use
called “archie.” See the telnet CheatSheet for more information, paying special
attention to the last paragraph.

Grab

INextDeveloper/Demos/Grab

Grab has got to be one of the handiest applications on the NeXT. With it, you can copy
to the Pasteboard part of a screen image, a window from some application, or the entire
screen. Look throughout this lab manual — we used Grab to capture just about every
screen graphic we used!

Getting Started

* Grab is located in /NextDeveloper/Demos. After deciding what it is you want to
copy, start up the application.

Choosing What to Grab

* If you choose Selection... from the Grab menu, the upper-left corner of a rectangle
will appear in place of the arrow cursor. You can click-drag over any section of the
screen to grab just that part.

. To copy a window, choose Window from the Grab menu. A camera will appear in

- the upper-right corner of the screen, covering up the NeXT logo that’s
normally there. After you find the window you want, click the camera (whose
background should turn white), then click the title bar of the desired window.

If you want to a snapshot of the entire screen, choose Screen... from the Grab

menu. The camera icon will again appear in the upper-right hand corner. Position

everything on the screen to your liking, then double-click the camera icon.
Saving Your Selection

* After you have grabbed something, you will be asked where you want to save the
image.

* To place a copy onto the Pasteboard (so you can Paste it somewhere else), click
the Copy to Pasteboard button.

» Otherwise, type in a name and save the image as you would save any other file —
it will be saved as a “iff” image.

1 Grab

handin
~cs111/bin/handin

The handin program makes it easy for you to turn in material electronically. With
handin, both you and your TA have copies of your work. So save a tree...

Handing in a copy of your work

* First, open a Terminal window (see the Terminal CheatSheet if you don't know
how).

* Type
handin <lab number> <list of files or directories>
So, to hand in the files foo.wn and bar.snd for lab 5, you would type
handin 5 foo.wn bar.snd

You can hand in entire directories the same way.

One more thing... read this if handin didn’t work! handin is just a program
-we wrote to make life easy for you. It's not a normal UNIX command, but just
‘a program we keep in the ~cs111/bin directory. If you haven't ever run our
addpath program, you've noticed that handin doesn’t work for you. That’s
because UNIX isn’t looking in the ~cs111 directory for the handin
command.

If you haven’t run addpath yet, do it now if you want to use handin. Type
~cs1ll/bin/addpath
This is the only time you should have to do it. All addpath does is add the

~cs111/bin directory to a list which the computer checks each time you type
in a command. You should be able to use handin normally, now.

That's it! handin whisks compressed versions of your files into a directory named
after your userid within ~cs111. Your submissions will be kept until the end of the
course. If, when the end of the semester rolls around, you want a copy of your
entire subdirectory of submissions, follow the instructions below.

Getting back a copy of your material (at the end of the semester)

If your TAs are very nice, they will have saved all of your work for the entire
semester. Near the end of the course they will give you instructions on how to get a
copy of everything you have done, so pay attention if you want it.

1 handin

Improv
/LocalApps/improv.app

Introduction

Improv is a new type of spreadsheet that lets you create great-looking graphs and
charts in no time at all. If you complete the tutorial in this CheatSheet you will
produce the following chart:

A spreadsheet is good at handling large amounts of data that can be represented in
a table. It makes life easier for you by doing all of your calculations automatically—
rather convenient when you have long columns of numbers to add up.

If you have not used a spreadsheet before, this application can seem quite daunting.
But although it is harder to learn at first, the rewards are proportionately larger. Most
people have no concept of how graphs of this quality can be produced; hence, when
they see them in a paper or report, they are blown away. Once you can do even
basic graphs, including them in papers is extremely impressive.

Most spreadsheets have this general form:
Headings \ B1 B2

A
A2

A3 b ——>Cells

1 Improv

A1 and B3 are hard to remember when they are actually “Profit” and “Gross
earnings,” so you can rename the headings to something that makes sense. The
boxes that make up the bulk of the spreadsheet are called “cells.” You can either
place data in cells or tell a formula to put something in them. Data are simply
numbers that you collect—population data, for example, while formulas calculate a
value based on the data that is entered in other cells. Adding up a column of
numbers, for example, would require a formula.

If you wish to explore on your own, or want more information on any subject, Improv
has its own online help system, accessible by clicking Context Help... in the Info
menu. The help window will appear, and you can click the topic you would like help
on. There is also an Improv demonstration program located in
/NextDeveloper/Demos called ImprovDemo.app. It’'s kind of fun to watch even if it
isn’t all that informative.

How to Create the Sample Graph—A Tutorial

» Start Improv, which is found in /LocalApps.
* You will be greeted with this window:

This is a blank template for your data. Since you have not entered anything yet,
there is only one column and one row. Of course, more can be added as you need
them. You will also notice that the screen is split into two major sections, the large
one containing the cell, and the small section at the bottom. This bottom section is
where you will enter your formulas. But first let us deal with the columns and rows.

* Rename the column to something useful:
* Select the column by clicking it. (Clicking the B1 will work nicely.)

Improv 2

* Type “Burritos.”

* Add another column by choosing Add Item from the Edit menu. Since you already
had a column selected, when you chose Add Item it created another column. If
you had had a row selected, Add Item would have created a new row. Remember
this for the future... :-)

* Rename this new column “Tacos.”
* Add one more column and name it “Chimichangas.”

* You will notice that “Chimichangas” will not fit in the cell. To make this column of
cells wider, place the pointer over the vertical line directly after the name. The
pointer will change into a left-right arrow. Once it does, drag to the right to make
the column wider. Let up on the mouse when the space looks large enough. If you
cannot seem to get the arrows to appear, make sure you are directly on the line.
The placement must be extremely precise.

* Onward to the rows. Use what you have learned about columns to make these
rows: “Mild”, “Hot”, “Volcano” and “Toxic.”

* Add one more row and call it “Total.”
Your spreadsheet should look similar to this:

Burritos : Tacos : Chimichangas
Hot ‘ '

ST N R e
Toxc

You are now ready to enter the dala.

* Click the cell you want to put the number into, then type the number. Here is the
data as it should appear in your spreadsheet:

Burritos : Tacos Chimichangas

e a ‘Sﬁﬁ';‘? S B T

Volcano | 400 00, 350

S R éﬁﬁé e

e R e e i

You could now fill in the “Total” row by hand, but it is easier to let the computer do it.
We will need a formula to tell the computer how to total up each column.

* Double-click the formula space at the bottom of the Worksheet window.
* A “1.” will appear along with a cursor. Type in:

Total = Mild + Hot + Volcano + Toxic

3 Improv

Improv

Computers are picky beasts. Make sure you have typed this exactly as given, down
to the capitalization of each word.

* Press <Return> to tell Improv that you are done entering the formula.
* Instantly, Improv will calculate the Total line and fill it in.

* You can change any of the values in the spreadsheet, and Improv will automatically
change the Total line to reflect those changes. Try entering a few different values.

Now for the fun part — charting what you have entered.

* Select all of the cells in your spreadsheet by click-dragging over them. (It is easiest
to start at one comner and drag to the opposite one.) Your data should now
resemble this:

Burritos Tacos

: Chimichangas

Mild
Volcano
S0
o

* Choose New Graph from the Graph menu.

* The charting companion to Improv, called Presentation Builder, will load and create
a generic graph using your selected data.

* Substitute your own text for the generic text “Graph” and “Subtitle of graph.” by
double-clicking the text, dragging over it, and typing your replacement text.

* Now that the captions are complete, you can choose the type of chart that looks the
best to you. Click the Inspect... menu item to get a list of graph choices. Make
sure you have the graph selected so the Panel shows the correct information. To
select the graph, click near its edge. Small squares should appear at each corner
and the middle of each side to show it is the selected item. (See below.)

* You can click any of the graph choices at the top of the Graph Inspector panel, and
the graph will change to that type. IMHO (In my humble opinion) 3D Bar charts are
quite impressive, but do whatever looks good to you.

* Our finished graph appears at the top of this CheatSheet. Yours may look very
different if you chose a different type of graph. This one happens to be a 3D bar
chart.

Using Improv With Other Applications

After creating a graph of any sort, you can use standard Copy&Paste to put it into
another program such as WriteNow, TopDraw, Diagram!, Mail.app, etc. Select the
graph by clicking it on the inside near an edge. Once again the small grey boxes
should appear, indicating selection. Choose Copy from the Edit menu, then move
to the application you want to paste the graph into and choose Paste from the Edit
menu. Done!

Click around here*
to select the
chart!!

A square indicating
The chart is
selected. '——A/

5 Improv

Keyboard

The keyboard. If you don’t get anything else out of this class, hopefully you will at least
be passingly familiar with one of these. The NeXT keyboard is shown below. You will
recognize most of the keys immediately.

The configuration is much like that of a typewriter, with a few extra keys (like Alternate,
Command and Control), to tell the computer to do special things. For example, if you
are in WriteNow and you need to type an accented “a” (&), first type Alternate-e (press
and hold down the Alternate key and press the “e” key) then press “a”. To find out
about other snazzy symbols, experiment with other Alternate-<key> combinations, or try
the Preferences application (refer to the CheatSheet for more information)

The Command key is useful for keyboard shortcuts to menu commands. If you see a
letter next to a menu item, you can hold down the Command key and press the letter to
choose that item. For example, in the following menu, Command-q will quit the
Preferences application.

Quit q

Besides Alternate and Command, there is also a Control key. This is less commonly
used in the NeXT environment than in a UNIX shell. See the Emergency CheatSheet
for the use of Control-c, one of the most common control key sequences.

The arrow keys (the keys with the arrows on them!) can be used to move the cursor in
some applications, most notably word processors.

Above the arrow keys, there are five keys which have special meanings. The center
key is the power key, used (obviously) for turning the machine on and off. The left two
keys are the volume controls. The top one will increase the volume, and the bottom one
will decrease it. Holding down Command and pressing the bottom one turns the
speaker mute on and off. You can control the screen brightness with the right set of
buttons (the ones that look like suns). The top one will brighten the screen; the bottom
one will dim it.

Keyboard

Librarian
/NextApps/Librarian.app

Using a computer to search for information saves you from tedious manual searching.
UNIX tools let you get very close to your data and manipulate it in many different ways,
but there is also an application for the NeXT that allows you to search files using a
graphical interface. This application, called Librarian, goes a step further than UNIX
tools such as grep by allowing you to build an “index” of words you are likely to search
for in the future. By making this list once then using it over and over, Librarian saves
itself the trouble of re-searching the files every time you look something up. It searches
once, remembers where each word was found, and spits the results back out whenever

you ask for them.

Unfortunately, there is a disadvantage to this scheme. If Librarian were to index every
single word it came across, it would generate huge files to just hold the index. To limit
the amount of data it generates, Librarian chooses which words it will index, leaving out
words that are likely to be very common. For example, the words “the,” “and” and any
single letters are left out. These would be silly to index anyway since 99% of text
documents include them somewhere. The sad part about indexing is that it does miss
some words you might want to search for. More on this later. First, let's learn how to do

searches.

Searching
When you start Librarian (in /NextApps), you will be faced with this window:

[=] _ Librarian.bshif — fu/cs111/Library/Bookshelves

The four icons across the top of the window are the directories or files you are able

1 Librarian

to search, represented by icons. Each icon is referred to as a “target.” The group of
all the targets that appear is called a “bookshelf.” Anyway, let’s say that we want to
find out more about WriteNow. We would follow these steps to obtain the
information we need:

* Click the NeXT User icon, since the material on WriteNow is likely to appear in
this target. (WriteNow is a User application.) The icon should now be
highlighted.

*» Type the word we want to search for into the text field on the left of the Search
button. In this case, we type “WriteNow.”

* Click the Search button.

* In a few moments, a list of documents will appear in the lower part of the
window, like this:

Librarianbshif — Aucs111/Library/Bookshelves

* Librarian found two documents containing the word “WriteNow.” To see one of
the documents, just double-click its name. Librarian will load it in so you can
read it. There! You have successfully completed a search!

Searching Multiple Targets

If you want to search in more than one file and/or directory simultaneously you can
easily do so. Simply shift-click all the icons you want to use and follow the rest of the
procedure exactly as above.

Searching Targets Not Shown in the Bookshelf

If you want to search a directory or document that is not shown at the top of the

Librarian 2

window, you can drag its icon into Librarian from the WorkSpace. It works very
much like the shelf in the File Viewer—just drag until the icon shows up lightly near
the top of the Librarian.bshif window, then release it. Select it by clicking it, and it is
ready to be searched.

