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This thesis has six chapters. Chapter 1 motivates the thesis by describing the
characteristics of real-time database systems and the problems of scheduling transac-
tions with deadlines. We also present a short survey of related work and discuss how

this thesis has contributed to the state of the art.

In Chapter 2 we develop a new family of algorithms for scheduling real-time
transactions. Our algorithms have four components: a policy to manage overloads, a
policy for scheduling the CPU, a policy for scheduling access to data, i.e., concurrency

control and a policy for scheduling I/O requests on a disk device.

In Chapter 3, our scheduling algorithms are evaluated via simulation. Our chief
result is that real-time scheduling algorithms can perform significantly better than a con-
ventional non real-time algorithm. In particular, the Least Slack (static evaluation) pol-
icy for scheduling the CPU, combined with the Wait Promote policy for concurrency

control, produces the best overall performance.

In Chapter 4 we develop a new set of algorithms for scheduling disk I/O requests
with deadlines. Our model assumes the existence of a real-time database system which
assigns deadlines to individual read and write requests. We also propose new techniques

for handling requests without deadlines and requests with deadlines simultaneously.



This approach greatly improves the performance of the algorithms and their ability to

minimize missed deadlines.

In Chapter 5 we evaluate the I/O scheduling algorithms using detailed simula-
tion. Our chief result is that real-time disk scheduling algorithms can perform better than
conventional algorithms. In particular, our algorithm FD-SCAN was found to be very

effective across a wide range of experiments.

Finally, in Chapter 6 we summarize our conclusions and discuss how this work
has contributed to the state of the art. Also, we briefly explore some interesting new di-

rections for continuing this research.
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Chapter 1 Real-Time Database Systems

1.1 Thesis Outline

This thesis describes a new group of algorithms for scheduling real-time transac-
tions, or transactions with deadlines. The algorithms are evaluated via a detailed simula-
tion study. Our results show that under a wide range of workloads, the real-time algo-
rithms perform significantly better than a conventional transaction scheduling algorithm.
This thesis also studies the problem of scheduling disk requests with deadlines. Three
new algorithms are proposed and their performance is evaluated via simulation. One
real-time algorithm, FD-SCAN, was found to perform better than all algorithms tested,

both real-time and conventional, under a wide range of experimental conditions.

There are six chapters. Chapter 1 motivates the thesis by describing the charac-
teristics of real-time database systems and the problems of scheduling transactions with
deadlines. We also present a short survey of related work and discuss how this thesis has

contributed to the state of the art.

In Chapter 2 we develop a new family of algorithms for scheduling real-time
transactions. Our algorithms have four components: a policy to manage overloads, a
policy for scheduling the CPU, a policy for scheduling access to data, i.e., concurrency
control and a policy for scheduling I/O requests on a disk device. In this part of the the-
sis, a disk device is modeled using a constant access time. Chapter 4 develops a more
detailed model for investigating the I/O scheduling problem and uses a non-linear func-

tion to model access time.

In Chapter 3, our scheduling algorithms are evaluated via detailed simulation.
Our chief result is that real-time scheduling algorithms can perform significantly better

than a conventional non real-time algorithm. In particular, the Least Slack (static evalu-



ation) policy for scheduling the CPU, combined with the Wait Promote policy for

concurrency control, produces the best overall performance.

In Chapter 4 we develop a new set of algorithms for scheduling disk I/O requests
with deadlines. The performance goal is to minimize the number of missed deadlines.
Our model assumes the existence of a real-time database system which assigns dead-
lines to individual read and write requests. We also propose new techniques for handling
asynchronous write requests (i.e., requests without deadlines) and synchronous read re-
quests (i.e., requests with deadlines) simultaneously. This approach greatly improves the

performance of the algorithms and their ability to minimize missed deadlines.

In Chapter 5 we evaluate the I/O scheduling algorithms using detailed simula-
tion. Our chief result is that real-time disk scheduling algorithms can perform better than
conventional algorithms. In particular, our algorithm FD-SCAN was found to be very

effective across a wide range of experiments.

Finally, in Chapter 6 we summarize our conclusions and discuss how this work
has contributed to the state of the art. Also, we briefly explore some interesting new di-

rections for continuing this research.

This thesis is a combination of original work and ideas proposed by others. We
believe that our proposal to study algorithms to schedule transactions with deadlines is
original. We made this proposal at a workshop in 1987 [AGM1]. The overload manage-
ment policies discussed in Chapter 2, Not Tardy and Feasible Deadlines, implement
ideas that are common to hard real-time systems, i.e., discard tasks that have missed or
will miss their deadlines. The application of these ideas to transaction processing is
original. The three policies that we use to assign priority and schedule the CPU have

been studied extensively by real-time researchers [LL, JLT]. The use and evaluation of



these policies in a transaction processing environment is original. Concerning the
concurrency control algorithms, the use of two-phase locking is well-known. [EGLT]
and the Wait policy is the conventional way to handle conflicts in a non real-time data-
base system. The concept of priority inheritance that appears in our Wait Promote and
Conditional Restart policies first appeared in [SRL1]. The High Priority policy is origi-
nal as is the conditional decision clause of the Conditional Restart policy. The applica-
tion and evaluation of all these policies in a real-time transaction model is original. The
three conventional algorithms for scheduling disk 1/O in Chapter 4 are well known [PS].
Their evaluation in a real-time environment is original. The D-SCAN and FD-SCAN al-

gorithms are original.

1.2 Introduction

Transactions in a database system can have real-time constraints. Consider for
example program trading, or the use of computer programs to initiate trades in a finan-
cial market with little or no human intervention [Vo]. A financial market (e.g., a stock
market) is a complex process whose state is partially captured by variables such as cur-
rent stock prices, changes in stock prices, volume of trading, trends, and composite in-
dexes. These variables and others can be stored and organized in a database to model a

financial market.

One type of process in this system is a sensor/input process which monitors the
state of the physical system (i.e. the stock market) and updates the database with new
information. If the database is to contain an accurate representation of the current mar-

ket then this monitoring process must meet certain real-time constraints.

A second type of process is an analysis/output process. In general terms this

process reads and analyzes database information in order to respond to a user query or



to initiate a trade in the stock market. An example of this is a query to discover the
current bid and ask prices of a particular stock. This query may have a real-time re-
sponse requirement of say 2 seconds. Another example is a program that searches the
database for arbitrage opportunities. Arbitrage trading involves finding discrepancies in
prices for objects, often on different markets. For example, an ounce of silver might sell
for $10 in London and fetch $10.50 in Chicago. Price discrepancies are normally very
short-lived and to exploit them one must trade large volumes on a moments notice. Thus
the detection and exploitation of these arbitrage opportunities is certainly a real-time

task.

Another kind of real-time database system involves threat analysis. For example,
a system may consist of a radar to track objects and a computer to perform some image
processing and control. A radar signature is collected and compared against a database
of signatures of known objects. The data collection and signature look up must be done

in real-time.

A real-time database system (RTDBS) has many similarities with conventional
database management systems and with so called real-time systems. However, a
RTDBS lies at the interface and is not quite the same as either type of conventional sys-
tem. Like a database system, a RTDBS must process transactions and guarantee that the
database consistency is not violated. Conventional database systems do not emphasize
the notion of time constraints or deadlines for transactions. The performance goal of a
system is usually expressed in terms of desired average response times rather than con-
straints for individual transactions. Thus, when the system makes scheduling decisions
(e.g., which transaction gets a lock, which transaction is aborted), individual real-time

constraints are ignored.



Conventional real-time systems account for individual transaction constraints but
ignore data consistency problems. Real-time systems typically deal with simple transac-
tions (called processes) that have simple and predictable data (or resource) require-
ments. For a RTDBS we assume that transactions make unpredictable data accesses (by
far the more common situation in a database system). This makes the scheduling prob-
lem much harder and leads to another difference between a conventional real-time sys-
tem and a RTDBS. The former usually attempts to ensure that no time constraints are
violated, i.e., constraints are viewed as "hard" [Mok1]. In a RTDBS, on the other hand,
it is difficult to guarantee all time constraints, so we strive to minimize the ones that are

violated.

In the previous paragraphs we have "defined” what we mean by a RTDBS (our
definition will be made more precise in Chapter 2). However, note that other definitions
and assumptions are possible. For instance, one could decide to have hard time con-
straints and instead minimize the number of data consistency violations. However, we
believe that the type of RTDBS that we have sketched better matches the needs of appli-
cations like the ones mentioned earlier. For instance, in the financial market example, it
is probably best to miss a few good trading opportunities rather than permanently com-
promise the correctness of the database, or restrict the types of transactions that can be

rn.

We should at this point make two comments about RTDBS applications. It may
be argued that real-time applications do not access databases because they are "too
slow." This is a version of the "chicken and the egg" problem. Current database systems
have few real-time facilities, and hence cannot provide the service needed for real-time

applications. The way to break the cycle is by studying a RTDBS, designing the proper



facilities, and evaluating the performance (e.g., what is the price to be paid for

serializability?).

It is also important to note that with good real-time facilities, even applications
one does not typically consider "real-time" may benefit. For example, consider a bank-
ing transaction processing system. In addition to meeting average response time require-
ments, it may be advantageous to tell the system the urgency of each transaction so it
can be processed with the corresponding priority. As a matter of fact, a "real” banking
system may already have some of these facilities, but not provided in a coherent fashion

by the database management system.

The design and evaluation of a RTDBS presents many new and challenging
problems: What is the best data model? How can we model transaction time constraints?
What mechanisms are needed for describing and evaluating triggers (a trigger is an
event or a condition in the database that causes some action to occur)? How are transac-
tions scheduled? How do the real-time constraints affect concurrency control? Should

transaction time constraints be considered when scheduling 1/0 requests?

In this thesis we focus on the last three questions. In particular, if several trans-
actions are ready to execute at a given time, which one runs first? If a transaction re-
quests a lock held by another transaction, do we abort the holder if the requester has
greater urgency? If transactions can provide an estimate of their running time, can we
use it to tell which transaction is closest to missing a deadline and hence should be given
higher priority? If we do use runtime estimates, what happens if they are incorrect? How
are the various strategies affected by the load, the number of database conflicts, and the
tightness of the deadlines? Finally, there is the problem of scheduling the disk head it-

self. Traditional algorithms perform seek optimization to meet non real-time perform-



ance goals. Will these same algorithms perform well under real-time metrics? What
kinds of algorithms can be developed using deadline information? How well do they
perform? Should read requests be handled differently from write requests? How should
the requests be sequenced so that time constraints are met and the disk resource is used

efficiently?

1.3 Related Work

In recent years, a number of papers have been published on issues in real-time
database systems. [AGM1, AGM2, AGM3, AGM4, Day, HSRT1, HSRT2, HSTR,
CJL1, HCL1, HCL2, HS, LL, LS, SLJ, SRL2, SZ, JCL]. The subjects that are ad-
dressed in these papers include the identification and description of time-constrained da-
tabase systems and real-time transactions [AGM1, Day, HSRT, SZ, LL, SRL2], real-
time transaction scheduling [AGM2, AGM3 AGM4, HSTR, SRL2], concurrency con-
trol and conflict resolution [AGM3, AGM4, HCL1, HCL2, HSRT1, HSRT2, HSTR,
LS, SLJ, SRL2], buffer management [CJL1, HS, JCL] and I/O scheduling [AGM3,
AGM4, CJL1]. A number of papers on related issues have also appeared. These include
work on a protocol for timed atomic commitment [DLW], fast recovery protocols for
real-time databases [IYL, LYI, SLJ] and a model for adding time to synchronous proc-
ess communications [LD]. The feasibility of the relational languages for real-time proc-

ess control is examined in [Stok].

Much of the research in the area of scheduling real-time transactions was pur-
sued independently and concurrently. We published our first concept papers in 1987
[AGM1] and 1988 [AGM2] and followed with papers presenting algorithms and per-
formance analysis in 1988 [AGM3], 1989 [AGM4] and 1990 [AGMS5]. Both Sha et al.

and Stankovic et al. published their first papers in the same years (and even the same



proceedings !) [SRL2] [SZ]. Stankovic et al. published their first performance results in
1989 [HSTR] and followed with papers in 1990 [HSRT1] and 1991 [HSRT2]. while
the group from the University of Wisconsin published their performance results in 1990

[HCL1, HCL2].

The work on transaction scheduling and concurrency control found in [SRL2,
HCL1, HCL2, HSTR, HSRT1, HSRT2, LS] is most similar to our own work. How-
ever, there are some important differences in the transaction models that are employed
and the way that concurrency control is achieved. Our model, like those found in
[HCL1, HCL2, HSTR, HSRTI, LS], assumes that transactions arrive sporadically
with unpredictable arrival times and resource requirements. Furthermore, the data re-
quirements of each transaction are unknown although a worst case execution time may
be available to the scheduler. Our algorithms use a form of two-phase locking to enforce

serializability. Other researchers have examined optimistic concurrency control methods

[HCL1, HCL2, LS, HSRT2].

Sha et al. present algorithms for scheduling a fixed set of periodic transactions
with hard deadlines [SRL2]. Their model assumes that transaction priorities and re-
source requirements are known a priori. The rate-monotonic algorithm is used for deter-
mining transaction priority and scheduling the CPU. A priority ceiling protocol based on
locking is used for concurrency control. The priority ceiling algorithm appears to have
promise for the hard real-time environment since it prevents deadlock formation and
strictly bounds transaction blocking times. The price, however, is a priori knowledge of

transaction priorities and resource requirements.

The use of optimistic concurrency control techniques is explored in [HCLI,

HCL2]. Their simulation studies show that in a system where late transactions are dis-



carded, optimistic concurrency control can perform better than locking. The High Prior-
ity real-time concurrency control algorithm [AGM3] was used as the locking algorithm.

This thesis shows that there are better locking -based protocols than High Priority.

A mixed concurrency control algorithm that combines locking and optimistic
techniques is presented in [LS]. Priority-based locking is used to guide the serialization
order during execution. A final validation is performed at the transaction commit point.

No performance evaluation was presented.

The model and algorithms developed in [HSTR] are the only ones that are di-
rectly comparable to those developed in this thesis. Both models assume that transac-
tions arrive sporadically and have unpredictable resource requirements. The scheduler is
aware of a worst case execution time for each transaction but it does not know what its
data requirements are. Also, both sets of algorithms use two-phase locking to enforce
serializability. Their transaction model uses a value function in addition to a deadline to
capture transaction time constraints. A transactions criticality is derived from the value
function, i.e., the highest value. They study three priority functions for CPU scheduling:
earliest deadline first, most critical first and a function that combines criticalness and
deadlines. Five methods for conflict resolution (concurrency control) are considered.
One protocol makes use of a virtual clock that is assigned to each transaction. This clock
is used to compute a virtual deadline that is used in scheduling decisions. The other four
conflict resolution protocols make decisions based on information about transaction
deadlines, criticalness and estimation of remaining execution time. In Section 3.5 we
will return to this discussion and examine how the results of [HSTR] compare with our

own results.



Chapter 2 Algorithms for Scheduling Real-Time Transactions

2.1 Introduction

This chapter begins by describing our real-time transaction model and stating
our assumptions, Section 2.2. In Sections 2.3 through 2.7 we develop a new family of
algorithms for scheduling real-time transactions. Our scheduling algorithms have four
components: a policy to manage overloads, a policy for assigning priorities to tasks and
scheduling the CPU, a concurrency control mechanism, and a policy for scheduling I/O
requests. In this part of the thesis a very simple model for 1/O is used. Chapter 4 devel-

ops a more detailed model for investigating the I/O scheduling problem.

2.2 Model and Assumptions

The system consists of a single processor, a disk-based database, and a main
memory buffer pool. (The multiple processor case is also of interest, but we have not

addressed it in this thesis.)

