THE DEMARCATION PROTOCOL:
A TECHNIQUE FOR MAINTAINING ARITHMETIC CONSTRAINTS
IN DISTRIBUTED DATABASE SYSTEMS

Daniel Barbara
Hector Garcia-Molina

CS-TR-320-91

April 1991

The Demarcation Protocol: A Technique for Maintaining Arithmetic
Constraints in Distributed Database Systems

Daniel Barbard
Hector Garcia-Molina

Department of Computer Science
Princeton University
Princeton, NJ 08544

ABSTRACT

Traditional protocols for distributed database management have high
message overhead, lock or restrain access to resources during protocol
execution, and may become impractical for some scenarios like real-time
systems and very large distributed databases. In this paper we present the
demarcation protocol; it overcomes these problems through the use of
explicit arithmetic consistency constraints as the correctness criteria. The
method establishes safe limits as ‘‘lines drawn in the sand” for updates
and gives a way of changing these limits dynamically, enforcing the con-

straints at all times.

April 23, 1991

The Demarcation Protocol: A Technique for Maintaining Arithmetic
Constraints in Distributed Database Systems

Daniel Barbard
Hector Garcia-Molina

Department of Computer Science
Princeton University
Princeton, NJ (08544

1. Introduction

Traditional protocols used to manage distributed data, such as two-phase commit,
require one or more rounds of messages, lock or restrain access to resources during the
protocol execution, and have a high overhead. Moreover, these protocols could render
data unavailable during failure periods, decreasing system availability. This may be
impractical for some scenarios, like those involving very large distributed data bases or
real-time systems. In this paper we propose an alternative protocol that overcomes these
problems through the use of explicit consistency constraints as the correctness criteria.
The method gives the nodes involved substantial autonomy for performing changes to

individual data items.

To illustrate, consider an application where ‘‘items’’ are stored in two separate loca-
tions. Assume there must be sufficient stock of these items among the two locations.
This could, for instance, correspond to a military application where planes are stationed
at two different bases, with the requirement that at all times the total number of stationed
planes cannot be below some specified limit. (Perhaps out of fear of being short of
planes in case of an attack.) Or it could also correspond to a retail business application
where the ‘‘parts’” stock at two warehouses must be maintained above a certain limit all
the time. Transactions will run trying to withdraw or add to the stock, and the system
should verify that the constraint is obeyed at all times. In the military application, planes
can be put out for maintenance, or sent off to missions, but the minimum number of

planes should be kept stationed at all times.

=10

In this example, we have two nodes, each storing the value of the stock kept at the
location. Let A and B be the data items at locations a and b respectively. Let the con-
straint be A + B = 100. Consider a typical transaction that attempts to withdraw A units
from A:

If A- A+ B < 100 then abort
else A=A-A

In a conventional transaction processing system, such a transaction would have to
lock data item B at location b, and A at a, verify whether the updated value satisfies the
constraint and in that case, update A and follow a two-phase commit protocol to ensure
that the transaction comumits. Notice that this would require two rounds of messages, and
will lock and limit access by other transactions to A and B during protocol execution,
resulting in a high overhead. The protocol could also render the data unavailable if one
node or the network fails during execution, thus decreasing the availability of the system.
This can occur because the two-phase commit protocol can block, i.e., after a failure the
nodes may not be able to determine the outcome (commit or abort) of the transaction.

Therefore, the nodes cannot release the locks and other transactions cannot run.

Alternatively, we could have a variable A; at node a that acts as a limit, and state
that transactions can continue withdrawing units of A as long as the final value of A
remains above A; (A 2 A;). Similarly, a variable B; will be stored in node b, serving as
a limit for the updates made to B (B 2 B;). (Think of A; and B; as ‘‘lines drawn in the
sand.”’) The transactions will produce correct results as long as we ensure that
A; + B; = 100. Notice that now, A (or B) can be modified by a transaction without
involving the other node, as long as the updated value remains larger than the limit A,
(B;). In these cases, what used to be a global transaction has become a local one, so
there is no need for global concurrency control nor a two phase commit protocol. This
increases data availability since transactions of this type may run even if the other node
(or the network) is unavailable. One would expect that in many applications there is
often slack in the constraints, so that in a very large number of cases transactions will be
able to run locally as illustrated. In the aircraft example, say each base has 80 aircraft
and that a total of 100 aircraft must be kept between the two bases. If we set

A; = B; = 50, we satisfy the global constraint, leaving each base with a slack of 30

o

aircraft. Thus, each base could dispose of 30 aircraft without consulting the other.