Indexing Your Own Targets

There may be only one small problem with dragging your own targets into the
bookshelf area—they are probably not indexed. Look directly above the text field. If
it says “Unindexed target,” well, the target is not indexed. The search will work, but it
will be slower than an indexed search. If you wish to index the directory, you must
do the following:

* Make sure you have write permission in the directory. (If you don't, consult the
UNIX CheatSheet to learn about soft links, then create a soft link to the
directory you want to index and index your link...definitely not for the faint of
heart.)

» Select the target you want to index by clicking it, then choose Index... from the
Target menu. A window will appear:

Index

o

g(
|

-

* Click Create Index... and wait a few moments while the indexing takes place.
Donel!

Now you have a bookshelf of your very own. You can save this bookshelf for future
use by selecting Save or Save As... from the Bookshelf menu. When you double-
click the file in the Workspace, it will automatically start Librarian and open your
custom bookshelf. Great!

Another alternative to indexing new targets is just leaving them unindexed and
enduring a slower search; this is not all bad, and even offers a few advantages, such
as better ways of describing what to search for, not missing words that aren’t
indexed, and several others. | will not go into detail here, but point you toward the
NeXT Applications manual, which resides in the manual rack near the door of the
NeXT cluster. Check out pages 85-100, which cover the entire Digital Librarian
application in all of its splendor and glory.

3 Librarian

mail
Note: the man page for mail on the NeXT is quite well done,
so for more information, type man mail in a NeXT terminal session.

mail is one of the most useful computer tools available here on campus. Using it, you

can send messages to people throughout the world. Most universities are hooked up to
the same major network that we are (the Internet) so you can even send mail to friends

at other colleges for free!

mail is also very easy to use. Say you want to send mail to your friend Fred
Lemonijello who also goes to Princeton:

* The first step is to find out his userid. The easiest way is to just ask him. Let’s say
his userid turns out to be fredlemo.

» Armed with this information, you can sit down at a computer, get to a UNIX shell
(see the Terminal CheatSheet), type mail fredlemo and hit the <Return> key.

* The mail program will ask you for a subject. Enter a short phrase describing the
content of the mail you are about to type.

* After pressing <Return> you can begin typing the body of the message. Just type
away.

* When you are finished, hold down the control key and press “d” to send the mail.
(This operation is usually written as Ctrl-d.)

The best way to illustrate mail is to show a simple example. (Note—anything between
<> and in this “non-computer” font is a comment):

phoenix% mail djdobson
Subject: Your life is scheduled for termination.

I am sorry to inform you that Lord Vader has decided your flaming red hair
is a disgrace to the Empire. Hence, you are scheduled for termination
at 0500 hours in Detention Block A6.

Thank you for your time.
--Vice Admiral Jeff Blum

EOT <press control-D, do not type EOT to send the mail! The computer types the EOT.>
phoenix%

Soon djdobson will log in and the system will tell him that he has mail. To read it, he will
type mail and press <Return>. Here is a transcript of what his session would look like:
[Note: the “&” is the mail prompt, so everything after an & is what djdobson typed.]

phoenix% mail
Mail version SMI 4.0 Sat Oct 13 19:57:42 PDT 1990 Type ? for help.
*/usr/spool/mail/djdobson": 1 message 1 new

>N 1 jeffblum Fri Jun 28 14:38 16/311 Your life is scheduled...

&1 <display message number one>
Message 1:

mail

From jeffblum Fri Jun 28 14:38:20 1991
Received: by phoenix.Princeton.EDU (4.1/1.110)
id AA28102; Fri, 28 Jun 91 14:38:19 EDT
Date: Fri, 28 Jun 91 14:38:19 EDT
From: Jeffrey R Blum <jeffblum>
Message-Id: <9106281838.AA28102@phoenix.Princeton.EDU>
To: djdobson
Subject: Your life is scheduled for termination.
Status: R

I am sorry to inform you that Lord Vader has decided your flaming red hair
is a disgrace to the Empire. Hence, you are scheduled for termination
at 0500 hours in Detention Block A6.

Thank you for your time.

--Vice Admiral Jeff Blum

& T

<r means reply to the message that was just read>

To: jeffblum

Subject: Re: Your life is scheduled for termination.

You sir, are a hoser.
-Wolff
EOT

& q
phoenix$%

Several commands were used in this example. Here is a brief list of useful ones you
can use use once inside the mail program, ie. when you see the “&” prompt. Parts of
this are taken from the NeXT man page for mail, so look there for more commands.
The letters in parentheses are abbreviations you can use for the command.

Anywhere you use a message-number, you can use a list of message-numbers,
separated by spaces.

reply(r) Takes a message (or message list) and starts a letter
addressed to the original sender.

delete(d) Takes a list of messages and deletes them.
help fairly intuitive...

save(s) Takes a message list and a filename and appends each
message in turn to the end of the file.

<Return> Read the next message addressed to you.

<Space> Scroll the message you’re reading down one screen.

example: r 2 will begin a letter to whoever wrote you message number 2.
example: s 5 foo.txt saves message 5 as foo.txt

One other thing to note about mail is that you must press <Return> at the end of each
line. If you continue typing past the edge of the window, your words will be broken up
and look quite poor. Eventually, after about 250 characters, mai1 will not let you type
until you either backspace or press <Return>. If you don’t touch-type, look up at the
screen every few words and you can easily avoid this problem.

A (brief) summary for those who are still confused:

To send mail
eType mail <userid>.
* Enter a subject.
* Type in your message
* When you are finished, hit Control-d to send the mail.

To read mail
* Type mail and after the “&” appears, hit the <Return> key.
* Hit <Space> to scroll the message you are reading.
* Press <Return> at the “&” prompt to read the next message.

* When you are done reading and see the “&” prompt again press g to exitmail.

e Done.

mail

News

News is a medium that allows people to exchange messages with each other on
hundreds of different topics. To make this information easier to find, the topics are
separated into different groups, which are in turn organized into different categories.
The main categories are alt (alternative), rec (recreation), comp (computing), and
misc (miscellaneous). There are many others, but these few seem to attract the most
interest. Princeton receives almost every possible newsgroup, so you can explore to
the limits of netnews.

To start the newsreader, type rn while in a Terminal session. The first time you do this
it will set up news for you, which can take a little while. Be patient. After a short
introduction to the net, the names of the first 5 or so newsgroups in your list of
newsgroups will appear, along with how many articles are unread. Initially, you are
subscribed to all of the newsgroups—over 900 of them. You will have to press u many
times to get rid of the groups you are not interested in. For now, you can just use the
searching commands listed below to get to the groups you want to read.

There are two basic modes in rn. One is listing the various groups; the other is reading
articles within a group. The first mode looks like this:

REREN AR 3 unread articles in princeton.china--read now? [yng]
kxkxkx*x 38 unread articles in princeton.forsale--read now? [yng]
S 9 unread articles in princeton.general--read now? [yng]
okttt 1 unread article in princeton.grad--read now? [yng]
%x*** 18 unread articles in princeton.wanted--read now? [yng]

The second mode is effective when you are actually reading articles. It is easily
recognizable since you will see the text of the article.

Commands

In the following command list, the first effect of the command is for when rn is listing
the groups, and the second is effective when reading articles.

Command Group Mode Article Mode
y switches to article mode scrolls forward in article or goes to next article
n moves to the next group skips to next article.
q exits rn exits the current message or group
<space> same asy same asy
u unsubscribe from the (both modes)
current newsgroup
g <string> @o to group <string> search for <string> in current article

htm my group mode help screen article mode help screen

/<string> search for <string>ina Scan forward for article
newsgroup name, containing <string> in the subject.
starting with current group.

News

Organizing Your Directory

One of the most annoying things on a computer is having so many files in one place that
you have to scan through a huge list to find what you’re looking for. Because of their
built-in directory structure, UNIX computers make it quite easy to keep things clean and
allow easy access to the files you are looking for.

Suppose that you have several files from different places, such as a few letters from
friends, several files from cs111, and two graphics images. The logical thing to do
would be to have one directory called letters, another one called cs111, and maybe a

third called images. Underneath the cs111 directory, you might want to even have
separate directories for each lab. To make a new directory:

* Go to the directory in which you want to create your new directories

* Move to the Workspace Menu and choose New Folder from the File menu. This
will place a folder called, appropriately enough, New Folder, in your directory.

* You can double-click the name portion of the folder icon in the icon path and type a
new name for it, such as ‘letters’.

* Drag the new folder icon up to the shelf.

* Move your letters to the new directory by using the mouse and dragging each letter
on top of the folder icon. When you do this, the folder will ‘open’ up, so just drop
the file (release the mouse button) and you are finished.

* After finished moving your files, you can keep your directory on the shelf, or
remove it, your choice.

You can repeat the above process for the cs111 and images folders.

After a while, you might find that you have a lot of files that you don’t need anymore.
Whenever you want to delete a file, just drag it over to the Recycler, the icon on the
lower right hand of the screen.

Full Recycler

After you put something into the Recycler, a dot will appear in the center signalling
that you have something there. Should you have second thoughts about getting rid
of the item(s), you can double click the Recycler icon and scroll through the files and
folders you were going to get rid of. If you want to get anything back, just grab it out
of the Recycler and drag it back up to the directory you want. If you decide that you
would rather not keep the files, go to File under the Workspace menu and choose
Empty Recycler. (If you accidentally delete a file, empty the Recycler, and then
realize that you desperately needed that file, all is not lost. Quickly write e-mail to
Irr@phoenix.princeton.edu asking for a file restore.)

1 Organizing Your Directory

PostScript
What Is It?

PostScript is a language used to describe how a picture looks. Some computers
describe an image by simply recording all the dots that make it up. This is still used
in many places, but PostScript takes image description one step further. With
PostScript, you can ask for an object such as a circle of a certain radius, filled with a
certain color, and it will understand what you mean.

Why Use It?

A computer can only perform actions that it has all the facts for. If a computer
merely manipulates dots, all it knows is where those dots are. If these dots are one-
hundredth of an inch on a side (or 100 dots per inch) then when it is printed on a
printer that can print at 400dpi (dots per inch), each of the dots in the picture must be
made up of 16 printer dots. This is bad since the resulting image is just as coarse as
it would be on a 100dpi printer. Result: the image appears jagged instead of smooth
even though the printer can print at much higher quality.

PostScript removes this restriction by not describing images as a bunch of dots.
Instead, it describes objects—circles, squares and lines, for example. Therefore,
although an image will appear at 72dpi on your screen, when you print it, the printer
knows enough to print it as smoothly as it possibly can—400dpi.

s A TIFF image
A Postscript image. (non-postsgript)_

Note: The TIFF is blown up to about 2X it's normal size.

This is why high quality laser printers use the PostScript language—they can print at
their maximum resolution. In fact, most typesetters (upwards of 2400dpi!) also use
PostScript since it is so powerful.

1 PostScript

Why do I need to know all of this?

Normally (whether you realize it or not) when you create a drawing on a computer
you use a paint program that lets you draw objects, then translates them into
PostScript for you. If you like, however, you can simply create the PostScript
directly, and never touch a drawing program again. The rest of this CheatSheet will
show you the basics of the language and teach you how to draw pictures using it.

One quick note: PostScript is most commonly used for printing images on paper.
This means that if you want to play with it, you normally have to print out the image
to see what it looks like. Fortunately, the NeXT has an application that lets you type
in a postscript program and view it directly on the screen. To use it, start
/NextDeveloper/Demos/Yap and wait for a window to appear in the upper right-
hand corner. For further information about using Yap, consult the Yap CheatSheet.

The Important Stuff

PostScript is what is known as a stack-based language. A stack is a method for
storing data in an efficient manner. This method shows up again and again in
Computer Science in many different applications.

The basic idea of a stack is this: You have a bunch of data that you want the
computer to remember, then access later. How do you store this data? You can
think of a stack as a large hopper that you can toss the data into. When you want to
access the data, you simply reach in and pull out the piece that is on top. Hence,
the first piece of data you put into the stack will be the last one to come out. Placing
a piece of data onto the stack is called a “push”, and pulling it off is called a “pop.”

A diagrammed example may make things a little clearer:

Push the
numbers
1,2,3,4,5
onto a FILO
stack in
that order.

In order to use PostScript, you must always keep stacks in mind. For example, if
you want to draw a line from the point (1,5) to (10,15) you would use the following
PostScript code:

1 5 moveto
10 15 lineto
stroke

If we trace this program step-by-step, we get the following:

1. Push the number 1 onto the stack.

2. Push 5 onto the stack.

3. Call the moveto routine, which pops one number off the stack for the y-
coordinate then another for the x-coordinate, leaving the stack empty. (1,5) is
now the current point.