The unit of database granularity we consider is a page. Transactions access a se-
quence of pages. If a page is not found in the buffer pool, a disk read is initiated to
transfer the page to the pool. Modified pages are held in the pool until the transaction
completes. At that time, the log is flushed and the transaction commits. Finally, the
modified pages are written back to disk to free space in the buffer pool. (This buffer
management strategy can be characterized as ~ATOMIC, =STEAL and FORCE [HR].)
We assume that the buffer pool is large enough so that a transaction never has to write
modified pages to disk until after commit. Thus, aborting a transaction involves no disk
writes. We assume that the log is kept on a disk (or tape) separate from the database

disks (the most common scenario in practice).
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Each arriving transaction has a release time r, a deadline d, and a runtime esti-
mate E. The release time is the earliest time the transaction can be started and is usually
the arrival time. The deadline is the desired maximum commit time. Estimate E approxi-
mates the duration of the transaction on an unloaded system. It takes into account both
the CPU and disk access time involved. Parameters r, d, and E are known to the system
as soon as the transaction arrives. However, the access pattern of the transaction is not
known in advance. As the transaction executes, it asks to read or write one page at a
time. Our decision to assume knowledge of a runtime estimate but no knowledge of data
requirements is justified because it is easier to estimate the execution time of a transac-
tion than to predict its data access pattern. In any case, E is simply an estimate that

could be wrong or not given at all.

The RTDB system schedules transactions with the objective of minimizing the
number of missed deadlines. If transactions can miss their deadlines, one must address
the question of what happens to transactions that have already missed their deadlines but
have not finished yet. There are at least two alternatives. One is to assume that a transac-
tion that has missed its deadline, i.e., is tardy, is worthless and can be aborted. This may
be reasonable in our arbitrage example. Suppose that a transaction is submitted to buy
and sell silver by 11:00am. If the deadline is missed, it may be best not to perform the
operation at all; after all, the conditions that triggered the decision to go ahead may have

changed. The user who submitted the transaction may wish to reconsider the operation.

A second option is to assume that all transactions must be completed eventually,
regardless of whether they are tardy or not. This may be the correct mode of operation
in, say, a banking system where customers would rather do the transaction late than not

at all. (Of course, the user may on his own decide to abort his transaction, but this is
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another matter.) If tardy transactions must be executed, there is still the question of their
priority. Tardy transactions could receive higher and higher urgency as their tardiness
increases. On the other hand, since they already missed the deadline anyway, they may

simply be postponed to a later, more convenient time (e.g., execute at night).

In this thesis we will study both cases, when tardy transactions must be com-
pleted and when they can be aborted. If they must complete, we will assume that their
priority increases as the tardiness increases (they are not put off). (Incidentally, [AGM1]
discusses a more detailed deadline model where users can specify how the "value" of a

transaction changes over time, both as the deadline approaches and passes.)

We assume that transaction executions must be serializable [EGLT]. For most
applications we believe that it is desirable to maintain database consistency. It is possi-
ble to maintain consistency without serializable schedules but this requires more spe-
cific information about the kinds of transactions being executed [GM]. Since we have
assumed very little knowledge about transactions, serializability is the best way to

achieve consistency.

Finally, we assume that serializability is enforced by using a locking protocol.
Our purpose is not to do a comparative study of concurrency mechanisms. Instead we
have chosen a well-understood and widely-used mechanism and explored the different
ways that transactions can be scheduled using this mechanism. Of course, it is conceiv-
able that some other algorithm, like an optimistic protocol, may be better for a RTDBS,

but this will have to be addressed by further research.

2.3 Algorithms

Our scheduling algorithms have four components: a policy to manage overloads,

a policy for assigning priorities to tasks, a concurrency control mechanism, and a policy

=12 =



for scheduling 1/O requests. In a real-time system, we say that an overload occurs when-
ever transaction timing constraints are violated. (Note that this definition has no relation
to resource utilization metrics. It is possible that a lightly loaded system, measured by
resource utilizations, misses many deadlines and a highly loaded system can miss few.
By real-time standards, it is the lightly utilized system that is overloaded.) The overload
management policy is used to detect when overloads occur and initiate actions to handle
the overload. The priority assignment policy controls how transaction time constraints
are used to assign a priority to a transaction. The concurrency control mechanism can be
thought of as a policy for resolving conflicts between two (or more) transactions that
want to lock the same data object. Some concurrency control mechanisms permit dead-
locks to occur. For these a deadlock detection and resolution mechanism is needed. The
fourth component controls how scheduling of the I/O queue is done, i.e., whether a

transaction’s real-time constraints are used to decide which 1/0 request is serviced next.

Each component may use only some of the available information about a trans-
action. In particular we distinguish between policies which do not make use of E, the
runtime estimate, and those that do. A goal of our research is to understand how the ac-

curacy of the runtime estimate affects the algorithms that use it.

2.4 Managing Overloads

There are a number of ways both to detect and to handle overloads. A detection
method can be observant or predictive. An observant method simply examines all unfin-
ished transactions and determines if any has missed its deadline. A predictive technique
would build a candidate schedule and then determine if a transaction will miss its dead-

line if executed under that schedule.
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Another issue concerns what actions to take when an overload is detected. Possi-
bilities include aborting transactions which are thought to "cause" the overload, and/or
executing alternative transactions. This thesis does not examine the issue of executing

alternative transactions.

Finally, there is the question of how often the overload management module is
invoked. Our solution is to call the overload detector whenever the scheduler is invoked.
The detector runs first and if an overload is detected, the overload management routine
is called. When this finishes, control passes to the scheduler which chooses a new job

for the CPU,

We consider three different policies for managing overloads.

2.4.1 All Eligible

Under this policy no overload detection is performed. This means that no job is

unilaterally aborted and all jobs are eventually executed.

2.4.2 Not Tardy

An overload is detected if an unfinished transaction has missed its deadline.
Transactions which have missed their deadlines are aborted. Jobs which currently are

not tardy remain eligible for service. Note that this detection method is observant.

2.4.3 Feasible Deadlines

An overload is detected if an unfinished transaction has an infeasible deadline. A
transaction T has a infeasible deadline at time tif ¢ + E - P > d where P is the
amount of service time that T has received. In other words, based on the runtime esti-
mate there is not enough time to complete the transaction before its deadline. Jobs with
infeasible deadlines are aborted. Transactions with feasible deadlines remain eligible for

service. Note that this policy is predictive and uses E, the runtime estimate.
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2.5 Assigning Priorities
There are many ways to assign priorities to real-time tasks [LW][JLT]. We have

studied three.

2.5.1 First Come First Serve

This policy assigns the highest priority to the transaction with the earliest release
time. If release times equal arrival times then we have the traditional version of FCFS.
The primary weakness of FCFS is that it does not make use of deadline information.
FCFS will discriminate against a newly arrived task with an urgent deadline in favor of
an older task which may not have such an urgent deadline. This is not desirable for real-

time systems.

2.5.2 Earliest Deadline

The transaction with the earliest deadline has the highest priority. A major weak-
ness of this policy is that it can assign the highest priority to a task that already has
missed or is about to miss its deadline. By assigning a high priority and system re-
sources to a transaction that will miss its deadline anyway, we deny resources to trans-
actions that still have a chance to meet their deadlines and cause them to be late as well.
One way to solve this problem is to use the overload management policy Not Tardy or
Feasible Deadlines to screen out transactions that have missed or are about to miss their

deadlines.

2.5.3 Least Slack

For a transaction T we define a slack time § = d — (¢t + E — P). (Recall that
P is the amount of service time received by T so far.) The slack time is an estimate of
how long we can delay the execution of T and still meet its deadline. If § = ( then

we expect that if T is executed without interruption then it will finish at or before its

-15-



deadline. A negative slack time is an estimate that it is impossible to make the deadline.
A negative slack time results either when a transaction has already missed its deadline

or when we estimate that it cannot meet its deadline.

Note that Least Slack is very different from Earliest Deadline in that the priority
of a task depends on how much service time it has received. The slack of a transaction
which is being executed does not change. (Its service time and the clock time increase
equally.) The slack time of a transaction which is not executing decreases. Hence the

priority of that transaction increases.

A natural question to consider is how often to evaluate a transaction’s slack. We
consider two methods. With the first, static evaluation, the slack of a transaction is
evaluated once when the transaction arrives. This value is the transaction’s priority for
as long as the transaction is in the system. (If a transaction is rolled back and restarted,
the slack must be recalculated. In effect, the transaction is re-entering the system as a
new arrival. The ramifications of this priority adjustment are discussed in Section 2.6.3.)
Under the second method, continuous evaluation, the slack is recalculated whenever we
wish to know the transaction’s priority. This method yields more up-to-date information

but also incurs more overhead.

Our performance studies have shown that sometimes it is better to use static
evaluation and sometimes it is better to use continuous evaluation. (See Section 3.3.1.2.)
The majority of our experimental results use static evaluation. We chose this because
static evaluation performed better than continuous at higher load settings, which is

where we performed many of our experiments.
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2.6 Concurrency Control

If transactions are executed concurrently then we need a mechanism to order the
updates to the database so that the final schedule is serializable. Our mechanisms allow
shared and exclusive locks. Shared locks permit multiple concurrent readers. Before
presenting the algorithms we introduce some terminology and explain the conventions

we use to implement two-phase locking with shared and exclusive locks.

The priority of a data object O is defined to be the maximum priority of all trans-

actions which hold a lock on object O. If O is not locked then its priority is undefined.

Let T be a transaction requesting a shared lock on object O which is already
locked in shared mode by one or more transactions. Transaction T is allowed to join the
read group only if the priority of T is greater than the maximum priority of all transac-
tions, if any, which are waiting to lock O in exclusive mode. In other words, a reader
can join a read group only if it has a higher priority than all waiting writers. Otherwise
the reader must wait. Conflicts arise from incompatible locking modes in the usual way.
That is, an exclusive lock request conflicts with both shared and exclusive lock modes,

and a shared lock request conflicts with an exclusive lock mode.

We are particularly interested in conflicts that can lead to priority inversions. A
priority inversion occurs when a transaction T of high priority requests and blocks on a
lock for object O which has a lesser priority than 7. This means that T has a higher pri-
ority then the transaction(s) which holds the lock on O. Transaction T must wait until
the lock holder(s) releases its lock on O, either voluntarily or involuntarily. Conflicts
which cannot lead to priority inversion, i.e., the priority of the requester is less than the
priority of the object, are handled by having the requester wait. Of course a deadlock

detection method must be employed to detect cycles of waiting transactions.
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We now discuss four techniques to resolve conflicts that may lead to a priority
inversion. In the following discussion let TR be a transaction that is requesting a lock on
a data object O that is already locked by transaction Ty. Furthermore, the lock modes
are incompatible and T, has a higher priority than the priority of O. Thus the priority of

Tp, is greater than T, Namely we have a priority inversion.

2.6.1 Wait

Under the Wait policy, priority inverting conflicts are handled exactly as non-
priority inverting conflicts. That is, the requesting transaction always blocks and waits
for the data object to become free. This is the standard method for most DBMS which
do not execute real-time transactions. All conflicts are handled identically and the
concurrency control mechanism makes no effective use of transaction priorities. The
Wait policy implements FCFS scheduling for access to data items. The algorithm is

shown in Figure 2-1.

Figure 2-1 Wait Conflict Resolution Policy

IF TR conflicts with TH
THEN TR blocks

To illustrate the Wait policy, consider the set of transactions with release time r,

deadline d, runtime estimate E and data requirements as shown in Table 2-1.
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Table 2-1 Example 1: Transaction Table

Transaction r 3 d Updates
A 0 2 15 X
B 1 2 4 X
C 2 3 7 Y

Note that transactions A and B both update item X. Therefore these transactions
must be serialized. If we use Earliest Deadline to assign priority and Wait to resolve
conflicts then the schedule shown in Figure 2-2 is produced. A time line is shown at the
bottom of the figure. A scheduling profile is shown for each transaction. An elevated
line means that the transaction is executing on the CPU. A lowered line means the trans-
action is not executing. The cross hatching shows when a transaction has a lock on a
data object. The cross hatching begins when the lock is granted and ends when the lock
is released. Finally, the schedules assume that estimates are perfect and ignore the time

required to make scheduling decisions or rollback transactions.

Figure 2-2 Example 1 Schedule: Wait with Earliest Deadline
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Transaction A is the only job in the system at time 0, so it gains the processor
and executes until time 1 when transaction B arrives. During this time it requests and

gains an exclusive lock on data object X. Since B has an earlier deadline than A, B
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preempts A and begins to execute. At time 1.5, B attempts to lock data object X which is
already locked by A. Under the Wait strategy B must wait until A finishes and releases
the lock on X. Thus B loses the processor and A resumes execution. At time 2, transac-
tion C arrives and preempts A because C has an earlier deadline than A. Transaction C
executes to completion and finishes at time 5. Then A resumes execution and completes
its remaining 0.5 units of computation at time 5.5. When it commits, it releases the lock
on item X, thus B is unblocked and resumes execution. It finishes its remaining 1.5 units
of computation at time 7. Under this schedule, B misses its deadline by 3 units and A

and C both meet their deadlines. The overall schedule length is 7.

Note that transactions can wait for locks; thus deadlock is a possibility. Dead-
lock detection can be done using one of the standard algorithms [IM]. Victim selection,
however, should be done with consideration of the time constraints of the tasks involved
in the deadlock. In our simulations, deadlocks are detected by maintaining a wait-for
graph and searching for cycles whenever a new arc is added to the graph. When a dead-
lock is detected a victim is selected by choosing the transaction with lesser priority of
the two transactions that completed the cycle in the graph. Other methods for selecting a
victim are possible, e.g., select the lowest priority transaction in the entire cycle. We do

not consider these methods here.

2.6.2 Wait Promote

The previous example exposed an obvious fault with the Wait policy, namely
that transaction B had to wait for both C and A to complete before it could finish. This
happened because B blocked on A and then A was preempted by C. However B has an
earlier deadline than C and should be scheduled before C. Our second concurrency con-

trol policy, Wait Promote, handles this problem by increasing the priority of the lock
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holder T, to be as high as the lock requester Tp whenever a priority inverting conflict
occurs. (Since locks are retained until commit time, T H will keep its inherited priority
until it commits or is restarted. In the event that T is restarted, e.g., because of dead-
lock, it assumes its normal priority. A pure implementation of priority inheritance would
demote the priority of T, if Tp, were aborted before T finished. We chose not to im-
plement demotion. Our tests showed that it occurs so seldom that any difference in over-
all performance is not measurable.) This method for handling priority inversions was

proposed in [SRL1].

The reason for promoting T, is that it is blocking the execution of Tp, a higher
priority transaction. Thus Ty, should execute at an elevated priority in order to get it
done and removed so that T, can execute. Priority inheritance ensures that only a trans-
action with priority greater than Tp will be able to preempt T, from the CPU. A trans-
action T} of intermediate priority, a priority greater than T, and less than Tp, would
normally be able to preempt T,,. But with priority inheritance, T has a lesser priority

than T; which is now executing on behalf of T,
Figure 2-3 shows the Wait Promote algorithm.

Figure 2-3 Wait Promote Conflict Resolution Policy
IF P(Tp)>P(Ty)

THEN  Tp blocks
Ty inherits the priority of Tp
ELSE  Tp blocks
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Figure 2-4 shows the schedule that is produced when Wait Promote is used to

schedule the transactions of Table 2-1.

Figure 2-4 Example 1 Schedule: Wait Promote with Earliest Deadline
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As before, transaction A gains a lock on object X and computes and then is
preempted by transaction B at time 1. A conflict arises when B requests a lock on X at
time 1.5. Transaction B waits for the lock to be released and A inherits the deadline of B.
Thus when C enters the system it does not preempt A because A has the same deadline
as B, namely 4, and C has a deadline of 7. Transaction A commits at time 2.5 and re-
leases its locks. Transaction B is unblocked and resumes execution to finish at time 4.
Then C can execute and finish at time 7. In this schedule all transactions meet their

deadlines. The overall schedule length is also 7.

What if the object is locked by more than one transaction? In this event all trans-
actions in the read group will inherit the priority of Tp. Note that a priority inversion
can affect only some of the transactions in a read group. For example, the requesting
transaction may have a priority that is greater than only some of the transactions in the
read group. These transactions will inherit the greater priority of the requester. The pri-

ority of the other transactions in the read group remains unchanged. Thus every transac-
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tion holding a lock on object O has a priority that is at least as high as the highest prior-

ity transaction which is waiting for the lock.