The limits do not have to be static, but can change over time as needed. However,
the changes have to be made in such a way that the constraint A; + B; = 100 is obeyed
at all times. This is the goal of the demarcation protocol presented in this paper. The
protocol is designed for high autonomy. Clearly, some changes in limits must be delayed
because they are not ‘‘safe;’’ however, these delays do not block safe changes nor tran-
sactions that operate within the current limits. Besides a protocol for changing limits, we
also need a policy for selecting the values of the desired new limits. (In our aircraft
example, do we set A; = B; = 50 or should we pick A; = 30, B; = 707) Policies will

also be discussed in this paper.

Our approach does not guarantee global serializable schedules. Local executions
are serializable, though, since each node uses conventional techniques (e.g., two phase
locking) to run local transactions. Our approach does guarantee that inter-node con-
straints, which we assume are given, are satisfied. A conventional global concurrency
control mechanism, on the other hand, would guarantee globally serializable schedules
and the satisfaction of all constraints without the need to explicitly give them to the sys-

tem.

One could argue that having to explicitly list the global consistency constraints is a
disadvantage of our method. We can counter this argument, first by noting that with con-
ventional approaches programmers still have to know and understand consistency con-
straints in order to write transactions. (A transaction must preserve all constraints.)
Second, by knowing the constraints, the system can exploit their semantics, yielding

better availability and performance.

Third, we are only talking of specifying constraints that span more than one node
(local control ensures local constraints are satisfied). If we look at inter-node consistency
constraints in practice, we see that they tend to be very simple. It is very unlikely for

instance that we encounter an application with employee records in New York and an

el

index to those records in Los Angeles. Data that is closely interrelated tends to be placed
on a single node. " If we look at the types of constraints that are found in databases
[DATS83], we claim that the following ones are the most likely to involve data stored in

different nodes of a distributed system:

(1) Arithmetic inequalities. For example, the available funds for a customer at an ATM

machine should be less than or equal to the actual balance of his or her account.

(2) Arithmetic equalities. For instance, the hourly wage rate at one plant must equal the

rate at another plant.

(3) Referential integrity constrains. Example: if an abbreviated customer record exists

on one node, then the full customer record must exist at headquarters.

(4) Object copies. The employee benefits brochure at a site must be a copy of the bro-

chure at the personnel office.

Our main focus in this paper will be on arithmetic inequalities. If an arithmetic equality
is tight, e.g., A = B + §, then maintaining it will be expensive. Every change involves
two phase commit or the equivalent, since each time A changes, B must immediately

change. However, in many applications a tight equality can be treated as an inequality,

e.g., |[A — B - 8|<e This is simply the two constraints A — B — 6 < ¢ and
—A + B + & < g, which can be handled via our demarcation protocol. In Section 6 we
show that the same principles that are used for arithmetic constraints can be applied to

existential and copy constraints.

This paper is organized as follows. We start by listing related research in Section 2.
In Section 3 we offer additional examples and an informal description of our approach.
The protocol and a policy under a particular arithmetic inequality are presented in Sec-
tion 4, while the generalization to arbitrary arithmetic constraints is in Section 5. In Sec-

tion 6 we discuss other types of constraints.

T In a parallel database machine or in a local cluster, there may be complex inter-computer constraints.
But in this case, the autonomy of each computer and network delays are not the critical issues. We
are focusing on geographically distributed systems.

2. Related Research

There has been a lot of recent interest in trying to reduce the delays associated with
conventional transaction processing and on exploiting semantics. In this section we

briefly summarize research that is related to the demarcation protocol.

The idea of setting limits for updates has been suggested informally many times,
e.g., [HS80, DAV82]. These ideas were formalized by Carvalho and Roucairol [CR82]
in the context of enforcing assertions in distributed systems. Their limit changing proto-
col is more general than ours, but it is substantially more complex. For example, to
maintain a constraint distributed among » nodes (each holding one variable) requires 7>
limit variables, while our protocol only uses n limits, one at each node. Their protocol

requires many more update messages when limits are changed, and also forces changes

to be done serially. Furthermore, [CR82] does not discuss policies for changing limits.