PostScript 2

4. Push 10 on the stack.

5. Push 15 on the stack.

6. Call the 1ineto routine, which pops the 15 off the stack for the y-coordinate,
and the 10 as the x-coordinate. The stack is empty, and there is an invisible
line drawn from (1,5) to (10,15).

7. stroke paints this invisible line black.

Easy enough? It should now make sense why the coordinates are given before the
commands (known as operators)—it is because the operators must get the data they
need off of the stack. Every PostScript operator that needs data pops it off of the
stack, so remember to put it there!

You are now ready to learn about the different commands you can use. The format
will show what must be on the stack when you call the operator. To put something
on the stack, just type it—there is no command to place an item on the stack. A fine
line lies in the fact that operators are not normally placed on the stack. They operate
on data...so they take data off of the stack as they need it. Only in specific cases do
operators get placed onto the stack.

Since we are dealing with simple graphics here, we are leaving out many of the
built-in PostScript operators. To give you an idea of the entire operator set, we have
enclosed a PostScript Reference Sheet which lists all of the PostScript commands
known to mankind. Enjoy!

Generalities

* Remember that PostScript is stack based! Put the data before the operator!

* Any path you make will be invisible until you give a st roke command.

» Stacks can rapidly become terribly confusing. Always keep track of what you
have put onto the stack, and make sure you know what your operators are
putting there as well...

3 PostScript

The commands

Note: This format is taken from the PostScript Language Reference Manual by
Adobe Systems. In this book there is a list of ALL PostScript commands in this same
general format. The first column is what you need to place on top of the stack before
the operator is called. (The element furthest to the right is on top of the stack.) The
next column is the operator, and the third column is the stack after the operator. (A
“—” means no elements.) The final column is a short description of the operator.
“Bool” stands for boolean, either the number 1 (true) or 0 (false). “proc” stands for
procedure, or a block of commands that can be executed. The syntax for creating a
block will be covered in Example 4.

* Drawing operators:
#1 #2 moveto
#1 #2 lineto
#1 #2 rlineto
— stroke
— fill

— newpath—

#1 #2 #3 #4 #5 arc

e Stack operators:
#1 pop

#1 #2 exch

#1 dup

#2 #1
#1 #1

¢ Arithmetic operators:

#1 #2 mul
#1 #2 add
#1 #2 div
#1 #2 sub

#1 neg

#1*#2
#1+#2
#1/4#2

#1-#2

-#1

makes the point (#1, #2) current

Draws an invisible line from the current point to (#1, #2)
Like lineto but current point is treated as (0,0)

paints an invisible path black

fills an object with black

makes sure there are no current objects

makes an invisible arc of radius #3 at point (#1,#2)
over the angle from #4 to #5 degrees

throws away the top item on the stack
reverses the top two elements on the stack
puts two of the top element onto the stack

places the product of #1 and #2 on the stack
places the sum of #1 and #2 on the stack
places the quotient of #1 and #2 on the stack
places the difference of #1 and #2 on the stack
reverses the sign of #1

* Control operators: (Example #4 will be a tremendous help here)

#1#2 eq
#1#2 ne
#1#2 gt
#1#2 ge
#1#2 It
#1#2 le
— true
— false
bool proc if
#1 proc repeat

PostScript

bool
bool
bool
bool
bool
bool
bool
bool

test if #1 & #2 are equal

test if #1 & #2 are not equal

true if #1 is greater than #2

true if #1 is less than or equal to #2
true if #1 is less than #2

true if #1 is less than or equal to #2
push true onto the stack

push false onto the stack

execute proc if bool is true

execute proc #1 times

Examples

Example 1
moveto, lineto, stroke, showpage

Note: The axis is drawn merely to show the coordinate system the line is drawn in.
It are not produced by the PostScript code shown.

%! % standard beginning of a PostScript file

10 50 moveto % make point (10,50) current

100 200 lineto % draw an invisible line from the current point to (100,200)
stroke % paint line black

showpage % show this page

When drawing your picture, PostScript will ignore anything after a “%” on a line. This
is called a “comment” and simply makes the code easier for us humans to read.

5 PostScript

%!

100 150 25 0 360 arc

stroke

75 125 25 0 360 arc

Fill

40 dup moveto
0 100 exch rlineto

stroke

showpage

Example 2
rlineto, Till, arc

% draw an invisible circle radius 25 at (100,150)
% paint the circle black

% draw an invisible circle radius 25 at (75,125)
% fill this circle with black

% put 40 on the stack, duplicate it, moveto (40,40)
% make line to (100,0) (points are exchanged!)
% paint this line black

% show this page

Example 3

Shows a neat quality of stack-based languages—you can build up the stack and then
call all of the operators...even though this is not good programming practice since it is
very difficult for humans to read.

%!

250
210
210
290
290
250

arc
arc
arc
arc
arc
arc

250 100 0 360
290 20 0 360
285 8 0 360
290 20 0 360
285 8 0 360
250 75 190 ~10

stroke newpath
fill newpath
stroke newpath
fill newpath
stroke newpath
stroke newpath

showpage

(@ (o

Just keep the stack in your mind, and you will get the idea of what is happening.

PostScript

Example 4
Conditional statements and looping (repeat, if, etc.), procedures

%!

/line { moveto 0 25 rlineto stroke } def % define 1ine to draw a vertical line 25
% points tall starting at a point on the stack.
/variable 10 def % variable = 10
10 { % place 10 on the stack for the repeat
4 variable le { % check if 4 is less then variable
variable 10 mul 10 line % draw line at (variable*10, 10)
} if % perform previous step only if
% 4 variable le was true.
/variable variable 1 sub def % subtract 1 from variable
} repeat % repeat the loop (only 10 times)

This is a rather simple program that shows looping and conditionals. The picture is
stupid, but the number of lines drawn is significant, since each time the program

goes through the loop, it draws one. Trace through this code and make sure you
understand why it is drawing 7 lines.

This program also uses the def operator several times. All that the first line of the
program does is say that wherever the program sees the word 1 ine it should act
like moveto 0 25 rlineto stroke isthere instead. Likewise, wherever the
program sees variable, it should act like there is a 10 in its place. Notice also that
variable is redefined later in the program; you can define variable by saying
“subtract one from whatever variable currently is, then make variable equal to
that.” In short, subtract one from variable. def is an extremely useful operator—
well worth the time spent to understand it.

7 PostScript

5 3
7]]
T -
- =
(<] Q
: :
m 3INIM SIHL DNOTV 1ND m

-<< - adedmoys

- << Suns MOYS

u == << jounj-1ysuen-Aeid 1ajsuBIpIs

- ~ << uopoung-jods uoneor bayy U3IIIS)IS

u — << onjq usais pa: Jojoaqanes

] —~ << umu I unas

] - << Xnew Xjayeunas

M - << wnu Ipimauipas

u - << "Oqe == - << 8oy ujofauipas

u - << QR = - << B8 desaujpes

] (s08ayur are q'e 1 9s111q) QYOXE << q & Jox - << 143uq Jmes any J0j0oqsyas

l (e1qeInooxa 5 € 1 o0n) [00q << B FPAPX — << wnu Awidyos

u - << Fums oy Supnsapam - << PIp-uoy juopes

. - << Smsoy Supnsxayaim - << wmu 18N8

o - << ahqam NIm - << 198)J0 Ae1re ysepes

- << Suns apoo-reys Ap xp MOYSYIPIM - << Am XM YIpimaeyyas

8[eJ :punoj jou - << safqxew HWRYENIS

ann 1p :punoj ;i << Aay anym - << £mxm A7 x7[£m xm 3)A2paYIBIYS

(onn :ajqeanlim J1) jooq << A HYImM Suwns yoauas

[FeAB-5214q-B10) Pasn-821£q SABS-JO-JOAI] << SN)BISUWA 1IP-1UOJ-POULIOJSURY << JIQUINU JOTP-JUCY JuojIBIS

SuLns-uolsioa-prey-p-1Jos << - UOISIdA XNW << XNW AS XS 10 — << AS X8 IS

SOSW-UT-2W] << urIIsn 100lgo-oaes << - aes

1IP-108N << - Jo[pIasn - << Suns ung

e-Jo-oureu-adf) << ® adfy Q1BIS-PIIS-TU-WOPURI-JIALIND << - pue.Ll

PRIEDUNY-WINU << WU RN\VOUNI) PepuUnOI-umu << wWnu punoa

ann << - ann (xnw << xnw o[fue ‘J0) -- << 9[Fue w0

XMuW<<xXnu i1 X Jo - << 513 JvisuBy (Y Aq pepjos swope N doy) ~9q"8 << Y N "9"q"® e

UMxc<xnm £X Jo AXIX << £X wiojsusIy - << Apxp 0j2A0ULI

28[eJ :punoj jou - << Apxp oauy

ony uayoj 18od-s :punoj Ji << Fuins uayo3 - < - pedasiaral

(punoj Ji onn) [0ooq << I[Y uayoy - << plqo-oaes EY GTEY]

PIp-mNshs << — PpwAsis - << s0id yunoo ysada

TWOU-[WnU << ZWNU [wnu qns (404 J1 95[e]) Jooq nisqns << Fuwns a[y Bupnspeas

- << - pedayons Aewm-f[uopeay << Aeue Auopea

H - < - ajons 1ooq Suinsqns << Suns oy auy[peax

u Amxm << Suns ppmiuins [ooq Suinsqns << Suwns oy Fupnsxaypeas

1] Sums << jur Buns (JOd Jt os[e)) jooq Mhq << 9y peas

- << onpea Aoy a0 — << ZAp Txp 14p 1xPp 0AP OXP 033401

(Areunion pojeuruL) SEA B JT 98[8J) [0Oq << B paddoys (s1qepeal j1 onn) jooq << Aeire Fa1

- << - doys Wy << - pusl

(uado y1onn) jooq << o[y smes - << - nb

- << - Jes 1hue << zhue Soq [Are Baznupnd

“0qR << QR Fous -~ << an[eA xapuj feue nd

- << pueis - << "3'qe yowysd

wne-jo-jo0i-arenbs << wnu yibs - << - ydwoad

(wnu)ours << wnu us - << Suns upad

1onuDpy aoua.af2y 1dISISOd S 1onup) 2ouaLafay sdieogisod 1 4

| PostScript Reference Manual 2 PosiScript Reference Manual 3 PostScript Reference Manual

abs num >> Inuml curentmiterlimit == >> number get array index >> element
add numl num?2 >> (numl+num?2) currentpoint - >> Xy getinterval arry beg len >> subarry
aload array >> eleml..elem2.. array currentrgbeolor - >> red green blue grestore e
anchorsearch string seek >> found: spost smatch true currentscreen - >> freq rot spot-funct grestoreall - > -