Finally, the property of priority inheritance is transitive. If, for example, Ty, is
blocked by transaction Ty, and the priority of Ty, is less than Tp then Ty, will in-

herit the priority of T,

Note that when priority inheritance is combined with Least Slack, continuously
evaluated, Ty, inherits not a static priority but a priority function which evaluates the

slack of TR‘

2.6.3 High Priority

Under the first two policies, the requesting transaction always waits for the lock
holding transaction to finish and release its locks. This is true even when the requesting
transaction has a very high priority. An alternative approach, one taken by the High Pri-
ority policy, is to resolve a conflict in favor of the transaction with the higher priority.
The favored transaction, the winner of the conflict, is allowed to lock the contested ob-
ject. We implement this policy by comparing transaction priorities at the time of the
conflict. If the priority of Tp is greater than the priority of object O, and thus greater
than every transaction holding a lock on O, then we abort the lock holders thereby free-
ing the object for Tp. Tp can resume processing; the lock holders are rolled back and
scheduled for restart. If the priority of Tp is less than or equal to the priority of O then

T R blocks to wait for O to become free.
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Figure 2-5 shows the schedule produced when High Priority is used to schedule

the transactions in Table 2-1.

Figure 2-5 Example 1 Schedule: High Priority with Earliest Deadline
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As before, A runs in the first time unit during which it acquires a lock on item X.
Transaction B gains the processor at time 1 and causes a conflict at time 1.5 when it
requests a lock on item X. Since B has an earlier deadline than A and thus a higher prior-
ity, the conflict is resolved by rolling back A thereby freeing the lock on X. Transaction
B continues processing and completes at time 3. Transaction C, with an earlier deadline
than A, gains the processor and completes at time 6. Finally, A regains the processor and
starting from the beginning, executes for 2 units and finishes at time 8. In this schedule,
A misses its deadline by 0.5 units and B and C meet their deadlines. The overall sched-

ule length is 8 because a portion of transaction A is executed twice.

An interesting problem arises when we use Least Slack to prioritize transactions.
Recall that under this policy, a transaction’s priority depends on the amount of service
time that it has received. Rolling back a transaction to its beginning reduces its effective

service time to 0 and raises its priority under the Least Slack policy. Thus a transaction
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Ty which loses a conflict and is aborted to allow a higher priority transaction Tp to
proceed, can have a higher priority than Tp immediately after the abort. The next time
the scheduler is invoked, Tp will be preempted by T T;; may again conflict with Tp

initiating another abort and rollback.

Our solution to this problem is to compare the priority of T, against that of each
lock holder assuming that the lock holder were aborted. Using the notation P(T H ) to
denote the priority of Ty and P(T}1 ) to denote the priority of T} were it to be aborted,
we can write this algorithm as follows:

Figure 2-6 High Priority Conflict Resolution Policy
IF For all T}, holding a lock on O

P(Tp)>P(Ty;) AND P(Tp, ) > P(T;} )
THEN  Abort each lock holder

ELSE  Tp blocks

For FCFS and Earliest Deadline policies, P(TH )= P(Tl‘j ), so it does not matter
if we use the original High Priority resolution rule or the modified one above. Since the
modified rule is clearly superior for Least Slack priority assignment, we will use it for

our performance evaluations.

2.6.4 Conditional Restart

Sometimes High Priority may be too conservative. Let us assume that we have
chosen the first branch of the algorithm, i.e., Tp, has a greater priority than T, and TA,
We would like to avoid aborting 7, because we lose all the service time that it has al-
ready consumed. We can be a little cleverer by using the Conditional Restart policy to

resolve conflicts. The idea here is to estimate if T, the transaction holding the lock, can

be finished within the amount of time that T, the lock requester, can afford to wait. Let
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Sk be the slack of T and let Ey,; - Py be the estimated remaining time of Tpy. If Sp 2
E H- P H then we estimate that TH can finish within the slack of TR' If so, we let T H
proceed to completion, release its locks and then let Ty execute. This saves us from re-
starting Tp,. If Ty cannot be finished in the slack time of Tp then we restart Ty, (as in

the previous algorithm). This modification yields the following algorithm:

Figure 2-7 Conditional Restart Conflict Resolution Policy
IF P(Tp)>P(Ty; ) AND P(Tp ) <P(T};)

THEN IF SR 2Ey - PH
THEN  Tp blocks
Ty inherits the priority of Tp
ELSE  Abort Ty

ELSE  Tp blocks

Note that if Tp blocks in the inner branch, then T inherits the priority of Thp,.
This inheritance is exactly the same as described in the Wait Promote algorithm. Figure
2-8 shows the schedule that is produced when Conditional Restart is used to schedule

the transactions of Table 2-1.

Figure 2-8 Example 1 Schedule: Conditional Restart with Earliest Deadline
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As before, a conflict occurs when B requests a lock on X at time 1.5. At this time
the algorithm calculates the slack time for B as S =4 - 1.5 - 1.5 = 1. This equals exactly
the remaining run time for A. Therefore B waits and A inherits the priority of B. A re-
gains the processor and executes without preemption until it finishes at time 2.5. (Trans-
action C does not preempt A because A has inherited the deadline of B, namely 4.)
Transaction B is unblocked and resumes execution to finish at time 4. Then C executes

to finish at time 7. All transactions meet their deadlines.

Note that this schedule is exactly the same as that produced by Wait Promote. In
fact it is easy to see that Conditional Restart behaves like Wait Promote when the first
branch of the inner condition is taken, and like High Priority when the second branch is

taken.

We only implement Conditional Restart if the conflict is one-on-one, i.e., there is
no read group involved. Furthermore we do not consider chained blockings. That is, we
only make the special Conditional Restart decision if the requester conflicts with exactly
one lock holder and the lock holder is not blocked waiting for some other lock. Experi-
ence with our simulations has indicated that chained blockings are rare, so that the pay-

off for handling them in a clever way is limited.

Finally, we caution that the examples we have used to illustrate the different al-
gorithms are greatly simplified. They are presented to motivate the algorithms, not to
prove that one algorithm is better than another. For instance, in reality transactions may
update several items or none at all (i.e., read-only), and this will obviously affect the
performance of the algorithms. In Chapter <evaluation by simulation> we discuss a de-
tailed simulation model that can help us to compare the various scheduling and

concurrency control options.
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2.7 1/O Scheduling

In a non memory resident database system, the disk is an important resource
which can be managed to optimize various performance criteria. In conventional sys-
tems the usual goal is to maximize the throughput of the I/O system. One way that this
is accomplished is by using a disk scheduling algorithm (e.g., SCAN [PS] ) to order the
sequence of I/O requests so that the mean seek time is minimized. While this may be
good for maximizing throughput, it may be bad for a real-time system which is trying to
meet transaction deadlines. For example, SCAN may order a batch of requests so that an

I/O request from a transaction with an early deadline is serviced last.

This section looks at two simple ways to schedule 1/O requests. One method uses
transaction timing constraints for ordering requests while the other does not. The simu-
lation model for evaluating these two methods makes the simplistic assumption that disk
access times are constant (Section 3.2). Based on the knowledge gained when the simple
I/0 model was simulated (Section 3.4), a more detailed I/0 model and several more al-

gorithms are developed in Chapter 4.

2.7.1 FIFO
When FIFO is used to schedule the I/O queue, requests are serviced in the order

in which they are generated. This service order is somewhat related to transaction priori-
ties because I/O requests are generated by the CPU, which is scheduled by priority. The

ordering is essentially random with respect to cylinder position on the disk.

2.7.2 Priority
Under this policy each I/O request has a priority which is equal to the priority of

the transaction which issued the request. The next I/O request to service is the one with

the highest priority. Thus a newly arrived request from a transaction with a high priority
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can leapfrog over other requests which have been waiting longer in the I/O queue. We

also expect this ordering to be random with respect to cylinder positions on the disk.

In our model there are two types of I/O requests: reads, that are issued by unfin-
ished transactions, and writes that are generated by committed transactions that are
flushing their updates back to disk. (The log resides on a separate device, so it receives
only log writes which are serviced FCFS. Log writes are sequential and ordered by cyl-
inder position.) Giving higher priority to reads over writes is desirable because it will
speed the completion of transactions which are trying to meet their deadlines. Giving
high priority to writes does not enhance performance directly because the transactions
which issued the writes have already committed. In fact, as our studies have shown, giv-
ing high priority to writes can decrease performance if it excessively delays the servic-
ing of read requests. The priority of writes cannot be too low, however, as writes must

be completed in order to free space in the memory buffer pool.

In our first set of experiments, writes have the same priority as the transaction
that issued them. (The second set of experiments, performed under a different model,
are presented in Chapter 5.) For the priorities FCFS and Earliest Deadline, this means
that writes are given a relatively high priority. (The arrival times and deadlines of com-
mitted transactions are usually earlier than those of uncommitted transactions.) If we use
static evaluation to implement Least Slack, the slack times of committed transactions
are not necessarily larger or smaller than those of uncommitted transactions. However if
we use continuous evaluation, then the slack times of committed transactions will usu-

ally be smaller than the slack times of uncommitted transactions.
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Chapter 3 Evaluation by Simulation

3.1 Introduction

This chapter describes the simulation model and the metrics that we use to
evaluate the scheduling algorithms, Section 3.2. We present the experimental results for
a memory resident database, Section 3.3, and for a disk resident database, Section 3.4.
Finally we present our conclusions and discuss how our findings compare with results

of other published research, Section 3.5

3.2 Simulation Model

Our program to simulate a RTDB system was built using SIMPAS, an event-
oriented discrete system simulation language [Br]. The names and meanings of the four
parameters that control the configuration of the system resources are given in Table 3-1.
The database log is maintained on a separate device which is of equal speed as the data-

base disks. Each disk has its own queue of service requests.

Table 3-1 System Resource Parameters

Parameter Meaning

DBsize Number of pages in database

MemSize Number of pages in memory buffer pool
NumDisks Number of disks

1O0time Time to perform a disk access(read or write)

The database buffer pool is modeled as a set of pages each of which can contain
a single database object. We do not model each buffer page individually, that is, we do
not maintain a free list of pages, nor do we keep track of which pages have been modi-
fied. Instead we model the buffer pool as a collective set. When a transaction attempts to

read an object, the system generates a random boolean variable which has the value true
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with probability ;Bsizm . If the value is true then the page is in memory and the trans-

action can continue processing. If the value is false then an I/O service request is created

and placed in the input queue of the appropriate disk. The database is partitioned equally

i X NumDisks

over the disks and we use the function D = -
DBsize

] to map an object i to the

disk where it is stored.

Transaction characteristics are controlled by the parameters listed in Table 3-2.
Transactions enter the system with exponentially distributed inter-arrival times and they
are ready to execute when they enter the system (i.e., release time equals arrival time).
The number of objects accessed by a transaction is chosen from a normal distribution
with mean Pages and the actual database items are chosen uniformly from the database.
Each page is updated with probability Update. Pages which are updated are locked ex-
clusively, other pages are locked in shared mode. Updated pages are stored in the buffer

pool until a transaction commits and then they are flushed out to disk.

Table 3-2 Transaction Parameters

Parameter Meaning

ArrRate Mean arrival rate of transactions

Pages Mean number of pages accessed per transaction
CompFactor  CPU computation per page accessed

Update Probability that a page is updated

MinSlack Minimum slack

MaxSlack Maximum slack

EstErr Error in runtime estimate as a fraction of total runtime
Rebort Time needed to rollback and abort a transaction

A transaction has an execution profile which alternates lock requests with equal

size chunks of computation, one for each page accessed. Thus the total computation
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time is directly related to the number of items accessed. Let C denote the CPU require-
ment for a transaction; then C = Pages’ X CompFactor. (We use Pages’ to denote the
actual number of pages for a specific transaction rather than the mean.) The I/O service
requirement for a transaction has three components: the first is the time needed to read
pages from the disk into memory; the second is the time needed to write a log record;
and the third is the time needed to write the modified pages back to the disk. Since the
writing of modified pages back to disk occurs after a transaction commits, this I/O time
is not included in the runtime estimate. Assuming that logging can be done with one

disk access, the expected amount of pre-commit I/O service time needed is

I = IOtime X Pages' X [1 - Aff;‘f,-if] + IOtime . Thus the total expected run-

time service needed by a transaction executing in an unloaded systemis R = C + I.

The accuracy of a transaction’s runtime estimate E with respect to R is controlled by the
parameter EstErr, where E = R X (1 + EstErr). How we choose the value of

EstErr is explained later when we discuss the experimental results.

The assignment of a deadline is controlled by two parameters MinSlack and
MaxSlack which set a lower and upper bound respectively on a transaction’s slack time.
A deadline is assigned by choosing a slack time uniformly from the range specified by
the bounds. Rebort controls the amount of CPU time needed to abort or restart a transac-
tion. Aborting a transaction consists of rolling it back and removing it from the system.
The transaction is not executed. When a transaction is restarted it is rolled back and
placed again in the ready queue. (Recall that updates are flushed after transaction com-
mit, so an abort does not generate an I/O service request.) Note that aborts are generated

by the overload management policy, restarts result from lock conflicts.
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The simulator does not explicitly account for time needed to execute the lock
manager, conflict manager, and deadlock detection manager. These routines are exe-
cuted on a per data object basis and we assume that the costs of these calls are included
in the variable that states how much CPU time is needed per object that a transaction

accesses. Context switching and the time to execute the scheduler is also ignored.

As mentioned earlier, deadlocks are detected by maintaining a wait-for graph
and searching for cycles whenever a new arc is added to the graph. When a deadlock is
detected a victim is selected by choosing the transaction with lesser priority of the two
transactions that completed the cycle in the graph. The victim is rolled back and placed
in a special queue until the transaction with which it deadlocked exits the system, either
because it commits or because it is aborted. When this happens the victim is placed in
the ready queue and allowed again to enter the system. This system of enforced waiting

is necessary to prevent the excessive formation of deadlocks.

We use several metrics to evaluate the algorithms. In particular we measured the
percentage of transactions which missed their deadlines, the average amount of time by
which transactions missed their deadlines, and the total number of restarts caused by
lock conflicts or deadlocks. We also study how the algorithms perform when the system
experiences a sudden load increase. How we simulate this input step function will be

explained in Section 3.4.3.

The percentage of missed deadlines is calculated with the following equation:

Tardy jobs + Aborts

%oMissed = Jobs processed

X 100. A job is processed if either it executes com-

pletely or it is aborted. The mean tardy time is simply the average of the tardy times of

35



all committed transactions. A transaction that commits before or on its deadline has a

tardy time of zero. Aborted transactions do not contribute to this metric.

In this study we have included tardy jobs and aborted jobs together in the
%Missed metric. For some applications it may be useful to describe a separate metric
for aborted jobs as they represent tasks which were never completed and as such may be
more serious than simply tardy jobs. For reasons of space we do not study these other
metrics here. Unlike conventional performance evaluations of concurrency control
mechanisms, this study does not focus on transaction response times. The reason is that

response time is not critical as long as a transaction meets its deadline.

All of our experiments were conducted in one of two cases: the main memory
case and the disk resident case. Section 3.3 presents the results for the main memory
case and Section 3.4 presents the results for the disk resident case. Section 3.5 summa-

rizes our conclusions.

Section 2.3 proposed three different methods for managing overloads and four
methods each for assigning priority and managing concurrency. Also I/O scheduling can
be done in two different ways. Taking the cross product yields 96 different algorithms.
Table 3-3 summarizes the methods of Section 2.3 and provides the abbreviations that we
will use when referring to them. We use the format NT/LS/WP to denote the algorithm
formed by combining the polices Not Tardy, Least Slack and Wait Promote. Other algo-

rithms are denoted similarly.
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Table 3-3 Summary of Scheduling Policies

Component Policy
Overloads AE - All Eligible
NT - Not Tardy

FD - Feasible Deadlines

Priority FCFS - First Come First Serve
ED - Earliest Deadline
LS - Least Slack (Static evaluation)
LSC - Least Slack (Continuous evaluation)

Concurrency W - Wait
WP - Wait Promote
HP - High Priority
CR - Conditional Restart

1/0 Scheduling  FIFO
Priority

In Sections 3.3 and 3.4 we discuss some of the results of the many different ex-
periments that we performed. We have selected the graphs which best illustrate the dif-
ferences and performance of the algorithms. For each experiment we ran the simulation
with the same parameters for 20 different random number seeds. Each run, except for
the input step function experiment, continued until at least 700 transactions were exe-
cuted. For each algorithm tested, numerous performance statistics were collected and
averaged over the 20 runs. It is these averages and 90% confidence intervals (shown as

vertical bars) which are plotted in the graphs.