The demarcation protocol is related in a way to O’Neil’s escrow mechanism
[ONES86]. This technique was devised to support high-speed transaction updates without
locking items, by enforcing integrity constraints. However, the mechanism was designed
to be used only in a single database management system. (The application to the
management of replicated data was proposed in the paper as a research topic.) Also,
Kumar and Stonebraker [KuS88] have proposed a strategy for the management of repli-
cated data based on exploiting application semantics. They present an algorithm to
implement the constraints B > B, and B < B,,.. However, their technique relies
heavily in the commutativity of the transactions involved and does not generalize to arbi-
trary arithmetic constraints. Soparkar and Silbershatz [SS90] have developed a protocol
to partition a set of objects across nodes. A node may ‘‘borrow’’ elements from neigh-
bors. This approach does not deal with arbitrary constraints but does guarantee serializ-

able global schedules.

The notion of quasi-copies is defined in [ABG90] as a way of managing copies that
may diverge in a controlled fashion. The goals of this work are the same as for the
demarcation protocol. However, quasi-copies are not useful for arithmetic constraints.
For managing copies, the notion of quasi-copies is more flexible in some ways. For
instance, one may specify that a copy must be equal to some value that the primary had

within the last 24 hours. This type of constraint is not handled by the demarcation

-6-

protocol. On the other hand, with quasi-copies updates may only occur at a primary
location. The demarcation protocol allows updates at any site containing an arithmetic

value.

Finally, there are other papers that deal with weaker notions of serializability and
use of application semantics [FGL82], [LBS86], [GARS3], [KS88], [DE&9], [FZ89].

3. Examples

In this section we present two examples that illustrate how the demarcation protocol

works and the kinds of problems that are to be dealt with.

3.1 The Sufficient Supply Problem

We return to the example presented in Section 1. The proposed method of opera-
tion imposes some restrictions. As pointed out, a transaction that attempts to lower A (or
B) under the limit A; (B;) would be aborted. The only way to run such a transaction

bR}

would be first to get the site to lower its limit. Since this is not a ‘‘safe’’ operation
(lowering A; may violate the constraint A; + B; = 100), it can only be achieved by ask-
ing the other node to raise its limit first. The only safe operation in this example is to

raise the limit above the current value.

To see how limits can be changed, assume that A = 61 while B = 69, and the lim-
its are chosen initially to be A; = 45 and B; = 55. Figure 3.1 shows the setting of the
base scenario for this example. Notice that transactions at node a can update A without
further intervention from b, as long as the final value remains greater than or equal to 45.
The same is true for b and B, as long as B = 55. Assume now that for some reason, node
a wants to raise its limit A; to 50. Since this is a safe operation, a can go ahead and do it.
Node a will send a message to b informing it of the increment to A; by 5 units. Upon
receipt of this, » may lower B; by 5 to 50 (an originally unsafe operation). No reply to
is necessary. If instead of raising A;, a wants to lower it, the situation is not as easy.
Lowering the limit is an unsafe operation in this case, so node a would have to send a
request to b asking it to raise B; by the necessary amount. Node b is free to reject this
request. However, if it does honor it by raising B, it will send g a message informing it,

and only then a could lower A;. If the nodes follow this protocol, it can be assured that

Figure 3.1 The base scenario for the sufficient supply problem

at all times A; + B; = 100.

This is essentially the way the demarcation protocol operates. Whenever a node
wishes to perform an unsafe operation, it requests that the other node perform a
corresponding safe operation and waits for notification. Notice that the demarcation pro-
tocol is not two-phase commit. (The decision to give another node slack by increasing a
limit is made by one node only.) The nodes are still autonomous and there is no need for
locking remote resources. While limits are being changed, transactions that modify A or

Bcanstill run (aslongas A 2 A;,and B = B).)

There are still two issues to be discussed. The first is the establishment of a policy
for when to invoke the protocol. The policy is orthogonal to the protocol, and the
changes can be triggered at any time. For instance, the changes could be triggered when-
ever A (B) gets too close to A; (B;). The second issue is the selection of the new limits.
Each node needs a formula for computing the new limits when a change is to be made.
For instance, in this example it may be desirable to split the ‘‘slack’” evenly, i.e., to make

the distance between A; and A equal to the one between B; and B.