not found: string false currenttransfer -- >> gray-tansf-funct gsave - tab -
and ab >> aANDb (bitwise if a,b are integers) curveto x0y0x1yl x2y2 >> — gt numl num2 >> bool (true if num1>num?2)
arc x yrangl ang2 >> - cvi num >> integ or strng >> int identmatrix matrix >> id-transf-mtrx
aren x yrangl ang2 >> — cviit a >> literal (not-exec) idiv intl in2 >> int-part-of(int1/int2)
arcto x1yl x2y2r >> xtl ytl xt2 yt2 cvn string >> name idtransform xdt ydt >> xd yd (xdt ydt mtrx >> xd yd)
array int >> arry-of-size-int cvr num >> real if bool proc >> -
ashow ax ay string >> — cvrs num base string >> substring ifelse bool procl proc2 >> —-
astore eleml..elem?.. arry-size >> arry[eleml..elem2] cvs astring >> substring image scan-len scan-Ins bits/pixl mtrx proc >> —
atan ab >> angle-whose-tang-is-(a/b) (4 4 a >> executable imagemask scan-len scan-Ins invrt mtrx proc >> --
awidthshow ax ay string >> — def key value >> — index al..a2.a3..akt >> al..a2..a3..ak a(k-t)
begin dict >> - defaultmatrix matrix >> def-matrix initclip - -
bitshift int shift >> int-shifted (right: +, left: -) definefont key dict >> font-dict Initgraphics - -
bytesavailable file >> int (-1 if cannot be determ) dict int >> dict (maximum-capacity: int) initmatrix - > -
cachestatus - >> bsize bmax msize mmax csize cmax maxbits dictstack array >> subarray invertmatrix mtrx]l mtrx >> mitrx (contents-of-mtrx1-inverted)
ceiling number >> least-integ-grtr-than-or-eq-to div numl num2 >> (numl/num?2) itransform xtyt >> xy (xtytmtrx >> xy)
charpath string strokepath-bool >> — dtransform xd yd >> xdt ydt known dict key >> bool
clear ab.c. >> .. or xd yd matrix >> xdt ydt kshow proc strinng >> --
cleartomark mark a.b..c.. >> - dup a>>aa le numl num2 >> bool (true if num1<=num2)
clip - e echo bool >> - length array >> length-of-arry
clippath - 3> - end —->> - lineto Xy > —
closefile file >> -- eoclip D> - In num >> natural-logar-of-num
closepath - > - eofill - > - load key >> value
concat matrix >> -- eq ab >> bool (trueif a=b log num >> common-logar-of-num
concatmatrix mirx]l mtrx2 mtrx3 >> mtrx3 (=mtrx1*mtrx2) erasepage - >> - loop proc >> -
copy a.b..c..int >> a.b..c.. a..b..c.. (top -int- elem) exch ab >> ba It numl num2 >> bool (true if num1<num?2)
copypage - >> - exec a>> — makefont font-dict matrix >> transformed-font-dict
cos a >> cosine(a) execstack array >> subarray mark - >> mark
count a.b..c.. >> a.b..c..count executeonly arry >> exec-only-arry (or string) matrix -- >> matrix
countdictstack - >> count exit —->> - maxlength dict >> int
countexecstack - >> count exp numl num2 >> num]-to-the-num2-pwr mod intl int2 >> intIMODint2
counttomark mark a..b..c.. >> mark a..b..c..count false - >> false moveto Xy >> -
currentdash -- >> array offset file stringl string2 >> file (str2: r, w) mul numl num2 >> numl*num?2
currentdict - >> dict fill - > - ne numl num2 >> bool (false if num1=num?2)
currentfile - >> file findfont key >> font-dict neg num >> -pum
currentflat - >> number flattenpath - - newpath -2 -
currentfont - >> font-dict floor number >> greatest-int-less-than-or-eq-to not a >> NOTa (bitwise if a is integer)
currentgray - >> pumber flush - >> - null - >> null
currenthsbcolor == >> hue satur bright flushfile file >> — nulldevice -3> -
currentlinecap -- >> integer for init incr limit proc >> — or ab >> aORb (bitwise if a,b are integers)
currentlinejoin - >> integer forall array proc >> eleml..elem2.. (& executes proc) pathbbox - >> lo-left-x lo-le-y upr-rgt-x upr-rgt-y
currentlinewidth == >> number framedevice mtrx wid height proc >> — pathforall mveto-proc Ineto-proc crveto-proc clsepth-proc >> --
currentmatrix matrix >> CTM-matrix ge numl num2 >> bool (true if num1>=num2) pop a>> -

Preferences
INextApps/Preferences

Preferences is the application which lets you customize your NeXT machine. With it,
you can tell the mouse how fast to move, configure your system to beep at you with
your favorite tune, and tell the computer how loud you want the beep to be.

* In the File Viewer, go to /NextApps and open up Preferences. This application is so
useful that you might want to drag it over to the dock on the right-hand side of the
screen. When you open Preferences, this window will pop up

Preferences

Mouse: The icon that’s selected is the mouse... you can set how fast it moves across
the screen and how fast you have to double-click to open things. Look under the
section called Menu Button. If you click Enabled, every time you hold down the right-
hand mouse button the menu will pop up under it. Try it— this way you don’t have to
travel all the way to the upper-left corner of the screen to use the menus.

Keyboard: Click the icon of the keyboard. Here you can decide how fast a letter will
repeat when you hold down a key, and how long the NeXT waits before letters start
repeating. You can also find out how to get special characters like ¥ or) by clicking
the Keyboard Panel button and holding down the Alternate and/or Shift keys.

Monitor: Click the monitor to set the brightness and volume. Drag the brightness all
the way to the right and blast your eyes (now put it back!). Do the same thing with the
volume, and turn the mute on and off. Finally, use the volume and brightness controls
on the keyboard to do the same thing. You can turn the mute on and off by pressing

... see the Keyboard CheatSheet for more info.

Setting UNIX Expert mode: Drag the scroll bar to the right until you can see this
picture: Click the icon, and then select the check box labelled UNIX Expert.

1 Preferences

Printing

Whenever you feel that you need a hard copy of something you are working on, whether
it be a WriteNow document or a TopDraw picture, the NeXT has a universal command
that is 99.99% guaranteed to work. By choosing Print... from the menu, a window
similar to this will pop up:

¥ inext_cs_oo1_toimpo NeXT 400 dpi Laser Printer

Originally, the local printer will be selected so you may want to move the scroll bar up
and down until you find another printer that you would like. Probably the best choice is
one of the printers that starts off with “next_cs_001” in the name because these are all
located in the NeXT cluster with you. The printers are named according to the computer
that they sit next to, so if you select next_cs_001_toimpossible, it would be the printer in
the third row next to toimpossible. (Please don't ask us the difference between the two
identically named listings; we have no clue.)

When you want to print something again, it will remember what printer you selected last
time, so there will be no need to choose a printer again. However, you are more than
welcome to change the printer to another one if it seems that a lot of people are all
trying to use it (or some hoser is printing out 20 copies of his 80 page thesis so every
single one of his relatives knows what he has been doing for the last 9 months).

If you want just one copy of the entire document, you can click the Print button. If you
need multiple copies, you can type the number of copies you will need in the Copies
box. If you only want to print out part of a document, click the From button and enter
the pages that you want to be printed out. For example, to print pages 2, 3 and 4 of
your midterm project, you would click the From button, then enter 2 as the start and 4
as the end. You will most likely want to keep the resolution set at 400 dpi (dots per
inch) because that is the highest quality the printer can print at. If you need to cancel
the print job at any time, just click the Cancel button. Good luck, don’t waste paper and
if you have old printouts that you don't need anymore, please recycle them.

Printing

Recursion

| %I

Y
i
L\
A

e

memwmpcocOmm
»Pz>w

B~z com®
A

Introduction

Computer folks go to extreme lengths to avoid writing any more code than they have
to. Recursion is a rather clever way of saving yourself tons of work—once you
understand how it works.

Recursion is used when you want to do a task over and over again with slightly
different parameters. For example, the above drawing is simply the same picture
done over an over, only smaller and moved up to the right each time. It could be
done by drawing each picture separately, but it takes much less typing to use the
same code over and over again. This may seem to be exactly what a function would
do, but recursion is subtly different. Hopefully by the end of this CheatSheet you will
understand this difference.

You may have seen recursive effects with two mirrors set up face to face, where the
image goes back and back into infinity. In computers, there is a fixed number of
times that an image can be repeated; otherwise, a recursive program would go on
forever. In the above example, the pandas do not get infinitely small since the
computer stops drawing them after a while.

1 Recursion

A simple (for recursion anyway!) example

The following drawing is a fractal. We will not go into fractals here in any detail, but
you may find it interesting. To see truly beautiful fractals, try
/NextDeveloper/Demos/Mandlebrot.app. If you run this on a NeXTdimension
system, you can obtain fantastic color results.

This program is in PostScript, so if you are not familiar with the language, you will

probably have trouble following this example. The PostScript CheatSheet can give
you an idea of what is going on.

Here are the results of the program:

X

AN
AN S

N

P,

:
[X]
<

X
72 %

b,
L

% SOV,
i i,

7 SO
P
2

X

Y
N T0,

DRI

J

LA
N
]
X

LA

o
Y Foh,
S,

’:‘"
<]
Do
O 5%
p'é
, Y
0 B
5

W VN
5

[X]
KA
W

P
¥ g has B
L]
N

o
]
%4

]
L7
s
v

R

o A
A
5
B

N
r

|~

hat
7

OIS,
[X
4]

AR
XX
N
SN
[

X[
g
ot

8,

TR0} ToN0

7
PN

4 4
X

P
ATTON TN
]

Py
4 0%

B,
s
SO0 03 B,

L

XL

VG T
oz

b,

DN

-

<]
i B0
o4

B

And here is the PostScript code that produced it:

%!
/depth 0 def
/maxdepth 11 def % Play with this number for different results.

/down {/depth depth 1 add def} def
/up {/depth depth 1 sub def} def

/DoLine
{ 0 144 rlineto currentpoint
stroke translate 0 0 moveto} def

/FractArrow
{gsave .7 .7 scale % change the .7s to drastically alter the drawing!
10 setlinewidth
down DoLine
depth maxdepth le
{135 rotate FractArrow
-270 rotate FractArrow} if
up grestore} def

2 2 scale % change the two numbers here to resize the picture.

Recursion 2

150 200 moveto
FractArrow
stroke
showpage

In order to fully understand this program, you will have to learn a little more
PostScript. If you like, however, you can simply play with the code found here,
seeing what sort of havoc you can wreak by changing numbers in various places.
Your choice. Anyway, upward and onward to more PostScript!

You will notice several new operators in this program. Basically:

* gsave Will place the current size of the image and the way the page is rotated
onto the stack.

* grestore takes such a state off of the stack and causes that state to take
effect once again.

* scale scales the space the drawing is taking place in. For example,
.5 .5 scale makes everything drawn from then on half the current size. The
first number is the horizontal scale, the second is vertical.

* currentpoint is the point that the program is currently “thinking” about.
* rotate rotates the paper that the drawing is being produced on.

If you continue using PostScript, you will find that there are certain things you would
like to do over and over. PostScript has an easy way to do this without typing a
routine over and over. It is the def operator, which allows you to define a short
string as equivalent to a long list of commands, a number, or a combination of both.
In the above program the first line /depth 0 def defines the word depth to mean
the number 0. Wherever the program sees “depth” from now on, it will replace it with
a zero. The longest def statement in the fractal arrow program is the FractArrow
procedure.

/FractArrow

{gsave .7 .7 scale
10 setlinewidth
down DoLine

depth maxdepth le

{135 rotate FractArrow gnote that both FractArrow calls are within
-270 rotate FractArrow} if %an if statement, providing a condition for
up grestore} def gexiting the recursion.

After this procedure is defined, every time the program sees the string “FractArrow” it
acts as if everything between the {}'s were there instead. Basically, procedures are
simply shorthand for longer strings.

All of this becomes much more interesting when you see that the FractArrow
procedure contains FractArrow! So FractArrow contains a FractArrow, but that
FractArrow contains a FractArrow, etc. This would go on forever, but the
Fractarrows within FractArrow are in an i f statement, so there is a way to break the
cycle. If this conditional statement was not there, the program would run forever.

What this program does is call FractArrow after rotating the piece of paper it is

3 Recursion

working on and changing the scale of what it does. Until it gets to maxdepth, it will
execute 1ine twice, creating a new arrow on the ends of a larger arrow. It then calls
FractArrow again for each end of that arrow, and so forth, scaling down each time it

does a new layer. Look again at the pattern and see if you can make out the
pattern. Here it is in stages:

maxdepth = maxdepth = 2 maxdepth = maxdepth =

R g

If all of this looks terribly confusing, relax. You are dealing with a fairly advanced
topic in Computer Science. If you are grasping the general concepts here, excellent!

Try entering different numbers into the program and running it, guessing what will
happen. Good luck!

Recursion 4

rt
/Net/dobro/musr/Apps/rt.app

Princeton’s own Kent Dickey '92 and Professor Paul Lansky wrote this sound-mixing
application. rt stands for real-time, which is the funkiest thing about rt.app — it mixes
sounds by sending them directly through to the speaker, as opposed to first figuring out
the final result, then sending it to the speaker. This is instant gratification!

Opening rt.app and loading in sounds for mixing

* In the File Viewer, find rt.app in /Net/dobro/musr/Apps. Open it up, and when it
has launched, choose Open new scratch pad from the Document menu.

* To open sounds for mixing, choose Open Soundfile(s) from the Document menu.
You can select more than one file at a time by shift-clicking each one.

* You should see something like this in the Soundfiles window:

snd

If you see the word off next to any of your sounds, click once on the word off to
turn the sound on. If you ever want to ignore any one of your sounds while mixing,
click again on the on button to switch it off.

* Click Load Driver in the controls window to load in all of your sounds.

Preparing sounds with playnote commands

Each playnote command tells the computer to play one sound in a certain way. For
instance, one playnote command might wait two seconds, then play the second sound in
the Soundfiles list. When you play the entire mix, all of the playnote commands are
effectively executed together.

You type playnote commands in the playnote list window. Here is the very simplest form
of the command:

playnote(track=<track number>, snd=<sound number>)

If | wanted to include all the sounds in the above window in my mix, my playnote list
window might look like this:

1 rt.app

" laynote({track=1, snd=1)
laynote(track=2, snd=2)
|playnote(track=3, snd=3)

Each track is just a layer that gets added onto the final sound. There can be only
one sound played on each track. You could, however, play the same sound on
several different tracks. So, you could add this command: playnote(track=4,
snd=2).

* Make playnote statements for each of your sounds.