3.3 Experimental Results: Memory Resident Database

We begin our performance analysis by studying the algorithms in experiments
where the database is memory resident. This assumption simplifies our model somewhat
and makes it easier to understand the scheduling options and their impact on perform-

ance. In Section 3.4 we allow the database to be disk resident and we study how 1/O
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scheduling impacts performance. In any case, studying a memory resident system is im-
portant since many existing real-time systems currently hold all their data in memory.
Furthermore, since memory prices are steadily dropping, memory sizes are growing and

memory residence becomes less of a restriction.

The base parameters for the memory resident case are shown in Table 3-4.

Table 3-4 Base Parameters: Memory Resident Database

Parameter Value Units Parameter Value Units
DBsize 400 Pages MemSize 400 Pages
ArrRate 7 Jobs/sec. Pages 12 Pages
CompFactor 10 ms. Update 1

MinSlack 0.1 sec. MaxSlack 1 SEC.
EstErr 0 Rebort 5 ms

These values are not meant to model a specific real-time application but were
chosen as reasonable values within a wide range of possible values. We chose the arri-
val rate so that the corresponding CPU utilization (an average (.84 seconds of computa-
tion arrive per second) is high enough to test the algorithms. It is more interesting to test
the algorithms in a heavily loaded rather than lightly loaded system. (We return to this
issue in the Section 3.5.) Also note that the probability that a page that is accessed is
updated is 1. This simplifying assumption means that all locks are exclusive locks and
all lock conflicts are between exactly two transactions. We will first study the algo-

rithms under this simplifying assumption and then relax it to allow read locks.

The I/O system processes two types of requests: the first type consists of log re-
cords that are written sequentially to the separate log device. This activity induces a
relatively low load on the I/O system. The second type of request are writes of modified
pages back to the disk resident copy of the database. Updates are flushed to maintain an

up-to-date copy of the database on disk. Since writes occur after a transaction commits,
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they have no affect on transaction tardiness. Also since no transaction reads from the

disk, the writes cannot interfere with other transactions.

3.3.1 Effect of Increasing Load

In this experiment we varied the arrival rate from 6 jobs/sec to 8 jobs/sec in in-
crements of 0.5. The other parameters had the base values given in Table 3-4. Under
these settings the CPU utilization ranges from 0.72 to 0.96 seconds of computation ar-

riving per second.

3.3.1.1 Overload Management
Our simulation experiments show that the overload management policies NT and

FD substantially reduce the number of deadlines missed compared with the AE policy.
Aborting a few late transactions helps all other jobs meet their deadlines. This is illus-
trated in Figure 3-1 which shows the three overload management policies for FCFS
scheduling. The three algorithms perform comparably when the arrival rate is lowest. As
the load increases, NT and FD perform significantly better than AE, and at the highest
load setting, NT and FD yield an approximate 50 percent decrease in missed deadlines
over AE. This same behavior holds true for the other priority assignment policies as

well.

Unless noted otherwise, the remaining graphs show algorithms which schedule
all transactions, clearly the more difficult case. If the policy is AE the code will be omit-

ted in the legend for the graph.

3.3.1.2 Priority Assignment
To eliminate concurrency control as a factor in the performance of the algo-

rithms we performed an experiment with concurrency control turned off i.e., all lock re-

quests were granted immediately and the resulting schedule was non-serializable. (A
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similar effect can be achieved by setting all transactions to be read-only, thus there will
be no lock conflicts. However, this will slightly alter the runtime and deadline character-
istics of transactions since no logging would be necessary.) Figure 3-2 shows the per-
formance for each of the priority algorithms. There are four graphs because LS appears
once with static evaluation and once with continuous evaluation. As expected, all the al-
gorithms miss a greater number of deadlines as the load increases. Algorithm FCFS
misses the most deadlines for all load settings. This is not surprising since it does not
use transaction time constraints when assigning priority. At lower load settings ED per-
forms best. As the load increases, the performance margin of ED and LSC over FCFS
narrows. As mentioned earlier (Section 2.5.2), ED performs poorly at higher load set-
tings because it assigns high priorities to transactions which have missed or are about to
miss their deadlines. This causes other transactions which could meet their deadlines to
be tardy. The same is true for LSC and its performance curve follows that of ED very
closely. We will see repeatedly that ED (or LSC) is usually a good performing algo-
rithm when the load is low but that it loses its performance margin over other algorithms

when the load increases.

At higher load settings LS is clearly the superior policy. Because the slack time
is evaluated only once when the transaction enters the system, this algorithm avoids the
weakness that is common to both ED and LSC. Since LS (static evaluation) is dramati-
cally better than LSC we will use it as the preferred version of LS for the remainder of

the experiments unless noted otherwise.

Ideally we want our algorithms to schedule all transactions such that all dead-
lines are met. However, if this is not possible, then we would want to minimize the

amount by which tardy transactions miss their deadlines. Figure 3-3 graphs the mean
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tardy time in seconds against arrival rate. (Concurrency control is still turned off.) It is
interesting to note that ED has the least mean tardy time, then LSC, then FCFS and fi-
nally LS. These results are not surprising for it is known that ED minimizes the maxi-

mum task tardiness and LS maximizes the minimum task tardiness [CD].

3.3.1.3 Concurrency Control
We now examine the performance of the four concurrency control mechanisms

when they are paired with the three priority policies. (We do not consider LSC.) Since
we are in the main memory database case, using FCFS to schedule transactions results
in a serial execution of transactions. The currently executing transaction can never be
preempted by an arriving transaction. Thus there is no difference in performance when
FCFS is paired with the different concurrency control mechanisms. Figure 3-4 graphs
the Wait and Wait Promote concurrency control strategies for each of the three priority
policies. For reasons of clarity, only one curve is shown for FCFS. At lower load set-
tings ED/W and ED/WP perform better than both FCFS and LS. As the load increases,
the performance margin of ED over FCFS narrows. Again we see the the problem with
ED at higher load settings. Although LS/WP is not as good as either ED/W or ED/WP at

the lowest settings, it is clearly the superior policy at higher loads.

Figure 3-5 shows the results for the High Priority and Conditional Restart algo-
rithms for each of the three priority policies. (Again we show only one graph for FCFS.)
The results are similar to Figure 3-4 except that ED/HP and ED/CR lose their perform-
ance margin over FCFS even sooner. This occurs because both HP and CR will abort
transactions when conflicts occur. When the load is high and conflicts are frequent,
these aborts effectively increase the transaction arrival rate. Under the increased load,

the performance of ED degrades as explained earlier.
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In Figure 3-6 we plot only ED and LS with each concurrency control policy. No
algorithm is best at all load settings. Algorithms ED/WP and ED/CR are best at the low-
est load settings while LS/WP and LS/CR perform better at higher loads. The ED algo-
rithms are bunched closely with ED/WP and ED/CR performing slightly better than

ED/W and ED/HP. Finally the worst combinations are LS/W and LS/HP.

An obvious question raised by Figure 3-4 is why LS/WP is so much better than
LS/W, particularly under high loads. By contrast the performance gap between ED/W
and ED/WP is small. The reason is that LS scheduling permits a greater degree of
concurrency (average number of active jobs in the system at any time) than does ED
scheduling. (Remember that the database is memory resident. Preemptions occur only
when a higher priority transaction joins the ready queue. The current job never gives up

the processor to wait for 1/0.)

To confirm this, Figure 3-7 graphs the average number of active jobs for the LS
and ED algorithms in the arrival rate experiment. We see that both LS algorithms pro-
duce higher levels of concurrency than the FCFS and ED algorithms. We also see that
the average number of active jobs for LS/WP is less than that of LS/W for nearly all

load settings.

To explain the results of Figure 3-7 we note that with LS priority assignment
there is no correlation between a transaction’s arrival time and its priority, or slack. By
contrast, with Earliest Deadline there is a direct correlation between arrival time and pri-
ority. Namely, a transaction TB which arrives much later then transaction TA is more
likely to have a deadline which is later than T 4. Thus it is less likely that transaction Tp

will preempt transaction T .
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For example, transaction T 4 arrives at time 4, has a slack time of 3, and a dead-
line of 10. Transaction Tp arrives at time 8, has a slack of 2 and a deadline of 16. If we
use LS to determine priority then Ty will preempt T4 when it arrives. However, if we

use ED to determine priority then Tp will not preempt T .

One consequence of this higher level of concurrency is that there are more lock
conflicts. Furthermore, there are more conflicts where a high priority transaction blocks
on a lock held by a lower priority transaction i.e., a priority inversion. When a priority
inversion occurs, algorithm LS/WP takes the right action by promoting the priority of
the lock holder to be as high as the priority of the lock requester. This shortens the wait-
ing time for the high priority transaction and increases the chances that it will meet its
deadline. The Wait strategy does not do this. This demonstrates the importance of han-

dling priority inverting conflicts correctly.

This same characteristic of LS, namely a higher average level of concurrency,
also makes it more likely that a deadlocks will occur. Although we do not include the
graphs, our experiments show that LS algorithms do produce more deadlocks than ED

algorithms. Furthermore LS/W suffers significantly more deadlocks than LS/WP.

3.3.2 Biasing the Runtime Estimate

The runtime estimate E is used by three of the scheduling policies that we pre-
sented in Section 2.3. Of the three overload management policies, Feasible Deadlines is
the only one which makes use of the runtime estimate E. The priority policy Least Slack
also uses E as does the concurrency control policy Conditional Restart. For the policies
FD and CR it is relatively easy to predict how they will respond to error in the runtime

estimate (see below). The case for LS, however, is not as simple.
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To study how error in the runtime estimate E affects the different components of
scheduling algorithms we devised three different experiments, each of which biased the
runtime estimate in a different way. The first experiment was designed to introduce a
random amount of error (within a certain range) into the estimate E. The second experi-
ment was designed to bias all the runtime estimates in the same direction and by propor-
tionally equal amounts. In both experiments the priority policy LS performed nearly
equally well under both high error and low error parameter settings. This finding moti-
vated a final third experiment where half the transactions were made to overestimate
their runtime estimate and the other half underestimated. This technique for biasing E
did yield changes in performance for the LS policy. Thus it is this technique that is used

in the experimental results reported below.

For half of the transactions E = R x (1 + EstErr)  for the other half

E = R X (1 - EstErr). The value of EstErr was varied from 0 to 4 in increments

of 1. Thus when EstErr = 0, E = R and there is no deliberate bias in the runtime esti-

mate. When EstErr = 1, half the transactions have E = 0 and half
have g - 2 x R - (For values of EstErr greater than 1, negative runtime esti-

mates are converted to 0.)

3.3.2.1 Overload Management
We would expect the accuracy of the runtime estimate to have a large effect on

the policy FD. The overload management policy is responsible for aborting transactions
and since aborted transactions are counted as having missed their deadlines, the policy
directly affects the performance. It is easy to see how this policy is affected by error in

the runtime estimate. When the runtime estimate for jobs is zero, FD behaves like NT,
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aborting jobs only if they have missed their deadlines. When the estimate is high, FD
thinks that jobs are much longer than they are and will judge incorrectly, that they have
infeasible deadlines. Thus jobs with feasible deadlines are unnecessarily aborted. The
predicted behavior is confirmed in Figure 3-8. Note that algorithms using AE and NT

are not affected by changes in EstErr.

3.3.2.2 Priority Assignment
Figure 3-9 graphs the results for LS (static evaluation) when used with each of

the concurrency control policies. The difference in performance between when the error
is low (EstErr = 0) and when the error is high (EstErr = 4) is only a few percentage

points.

When continuous evaluation is used (graph is not shown), the performance of
LS, is more sensitive to error in the runtime estimate. This is understandable since con-
tinuous evaluation means that the inaccurate runtime estimate will be used many more

times to make scheduling decisions.

3.3.2.3 Concurrency Control
Only the concurrency control strategy Conditional Restart uses the runtime esti-

mate. Algorithm CR uses the runtime estimate to decide if a low priority transaction
holding a lock can finish within the slack time of the higher priority transaction request-
ing the lock. We can easily describe the behavior of CR for the extreme values of E.
When E = 0, CR will always judge (assuming that the lock requester has a positive
slack, this is true if the transaction has not missed its deadline) that the lock holder can
finish within the slack of the lock requester. Thus the lock requester will always wait for
the lock holder. Since promotion is used by CR, this behavior is exactly the same as

WP.
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At the other extreme, when E is much larger than R, the algorithm will nearly
always judge that the lock holder cannot finish within the slack time of the lock re-
quester. Thus the lock holder will be rolled back and restarted. This behavior is the same
as the concurrency control strategy HP. When the value of E is not so extreme CR will

behave somewhere between WP and HP.

3.3.3 Cost of Serializability

We can use the results of the experiment where concurrency control was turned
off to understand how the enforcement of serializable schedules affects performance in
terms of missed deadlines. Figure 3-10 shows the performance of the serialized and un-
serialized versions for one of the better versions of ED and LS, namely ED/WP and
LS/WP. The unserialized versions perform better than the serialized version for each al-
gorithm. Thus serializability does cause the algorithms to miss more deadlines. How-
ever, missed deadlines is only one cost metric. Database inconsistency occurs as a result
of unserialized schedules. For some applications the cost of database inconsistency may
far outweigh the performance benefit in terms of missed deadlines gained by ignoring

concurrency control.

3.3.4 Increasing Conflicts

In this experiment we varied the value of DBsize from 200 to 400 in increments
of 50. The parameter MemSize was varied in the same way so that we remained in the
main memory case. The other parameters had the values shown in Table 3-4. In this
kind of experiment, the overall load and transaction characteristics remain constant.
However, since transactions access the same number of objects, the probability of con-

flict is higher when the size of the database is small. The probability of conflict de-



creases as the number of objects in the database increases. Thus we can compare how

the various concurrency control strategies perform as the number of conflicts changes.

Figure 3-11 shows the results for all four concurrency control strategies each
paired with ED and LS. It confirms our expectation that, as DBsize increases, all sched-
uling algorithms will perform better. One noteworthy observation is that the curves for
the ED algorithms are remarkably flat, i.e., there is only a small difference between the
small database and the large database performance values. Recall from Figure 3-7 that
ED scheduling in a main memory database results in a very low level of concurrency. If
the average number of active jobs is very low (less than two) then it doesn’t matter how
small the database is because there are not enough active jobs requesting locks to con-

flict.

However, LS scheduling results in higher levels of concurrency (Figure 3-7) and
algorithms using LS are more sensitive to changes in database size (Figure 3-11). In fact
LS/W and LS/HP perform very poorly when the database is small. By contrast, LS/WP
and LS/CR, which use priority inheritance to manage priority inversions, maintain good
performance even when the database is small. Again this demonstrates the importance

of managing priority inversions correctly.

3.3.5 Increasing Slack

The average amount of slack in job deadlines affects all scheduling algorithms.
If all deadlines are extremely tight then most algorithms will perform poorly. Similarly,
if all deadlines are very loose than most algorithms will perform well. In this experiment
the parameter MaxSlack was varied from 0.2 sec. to 1.8 sec in steps of 0.4 sec. Recall

that this parameter governs the maximum possible slack time for a transaction. The
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minimum slack time was 0.1 sec and the rest of the parameters had the values in Table
3-4.
3.3.5.1 Priority Assignment

Figure 3-12 shows the performance of the three priority assignment polices
when paired with the concurrency control policy WP. When the maximum slack is small
(and deadlines are tight), LS is clearly the better policy then ED which is slightly better
than FCFS. As the slack increases, the performance of all three policies improves. How-
ever, the relative performance of ED and LS changes so that ED is the better algorithm
when the slack is large. At this range both algorithms are clearly superior to FCFS. If
the slack were very much greater (not shown) then the three curves would converge to

zero because no deadlines would be missed.

3.3.5.2 Concurrency Control
The relative performance of the concurrency control policies is not affected as

strongly as the priority policies. Figure 3-13 shows the four concurrency control strate-
gies paired with LS. Strategies WP and CR have nearly identical performance so their
graphs appear as one. Both WP and CR perform significantly better than W and HP
which have similar performance. We can also see that the performance margin between
W and WP (HP and CR) increases slightly as the slack increases. In other words, WP
and CR perform even better as the slack increases. The results for the policies when

paired with ED are similar.

3.3.6 Increasing Cost of Restart

In this experiment the cost of restarting or aborting a transaction ranges from 0
ms (i.e. no cost) to 50 ms in increments of 10. For reference, when the cost is 40 it is

equal to one-third the average transaction computation time. This is a very high cost,
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given that we have a memory resident database. Our objective is not to simulate a par-
ticular application but rather to see how the algorithms perform under even extreme pa-

rameter settings.