As an example, using the initial values of Figure 3.1, consider a transaction that
updates B to 57. Say that B — B; = 2 is considered ‘‘close,”’ so the change mechanism
is triggered. However, node b does not know how to split the slack since it does not
know the value of A, plus it cannot lower B; safely anyway. Therefore, b sends a mes-
sage to g requesting that A; be raised, and including the current value of B. Upon receipt
of this message, a knows that B = 57 and A = 61. The slack is A + B - 100 = 18. Sub-
tracting half of this from each value we get A; = A -9=52,and B; =B - 9 =48. These

-

are the new limits that split the slack evenly. Finally, a can safely increase A; from 45 to

52 (increment of 7), sending a message to b, allowing it to decrement B; by 7 to 48.

3.2 The Budget Problem

So far we have only discussed one type of constraint, i.e., A + B = &. Do the ideas
generalize to other types of arithmetic inequalities? Fortunately, they do. For any con-
straint, some operations are safe while others are not. To illustrate, consider the follow-
ing example: ensuring that project expenses E do not exceed budget B. Assume that we
store B at a node b and E at another node e. Node b could be located at company head-
quarters, while e is at the project location. We require that at all times £ < B. Both the
expenses and the budget get to be updated over time. For the demarcation protocol we
shall keep two limits E; and B; such that E < E;, B; < B, and E; < B;. In the supply
example, it was safe to increase the limits of both variables. In this budget problem, the
limit E; can be decreased safely by e, while B; can be increased safely by b. On the
other hand, the operations of incrementing E; at e, or decrementing B; at b are unsafe.
Notice again that once one node performs a safe operation, it leaves room for the other to
perform what was originally an unsafe change. Consider that initially E = (0, B = 20
and that limits E; and B; have been set to 10. As long as E stays under 10, node e is free

to modify E without consulting ». Similarly, node b can lower B to 10.

4. A Protocol and a Policy

In this section we present the demarcation protocol and its associated policies. To
simplify the explanation, in this section we assume a particular constraint, A < B + 9.
In Section 5 we show how to generalize to an arbitrary inequality and to more than two
variables. We also show a particular policy choice for splitting slack, although many

others are possible.

4.1 The Demarcation Protocol

The protocol consists of two operations, one for changing a limit and one for
accepting the change performed by the other node. Recall that the constraint we are
dealing with is A < B + 8. Let the predicate SAFE(X,0), where X is either A or B, and

=

o is a desired change in value, be defined as follows:

TRUE ifX=Aando <0
orX =Bandc =0
FALSE if X =Aandc > 0
orX=Bando < 0

SAFE(X,0) =<

Essentially, SAFE is TRUE if we are trying to decrement the limit of A or increment the

limit of B. The other two operations are unsafe.

Let us also define the following predicate to signal when the change in a limit

exceeds its data value:

TRUE fX=AandA; +0 < A
LIMIT_BEYOND(X,0) = orX=Band B;+ 06 > B
FALSE otherwise

When we refer to one of the values as X, we will use Y to refer to the complementary
variable in the constraint A £ B + 8, ie., Y = A if X = B and viceversa. We use the
notation N(X) for the node holding X. The demarcation protocol is composed by two

procedures: change limit() and accept change():

P1: The Demarcation Protocol

change_limit(X,c)
if SAFE(X,0) is FALSE then
Send message to N(Y) requesting it to perform change_limit(Y,o)
else if LIMIT_BEYOND(X,c) is TRUE then
abort the change
else
{X; « X, + 0
send message to N(Y) requesting it to perform accept_change(Y,c) }.

accept_change(Y,0)
Y« Y, + 0.

Conventional database techniques should be used at each node to make changes in the

limits and variables atomic and persistent. For instance, the values of the limits should

T

not be lost due to a node failure. Loss of messages is undesirable but does not c.ausc the
constraint to be violated. For example, say N(A) decreases its limit by 5 and sends an
accept_change message to N(B). If this message is never delivered, B; will be 5 units
higher that it need be. This is safe, but means that N(B) will be unable to *‘use’’ these 5
units. Thus, for proving our protocol correct (Theorem 4.1) we make no assumptions
about message delivery. However, in practice it is desirable to use persistent message
delivery (messages are delivered eventually, without specifying how long this might be).
Also note that since messages from different calls to change_limit only include

decrements/increments, they need not be delivered in order at the other node.

For simplicity, in the protocol we have assumed that nodes are always willing to
cooperate with their partners. In reality, nodes need not comply with change_limit or
accept_change requests. When node a gets a request from b to decrease A; by 10 units,
a is free to ignore the request, decrease A; by 10, or to decrease A; by whatever amount
it wishes. Similarly, when a receives accept change(A, 10), it may increase A by any
amount up to 10. Of course, in most cases it is advantageous for ¢ to perform the full

increment, as indicated by the code. This is what we assume here.