* There's a lot more you can do, but for now... Click Reload playnotes in the control
window. This button makes rt.app aware of any changes you made in the playnote
list window.

* Click play in the controls window. Neat, huh? But there’s more...

Arguments to playnote

Here is an incomplete list of arguments to playnote and their effects on your mix. To
add another argument to a playnote statement, just add it within the parenthesis of the

existing statement, and separate it from the other arguments with a comma. Arguments
can be in any order.

at= the time (in seconds) to start playing the sound after the mix has begun.
For example, playnote(track=1, snd=1, at=1.5) will start playing the
sound 1.5 seconds into the mix.

dur= the amount of time (in seconds) during which rt.app reads the sound.
For example, playnote(track=1, snd=1, dur=5) will read sound 1 for 5
seconds. If you hear your sound being cut off, make dur longer than
the length of the original sound.

transp= how many notes up or down to transpose the sound. For example,

playnote(track=1, snd=1, transp=-3) will transpose the sound 3 notes
down the scale.

gliss(<relative time>, <transposition>, <relative time>, <transposition>, ...)
gliss is similar to transp, except that it “slides” a sound from one
transposition to another. For example, gliss(0,0, 1,5 ,2,0) will slide the

r.app 2

sound from no transposition (0) to 5 notes up the scale, then back down
to 0 again.

Times are relative here. This means that gliss thinks of the first time
you give — 0 in this case — as the beginning of the sound, and the
last time you give — 2 in this case — as the end of the sound.
Anything between is scaled accordingly. So these two gliss’s would
accomplish the same thing:

=
gliss(0,0, 1,5, 2,0) ﬁT

W

time

gliss(0,0, 2,5, 4,0) %T

LS
7

time

e
7
mebees

i
0 2 4
amp(<relative time>, <volume>, <relative time>, <volume>, ...)
amp works much the same way as gliss does, but instead of controlling
pitch, you control the volume. Normal volume is 1 (volume * 1), silence
is 0 (volume * 0), and twice the normal volume is 2. So, to go from
normal volume to silence to triple volume, you might type
playnote(track=1, snd=1, amp(0,1, 4,0, 7,3)).

Saving the mix
* When you have something that sounds good, choose Write mix to disk... from the
Document menu and save the file into your home directory.
Getting more help

* rt.app has an excellent help... section in the Info menu, complete with descriptions
of every command and window, and even a short tutorial. If you want to spend
some time here, you'll emerge with enough expertise to produce scripts for real
digital music — complete with fade-ins and stereo.

General procedure
Keep in mind this general procedure for mixing sounds:

General Procedure for Mixing with rt.app

* load or change any sound file names in the Soundfiles window, and turn them on.

* click Load Driver in the controls window.

* add or change playnote commands in the playnote list window.

» click Reload Playnotes in the controls window.

* click play in the controls window. If you get weird results, click Load Driver again.

* when you have a sound you like, choose Write mix to disk... from the Document menu.

rt.app

Scene
/NextDeveloper/Demos/Scene

Basics

In programming, a good maxim to follow is “don’t re-invent the wheel.” When it
comes to pictures, Scene can let you take what others have done and use it in your
own work. (Only uncopyrighted material, of course!) Scene manipulates pictures
stored in the tiff format (files ending in .tiff), which is the most common type of bitmap
graphic file on the NeXT. There is an entire directory of tiff images in
/LocalLibrary/Images/Scene_screens. If you load them into Scene (Open... from
the Window menu), you can play with their contrast and brightness as shown below.

To manipulate the picture you Open..., you will primarily use the Image Controls
window, found by choosing Adjust... from the Panels menu.

Since you will probably be working on a greyscale screen, you don’t need to worry
about the color choices in the upper left corner. The three important things in this
panel are the slider bars toward the bottom. To see what effect changing them has
on the current picture, click Apply. The easiest way to see what each of them does
is to just try them. Posterize seems to have little effect; Brightness and Contrast, on
the other hand, can make a marginal image into a much more pleasant one. If the
picture seems too grey, for example, increasing the contrast can make it more

“snappy”.
Using Scene With Other Applications

You can use standard Copy&Paste to take an image and place it in another
document. Just perform these three easy steps:

» Make sure that the window containing the picture you wish to Copy&Paste is in
the currently selected window. (lts title bar should be black.)

1 Scene

* Choose Copy from the Edit menu.

* Move to the application you want to Paste the image into and choose Paste
from that application’s Edit menu. Voila!

Unfortunately, it seems that you can no longer save your altered images. Why this is
I have no idea. It had worked previously, but when we tried it recently, we could no
longer save a changed image. When you load it back in, it looks identical to the
original. Go figure. Likewise, you cannot Copy&Paste an altered image—it still
looks like the unmodified version. So why even bother with Scene? You can still
Copyé&Paste the original tiff images. This is normally fine, and it is a fairly easy way

to perform the task. Good luck!

Scene

Sound

When the lead singer of Meatloaf belts out a note, he's just creating a wave of air
pressure disturbances, which your ear interprets as music (or noise). Because air
pressure is measurable at any instant in time, the sound is called continuous.

A computer, however, has no way of storing sound information for every instant in time.

Just as the computer must represent a continuous curve with a bunch of tiny dots on the

screen, so must it represent a continuous sound with samples of sound information.

Try to familiarize yourself with these terms and concepts of digital sound. More
importantly, come back to this sheet if you come across anything you don’t understand.

analog signal
digital signal

sample

hertz, or Hz.

sampling rate

speaker cone
frequency
waveform
FFT

spectrogram

DSP

channels

A continuously-defined signal. Real-world sounds are analog signals.

A signal which is defined only for certain values of time, e.g. every
ten-thousandth of a second. Computers store sounds digitally... in
tiny chunks of information called samples.

One little chunk of sound information used by a computer.
Computers store each sample as a number, typically an integer.

One cycle per second. If a signal repeats itself (goes through one
cycle) 22,050 times each second, then its frequency is 22,050 Hz. A
thousand hertz equals one kilohertz, or kHz.

The rate at which a computer gathers sound information. At the
44,100 Hertz sampling rate common to compact discs, 44,100
samples are collected every second.

The physical object that vibrates back and forth inside a speaker to
produce a sound.

The “pitch” of a sound. Higher frequencies occur as the speaker
cone vibrates faster.

The wave of sound as it travels through the air. It is usually repre-
sented by a graph of the position of the speaker cone over time.

“Fast Fourier Transform”... an oh-so-important method for figuring out

how much of each frequency appears in a signal over an time interval.

Usually a graph of how much of each frequency appears at each
instantin the sound, as opposed to an FFT of the entire sound. The
spectrogram is a just a series of FFT’s taken in rapid succession.

“Digital Signal Processor” — a chip inside the NeXT that makes for
fast processing of sounds and other digital signals.

A one-channel sound is monophonic, and two-channel is stereo.

Digital Sound is the secret to the high-quality music of Compact Discs. Record labels
Just put sound sampled at 44,100 hertz onto the CD'’s. In fact, Apple™ CD-ROM disk
drives can play music right off audio CD’s! It's all headed in the same direction...

Sound

Visual Representation

When you work with sounds on the NeXT machine, you will commonly see this
representation of the sound waveform:

Lip Service

Since the speaker cone is responsible for creating the air disturbances (sound)
which you hear, it’s fair to show a graph of the speaker cone versus time, and claim
that it represents the sound waveform.

Look carefully at the picture. Imagine that a horizontal line through the center
represents a ‘resting” position for the speaker cone. Think of the speaker cone,
then, as vibrating between the top and bottom lines of the graph. That's what
produces the sound, and that’s all you need to understand!

Editing

Editing sound is much like editing text. You can Cut, Copy, and Paste to your

heart’s content. For instance, to move the beginning of the above sound to the end,
I might follow this procedure:

» Select the beginning of the sound (drag over it with the mouse), like this:

Sound 2

* Choose Cut from the Edit menu, to get this:

Lip Service

S
Senenn

There ya go! Play the sound. If you are just reading along, look in Lab 5 for sound
tools. Have a blast...

3 Sound

Storage

The smallest piece of data that a computer can deal with is a single signal which is
either on or off. This signal, called a bit, obviously can’t hold too much information, so
bits are usually grouped together in larger chunks, called bytes. A byte, which is
comprised of 8 bits, is the basis for storing computer data. What makes the byte so
popular is that by using various on/off combinations of the bits in a byte, we can hold up
to 256 different combinations, which is plenty sufficient to allow us to have a unique
combination for each of the letters, numbers, punctuation marks, etc. that we commonly
use.

When talking about big a file is, we usually need bigger units to describe it than bytes.
Some of the more common ones are:

* A kilobyte (abbreviated ‘KB’) is 210 or just over a thousand, bytes (1024 to be exact).
« A megabyte (or just ‘MB’) is 220 bytes which is 1024 kilobytes or 1048576 bytes.

* A gigabyte (‘GB’) is a billion (230) bytes.

* A terabyte (yes...'TB') is a trillion (240) bytes.

To get an idea of the amount of information that exists around us, let us do a few ‘back
of the envelope’ calculations:

* A full page of single-spaced text is roughly 400 words at 5 letters per word. Thisis a
total of 2,000 bytes, or a little less than 2 KB.

* A ten second sound sample using the built-in NeXT command ‘sndrecord’ takes up
about 80 KB.

* A high-density 3.5 inch disk can hold 1440 KB or 1.44 MB.
* The Bible is 4.4 megabytes.

* A compact disc records music at 44,100 samples per second, with each sample
composed of 16 bits. Therefore, a recording of Beethoven’s Ninth Symphony which
lasts 66 minutes 40 seconds equals 2,822,400,000 bits or 352,800,00 bytes or
344,531 KB or 336 MB of information.

* A floptical disk (a floppy disk for a NeXT that is somewhat similar to a cd) can store
512 megabytes of data.

* Firestone library has roughly 4 million volumes at 500 pages per volume at 400 words
per page at 5 letters per word equalling a total of 4 trillion bytes or 3,906,250,000
kilobytes or 3,814,697 megs which is the equivalent of 7,451 floptical disks. Since
each disk costs around $175, it would take $1,303,925 to store it all (however, we
could probably get a bulk rate :-)). For a typist who can type 100 words per minute to
convert all of the information into electronic form, it would take 15,210 years of typing
24 hours a day, 7 days a week, 365.25 days a year.

Storage

talk

Although e-mail is a great way to communicate with your friends, it can be a bit slow if
you just want a quick answer to a question. The solution to this problem is to use the
UNIX command ta1k, which will allow you to communicate with a friend interactively.

What taik does is divide up your screen by placing a horizontal line in the middle and
allows you to type in the top part while the other person’s typing echoes in the bottom.
When you enter a character, it immediately shows up on the other person’s screen and
when the other person types, it immediately shows up on yours. Therefore, both of you
can see everything that is typed by either person in real-time.

If someone wants to talk with you, you will receive a message that looks similar to this:

Message from Talk_Daemonéweek.Princeton.EDU at 14:54 ...
talk: connection requested by jonthomp@palette.Princeton.EDU.
talk: respond with: talk jonthomp@palette.Princeton.EDU

To start ta1king with jonthomp, just follow the instructions given by the message and
type talk jonthomp@palette (you don’t have to type .rrinceton.Epu because both of
your machines have the same suffix.)

After you are finished talking, type control-c (hold down the control key while typing the
‘c’ key) to quit.

If you want to request a ta1k, type:
talk <userid>@<the machine they are on>
Therefore, typing:
talk aaron@toyou
would request a talk session with aaron on the NeXT named toyou.

Your terminal window will draw the ta1k screen and start sending a message similar to
the one above to the person you want to talk to. At the top of your screen, you will get
a status message that at first says (waiting for your party to respond]. If aftera
few seconds there is no response, the computer will send another talk-request message
and your status line will change to [Ringing your party again]. If no one answers
after a couple of rings, there is a pretty good chance that they are away from their
computer, perhaps getting a late-night snack from the Wa.

If you are really busy and don’t want to be disturbed by ta1k requests, you can tell the
computer that you don’t want to receive messages. Type mesg n at a prompt and you
won't be bothered. If you want to start receiving ta1x requests again, type mesg v.

1 talk

SoundEditor

/LocalApps/SoundEditor

SoundEditor is your basic tool for hacking around with sounds. There’s nothing fancy
here, but if you need to quickly record a sound, or if you need to do some minor editing,
SoundEditor is the way to go.

Opening and Playing a Sound

» SoundEditor is located in /LocalApps. After you open it up, choose Open from the
Window menu to select your sound. After SoundEditor loads the sound, you
should see a sound waveform graph which looks something like this:

[em] fprivate/auto630001 32/murmur.snd

The Play/Record Area

* Click Play to hear the sound. If you drag over a part of the sound to select it, you
can hear just that part by clicking Play.