The cost of restarting or aborting a transaction affects the eligibility polices NT
and FD. All the concurrency control polices are affected because the restart cost controls
the amount of time needed to recover from a deadlock. The policies HP and CR also

perform restarts when lock conflicts are encountered.

It follows that as the cost of restarting or aborting increases, the performance of
algorithms which use any of the above policies will deteriorate. This is indeed the case
as shown by Figure 3-14 which plots the results for the three different priority policies
paired with HP. When the restart/abort cost is zero, ED is best followed by FCFS and
and LS. As the time required to restart a transaction increases the performance of ED
and LS degrades. The performance of FCFS does not change since it effectively exe-
cutes transactions serially. (The entire database is main memory, thus there is no chance
for concurrency caused by waiting for I/O completions.) Thus there are no conflicts and
no restarts. When the time to restart a transaction is very high, 50 ms, we see that ED
and FCFS perform the same. However at this setting, the time to restart a transaction is

nearly half the average running time of a transaction.

The priority policy LS is most sensitive to increases in the time needed to restart
a transaction. It performs the most restarts and thus suffers most when the cost is in-

creased.
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Figure 3-1 Main Memory; Overload Management.

50 50
m @@ AE/FCFS/W 45
0l *=* NT/FCFS/W | 40
— W -® FD/FCFS/W | 35
30 — — 30
25 — — 25
20 — - 20
15— — 15
10 — 10
5 = — 5
0 I I 1 I | 0
6.0 6.5 730 7 8.0
ArrRate (jobs/sec)
Figure 3-2 Main Memory; Priority Assignment (No CC).
45,0 45,
40.5{ @@ FCFSIW L 40.
3604, T gl | 36.
SR e il - 31,
7.0 . . 39,
22.5 = — 22,
18.0 4 - 18.
13.5 - - 13.
9.0 - Jprse” S - 9.
4.5 - ;_:’_‘,t"' | 4.
0.0 ' , , Y 0.
6.0 6.5 7.0 7 8.0

ArrRate (jobs/sec)

-48 -



Figure 3-3 Main Memory; Priority Assignment (No CC).
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Figure 3-5 Main Memory; Concurrency Control
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Figure 3-7 Main Memory; Priority Assignment.
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Figure 3-9 Main Memory; Priority Assignment.
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Figure 3-11 Main Memory; Priority Assignment and Concurrency Control.
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Figure 3-13 Main Memory; Concurrency Control.
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3.4 Experimental Results: Disk Resident Database

We continue our performance analysis by studying the algorithms in experi-
ments where the database is disk resident. In this section, emphasis is placed on how I/O
scheduling impacts performance. We also allow transactions to obtain both shared and

exclusive locks.

The base parameters for the disk resident case are shown in Table 3-5.

Table 3-5 Base Parameters, disk resident database

Parameter Value Units Parameter  Value Units
DBsize 400 Pages MemSize 200 Pages
Disks 2 10time 25 ms
ArrRate 7 Jobs/sec. Pages 13 Pages
CompFactor 8 ms. Update 0.25

MinSlack 0.5 sec. MaxSlack 5 sec.
EstErr 0 Rebort 5 ms

Again, we chose these values not to model a specific real-time application but as
reasonable values under which to test the algorithms. The arrival rate of 7 jobs per sec-
ond yields a corresponding CPU utilization of 0.73. The I/O utilization is 0.85. Overall,
the parameters have been changed from the settings of Table 3-4 to create a job mix that
is I/O intensive rather than CPU intensive. The "average" transaction now consists of
104 ms of computation and 162.5 ms of 1/O reads. It also generates 81.25 ms of I/O
writes. Under these parameter settings we expect that algorithms which schedule I/O re-
quests according to transaction time constraints will enjoy a performance advantage

over algorithms that do not.

3.4.1 Effect of Increasing Load

In this experiment we varied the arrival rate from 6 jobs/sec to 8 jobs/sec in in-

crements of 0.5. The other parameters had the base values given in Table 3-5. The CPU
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utilization ranges from 0.62 to 0.83 seconds of computation arriving per second. The I/O
system experiences a range in utilization of 0.73 to 0.98 seconds of I/O service requests
arriving per second. For many algorithms, especially those which do not use Priority I/O
scheduling, the system is unstable at the highest arrival rate, 8 jobs/sec. For this reason,
we computed another data point at the arrival rate 7.75 jobs/sec. At this setting the CPU

utilization is 0.80 and the I/O utilization is 0.95.

3.4.1.1 /O Scheduling
The first question which we address is whether using priority to schedule 1/O re-

quests helps the system meet transaction deadlines. Figure 3-15 graphs %Missed Dead-
lines for ED/WP/FIFO and ED/WP/Priority. The results show clearly that the Priority
scheduling discipline is superior to FIFO at low load levels and especially at higher
loads. If we examine the throughput curves for these two algorithms, Figure 3-16, we
see that ED/WP/FIFO becomes saturated earlier than ED/WP/Priority, namely at 7.5
jobs/sec versus 7.75 jobs/sec. Thus we conclude that Priority I/O scheduling enables our

algorithms to achieve better performance and higher rates of utilization.

These observations are true for ED when combined with the other three
concurrency control polices. They are also true when LS or FCFS is used to assign pri-
ority. Since it is always better to use Priority I/O scheduling (at least under these pa-
rameter settings) all algorithms in the ensuing discussions will use Priority 1/O schedul-
ing unless otherwise noted. Section 3.4.5 will discuss a situation where Priority 1/O

scheduling, as we have implemented it, is detrimental to performance.

3.4.1.2 Priority Assignment
To eliminate concurrency control as a factor in the performance of the priority

assignment policies we performed an experiment with concurrency control turned off,
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i.e., all lock requests were granted immediately and the resulting schedule was non-
serializable. Figure 3-17 graphs %Missed Deadlines for each of the three priority poli-
cies. Both ED and LS are much better than FCFS. Up to ArrRate = 7.5, both ED and LS
are able to meet all deadlines. After this point both algorithms begin to miss deadlines
and by ArrRate =7.75, LS is performing better than ED. Again, this is because ED as-
signs a high priority to transactions which will miss their deadlines anyway. This pre-

vents other transactions from meeting their deadlines.

3.4.1.3 Concurrency Control
When we pair the four different concurrency control techniques with the priority

policies we learn that the performance results, to a great extent, confirm what we ob-
served in the main memory experiments (Section 3.3). Figure 3-18 graphs %Missed
Deadlines for all four concurrency control policies with ED. For the two lowest load set-
tings, ED/WP, ED/HP and ED/CR have similar performance and all are better than
ED/W. As the load increases, ED/W and ED/HP begin to perform badly while ED/WP
and ED/CR are still similar and performing better than W and HP. Finally, at the highest
load settings, ED/WP is clearly the best policy. Algorithm ED/CR is second best, then
ED/W. For ArrRate = 7.5 and above, the system executing with ED/HP is unstable and
the data points are not shown. Under high load settings, and high conflict rates, HP pro-
duces too many aborts and restarts thereby increasing the effective load and causing the
system to become unstable. For ArrRate = 7.75 the system is unstable for the ED/W and

ED/CR algorithms.

Figure 3-19 graphs %Missed Deadlines for all four concurrency control policies
with LS. The general behavior of the four concurrency control policies is the same as

observed with ED. A notable exception is that the LS/W and LS/HP algorithms cause
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the system to become unstable even earlier than their ED counterparts. (This can be seen
from examination of the throughput curves for the different algorithms. We do not show

these graphs here.)

Both WP and CR use priority inheritance which is especially important when the
database is disk resident and the job mix is I/O intensive. To meet transaction deadlines
it is essential for the system to minimize I/O queue waiting time for the most important
jobs. Priority inheritance allows the Priority I/O scheduler to accomplish just that. Nei-
ther W nor HP uses priority inheritance and they perform poorly with ED and LS. Simi-

lar observations apply to FCFS.

3.4.2 Changing Disk Access Time

In the preceding section we saw that the Priority I/O scheduling discipline, when
used with the correct priority and concurrency control polices (e.g., LS and WP), in-
creases greatly the percentage of transactions which meet their deadlines versus the
same algorithm which does FIFO I/O scheduling. However both methods ignore disk
head position and do not minimize the average seek time. Would a disk scheduling algo-
rithm which minimizes average seek time, (e.g., SCAN) but is ignorant of transaction
time constraints, yield better performance in a real-time system than our algorithm
which considers transaction time requirements? We cannot answer this question directly
but we have performed an experiment which indicates how much faster the average seek
time of a SCAN type algorithm would have to be for it to match the real-time perform-
ance of our Priority algorithm. In this experiment we fixed the parameter settings at the
values shown in Table 3-5. Then we varied the speed of the disks by increasing the
value of /Otime from the initial 21 ms. to 25 ms. in steps of 1. Figure 3-20 plots the

performance of LS/WP/FIFO, which, like a SCAN type algorithm, does not use transac-
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tion priorities for I1/O scheduling. The horizontal line is the performance of
LS/WP/Priority when IOtime = 25 ms. The two curves intersect at /Otime = 22.5 ms in-
dicating that a SCAN type algorithm must have an average seek time roughly 10% less
than Priority in order for it to yield comparable real-time performance. Of course it is
possible to design a SCAN type algorithm which also uses transaction priorities, but we

have not investigated this possibility.

3.4.3 Performance Under a Sudden Load Increase

In the previous experiments, we studied the performance of the various algo-
rithms under an increasing but steady load. In this experiment we study the algorithms
under a different type of load increase namely a batch of arrivals in an otherwise idle
system. To simulate this input step function we programmed the simulator so that a set
of transactions arrived all at the same time. The system then executed all the jobs in the
set. The number of jobs in the set varied from 20 to 40 in steps of 5. The parameters
controlling transaction characteristics were changed to reflect the fact that jobs arrive all
at once: parameter Pages = 10, CompFactor = 10, MinSlack = 0.75, and MaxSlack =

7.5. The remaining parameters had the values shown in Table 3-5.

In reality, we would not expect all jobs in an overload to arrive at the same in-
stant, nor would we expect the system to be completely idle at this time. However, our
idealized step function model lets us study the impact of an overload without distracting
second order effects. If an algorithm performs well under a step function, we could also
expect it to do well in a system that has plenty of spare capacity under normal circum-
stances but is suddenly faced with a flurry of jobs (e.g., a radar system facing a sudden

all-out enemy attack).
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A good strategy for operation in this situation might be to employ an overload
management policy to abort transactions which have missed their deadlines. If these
transactions must be executed anyway then they should be restarted only after the spike
has passed. We may also want to limit priority inversions from occurring. The reasoning
is that if a high priority job blocks, it will almost certainly miss its deadline if forced to
wait on a low priority job. Instead we may want to abort the low priority job and restart

it later when the load has decreased.

Figure 3-21 shows the four different concurrency control policies for the ED pri-
ority assignment policy. I/O scheduling is done according to job priority. In this experi-
ment ED/HP is clearly the best algorithm. It performs better than both ED/WP and
ED/CR which were the two best versions of ED under a steady load. Although for rea-
sons of space, we do not show the curves for the LS algorithms, the results are similar.
Namely, LS/HP misses fewer deadlines than the other versions. Also, the performance
for ED/WP ED/HP and ED/CR is somewhat better than the corresponding versions of

LS.

3.4.4 Effect of Increasing Memory

In this experiment we varied the value of MemsSize from 180 to 240 in incre-
ments of 20. The other parameters had the values shown in Table 3-5. Thus the size of
the memory resident fraction of the database varied from 0.45 to 0.6 of the total data-
base. As memory size changes the load on the CPU remains unchanged, namely 0.73
seconds of computation arriving per second. The load on the 1/O system varies from

0.91 to 0.74 seconds of 1/O requests arriving per second.

Note that the proportion of memory resident database influences the assignment

of deadlines to transactions. This happens because deadlines are assigned with respect to



the total service time, both CPU and 1/O, required by a transaction. As the memory in-
creases, the I/O service requirement decreases (pages are more likely in memory), and
the deadlines are shortened proportionately. In this way we can compare the scheduling
of sets of transactions with similar task urgencies in system configurations of various

memory sizes.

Our expectation, as memory size increases, is that all scheduling algorithms will
perform better. The reason is that transactions will be doing much less 1/0 and the time
spent waiting for service in I/O queues decreases. (CPU utilization and waiting time are
unchanged.) Thus transactions will receive quicker service and are more likely to meet

their deadlines.

Figure 3-22 graphs %Missed Deadlines for LS paired with each concurrency
control method. It confirms our expectation that algorithms will perform better as the
memory size increases. In particular LS/HP improves dramatically as the memory size
increases. The large number of aborts and restarts has a smaller effect on the I/O system.

The results for ED are similar.

3.4.5 Changing the Number of Updates

The value of Update, by controlling the size of the read and write sets, impacts
the probability of conflict between two concurrent transactions. The value of Update, by
determining the size of the writeset, also contributes to the I/O load of the system. This

is because updates are written to disk after a transaction commits.

In this experiment we varied the value of Update from 0.15 to 0.3 in increments
of 0.05. There is also a data point at Update = 0.275. When Update = (.15, only 15% of

a transaction’s pages are locked exclusively. When Update = 0.3, twice as many pages
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are updated. The other parameters had the values shown in Table 3-5. In this experiment

the I/O load varies from 0.74 to 0.91. The CPU load remains constant at 0.73.

Figure 3-23 shows the four different types of concurrency control with the ED
priority policy and Priority I/O scheduling. The general shape of the curves is as ex-
pected: when Update is large, the performance is poor because the rate of conflict is
high and because the overall I/O load is high. When Update is small, the conflict rate is
lower and ED/WP, ED/HP and ED/CR perform equally well and all are better than
ED/W. As Update increases, ED/W and ED/HP perform worse than ED/CR and

ED/WP. Algorithm ED/WP is best at the highest conflict rate.

Another experiment shows how giving high priority to disk writes can lead to
decreased performance. For this experiment Pages = 8, CompFactor = 15, and Max-
Slack = 2. The parameter Update is varied from 0.2 to 0.8 in steps of 0.2 The other pa-

rameters had the values shown in Table 3-5.

Figure 3-24 plots ED/W with priority I/O scheduling against ED/W with FIFO
I/O scheduling. Somewhat surprising is the result that the version with I/O scheduling
perform worse than the version without I/O scheduling in the high update (right side)
and thus high I/O load part of the scale. The result is explainable, however, when we
note that at this end of the scale most of the 1/O, roughly 62%, consists of writing modi-
fied pages back to disk. As we discussed in Section 2.7.2, giving high priority to writes
can delay the service of read requests with lower priorities. One conclusion that we can
draw from this is that it may be advisable to give I/O writes lower priorities than reads.

We investigate this issue in depth in Chapters 4 and 5.

62



Figure 3-15 Disk Resident; I/O Scheduling.
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Figure 3-17 Disk Resident; Priority Assignment (No CC).
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Figure 3-19
18

Disk Resident; Concurrency Control.
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Figure 3-21 Disk Resident; Input Step Function.
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Figure 3-22 Disk Resident; Concurrency Control.
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Figure 3-23 Disk Resident; Concurrency Control.
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3.5 Conclusions

Our simulation results have illustrated the tradeoffs involved, at least under one
representative database and transaction model. Before reaching some general conclu-
sions, we would like to make two observations. The first observation is that our base
parameters represent a high load scenario. One could argue that such a scenario is "unre-
alistic." However, we believe that for designing real-time schedulers, one must look at
precisely these high load situations. Even though they may not arise frequently, one
would like to have a system that misses as few deadlines as possible when these peaks
occur. In other words, when a "crisis" hits and the database system is under pressure is

precisely when making a few extra deadlines could be most important.

It could also be argued that some of the differences between the various schedul-
ing options is not striking. In many cases, the difference between one option and another
one is a few percentage points. If we were discussing transaction response times, then a
say 10 percent improvement would not be considered impressive by some. However,
our graphs show missed deadlines (in most cases) and we believe that this is a very dif-
ferent situation. Again, the difference between missing even one deadline and not miss-
ing it could be significant. Thus, if we do know that some scheduling options reduce the

number of missed deadlines, why not go with the best one?

And which are the best options? It is difficult to make any absolute statements,
but we believe the following statements hold under most of the parameter ranges we

tested.

e (a) Using an overload management policy test to screen out transactions that have
missed (NT) or are about to miss their deadlines (FD) greatly improves system per-

formance. Aborting a few late transactions helps all remaining jobs to meet their
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deadlines. Of course, in some applications we may be forced to use the less efficient
All Eligible (AE) policy because transactions must be executed even if they miss

their deadlines.
When the database is memory resident:

(a) Of the tested priority policies, when missed deadlines is the metric, Earliest
Deadline (ED) performs best at lower load settings while Least Slack (LS), stati-
cally evaluated, performs best at higher load settings. Policy LSC, (Least Slack,
continuous evaluation) performs slightly worse than ED but better than First
Come First Serve (FCFS) which is the poorest policy overall. When Mean Tardy
Time is the metric, LS, statically evaluated, is the poorest performing policy, at

all load settings. The best two are ED and LSC while FCFS is slightly worse.

(b) Of the tested concurrency control policies, Wait Promote (WP) and Conditional
Restart (CR) are clearly the preferred policies to pair with LS. Policy LS per-
forms poorly when paired with either Wait (W) or High Priority (HP). For ED,
policies W, WP and CR all have similar performance. Policy HP is the worst
choice for ED. It makes no difference which policy is used with FCFS because

the database is memory resident.

(c) Bias in the runtime estimate E has a large effect on the overload management
policy FD. The effect on LS is relatively small but the effect on LSC is larger.
Also the effect on the concurrency control policy CR is small. As expected, all

policies perform worse when the error in E increases.

(d) The priority assignment policy LS permits a greater level of concurrency than
both ED and FCFS. Greater levels of concurrency increases the probability of

conflicts and priority inversions. Priority inversions can be handled effectively
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by using priority inheritance. Thus LS/W and LS/HP are more sensitive to ex-

periments which change the rate of conflict than are LS/WP and LS/CR.
When the database is disk resident:

(a) Of the tested priority policies for real-time database systems, Least Slack (LS) is
the best overall. It always performed better than FCFS, and was better than ED
under the higher load ranges. Earliest deadline (ED) is the second choice for as-
signing priorities.

(b) Of the concurrency control policies we tested, Wait Promote (WP) is the best
overall. It performs very well when combined with either LS or ED. Conditional

Restart (CR) is the second choice. High Priority (HP) does not do well with

either LS or ED.

(c) When the I/O system is heavily loaded, using real-time transaction priorities to
schedule 1/O requests yields significant performance gains over scheduling 1/O

requests in a FIFO manner.
When the load is an "input step function":

(a) ED is the best priority policy to use. It performs better than LS at the higher load

settings for three of the four concurrency control policies.

(b) HP is the best concurrency control policy. It is the best of the four when com-
bined with either ED or LS. The second and third choices for concurrency are

CR and WP.

Differences in the transaction model make it difficult to compare our results di-

rectly to those reported in [HSTR]. However we can report broad agreement on some

results. The method of CPU scheduling is the most important policy. This is sensible as

o



transactions issue requests for other resources only after they have gained the CPU. Us-
ing real-time transaction information in concurrency control policies yields better per-
formance over policies that do not use this information. Finally, for CPU scheduling,
they reported that ED is most sensitive to deadline distributions and is useful only when
deadlines are not too tight. This agrees with our finding that ED performs well only un-

der the lower load settings.

o



Chapter 4 Scheduling Disk Requests with Deadlines

4.1 Introduction

So far, we have used a simple model of an I/O system was used to study the ef-
fect of using real-time priorities to schedule disk accesses. Our results indicated that pri-
ority based disk scheduling could be beneficial to overall performance. However the in-
teraction between reads and writes needed to be carefully controlled. This chapter

examines in more detail the problem of scheduling I/O requests with deadlines.

Consider a common method for modeling a transaction in centralized database
system: a transaction is an alternating sequence of data actions (reads and updates) and
compute actions. The sequence terminates with a COMMIT action where log processing
is done and locks are released. Finally, the modified pages produced by the transaction
are written to the disk resident database. If we make the assumption that memory is
large enough to hold all uncommitted updates, i.e., a =STEAL buffer management strat-

egy, then the following observations are true:

e Requests to read pages from the disk resident database are always performed before

the requesting transaction is committed.

e Requests to write modified pages back to the disk are always performed after the

transaction which created the modified pages has committed.

These observations are particularly important in the context of a system which
executes real-time transactions. It means that the I/O system will service two types of
requests: reads and writes. Read requests are issued by uncommitted real-time transac-
tions. These requests should receive service in accordance with the time constraints of
the tasks that issued them. In general, this means that read requests issued by tasks with

immediate deadlines are serviced before read requests issued by tasks with later dead-
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lines. How the time constraints of the issuing tasks can be inherited by the read requests
themselves is but one question. How should we evaluate system performance in meeting

these time constraints is another.

Read requests have explicit time constraints that they inherit from the tasks that
issued them. Write requests do not have explicit time constraints because they are not
issued by real-time tasks. For example, a buffer manager regularly writes modified
pages to disk in order to maintain a suitable amount of free memory. Typically, the per-
formance of a buffer manager is not measured with real-time metrics. A write request
must be serviced but when it should be serviced is not clear. On the one hand, write re-
quests should be serviced at an average rate that is equal to their average arrival rate. On
the other hand, servicing write requests can interfere with the timely servicing of read
requests. This interference should be minimized. How can we service write requests and
still meet the deadlines of read requests? How can we ensure that write requests are

serviced "often enough"” even though they lack real-time constraints?

It is certainly conceivable that some write requests in a real-time transaction sys-
tem will have explicit hard deadlines. For example, a distributed real-time system may
implement a timed atomic commit protocol must complete before the next can begin.
The completion of a phase is recorded by writing a record to stable storage, i.e., the
disk. However we believe that the above observations are true for most I/O requests.
Therefore, throughout Chapters 4 and 5 we will refer to 1/O requests with deadlines as
reads, and requests without deadlines as writes. However our model and scheduling al-

gorithms can work for write requests with deadlines as well.

Finally, there is the problem of scheduling the disk head itself. Traditional algo-

rithms perform seek optimization to meet non real-time performance goals. Will these
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same algorithms perform well under real-time metrics? What kinds of algorithms can be
developed using deadline information? How well do they perform? Should read requests
be handled differently from write requests? How should the requests be sequenced so

that time constraints are met and the disk resource is used efficiently?

These questions are addressed in the following sections. Section 4.2 presents our
basic model and assumptions. The model contains our methods for creating streams of
I/0O requests as well as the metrics we will use to measure the performance of the sched-
uling algorithms. Section 4.3 addresses the problem of guaranteeing a suitable service
rate for write requests, and Section 4.4 presents a number of algorithms for scheduling
the disk head. Section <IO simulation model> describes the detailed simulation model
used to evaluate the performance of the various scheduling techniques and our experi-

mental results are presented in Section 5.2.

4.2 Model and Assumptions

The basic model that we use to study the problem of scheduling I/O requests
with deadlines is shown in Figure 4-1. Our model has two halves: memory, which is de-
picted on the left and the I/O subsystem which is shown on the right. The boundary be-
tween the two serves as a deadline checkpoint, a place where we evaluate if time con-

straints have been met.

Read and write requests are generated not by transactions directly but by a buffer
manager that lies between the running transactions and the disk handler. This buffer
manager receives read and write requests from the transactions, and in turn generates

read and write requests for the disk handler.

If a transaction read request cannot be satisfied by a page in the buffer, then the

request is forwarded to the disk handler. We model each read request by the pair (p, d),
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where p is the required page, and d is the deadline. The deadline d is determined by the
buffer manager based on the deadline of the transaction that issued the read. Each re-

quest also identifies the page in the buffer that is to hold the newly read page.

Thus read requests are issued by the buffer manager, serviced by the disk han-
dler, and processed by the disk. The data becomes available to the requesting transaction
only when the page has been read into the memory buffer. So the deadline for a read
request sets a time limit for the round trip from issuance, through the controller level
read queue and back to main memory. The path of read requests is shown in Figure 4-1.
Note that the deadline is checked at the border between memory and the I/O system

(disk handler) on the way back from the disk.

When the buffer manager needs to clear buffer space (or needs to force writes to
disk), it flushes dirty buffer pages. This generates write requests for the disk handler.
We do not model the particular page replacement or force policy used by the buffer

manager itself. Rather, we assume that write requests are generated at an average rate
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?Lw. A write request (f, d) means the buffer manager needs to free frame f by time d. The

contents of frame fis a modified data page p.

Figure 4-1 Model for I/0 Requests with Deadlines
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There are a several ways to model how a modified page is written out to disk.
For example, page p can remain in memory while a write request is issued to the I/O
system. The write request would eventually be scheduled at the disk and the data page is
pulled from main memory and written on the disk. This model is an analog of the read
request model. The buffer frame is not actually emptied until the write is performed at
the disk. The deadline is a time constraint on the movement of data from the memory to

this disk.

A serious flaw with this method is that a deadline is associated with an individ-
ual write request from the time it is issued until it is serviced at the disk. Unlike read

requests, there is no natural way to assign these individual deadlines since write requests
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are not issued by real-time transactions. The buffer manager is concerned only with

freeing buffer frames; it does not care about when specific pages are written to disk.

A second way to model how a buffer page makes its way to disk is shown in
Figure 4-1. Under this model the modified page p is first copied into a frame in a fixed
size buffer pool. We call this buffer the k-buffer where k is the number of available
frames. This buffer is managed by the disk handler and is separate from the buffer used
by the buffer manager. The k-buffer can be thought of as a buffer at the disk controller,
or as a buffer at a lower level of the operating system than the buffer directly seen by
transactions. (The latter is a common arrangement, where the database management sys-
tem manages its own buffer for transactions, and the operating system underneath man-

ages the k-buffer.)

Once a page is copied into the k-buffer, the frame f is free. Thus, the deadline is
satisfied if this copy is done before time d. The copy can be done immediately so long
as there is an empty place in the k-buffer. If there is not, then the page must wait in the
frame f until a place becomes available. Note that in this case the deadline applies only
to the buffer to buffer copy operation, and not to the eventual disk write. Section 4.3
discusses how we create time constraints for emptying the k-buffer so that copy opera-

tion deadlines are met.

The model we have presented is relatively simple; yet we think it captures the
essential aspects of the disk handler and buffer manager interactions. A more complete
model could be postulated, one that included the details of the buffer manager, CPU
scheduling, and the transactions themselves. Such a model would let us study the per-

formance of the overall system. However, since our model uncouples the disk handler
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from the rest of the system and reduces the number of irrelevant parameters, we believe

it is better suited to studying the finer points of disk scheduling.

One last observation we make concerns the the use of deadlines at the level of
individual I/O requests. Clearly, the top level transactions have deadlines. But how are
these deadlines translated into deadlines for the individual read requests made by the
buffer manager? Would it be better to use fixed priorities for the read requests, as sug-

gested by [CJL1]?

Regarding the first question, there are many ways to translate deadlines. The
simplest is to give the I/O request the same deadline as the issuing transaction. A more
sophisticated approach would account for future requests to be issued by the transaction
as well. For example, if it is known that a transaction typically issues 10 read requests,
the first one would get a tenth of the remaining time to the final deadline, and so on. But
if no access pattern information is available, the simple approach is probably the best.
That is, in this case the I/O requests should be prioritized by the deadline of the issuing
transaction. Although the issue of assigning deadlines is important, we do not discuss it

further in this thesis.

Regarding the second question, a fixed priority scheme is an alternative to dead-
lines. Fixed priorities are natural in some applications, but in applications where dead-
lines exist, we believe it is more natural to work with deadlines and to carry them
through to lower level tasks like I/0O requests. Furthermore, deadlines give us more
flexibility: 1) we are not constrained to a fixed set of priorities, 2) we can tell when a
request is infeasible and can be ignored, and 3) they may be more useful in a distributed

system where the priorities of one computer may be different from those of others.
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4.3 Managing the k-Buffer

Our model contains two types of I/O requests: those with deadlines and those
without. The normal mode of operation is to give priority to servicing the requests with
deadlines. The requests without deadlines are serviced either when there are no read re-
quests or when there is little space left to buffer the write requests and the buffer is in
danger of overflowing. This section discusses two heuristic techniques that can be used
to trigger service for write requests. These policies provide a way to decide if the next
1/0 request to service will be a read or a write. They do not choose which particular re-

quest to service. This decision is left to the scheduling policies in Section 4.4.

4.3.1 Space Threshold

The motivation of the Space Threshold policy is to maintain a minimum amount
of free space in the write buffer at all times, so that each arriving write request will find
an open slot in the buffer. The amount of free space that is maintained is a parameter
that can be tuned to accommodate the expected "burstiness” of the write arrival pattern.

A space threshold heuristic is applied as follows:

Figure 4-2 Space Threshold

IF Free Space < Threshold OR there are no read requests
THEN Service write requests.

ELSE Service read requests

Preferential service is granted to read requests so long as the space threshold has not
been exceeded. Otherwise, write requests are serviced. Write requests are also serviced

when there are no read requests in the system.
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4.3.2 Time Threshold

The motivation of the Time Threshold technique is to create an artificial dead-
line for a write event. We use the term "write event” to denote the action of writing the
contents of a buffer slot to disk. Note that a write event, and hence the write event dead-
line, is not associated with a particular write request. It is unimportant which request is
serviced as long as the buffer as a whole does not overflow. The closeness of the write
event deadline reflects the urgency of emptying a buffer slot. If the buffer is relatively
empty then the deadline would be far off. If the buffer is nearly full then the deadline
would be much sooner. Let Dy, be the deadline for the write event. The Time Thresh-

old approach is applied as follows:

Figure 4-3 Time Threshold

IF Dy, <The earliest read deadline OR there are no read requests
THEN Service a write request

ELSE Service read requests

Again, the method for choosing which read or write request to service is decided by one
of the algorithms in Section 4.4.

In contrast to the Space Threshold approach, Time Threshold always gives con-
sideration to the timing requirements of read requests, regardless of how full the write
buffer is. However, when the buffer is almost full, it is unlikely that any read request
will have an earlier deadline than Dy,. The problem now is to assign appropriate dead-
lines for write events. We chose to adopt a simple linear function which uses the state of
the write buffer (amount of free space) and an estimate of write arrival patterns in order

to create write event deadlines.
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4.3.2.1 Linear Function for Setting DW
Using this approach, the closeness of the deadline varies linearly with the

amount of free space in the write buffer. The average inter-arrival time of write requests
is the slope. Thus DW =1t + (1 / Write_Rate) * (free space + 1). Write_Rate is the
average arrival rate of write requests and ¢ is the current time. Thus if a write request
arrives and fills the last slot in the buffer, i.e., free space = 0, then DW is set to (1 /
Write_Rate) seconds from the current time. If a buffer can be emptied before the next

write arrival is expected then the buffer will not overflow.

Other functions to set Dy, are possible. For example, one could choose a func-
tion that varies Dy, quadratically with the amount of available free space. Another op-
tion is to set an acceptably small probability for not overflowing the write buffer and
work backward from the Poisson probability functions to solve for the expected time at
which the overflow would occur. However these methods seem unnecessarily compli-
cated and we found (see Section 5.2) that the Space Threshold and simple linear func-

tion for the Time Threshold technique worked well in practice.

4.4 Disk Scheduling Algorithms

This section presents a number of algorithms for scheduling I/O requests. The
first three are traditional disk scheduling algorithms that have been studied before, al-
though not in the context of real-time performance metrics. This group of scheduling
policies does not use deadline information to make scheduling decisions. Seek optimiza-
tion, if done at all, is done with the use of track information. The algorithms that we
have chosen are generally acknowledged to perform well under one or more of the tradi-
tional non real-time performance metrics: average response time, throughput, fairness to

requests. Thus their performance can be used as a reference against which the real-time
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scheduling algorithms can be compared. The second group of three are new algorithms
that are specifically designed for the real-time environment. These algorithms do make

use of deadline information.

In the following subsections we explain each scheduling policy and illustrate
how it can be combined with the policies for managing the k-buffer (Section 4.3) in
order to create a complete algorithm. The set of requests which the algorithm is trying to
schedule is composed of the read requests, each a pair (p, d), and the writes, each simply
(p). We use p to denote the track number where the page is located on disk, and d is the
deadline for read requests. If the Space Threshold technique is used for managing the
k-buffer then F denotes the free space threshold. If the Time Threshold technique is em-

ployed, then D denotes the write event deadline.