* To record a sound, choose New from the File menu, and click Record to start.
Click the same button (now the Stop button) again to stop recording.

If you really want to be tricky, you can insert your own recording into an existing
sound by clicking once at the point you want to insert at, then recording as you
normally would with a blank sound.

The Zoom Area

* You can zoom in on a section of the sound by selecting that part and pressing
Selection. Zoom back out to view the complete sound with the Show All button.

* Alternatively, the In and Out buttons just zoom in or out by a certain amount each

1 SoundEditor

time you click them.

The Effects Area

* The Normalize button scales your sound to the maximum possible volume that
doesn’t introduce distortion.

» Guess what the Reverse button does to your sound? Ask a TA if you need help.

* Mono converts a stereo file to monophonic format — useful if you're short on disk
space.

« If you ever figure out what the Limit button does or how to use it, tell the TA.

Working with a Sound... General Tips

* You can select a section of the sound just like you select a section of text: by drag-
ging over it. Then you can listen to that section, or use Cut, Copy and Paste just
like you would with text.

* For easier access to them, you can grab hold of the Edit and Effects menus and
drag them to a convenient place.

* Remember that you have to select part of a sound before you can do anything to it.
» See the second part of the Sound CheatSheet for step-by-step help.

SoundEditor 2

SoundWorks

/Apps/Soundworks.app only on the NeXT machine page.

Getting Started

» SoundWorks.app is in the /Apps directory of the NeXT machine page. Find it in
the File Viewer, and double-click it to open it.

* You'll be confronted by a window titled Recorder, which resembles a tape deck:

Recorder

* First, choose Open... from the Sound menu, and select any sounds you want to
work on (perhaps from /LocalLibrary/Sounds). To select more than one sound at
once, shift-click each sound you want.

Mixing Sounds

SoundWorks has an excellent and intuitive interface for mixing sounds. Although you
can only mix two sounds at a time, it's probably the easiest way to do it. Give it a try.

* Both sounds must be saved in the same format, i.e. they must both be stereo, or
both monophonic, and they must play at the same Sampling Rate. To check this,
shift-click both of the sounds to select them. If the Mix... button is dimmed (so you
can't click it), then you need to change the format of one of the sounds so it
matches the other. If you can't press the Mix... button, perform the following step.

* To change the format of a sound, select the sound in the Recorder window.
Click the Format... button, and this window will pop up:

1 SoundWorks

The only things you can change here are the Sampling Rate and the number of
channels (whether the sound is stereo or monophonic). Remember that converting
to a lower Sampling Rate reduces the sound quality, because the computer sends
information to the speaker at a lower rate. Make sure the Sampling Rates of the
two sounds are the same.

* Now you're ready to mix! In the Recorder window, select the two sounds by
dragging over both of them or by shift-clicking. Press the Mix... button, and up
pops this window:

* The highlighted button at the top tells you which sound is selected, e.g. the sound
you are currently manipulating and which you will hear if you press the play button
). By selecting the RESULT button and pressing play, you can hear both
sounds played together. You can decide where to mix in a sound by dragging the
picture of its waveform horizontally.

* That's not all! The line across the top of each waveform represents the sound
volume. Try this: on one of the sounds, drag the tiny “selection point” in the upper-
right corner to the bottom, so it looks like this:

Now play the sound and listen to it fade out. The selection points on the ends
aren’t the only ones, either... a new selection point — which you can drag up and
down — will appear wherever you click the volume-line. This sound will fade in
and out and give you a headache:

SoundWorks 2

* Finally, you can change the relative volume of each sound with the slider on the
right-hand side: ' j&

* When you are do, click Mix, and your shiny (happy) new mix will appear in the
Recorder window as something like /tmp/MIX_1.1.snd . The filename is italicized
because you still have to save it; choose Save from the Sound menu.

The Effects Panel

Say you want to make a glissando out of your voice. (For those of us who aren’t music-
ally inclined, a glissando is a quick slide up or down the musical scale.) Or, to be mun-
dane, you just want to hear a sound fade in or out. SoundWorks provides you the
opportunily to do either, with a utility for manipulating both pitch and amplitude (volume).
* First, select a sound to work on in the Recorder window. Click the Edit button to
open up to a view of the sound waveform.
* To select a part of the sound to work on, click-drag over a section or choose Select
All from the Edit menu.

* Choose Effects Panel... from the Effects menu. A window like this one should
pop up:

RESULT

mh\n P PR | P B N PN P, gt '”’& P WON _‘,‘.;,-M,‘\W\ ,-W;M-’;“JW{’“-‘-HMFM,Nﬁ'.‘m_w‘, A

TN A N Y M W W B e T L T S

3 SoundWorks

Amplitude Effects

« If the button at the top of the window reads Amplitude, you can play around
with the sound volume. The line across the top represents the volume, and you
can move it by dragging one of the little “selection points” in the upper comners.
To create a fade-out effect, you might drag the selection point on the right so it
looks like this:

E AR D O e At OO ek DA ARl DT A
SO S SRR Y AN O Wt AR ™ Y i o Sy g

L e e : - . 4

* To hear how it will sound, make sure the RESULT button in the upper-left is
selected, and press the play button.

* You can also create new selection points by clicking on the line itself. To make
the following example, | clicked once in the middle of the line, and dragged it to
the bottom of the window.

T N i e e N U L
~ ; W’? Mo Sy foty e IR, S T i Ve ST

b

* When you're done fiddling with the volume, click the Apply button and save
your sound with the Save menu option.

SoundWorks 4

Pitch Effects

* To play with the pitch, click the button that reads Amplitude. It should change
to read Pitch.

* Pitch Effects works much the same way as Amplitude Effects, except the line
starts out in the center of the window and represents... pitch. Play around, and
click Apply when you're done.

Echo and Reverb

* To activate either Echo or Reverb, click once in the appropriate section. Once
you have activated something, you can turn it off by clicking it again.

* These options are fairly self-explanatory. Type numbers into the text boxes,
listen to their effects with the play button, and click Apply when you're finished.

Other Effects

» Play around with other choices from the Effects menu yourself. Just select part of
a sound in the editing window and choose any of the effects.

5 SoundWorks

telnet

telnet allows you to “teleport” around the globe, moving from one computer to
another. There are computers that specialize in certain games, computers that contain
discussion groups on specific topics, whatever. Now here comes the best part—many
of them are completely FREE! (Oh boy!) Below, there is a short list of some of the
places that will allow you onto their system. One of the most interesting (and largest!)
ones is the Cleveland Freenet, which is also very easy to use—a good candidate for
your first telnet attempt. To get to any of these machines, type:

telnet <address>

When you find the name of a new site to telnet to, you should also be given
instructions on how to log in. (Such as what to type in at the 1ogin: prompt.) This
information varies for each site, so we can give you no general rules.

telnet is also usable within Princeton for logging into other machines you have access
to. Phoenix, for example, is a much larger machine than a NeXT, and often has many
users logged in. To telnet to phoenix type telnet phoenix. No sweat. Login with
your normal userid and password, and you will be using phoenix! It is often nice to keep
a phoenix telnet session going so your friends can find you while you are online. You
can also telnet to another NeXT in the lab if you so desire. For example, typing
telnet toyou would begin a telnet session to the NeXT named toyou.

Some interesting addresses to telnet to:

freenet-in-a.cwru.edu Cleveland Freenet; instructions online
quartz.rutgers.edu login as ‘bbs’

testsun3.nersc.gov login as ‘bbs’; relatively new.

forest .unomaha.edu 2001 note space between edu and 2001; login as ‘bbs’
quiche.cs.mcgill.ca search the archives! log in as ‘archie’
mud.iastate.edu 1991 a good game in lowa; log in with a fictional name

Of all these, Cleveland Freenet is probably a good first try. It is huge, has some fairly
interesting stuff (including USA Today summaries every morning at 8am), and is easy to
use. Plus, if you register with them, they will give you an e-mail address in Cleveland.
Whatever makes you happy.

Archie

There is one other site worthy of special mention. At quiche.cs.mcgill.ca you
can search for specific files and find out what ftp sites they reside on. (See the
ftp CheatSheet for an explanation of the ftp command) This is extraordinarily
useful since it takes the place of manually searching 600 locations! Once you are
telnetted to the site (remember to log in as ‘archie’), you can use prog

<string> to perform a search. Typing prog hat, for example, would give you a
list of all files with names containing “hat.” The information archie produces includes
the size of the file, its full name, and the site at which it is located. You can then ftp
to that site and transfer the file(s) you want.

When you are finished searching, type quit to leave archie. If a search is going
crazy and you want it to stop, you can press ctrl-c. Just hold down the control key
while pressing the “c” key. Good luck!

telnet

Terminal
/NextApps/Terminal

The Terminal window is where you type UNIX commands. It is your window into the
guts of the system.

Opening a Terminal Window

* To open a Terminal window, use the File Viewer to find the application Terminal in
/NextApps. You may want to drag it over to the Application Dock on the right-hand
side of the screen, where you keep all your frequently-used applications.

* Double-click the Terminal icon. After a few seconds a window pops up with the
message TERM = (vt100).

) ~ pinicsh (typ3) soxea |
TERM = (vt18@)

The computer is asking you what kind of keyboard you're using. Hit <Return> to
accept the default v£100. From now on, the computer will think you are sitting in
front of an old terminal called... the "vt100."

* A prompt such as
toyou$%

should appear, with the name of your NeXT machine in place of toyou. That's
your cue — you're talking with the computer!
Don'’t be afraid of making mistakes... the worst that can happen is this:

toyou% help
help: Command not found.

(I typed help at the prompt, and the NeXT told me it didn’t know what | was talking
about.) Go to it!

1 Terminal

TopDraw

/LocalApps/TopDraw.app

TopDraw is an extremely powerful drawing program that is rather simple to use. This
CheatSheet will be short since there is a fairly good tutorial/demonstration of this
application in /lLocalDemos. It takes quite a while to load, but it does a pretty good job
of introducing the basic concepts of TopDraw. One note: make sure that you do not
click the “Auto” button at the beginning of the demo. Page through the demo
manually—otherwise the video will run faster than the audio, and the speech will be
clipped off as it tries to keep up with what is happening on screen. Your alternative to
the demo is to just plunge right in. This is probably the easiest way to learn TopDraw.
Once you see a few basic concepts in action, you can begin designing your own
drawings, so go for it. If you get stuck you can always go back and watch the demo.

Basics

Note: To get a drawing space after starting TopDraw, choose New Document from
the Window menu and click the OK button in the window that appears.

TopDraw is an object-based drawing application, which means that it deals with
objects like circles, squares and lines rather than individual dots on the screen. To
make these objects, there are many different “tools” you can use. There are tools to
draw lines, squares, ovals, text, etc. To select a tool, click it in the Pen window.
Most tools are used by dragging in the drawing area. The best way to leam is to
try—give it a whirl. To manipulate what color (shade of grey) the objects are drawn
and filled with, use the Ink window. The Ink and Pen windows (which appear when
you start TopDraw) look like this:

Text Pointer
Line Square
Arc Circle
Freehand Spline
Cut Add goint
to spline...
If checked,
keeps tool
between uses Shows
line width
for drawn
objects.

1 TopDraw

The four squares near the top of the Ink window are the colors representing their
respective elements. In the above picture, Objects are filled with “None”
(transparent) and stroked (outlined) with black. Text is filled with black and stroked
with black. Below this area of the window there are five squares of different colors.
These are color wells, and are like tubes of paint. To change the color for the Object
Filling, for example, you would drag from the color well to the square above Fill in the
Object section, thereby dropping the paint into the appropriate well. Patterns
(located at the bottom of the Ink window) are handled in the same way.

A fundamental concept in drawing programs such as TopDraw is the selection of
objects. Selecting an object makes it the object that you are currently dealing with.
Therefore, if you change color in the ink window, all selected objects will be affected,
or if you choose Copy from the Edit menu, all selected objects will be put onto the
Pasteboard. A selected object will have eight little boxes around it to show that it is
selected. Try clicking a few objects; drag them around; change their stroke or fill.
To select multiple objects, either drag a box around them using the pointer tool or
shift-click each of them individually.

Beyond these conceptual generalities, it is nearly impossible to give a good overview
of how to use TopDraw. A demonstration is far more effective at teaching how to
actually make your own drawings. Better yet is for you to brave the unknown and try
itout. You can’t hurt it and it can’t hurt you. The only warning | will give you is to
save often since we have found TopDraw to be slightly more crash-prone than most
other applications.