4.5 Three Traditional Algorithms

We chose to study three traditional disk scheduling algorithms under real-time
performance metrics. They are First-Come-First-Served (FCFS), Shortest-Seek-Time-
First (SSTF), and the elevator algorithm SCAN. The performance of these algorithms

under non real-time metrics has been studied extensively [CH, CKR, GD, TP, Wil.

The traditional algorithms schedule from a single pool of requests. There is no
distinction between read and write requests. Also these scheduling models do not use a
buffer pool to buffer write requests. Applied as is to our model, the algorithms do not

use a special policy for managing the k-buffer.

Although these algorithms do not require the use of a buffer management tech-

nique they can be modified to make better use of the k-buffer by combining them with
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the Space Threshold technique. For example, combining FCFS with Space Threshold

produces the following algorithm:

Figure 4-4 FCFS Scheduling with Space Threshold

IF Buffer free space <F OR there are no read requests
THEN Service the closest write request.

ELSE Service the read request with the earliest arrival time.

The FCFS scheduling policy is applied only to read requests. When the k-buffer
is nearly full, and in danger of overflowing, the algorithm will service the closest write
request thereby emptying the k-buffer as quickly as possible. Notice that write requests
are only serviced when the free space threshold has been exceeded or when there are no

read requests to service.

4.6 Three Real-Time Scheduling Algorithms

4.6.1 Earliest Deadline First (ED)

The Earliest Deadline algorithm is an analog of FCFS. read requests are ordered
according to deadline and the request with the earliest deadline is serviced first. Since
no positional information is used to make scheduling decisions, ED will have the same
expected seek time profile as FCFS. Unlike the first three algorithms, it is necessary to
use ED with one of the k-buffer management techniques. This is because ED uses only
deadline information to make scheduling decisions. Since write requests do not have
deadlines, one of the k-buffer management techniques must be employed to guarantee

that the k-buffer is emptied.
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Combining ED with the Space Threshold technique for managing the k-buffer produces

the following algorithm:

Figure 4-5 Earliest Deadline Scheduling with Space Threshold

IF Buffer free space <F OR there are no read requests
THEN Service the closest write request

ELSE Service the read request with the earliest deadline.

Combining ED with a Time Threshold technique for managing the k-buffer pro-

duces the following algorithm: (Recall that Dy, denotes the write event deadline.)

Figure 4-6 Earliest Deadline Scheduling with Time Threshold

IF Dy, < the earliest read deadline OR there are no read requests
THEN Service the closest write request

ELSE Service the read request with the earliest deadline

4.6.2 Earliest Deadline SCAN (D-SCAN)
This algorithm is a modification of the traditional SCAN algorithm. In D-SCAN

the track location of the read request with the earliest deadline is used to determine the
scan direction. The head seeks in the direction of the read request with the earliest dead-
line servicing all read requests along the way (these will be for requests with later dead-
lines) until it reaches the target track. After the target request is serviced, the scan direc-
tion is updated towards the direction of the read request with the next earliest deadline.
We have chosen to use earliest deadline to select the scan direction, however any real-

time priority scheme could be used, e.g., least slack.

Unlike the traditional SCAN algorithm the new scan direction may be the same

as the previous scan direction. Also, the scan direction can change before the target



track is reached. This will happen if a request with an earlier deadline than the target
request, and a track location behind the current head position arrives after the scan di-
rection is chosen. Also D-SCAN does not scan to the last request in a particular direc-
tion. If the requests with the earliest deadlines are grouped within a small region, then
D-SCAN will scan only in that region. However as time progresses, the deadlines of re-
quests at other portions of the disk will be the earliest and the head will scan over those

portions of the disk.

Like ED, D-SCAN must be combined with one of the k-buffer management
techniques to ensure that write requests are serviced. Using the Time Threshold tech-

nique produces the following algorithm:

Figure 4-7 D-SCAN Scheduling with Time Threshold
IF DW < the earliest read deadline OR there are no read requests

THEN Service the closest write request

ELSE Service the closest read request in the scan direction.

4.6.3 Feasible Deadline Scan (FD-SCAN)
The FD-SCAN algorithm is similar to D-SCAN except that only read requests

with feasible deadlines are chosen as targets that determine the scanning direction. A
deadline is feasible if we estimate that it can be met. More specifically, a request that is
n tracks away from the current head position has a feasible deadline d if d > ¢+ Ac-
cess(n) where t is the current time and Access(n) is a function that yields the expected

time needed to service a request n tracks away.

Each time that a scheduling decision is made, the read requests are examined to

determine which have feasible deadlines given the current head position. The request
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with the earliest feasible deadline is the target and determines the scanning direction.
The head scans toward the target servicing read requests along the way. These requests
either have deadlines later than the target request or have infeasible deadlines, ones that
cannot be met. If there is no read request with a feasible deadline, then FD-SCAN sim-
ply services the closest read request. Since all request deadlines have been (or will be)
missed, the order of service is no longer important for meeting deadlines and SSTF is

used to efficiently service the outstanding requests as quickly as possible.

Like ED, and D-SCAN, FD-SCAN must be combined with a buffer management
policy to ensure that write requests are serviced. Combining FD-SCAN with the Time

Threshold technique produces an algorithm similar to that produced by D-SCAN.

4.7 A Brief Note on Complexity

The algorithms we have proposed are heuristics and we do not claim that they
are optimal. An interesting question is what is an optimal algorithm for scheduling I/O
requests with deadlines? For the on-line scheduling problem, clearly no optimal algo-
rithm exists since we can use an adversarial strategy to issue requests that would defeat

any particular algorithm.

Consider an off-line version of the problem: at time O there are N 1/O requests.
Each needs to access a particular track before a deadline d. Let C(i) be a cost function
that expresses the amount of time needed to access a request i tracks away from the cur-
rent head position. The question is: can the requests be sequenced so that each request
meets its deadline? Not surprisingly, the difficulty in answering this question depends
on the cost function C(). If the cost function is linear in i then a dynamic programming

solution is optimal. For non-linear cost functions (the more realistic case for rotational
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disk devices) the existence of an optimal algorithm for the off-line case is an open prob-

lem [PSMK].

We believe this justifies the use of simulation for evaluating the performance of

the proposed algorithms.
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Chapter 5 Evaluation by Simulation

5.1 Simulation Model

To test the algorithms, we built a program to model real-time I/O requests in a
system with a single data disk. We make the realistic assumption that log writes are di-
rected toward a separate device. Our program was built using CSIM, a process-oriented

simulation language [Sc].

5.1.1 Device Model.

The program models a single-head disk device at the track level; we do not
model sectors within tracks. This is reasonable since none of the algorithms under study
performs rotational optimization. The names and meaning of the four parameters that

control the I/O system configuration are shown in Table 5-1.

Table 5-1 Device Parameters

Parameter Meaning Base Value
Tracks # of tracks on disk 1000
BufferSize # of pages in k-buffer 10
SeekFactor | Seek time scaling factor 0.6 ms
DiskConstant | Rotational latency plus transfer 15 ms.

The base values are not meant to represent a particular workload but were se-
lected as reasonable values within a range. Also our experiments vary the values of the
parameters to learn how the algorithms perform under different workload characteris-

tics.
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The access time for an I/O request n tracks away from the current head position

is expressed by the equation:

Access(n) = Seek(n) + Rotational latency + Transer time.

In our model, rotational latency and transfer time are grouped together in the sin-
gle parameter DiskConstant. In today’s disk technology, seek times are non-linear with

seek distance[BG, SCO]. Accordingly, we use the function

Access(n) = Seek(n) + Rotational latenc
to model the time to seek n tracks. Thus the complete access time is given by the equa-
tion:
Access(n) = DiskFactor X \/n + DiskConstant

Using the values from Table 5-1 and assuming an average seek distance of 333 tracks,
the average access time for our modeled device is 26 ms. The average access time will

be used in the construction of individual request deadlines.

5.1.2 Workload Model

The names and meanings of the parameters that control the workload character-

istics are shown in Table 5-2.
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Table 5-2 Workload Parameters

Parameter Meaning Base Value
Read_Rate Read arrival rate

Write_Rate Write arrival rate

Min_Slack Minimum slack time (for reads) 10 ms
Max_Slack Maximum slack time (for reads 100 ms.

Requests for 1/O service arrive from an open source with exponentially distrib-
uted inter-arrival times with mean arrival rates denoted by Read Rate and Write_Rate
for read and write requests respectively. Each request needs to access a single track
which is chosen uniformly from the range request is placed in the k-buffer. The record-
ing of write missed deadlines (buffer overflows) and the setting of the write event dead-
line are done as explained in Sections 4.2 and 4.3. If the request is a read, then it is
placed in a queue and its deadline is chosen as follows. A slack time is chosen uni-
formly from the range [Min_Slack, Max Slack]. The equation for computing the dead-

line is:

Deadline = Arrival time + Average access time + Slack time

In reality, deadlines can be unreasonable, or impossible to meet. In our experiments we
want to avoid scenarios where deadlines are either, (1) so slack that any scheduling al-
gorithm will meet them, or (2) so tight that no algorithm could meet them. Thus we tried
to choose deadlines that leave some room for "intelligent" scheduling. Our experiments

will then show which algorithms have this "intelligence."

5.1.3 Data Generation and Metrics

In the following sections we discuss some of the results from the experiments
that we performed. Due to space considerations we cannot present all of our results but

have selected the graphs which best illustrate the differences and performance of the al-
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gorithms. For each experiment we ran the simulation using 40 different random number
seeds. Each run continued until 3000 I/O requests were processed. Numerous perform-
ance statistics were collected and averaged over the 40 runs. It is not necessary to throw
away the early statistics during a "warm-up" period. The initial state of each run - empty
queues and a randomly chosen head position - is equivalent to the system state at any
other time that the system is idle. Since our parameters exercise the system within its

throughput capacity for most of the algorithms, idle periods during a run do occur.

The primary metric that we use to measure performance is percentage of missed
deadlines. Recall that our goal is to schedule I/O requests so that they meet their individ-
ual response time goals, or deadlines. Measuring the percentage of requests that miss
their deadlines is a good performance metric for this goal. Since our model contains two

types of deadlines, we measure the performance of each separately using the following

equations:
1 " Missed Read deadlines
%Missed Read Deadlines = x 100
Number of Reads serviced
%Missed Write Deadlines = M5 Write _deadh_"es x 100
Number of Write arrivals

We also collected statistics on response times, seek times, seek distances and
queue lengths for both read and write requests. The mean values of these metrics are
presented in the graphs that follow. The graphs also plot 95% confidence intervals as
error bars around each data point. These intervals are so small however, that they are

rarely visible outside the bullet that is used to mark a data point.
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5.2 Simulation Results

This section presents results for three different sets of experiments. In the first
set, only requests with explicit deadlines are scheduled. We will continue to refer to
requests with deadlines as reads but they could in fact be writes with explicit deadlines.
In the second set of experiments we add the k-buffer and examine scheduling of both
read requests with explicit deadlines and write requests without. In the last, we simulate
a periodic checkpointing task that issues a fixed number of write requests all having the
same deadline. The checkpoint generated requests are scheduled concurrently with the

regular stream of read requests. This experiment is done without the k-buffer.

5.3 Read Requests Only

In this set of experiments we studied performance behavior under a workload
that contained only I/O requests with deadlines. Deadlines were chosen according to the

method described in Section <IO simulation model>.

5.3.1 Experiment 1: Min_Slack = 50, Max_Slack = 50

In the first experiment, the Min_Slack and Max Slack parameters were both set
to 50 ms. Thus each request had a deadline that was approximately 76 ms from its arri-
val time (average access plus 50 ms). This also guarantees that arriving requests have
later deadlines than requests already in the queue. The parameter Read Rate was varied
from 22 requests per second to 40 requests per seconds in increments of 2. Figure 5-1
graphs %Missed Read Deadlines for all six scheduling algorithms. Because of the way
that deadlines are assigned, FCFS and ED have exactly the same behavior. The data for
these two algorithms is omitted for arrival rates greater than 36 since these two algo-

rithms are unable to meet the throughput demands due to inefficient use of the disk.
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These parameter settings describe a very difficult workload where many dead-
lines are missed. One could argue that such a scenario is unrealistic. However, we be-
lieve that for designing real-time schedulers, once must look at precisely these high-load
situations. Even though they may arise infrequently, one would like to have a system

that misses as few deadlines as possible when these peaks occur.

The results show that FD-SCAN consistently has the best performance across all
load settings. At the highest setting, FD-SCAN misses approximately 6.5% fewer dead-
lines that SSTF, the second best algorithm. This represents a performance improvement
of about 15%. The SCAN and D-SCAN algorithms are the next best with SCAN being

slightly better.

The SSTF and SCAN algorithms work well because they move the disk head ef-
ficiently and thus use the disk resource efficiently. The mean seek distance, and thus
mean response time, is significantly lower for these two algorithms, Figure 5-2. Impor-
tantly, the mean seek distance decreases significantly as the load increases. This is not
surprising since it is exactly how these algorithms were designed to work. The SSTF
and SCAN algorithms are excellent baseline algorithms to try to beat precisely because
they use the disk resource efficiently. However, they schedule the requests randomly
with respect to deadlines. Our goal is to learn which algorithms can beat SSTF and

SCAN by doing intelligent deadline scheduling, and yet still use the disk efficiently

In contrast to SSTF and SCAN, FCFS and ED move the disk arm very
inefficiently, performing a random seek for every request. As the load increases, these

two algorithms are unable to maintain throughput.

The two real-time algorithms D-SCAN and FD-SCAN try to do intelligent dead-

line scheduling and move the disk arm efficiently. In this experiment, Figure 5-1, we see
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that D-SCAN performs similarly to SCAN. Because of the way deadlines are assigned,
D-SCAN scans the disk in much the same way as SCAN. First, recall that ordering re-
quests by deadline is equivalent to ordering by arrival time. Consider the disk head at
some point during a scan. The requests behind the head (in the wake of the scan) will be
recent arrivals. The requests lying in front of the head will contain some recent arrivals
but more older requests as well. The scan direction will not change until these older re-
quests are serviced. Once they are, the oldest requests are now at the other end of the
disk and the scan reverses direction. Because a newly arrived request cannot change the

direction of scan, D-SCAN operates much like SCAN.

The FD-SCAN algorithm has the best performance because it gives high priority
to requests with feasible deadlines. Thus FD-SCAN may change direction to service a
recent arrival if it determines that the older requests lying before it have infeasible dead-
lines. When all requests have infeasible deadlines, FD-SCAN defaults to SSTF which is

an efficient way to service the requests and empty the queue as rapidly as possible.

5.3.2 Experiment 2: Min_Slack = 10, Max_Slack = 50

In the second experiment we set Min_Slack = 10 ms. and Max_Slack = 50 ms.
This allows for a greater range of deadlines than the first experiment, but deadlines are
still relatively tight. As before Read_Rate was varied from 22 to 40 requests per second
in increments of 2. Figure 5-3 graphs %Missed Read Deadlines for the six algorithms.
As before, FD-SCAN consistently has the best performance, especially at the higher

load settings.

Now that deadlines are not assigned uniformly, ED and FCFS will have different
behavior. In fact, ED performs slightly better than FCES at the lowest loads. However,

ED rapidly loses its performance edge as the load increases. This occurs because ED
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seeks inefficiently and also because it always gives the highest priority to the request
with the earliest deadline. When the load is high, and the throughput rate is slipping, it is
unlikely that this deadline can be met. By servicing it with high priority, ED delays the

completion of requests with possibly feasible deadlines.

5.3.3 Experiment 3: Min_Slack = 10, Max_Slack = 100

In a third experiment we set Min_Slack = 10 ms and Max_Slack = 100 ms. This
allows an even greater range of deadlines. The load was varied as it was in the first two
experiments. Figure 5-4 graphs %Missed Read Deadlines for the six algorithms. This
time we see that ED misses the fewest deadlines when the arrival rate is low. At this
rate, all algorithms will have high mean seek distances because mean queue length is
small. Therefore ED is not handicapped, relative to the other algorithms, by its high
mean seek time. However, as the load exceeds 32 requests per second, performance de-

teriorates swiftly due to inefficient use of the disk.

Another interesting observation is that D-SCAN performs better than SSTF and
SCAN when the load is low and just as well when the load is high. The variability in
deadlines allows D-SCAN to make intelligent choices and still use use the disk effi-

ciently. At the higher load settings, FD-SCAN performs better than all other algorithms.

In Figure 5-5 we graph the Mean Tardy Time for all six algorithms. (Only re-
quests that miss their deadlines contribute to this metric.) The performance of ED is in-
teresting since it has the lowest Mean Tardy time when the load is low, but a very high
Mean Tardy time when the load is high. This is characteristic for ED; it can meet most
deadlines when the load is low but it rapidly saturates and misses most deadlines, by a
lot, when the load is high. Similar remarks apply to FCFS, although it does not perform

as well as ED.
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Algorithms SSTF, SCAN and D-SCAN have similar performance across the
range of loads. These algorithms have low Mean Tardy times because 1) they do not
miss many deadlines, (see Figure 5-4), and 2) they have low response time variances,
Figure 5-6. These three policies tend to limit the maximum response time experienced
by a request. The SCAN policy does this because it always sweeps to the edge of the
disk (or as far as the outermost request). Thus requests may miss their deadlines but they
are guaranteed to be serviced during the next scanning sweep. The D-SCAN algorithm
also bounds response time with its scanning behavior. Perhaps more important is the
fact that eventually, a request that remains unserviced will become the highest priority
request and thus become the target of the scan. Finally, SSTF bounds response times be-
cause of the uniform distribution of requests along the disk surface. Because requests

are not clustered, the head does not get "stuck"” in one area of the disk.

Interestingly, FD-SCAN has the highest Mean Tardy time, Figure 5-5. Although
FD-SCAN misses the fewest deadlines (see Figure 5-4), it misses them by a greater
amount. The Mean Tardy time is greater because requests with infeasible deadlines can
wait for a long time before they are serviced. In fact, requests with infeasible deadlines
are only serviced when they lie between the disk head and the current scanning target,
whenever a request with a feasible deadline exists. Thus a request, A could lie only one
track from the current head position but not be serviced because there is no request B
with a feasible deadline to "pull” the head over request A. Contrast this to SSTF which

would service A because it is so close.

The preceding discussion suggests that we examine how the algorithms perform
for certain areas of the disk. Figure 5-7 graphs the distribution of missed deadlines for

10 disk areas at Read Rate = 36 requests per second. Disk area 1 contains tracks 1-100,
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area 2, 101-200, and so on. The FCFS and ED algorithms are very fair, each area ac-
counts for 10% of the total number of missed deadlines. The SCAN algorithm is also
relatively fair. The FD-SCAN algorithm is remarkably unfair to requests in the two out-
ermost disk areas. A center area of the disk accounts for only 6% of the missed dead-

lines while each outermost area accounts for more than 16%.

Since requests on the outer tracks require longer seeks, they are more likely to
miss their deadlines. The SSTF, SCAN, D-SCAN and FD-SCAN policies all favor the
center tracks. However, SCAN regularly services the outer tracks. Requests that arrive
while the head is there will be serviced quickly and meet their deadlines. The D-SCAN
policy only services the outer areas when the earliest deadline request is located there.
The FD-SCAN policy discriminates against the outermost areas severely, scanning them
only when a request with a feasible deadline is there. However it is very bad only to the
outermost areas. The missed deadline distribution for the next to outermost areas is

comparable to SSTF, SCAN and D-SCAN.

Finally, we plot the Mean Queue Length for the algorithms in Figure 5-8. Both
ED and FCFS suffer throughput problems near an arrival rate of 36 requests per second
and this shows in the rapid increase in average queue length. The other two real-time
algorithms, FD-SCAN and D-SCAN, also have longer average queues than SSTF and
SCAN. However, the mean queue lengths are nearly always less than four requests.

Thus the load settings are high but not unreasonably so.

5.4 Read and Write Requests

In this set of experiments, we studied performance behavior under a workload

that contained both read and write I/O requests. We are interested in comparing the per-
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formance of the algorithms that do not manage the k-buffer to those that do manage the

buffer. Also we want to learn which algorithms are best overall.

5.4.1 Experiment 1: Vary Read_Rate

In the first experiment Write Rate was set at 10 requests per second while
Read Rate was varied from 12 to 30 requests per second in increments of 2. Note that
the cumulative arrival rate is the same as in the first set of experiments. The slack pa-
rameters had the base values shown in Table 5-2. Figure 5-9 graphs %Missed Read
Deadlines for both the traditional and the buffer adapted versions of SSTF and SCAN.
The buffer adapted versions use the Space Threshold technique with the threshold set to
1. It is obvious that the buffer adapted versions miss far fewer read deadlines than the
traditional versions. Figure 5-10 graphs %Missed Write Deadlines for the same experi-
ment. Note that although the buffer adapted versions do miss some write deadlines, it is
less than 2.5% of the total write arrivals. The traditional versions never let the buffer

overflow.

Figure 5-11 shows %Missed Read Deadlines for the three real-time algorithms
ED, D-SCAN and FD-SCAN, and the three buffer adapted traditional algorithms. The
real-time algorithms use the Time Threshold technique for buffer management. The oth-
ers use the Space Threshold technique. (We do not include the Space Threshold versions
of the real-time algorithms because the resulting graph would be too crowded. Also, we
found that, for this experiment, the Time Threshold version performed slightly better
than the Space Threshold version.) Although ED performs well at lower load settings,
its performance quickly deteriorates once Read Rate exceeds 22 requests per second.
At the highest rate, ED is no better than FCFS(B). The D-SCAN and SCAN(B) algo-

rithms have nearly identical performance. The second best performer is SSTF(B) and
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the best is FD-SCAN. At Read Rate = 30, FD-SCAN misses approximately 3% fewer

read deadlines than SSTF(B). This represents an improvement of 12%.

Figure 5-12 shows %Missed Write Deadlines for the same six algorithms. The
buffer adapted algorithms SSTF(B) and SCAN(B) permit significantly buffer overflows
than D-SCAN or FD-SCAN at the two highest load settings. This happens because D-
SCAN and FD-SCAN use the Time Threshold technique for managing the k-buffer.
(We are not saying that all Time Threshold techniques would behave like this, perhaps
some would be better. However, the one that we tested, namely the linear technique, ex-
hibits this performance.) When Read_Rate is high there is a greater chance that a read
request will have an earlier deadline than D, the write event deadline. Thus reads re-
ceive priority and more write deadlines are missed. Recall that FD-SCAN missed the
fewest read deadlines, Figure 5-11. When the two measures (missed reads and missed
writes) are combined in a weighted average, SSTF(B) and FD-SCAN have nearly iden-

tical performance.

5.4.2 Experiment 2: Vary Write_Rate

In a second experiment, Read Rate was fixed at 12 requests per second. and
Write_Rate was varied from 10 to 28 requests per second. The other parameters were
unchanged. Figure 5-13 graphs the weighted average of %Missed Deadlines for both
reads and writes. Note that all the algorithms that make effective use of the write buffer
performs better than the traditional versions of SSTF and SCAN. One reason for the
lack of differentiation among the better performing algorithms is that they all are miss-
ing very few deadlines anyway. It is easy to meet deadlines because the request stream
consists mostly of write requests, and meeting write deadlines (keeping the buffer from

overflowing) is much easier to do than meeting the individual read deadlines. However,
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when Write Rate is large enough, buffer overflows become more of a problem. In this
experiment, %Missed Write Deadlines increases from less than 1% at 22 writes per sec-
ond to roughly 6% at 28 requests per second for the algorithms that manage the k-buffer.

This accounts for most of the increase in %Missed Deadlines in Figure 5-13.

5.4.3 Experiment 3: Vary Buffer_Size

In a third experiment, Read Rate was fixed at 20 requests per second,
Write Rate at 16, and Buffer Size was varied from 5 to 14. %Missed Read Deadlines
versus Buffer Size is shown in Figure 5-14. First, note that SSTF and SCAN do not
change. These algorithms do not manage the &-buffer, thus changing the buffer size will
not affect %Missed Read Deadlines. Second, all of the algorithms that manage the k-
buffer perform much better than SSTF and SCAN. These algorithms can delay servicing
writes in order to meet the deadlines for reads. The amount that they can delay, and thus
the effective advantage to read scheduling, increases significantly as the buffer size in-
creases. Finally, we note that FD-SCAN performs the best with SSTF(B) and D-SCAN
tied for second. Also, no algorithms missed any write deadlines for any of the buffer

size settings.

5.4.4 Experiment 4: Vary Space_Threshold

In a fourth experiment, Read Rate was fixed at 16 requests per second,
Write Rate at 20, Buffer Size at 10, and the Space Threshold parameter was varied
from 1 to 4. (Recall that Space_Threshold controls when the emptying of the k-buffer is
triggered for those algorithms that use the Space Threshold technique for managing the
k-buffer.) Thus, when Space Threshold = 1, the emptying of the k-buffer is triggered
only when the buffer is full (free space < 1). When Space_Threshold = 4, the emptying

of the k-buffer is triggered when there are only three empty spaces left.
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Figure 5-15 graphs %Missed Read Deadlines for the three traditional algorithms
which use Space_Threshold. The FD-SCAN algorithm, which uses Time_Threshold, is
also shown. Note that the graph for FD-SCAN is flat since it is not affected by the
Space_Threshold parameter. The other three algorithms miss more read deadlines as the
Space Threshold parameter increases. Although we do not show the graph, these algo-
rithms also miss fewer write deadlines. However when Space_Threshold = 3, these three
algorithms miss less than 1 percent of write deadlines and increasing Space_Threshold
further does not improve write performance any more. Moreover, the ability to make the
best use of all of the k-buffer is hampered. Similar behavior was observed for algo-
rithms using Time_Threshold when the function that sets the write deadline was varied

from being optimistic to pessimistic.

5.5 A Checkpointing Experiment

So far we have assumed that pages modified by a transaction can be written to
disk at any time after its commit. In some systems, however, it is required to periodi-
cally force out to disk all dirty pages in order to achieve a checkpoint [Gr]. At the
checkpoint, the system writes in the log a special record. This record, together with the
flushed pages, contain enough information so that a consistent database state (as of this

point in time) can be reconstructed in case of failure.

We may model a checkpointing system by assuming that the time of the next
checkpoint is known in advance. The writes issued by the buffer manager have this time
as their deadline. Thus, writes issued long before the checkpoint time will not be urgent;
writes issued close to the checkpoint will be more urgent. Read requests are serviced
concurrently; their deadlines are independent of the checkpointing. When the check-

point time arrives, the special log record is written, a new checkpoint time is selected
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and the process repeats itself. What we have described here is a rough approximation to
what really takes place, but we believe it is realistic enough to let us study our disk

scheduling algorithms.

In a final experiment we implemented such a checkpointing model. The Poisson
stream of read arrivals governed by Read Rate and the two slack parameters, is un-
changed. Two new parameters Check Period and Check_Size were introduced to de-
scribe a periodic checkpointing process that issues Check Size requests every
Check Period seconds. At the beginning of a checkpoint, Check_Size unique 1/O re-
quests are generated. Each of these requests has a deadline equal to the start of the next
checkpoint period. The checkpoint requests "arrive” in the system at equally spaced in-
tervals, one every (Check_Period/Check_Size) * 0.75 seconds. Thus all the checkpoint
requests for a particular period are issued in the first 3/4 of that period. The process re-
peats when the next checkpoint time is reached. Note that the requests in this system all

have explicit deadlines. No k-buffer is used; all requests are directed to a single queue.

We conducted an experiment where Check_Period = 30 sec. and Check_Size =
100 and Read Rate varied from 26 to 40 requests per second. The slack parameters
were as in Table 5-2. Figure 5-16 graphs %Missed Deadlines (both checkpoint and non-
checkpoint requests) for the top four algorithms. The FD-SCAN algorithm clearly has
the best performance. It is able to delay servicing the checkpoint requests in favor of
read requests with more urgent deadlines. However, as the checkpoint deadline ap-
proaches, the checkpoint requests have the highest priority and they are serviced ahead

of reads.
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Figure 5-5 Min_Slack = 10, Max_Slack = 100
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Figure 5-7 Min_Slack = 10, Max_Slack = 100
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Figure 5-9 Vary Read_Rate
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Figure 5-11 Vary Read_Rate
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Figure 5-13 Vary Write_Rate
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Figure 5-15 Vary Space_Threshold
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5.6 Conclusions

In Chapters 4 and 5 we have presented a number of new algorithms for schedul-
ing I/O requests with deadlines. The algorithms were evaluated via detailed simulation
and compared with traditional scheduling algorithms. One new algorithm, FD-SCAN,

had consistently the best performance in a wide variety of experiments.

We also investigated a model for handling read requests differently from write
requests. This model buffers write requests in a separate queue from read requests. Two
techniques for managing the buffer were examined and both were found to be effective.
The overall approach of buffering writes was especially helpful for meeting read dead-
lines. We believe that systems. e.g., real-time information systems, that produce read re-

quests with deadlines and write requests without, can use this approach to great benefit.
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Chapter 6 Future Directions

The research area known as real-time databases or real-time transaction schedul-
ing is only four years old. This thesis presents some of the earliest work done in this
area and represents a significant contribution to computer science. Indeed, much of the
work by other researchers has either built upon our work or compared itself to ours.

[HCL1, HSRT1].

As might be expected of such a young field, some of the results presented so far
are contradictory and by no means is there a consensus on which are the best algorithms.
For example, we have reported that concurrency control policies that combine blocking
with priority inheritance (Wait Promote, Conditional Restart) generally perform better
than a policy that aborts lower priority transactions in order to favor higher priority ones
(High Priority). The opposite of this result is reported in [HSRT1]. The reason for this
may lie in the fact that they used an experimental testbed for their performance results
and were unable to program the disk device driver to implement priority scheduling of
1/0 requests. Our performance evaluation was done via simulation and did incorporate
priority based disk scheduling. Furthermore, our results show that priority based disk
scheduling significantly enhances the performance of the priority inheritance algorithms
(see Figure 3-15). The beneficial aspect of priority inheritance in real-time database sys-

tems is also reported in [SL].

The well-known debate regarding the performance of locking based concurrency
control protocols versus optimistic ones has surfaced in the field of real-time database
systems. One group of researchers has reported an optimistic concurrency control algo-

rithm that can generally perform better than a locking based protocol (our High Priority
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algorithm) [HCL1]. A different group of researchers has reported the opposite
[HSRT2].

The small differences in transaction models and the large differences in evalu-
ation techniques (e.g., simulation versus experimental testbed) make it difficult to re-
solve these competing claims. Only after many more researchers examine these prob-

lems will a clearer understanding of these problems begin to develop.

Although it would certainly be fruitful to develop more algorithms and analysis
for real-time transaction scheduling, we feel that a stronger, more integrated system and
transaction model is needed to support advancement in this field. We make that observa-
tion that traditional task models in the field of "hard" real-time scheduling generally as-
sume that the CPU is the only resource to be scheduled. If the model includes shared
access to data resources then the scheduler usually knows all task resource requirements
a priori. These types of models lead to the development of monolithic schedulers, or a

single scheduling algorithm that has global knowledge and makes global decisions.

By contrast, real-time database systems have many resources that are shared
among tasks and thus require scheduling. These resources include the CPU, memory,
data objects, communication links, and storage devices. In conventional systems each of
these resources is scheduled and controlled by an independent component. These are the
CPU scheduler, the buffer manager, the concurrency control manager, the ethernet con-
troller, and device drivers. Each of these schedulers acts independently from the others
and each employs its own policy to optimize performance. Each component has local

knowledge and makes local decisions.

This same approach that has been adopted in this thesis as well as all other work

on real-time transaction scheduling. We, (and others) have proposed and examined a
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number of choices for each scheduling component. The choices are combined to achieve
a total scheduling solution. A problem with this approach is that it leads to a multitude
of scheduling algorithms, far too many to analyze or understand completely. An alter-
nate approach would propose a stronger, more satisfactory model for transactions and
the transaction processing system. Components for scheduling system resources would
cooperate more closely in meeting transaction time-constraints. Instead of purely local
knowledge, a component might have regional or perhaps global knowledge. Local deci-
sions made by the individual scheduling component would then be reflected in this

global knowledge pool so that other components could make use of it.
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