To aid you in your endeavors, there is a help facility within the program—the entire
set of TopDraw documentation is accessible by choosing the Help... menu item.

Using TopDraw With Other Applications

TopDraw is good at drawing. (Surprise.) We used it extensively for this lab
manual—the above Ink and Pen window diagrams, for example, were retouched and
edited in TopDraw, then Copied and Pasted into WriteNow. We found TopDraw to
be the easiest and most powerful “temporary space” for our diagrams. We could
capture an image using Grab or some other application, Paste it into TopDraw, add
text to it, edit it, then Paste it into the final WriteNow document. Remember:
Copyé&Paste! Copy&Paste! Just remember that an object must be selected in order
to be put onto the Pasteboard using Copy.

TopDraw 2

troff

(pronounced Tee-roff, as in Tee-shirt)

Introduction

troff is a text formatting program that allows you to write good-looking papers
using only standard UNIX tools. If you have previously written papers using a
computer, you will probably find t rof £ veryunlike what you are used to. Instead of
showing you what the paper will look like when it is printed, trof f looks like a
confusing tangle of text. Yet when you print it out, it somehow looks good.
Welcome to the text formatter.

Look at the sample troff document at the end of this CheatSheet. There are many
(apparently) non-sensical lines beginning with periods. These are troff
commands, telling trof £ what to do with the text. That is basically all there is to
producing a trof f document. Simply look up the command you want to use, find
out how it works, then place it before the text you want it to act upon. Easy.

To print out the results, type:
cat <filename> | egn | troff -ms -t | lpr -t -P<name of printer>

The formatted document should soon appear.

The commands (at least a few useful ones)

troff commands can be rather strange. A few rules should help to clarify things:
* All commands begin with a period (.)
* All commands go at the beginning of a line.

» Continuous blocks of text are put together and formatted unless a command
tells troff to do it differently. See the sample troff file and its
corresponding output for an illustration.

Titles and Section headings

.TL Title follows
AU Author section follows
.l left/center/right/ Three part heading follows
.ce [n] center the next [n] lines
Paragraphs
.PP Normal indented paragraph
.LP Left-aligned (block) paragraph
.Sp blank line
Emphasis
.R [text] Print [text] in Roman font (normal)
. [text] Print [text] in Italic font
.B [text] Print [text] in Bold font
UL [word] underline word

troff

Equations

.EQ Begin writing an equation

.EN Stop writing an equation

The following operators will affect the next item or group of items enclosed in {}:
sqrt next item is placed under a square root sign

over places the left section over the right item

sup, sub superscripts or subscripts next item, respectively

+-*/ addition, subtraction, multiplication and division signs

(appear as shown)

Note: most of this command list was taken from the book:

Preparing Documents with UNIX
Constance C. Brown, Jack L. Falk & Richard D Sperline

Prentice-Hall, Englewood Cliffs, NJ 07632

©1986
Itis located in the Engineering library, and provides an excellent reference for doing
much more with troff.

troff

Sample troff document

.8p
.Sp
.tl /cslll/troff sample/l/

.8p
.TL

Sample Troff Document--Printed output
.LP

.ce 1l

.I by

.AU
Sebastian DeBroglie

.Sp
.Sp

.PP

Notice how this line

is all broken

up in the troff file (the one with all the troff
commands in it), yet

when printed, everything comes out

together.

After skipping a line in the
troff file, the text is printed flush
with the left margin.

This is the same as using .LP
before the start of a paragraph...
But now we will put .PP before the
next paragraph...

. PP

And last but not least, an

.UL underlined

word!!!!! (Plus the first line is
indented, since we put the .PP
before the beginning

of the paragraph....)

.Sp
.Sp

.ce 4

centered stuff!
+SD

.UL underlined
.B Bold!!

.EQ

1 * {{sgrt {3x sup 2 + 4y +3}} over {sqgrt {19x sup 2 + 13y +6}}} - 1395

.EN

troff

cslll troff sample 1

Sample Troff Document--Printed output

by

Sebastian DeBroglie

Notice how this line is all broken up in the troff file (the one with all the troff commands
in it), yet when printed, everything comes out together.

After skipping a line in the troff file, the text is printed flush with the left margin.

This is the same as using .LP before the start of a paragraph... But now we will put .PP before
the next paragraph...

put the .PP before the beginning of the paragraph....)

centered stuff!

underlined
Bold!!

(Y3274 4y+3

1395
V19x2+13y+6

UNIX

Every computer you use has an Operating System which completes the tasks you send
it with menu selections, mouse clicks, and typed commands. The operating system of
the NeXT computer is, as you might have guessed, UNIX.

Up until now, you may have only used menus, windows, and buttons in your interaction
with UNIX. This Graphical User Interface (GUI) is one of NeXT's strengths. But a far
more common interface that you will find available on every UNIX system is the
Command Line Interface (CLI). In this situation you exchange information with the
computer solely through text input and output — you type commands and the computer
prints responses.

Why would you want to work with just text when you have fantastic menu-driven
programs at hand? That’s for you to find out in this course. Suffice it to say that many
people enjoy the power and flexibility of UNIX's Command Line Interface, and prefer to
use it over menus, windows, and mice wherever possible.

Hopetfully the following information will get be enough to get you started. Don't worry
about learning every single thing... just absorb as much as you can and use this
CheatSheet for reference as you work with UNIX in the labs.

Where to get help

Manual Pages

These handy guys may well be one of your most useful assets for finding UNIX
information quickly. In a Terminal window, simply type:

man <command>
This will bring up help on the command you type in place of <command>.
If you want help on a particular subject, use the following:

man -k <subject>

This will bring up a list of commands relevant to <subject> You can then use the
normal man command above to get more information on any of those listed.

CIT documentation

The packet from CIT entitled, “Introduction to Phoenix” has many nitty-gritty
details that all of us often forget. It's a good thing to bring to lab for reference.

Anyway, we all know how much fun these things are to read when you get bored.

You can pick these up in the CIT InfoCenter, at 87 Prospect Street.

UNIX

Concepts

UNIX

Userids and Addresses

Every UNIX user has a unique userid (“user I.D.”). From the computer’s point of
view, your userid is your only real name. People who want to contact you from
outside Princeton must type <your userids>@phoenix.Princeton.edu in
order to reach you. This whole “phrase” is your own unique Internet address.

Passwords

Nothing but common sense here. Everyone has their own password, and no one
should know yours. When you choose a password, don’t use a real word. If you
do, there’s a chance that someone will discover it, because with a little UNIX
knowledge, it's not too hard to write a program that will discover every password
that can be found in a dictionary.

Why does it matter if someone guesses your password? Unfortunately, there are
scum who would love to enter your account, using your password, and break into
other computers. You would be blamed.

If you want to change your password right now, ask your TA for help changing it
with the Preferences application.

Files

Files are “collections of related data records” (Webster's) They are more of an
intuitive concept than anything else. A word-processing document, for example,
is a file.

Directories

UNIX allows you to organize your files into directories. A directory is like a folder,
which (usually) contains related files. You can have directories within directories,
forming an entire “tree” of directories. (If you were to draw out the directory
structure on paper it would resemble a genealogical tree.)

Along with every other UNIX user, you have a home directory. This is where
you keep all your own files (and directories) It's also the place you find yourself
when you log in. The computer’s shorthand for “your home directory” is “~”, and
its shorthand for someone else’s home directory is ~<userid> . For example,
you would refer to omkensey’s home directory as ~omkensey.

Paths

Whenever you want to run an executable file, you usually need to tell the
computer exactly where the file is. For example, throughout this course you will
use the handin program to submit your work electronically. Since handin isin
the ~cs111/bin directory, to run it you would type

~cslll/bin/handin.
Luckily, there’s another way. If you type a command which isn't in the current

2

directory, the computer will search through a list of other directories that contain
commonly-used commands. This list is called your path. If ~cs111/bin is in your
path, you could merely type

handin

to run the program. To see your list of paths, type echo $path.

For more information on files and directories, see “Welcome to NeXT.”

Disk Quotas

Your disk quotais the maximum amount of information you are allowed to store
in your home directory. To get information about how much storage you have
used, and how much space you have left before you hit your disk quota, type
quota -v.

If you use the quota -v command, you will see a number labelled “limit.” This
is the absolute, unyielding maximum amount of information you can store. If you
approach this limit, the computer will let you know, and will ask you to remove
some files.

Commands

This section will give an overview of some of the more useful UNIX commands. It is by
no means comprehensive, but it should give you what you need to know for basic
survival. To use these commands, type them while in a Terminal window (see the
Terminal CheatSheet).

Necessary commands

* Type 1s to get a listing of what is in your current directory. You should know
that UNIX hides files beginning with dots (like .login) — this is just a convenient
way to hide files you know are there and don’t want to see each time you type
1s. If you dowant to see the hidden files, type 1s -a.

While 1s gives you just the listing, 1s -s will tell you the size of each file:

prompt> ls -s

total 1001
4 hummingbird.wn 1 now.wn 1 swan2.wn
411 hurrah.snd 2 swanl.wn 584 were_free.snd
prompt>

The file sizes next to each file are given in kilobytes(KB) — roughly a thousand
characters. A single-spaced page in WriteNow, like hummingbird.wn above,
weighs in at about 4 kilobytes.

One important point: if 1s -s comes across a directory, it will not tell you the
size of everything inside it. It will give you something like 1 KB — that’s how
much space the directory needs to keep an index of everything that's inside.

Finally, to see which elements of a listing are directories and which are

3 UNIX

executable programs, type 1s -F . Directories are followed by a slash (“/"),
and executable files are followed by an asterisk (“*”). In the following example,
TA is a directory, mumble is a normal file, and hello is an executable file.

TA/ mumble hello*

* cd is used for changing directories. To move into a directory, just type
cd <directory name>. Typing cd .. will take you up to the directory
which contains the current one. If you get lost, cd by itself will take you back to
your home directory.

REMEMBER THIS: use ~ as an abbreviation for your home directory. Typing
cd ~/songs

will send you to the subdirectory songs in your home directory. You can also
get to someone else’s home directory by lyping cd ~<userids, where
<userid> is the userid of the person you are looking for.

* cat spits out the contents of a file or files. Type cat <filename(s)>and
watch the file(s) scroll up the screen, one after the other. (This is where the
command got its name... from concatenating files and sending them to the
screen or another file.)

* more lets you view a file one screenful at a time. Type more
<filename (s) > to view the contents of the files listed in <filename(s)>, in
small chunks. Pressing the spacebar will take you to the next page.

* rm will erase any files you tell it to. Type rm <filename (s)>. Be careful with
this command! If you do erase something by accident, all is not lost. Send mail
with a request to restore your file to info@phoenix.

* cp copies a file to a new name or place. The format is
cp <original file> <new file>.

Typing cp ~/wolves ~/lower will make a copy of the file wolves in your
home directory and will name the copy lower.

* UNIX has a fast way to send a file to the printer: 1pr. If you just type
lpr <filename>
your file should go to the nearest printer (the “local” printer).
If that doesn’t work, or if you want to send your file to a specific printer, use
lpr -P<name of printer> <filename>.

for example, 1pr -Pnext_cs_001_toimpossible laughing would send
the file laughing to the printer to the left of the NeXT machine “toimpossible.”
See the Printing CheatSheet for more on printer names.

* To print a file with half the paper Ipr uses, use the enscript command. The
format is the same as that of 1pr, except after enscript type -2rG (2
columns, rotated 90 degrees, in Gaudy, fancy, format). For example,

enscript -2rG -Ptoimpossible laughing

UNIX 4

Not-Absolutely-Necessary-But-Still-Very-Interesting Commands

* finger will tell you information about a user. Give it a try by typing finger
<name>. If you know a person’s userid, then finger -m <userid> is many
times faster since the -m tells finger just to search through a list of userid’s.

* Typing who will tell you who is currently logged onto the system and where they
are logged in from.

* w is like who, but the last column of its output tells you what each person is
doing. Try it—it's legal to be a voyeur on the network!

Advanced Commands

* grep is not a command,; it's a way of life. In its most simple usage, grep finds a
search-string in a text file. Type grep ’foo’ <filenames> to find the string
“foo” in the file(s) <filenames>. grep will output every line containing “foo” to
the screen.

To find “flowers” in the files guatemala and amanita, type
grep ’‘flowers’ guatemala amanita

* wc counts words, lines, and characters in a file. Type wc <filenames>, and
wc Will give you something like this:

toyou% wc foo bar
904 7950 51288 foo
165 1348 8432 bar
1069 9298 59720 total
toyou%

The first column is the number of lines, the second is the number of words, and
the third, the number of characters.

* compress shrinks a file’s size down to, on average, about a half of its previous
size. There are many reasons for compressing files. One is simply to save disk
space, which is expensive and sometimes scarce. The other is to make a file
smaller so it can be transmitted faster over the network. Compressed files all
have a .z on the end. To compress a file, type compress <filename>.

* uncompress uncompresses a compressed file. Any file which ends in .z is
compressed. Type uncompress <filename.Z> .

For those who want to become UNIX wizards

Pipes

Here lies the beauty and power of UNIX. With a pipe (|), you can send the
output of one command into the input of another. For example, if you come
across a directory containing a huge number of files, you might type

ls | more

5 UNIX

UNIX

This will send the output of the 1s command into more, which lets you view it
one screenful at a time.

If you think of each UNIX command as a flow of data, pipes are the means of
controlling that flow. Normally, the effect of a command flows right out onto the
screen, the simplest case of data flow. By using a pipe, you can make that flow
of data go someplace else...to another UNIX command, for example. This is the
area in which grep truly shines. Let’s look at another example:

The w command lets us see what each person on the system is doing at the
moment. Unfortunately, if you are on a large UNIX system such as phoenix,
there are bound to be many, many users. It becomes tedious to look through all
of the people to find your friends each time you check up on them. grep, as we
know, will find any lines containing a certain string. So we want to take the flow
of data from w and “pipe” it into grep, like this:

w | grep <name of friend>

This series of commands will execute w, but instead of printing its output on the
screen, gives it to grep. grep in turn looks for your friend’s name and since
there is no pipe after grep, the flow goes onto the screen, printing out every line
with your friend’s name in it. Voila!

Output redirection

* This isn’t too hard. If you follow a command with a greater-than sign (>) and a
filename, the output of the command is saved into that file. For example,

ls > listing

saves the output of the 1s command into a file called listing.

Filename expansion

* This isn’t too hard, either. Say you want to count the words of every file in your
current directory. Luckily, you have a special symbol which makes it easy. The
* symbol “expands” to a mean any combination of characters of any length. So
typing

wc ¥
would count the words in all the files of the current directory. It works!
* Here’s another example: typing
grep 'buck’ a*

will search for the string “buck” in all the files that begin with “a.”

Aliasing

* UNIX allows you to build “aliases” for those long commands which you find
yourself typing over and over again. For example:

alias fb “who | grep foobar”

will check to see if foobar is on the system whenever you type fb.

6

* You can pass arguments to the alias with the sequence \!* . If you type
alias hello “who | grep ‘\!*’”

the alias will substitute, in place of \I*, anything you type after the hello
command. So if you type

hello eedecker

the computer will actually receive the command “who | grep ‘eedecker”. (This
command finds out who is on the system, and only prints out eedecker, if she
is on.)

* That's alll To make an alias permanent, type the alias command (as above) at
the end of a file called .cshre in your home directory. The .cshrc file is run
every time you log in.

Regular Expressions

Say you want to search a text file for every line which begins with ‘a’. You can't just
use grep to search for ‘a’— you'll get hundreds of lines! Fortunately, grep accepts
certain special characters — like one that represents the beginning of a line — in its
search-strings. Expressions which use these special characters are called regular
expressions, and they pop up often in UNIX.

Here is a tiny, incomplete list of regular expression characters and what they do.
Include any of these in search strings just as you would include a normal character.

. at the beginning stands for the beginning of a line. To find all lines
in the file foo that begin with the letter “a”, you might type grep
txart foo.

$ at the end stands for the end of a line (it “anchors” the expression

to the end), and it’s used just like A, Type grep ‘a$’ foo to find
every line in foo which ends in “a”.

stands for any single character, so 'r.m’ could mean 'ram’ or ‘rem’.

. will match anything. So m.*e fill find anything which starts in m and
ends in e.

For a more complete list, look for regular expressions in the man page for ed.

UNIX Cultural note: In the old days, UNIX users had to use ed as a text editor (you
have Edit or vi). ed is only cute until you try it. In ed, you can’t look at your
document while you edit it. Instead, you type commands to edit your file, and use
your imagination to see how it looks as you make changes.

Anyway, one of ed’s commands searches for text, and it accepts regular
expressions. The command is g/<regular expression>/p, and it does the same thing
as grep. Actually — and this is where the culture shows itself— “grep” can be found
in the abbreviation for ed’s search command: “g/re/p”.

Another related note... some UNIX wizards know ed so well that they use it by
choice. To them, arrow keys and pointing devices are cumbersome and annoying.

" 4 UNIX

Useful Stuff

This is probably the most random CheatSheet in the Universe...It is a hoge—podge
assortment of general wisdom we thought you might appreciate having.

CIT

It's worth a call to 8-6028 for help if you are really stuck. The people that answer the
phones just sit around bored if you don’t give them a call. Be friendly.

TAs

Love 'em, hate 'em, use ‘’em. They probably know what's going on, and even if they
don’t, they can probably make up something good. Also don’t forget the Professor’s
office hours for those fundamental problems. (“What's a computer?”) Remember
the TAs will be there for the lab periods, so don’t hesitate to ask them for help!

Your Neighbor

“Love thy neighbor as thyself” Or perhaps moreso when they save your project
masterpiece by telling you not to empty your recycler. Seriously, the other people in
this class probably don’t know any more than you, but they may know different
information. Give them a try. (Ask them, but whatever you do, don't let them do
anything for you!). Likewise, when someone asks you what a keyboard is, don’t
poke them in the eyes for being stupid. Someday you may forget.

The goals of the course

One of our main goals here is to rid you of computer fear and make you a competent
computer user. We realize that not all of you will become Computer Science majors,
but we do not want to lie to you about anything in the field. Unfortunately, in many
cases reality is often less pleasant to swallow than a well told lie. As long as you
come away with more than you came in with, you are probably doing all right. In the
same vein, however, don't slough offl A good showing of effort on a difficult concept,
or extra submitted material (especially of high quality!) certainly reflects well on you.

1 Useful Stuff

WriteNow
I/NextApps/WriteNow.app

WriteNow is the standard word processing program for the NeXT computer. It allows
you to format text, place graphics, and print out your final product. Fortunately it is quite

easy to use, and is very similar to Macintosh™ word processors. To get a feel for its
power, just look at this lab manual—most of it was done in WriteNow.

Getting Started

When you start WriteNow, an empty document window will appear toward the
right-hand side of the screen. You can begin typing here. If you had double-clicked
a WriteNow document (a file ending in “.wn”) then that document would have
appeared instead of a blank one. You are now ready to learn the details of

producing a document.

The Ruler

One of the first things you will probably want to do is find the ruler. This controls
things like spacing, margins, and centering. To make it appear, choose Show Ruler
from the Format menu. The ruler should appear at the top of your document.

Line Spacing Options

Text Alignment Controls Tab Wells

Right

Indentation Left Left Tabs Margi

Marker Margin

Text Alignment o —
Each of these will align text as it appears in the respective icon. The one that is
highlighted in the ruler picture, for example, will left justify text. The second one
will fully justify text, the third will center text, and the last will right justify text.
Click the type of alignment you want. To change the alignment of a block of text,
select the block with the mouse, then click the new alignment.

1 WriteNow

Tab Wells
To make a new tab stop, drag a tab marker from one of the tab wells onto the
ruler's tic marks. In the above example, there are left tab stops at 1.5” and 5.5”.
The four different types of tabs are:

ft justified tab stop—lines up the left sides of the text
Example:
Left justified
Text.

enter justified tab stop—centers the text at the tab
Example:
Center justified
Text

: right justified tab stop—lines up the right sides of the text
Example:
Right justified
text

decimal tab—lines up the decimal points in the data at the tab stop
23.42
1213.457
345.4358

Line Spacing Options 3; -
The number between the two arrows (in the whlte area) is the number of vertical
points taken up by each line. A point is a unit of measurement equal to 1/72 of
an inch. On the ruler shown, each line of text is 14 points high, so if we are using
12 point type, there will be 2 points of space between lines. To double space a
document of 12 point text we would set the line spacing to 24—12 points for the
text itself, and 12 points between the lines.

The other section is the Fixed/Flexible option. If Fixed is in black, then the line
spacing number is an absolute. No matter what, it will be that number of points.
Therefore, if you set the line spacing number smaller than the point size of the
type, the text will overlap between lines, like this:

SRy e et S et SRR ey line-
If Flexible is in black (selected), then WriteNow will automatically prevent this sort
of thing from happening. Click either side of the bar to select that part.

Tab, Indentation and Margin markers
Tab markers show where the cursor will jump when the Tab key is pressed.
There are four different types of tab stops, each described in the above section
“Tab Wells.”

Text is typed between the right and left margin markers. To change the margins,
drag the downward-pointing triangles to where you want the new margins.

The indentation marker is where you want the first line of each paragraph to

WriteNow 2

begin. You can move this marker to the right of the left margin marker to create a
standard indent, or to the left to make a “hanging indent” like this:

Ohis is an example of a hanging indent, done at great expense and at the (ast
minute in a really nifty font. Phe first line will be hanging off the end
of the paragraph, while all of the subsequent (ines will be indented
one-half inch.

However, when a new paragraph is begun, the first [ine is once again
hanging out, but all the rest of the lines are indented. JHhis is
particular{y nice for bibliographics and [ists of points, since they can be
so easily delimited. Enjoy!

If you want to change any of these settings for a group of text you have already
typed in, you must select that text before making the change.

Using WriteNow With Other Applications

WriteNow is a good application to use as a base for importing graphics from other
applications. It handles text well, and allows you to create that much of your
document. Then you can use drawing applications, spreadsheets, etc... to add flair
to the paper. On the other hand, you can also use WriteNow’s text capabilities to do
your writing, then import that text into some other application for further
manipulation. Your choice. For projects that are mostly text, many people use
WriteNow as the gathering point for all of the other items rather than as just another
tool.

To Insert Graphics
To insert a graphic into a WriteNow document, use the standard Copy&Paste
routine. Copy the graphic onto the Pasteboard, then move to the WriteNow
document. Position the cursor wherever you want the graphic located and
choose Paste from the Edit menu. The graphic will soon appear. You may treat

the graphic as any other single character; it can be backspaced over, centered,
etc.

For more information

This CheatSheet is by no means comprehensive. For more information, see the
manual in the back of the NeXT cluster titled “Applications.” It is a white softcover
book with the NeXT logo on the cover, located in the manual rack along with all of
the other white manuals with the NeXT logo on the cover. :-) Try the left-hand side.

3 WriteNow

Yap

/NextDeveloper/Demos/Yap
Note: This CheatSheet assumes basic familiarity with PostScript.
See the PostScript CheatSheet for more information.

Yap is a tool for displaying PostScript on the screen, thereby avoiding having to print out
each new creation you make. It's extraordinarily simple to use, so | will keep this short.
In addition, you can watch a brief ShowAndTell script showing Yap in action that we
have created.

The ShowAndTell Script (Demonstration)

And now for the most important thing you will ever be told. Before you start this
demonstration, you MUST put the Yap icon in the second to lowest place in your
dock. This is the slot directly above where the recycler normally is. If you forget to
do this, you are hosed and will probably have to reboot your machine. It stinks, but
that's the way it is. If you want an explanation of why this happens, see the
ShowAndTell section of the Presentation Lab. (ltis in the Above and Beyond
section.) At any rate, you would be wise to save all your work before running this
demonstration. Good luck!

Look for the demo in the es111/Labs/3-Graphics directory. Double-click Yap.st to
begin. (Don’t forget the Yap icon in the dock!) This demo is geared for the Graphics
Lab, but it contains what you need to get started no matter what you are trying to
accomplish.

The 7 Easy Steps To Using Yap
1. Start the application

2. Either:
A. Open a PostScript file (Choose Open... from the Document menu), or
B. Start a new file (Choose New from the Document menu)

3. Type and modify your PostScript code in the text window.

4. Choose Execute from the Document menu.

5. The image should appear in the Yap PostScript Output window.

6. If it looks the way you want it to, you are finished! Otherwise return to step 3.

Using Yap With Other Applications

Yap is different than many other applications in that you cannot directly Copy&Paste
the pictures you make. You must save your PostScript code in a file ending in “.ps”,
then go to a drawing application that can import PostScript. We used TopDraw, so
will explain how to do it from there. Simply open a new document and choose
Import... from the Window menu. Find and double-click your document. A window
will appear; make sure the Copy imported file into TopDraw file and Create new
object for imported image buttons are selected and click the OK button. Your
document will appear as an object, ready for normal Copy&Paste operations.

Yap

Handouts

e

Ritchi

IS

Ada Lovelace, Donald Knuth, Denni

ing,

Alan Tur

Clockwise from upper-left