Theorem 4.1: The demarcation protocol ensures that at all times A; < B; + 9§, assum-

ing that the system starts with limits AY and B?, where AY < B + &.

Proof: All the increments or decrements to limits are done by adding a value v; or sub-
tracting a value u; to the old limits, where i is simply an ascending index. For data value
A, v# represents a change performed via the accept_change call, while uf represents a
change made via change limit. For B, vE represents a change made using change_limit,
and u? one made using accept_change. At any time, we have

A =AY+ v - Tuf

i<k, i<k,
and

By =B} + T - T,
i<ks isk,
where k; and k3 are the indexes of the last increments seen by nodes N(A) and N(B)
respectively, and k, and k4 are the indexes of the last decrements seen by nodes N(A)

and N(B) respectively.

= 1% s

Every increment v performed by change limit produces an equivalent increment
vf‘ done by accept _change. The increments for A may not be done in the same order as
for B. However, the increment v? is always done before the increment of the same mag-
nitude vfl is done. Thus,

Zv‘{ls va

i<k, i<k,
By a similar argument,

Zu?S Zuf{

iSk, i<k,
We can combine these two inequalities with AY <BY + 3 by adding all left hand sides

and all right hand sides, obtaining that at all times

AISBI‘!'S ®

Corollary 4.1 Using the demarcation protocol, we ensure that at all times A < B + 9.

Proof: The line in change_limit that checks LIMIT_BEYOND(X, ©) ensures that B 2 B,
and A < A;. Then, by Theorem 4.1, the result follows. e

Corollary 4.2 Suppose that AY = BY + §, that all update activity stops and that all mes-
sages have been delivered. Then A; = B; + 0 (note equality).

Proof. Same as the proof for Theorem 4.1, except that after all messages are delivered,

Zv‘f=2v? and Zu?:Euf ®

i<k, i<k, i<k, i<k,

4.2 Policies

The policies associated with the demarcation protocol specify when to initiate limit
changes, how to compute new limits, and what to do in case a transaction tries to change
the data value beyond its limit. We describe here the framework for such policies, and
present some choices for them. However, the reader should bear in mind that other poli-

cies exist.

=19

We begin by explaining how a transactions will actually perform changes on the
data items. In order to change a value, a transaction will use a system call
change value(X,0), where X is the data item and 0 is the amount (positive or negative)
to change. Within this call, we will have invocations of three policies. The first will be
triggered whenever the change would exceed the limit. The second will be fired up when
the final value gets ‘‘too close’” to the limit. The last one will be triggered if the final
value gets ‘‘too far’’ from the limit. These policies are implemented by procedures asso-
ciated with the constraint that we are enforcing. Since a data value may be involved with
more than one constraint (and thus, have more than one limit), we will have to test the
limits on a per constraint basis. We will denote the constraints by the symbol @ ;, where
1 £ j £ m and m is the number of constraints. Up to this point we have only discussed
the constraint A < B + 9§, but we are now generalizing to emphasize that the policies are
constraint dependent.

Before presenting the change value procedure, we introduce the following predi-
cate, for the case @; is the constraint A < B + . (A generalization is presented in Sec-

tion 5.)

TRUE X =Aand A + 0 > A,
VALUE_BEYOND(X,0) = orX=Band B + 6 < B,
FALSE otherwise

This predicate is analogous to LIMIT_BEYOND, in this case checking whether a change

would violate the limit constraint.

The system call for changing a data value is as follows. Again, X refers to the vari-
able being changed (A or B is our sample constraint). The limit for X under constraint ®@;

is X I Parameter T .,4. is a pointer to the code that runs the calling transaction and is

explained below.

-13 -

change value(X,0,T .,)
Jfor each constraint @ ; (1 <j<m) in which X is involved do
{ if ;. VALUE_BEYOND(X,6) is TRUE then
{ Fire up process ®@;.policy1(X,0,T .04,) at N(X)
abort calling transaction; }
if | X +6 - X, | < ®;.ethen
Fire up process @ j-policy2(X 0,7 code) at N(X);
If|X + 0 - le | > (I}j.ﬁrhen
Fire up process ®@;.policy3(X,0,T ;4.) at N(X) }
X—X+0.

The procedures ®;.policyl, ®@;.policy2 and ®;.policy3 are associated with the
constraint ®;. The first policy is invoked when a change exceed one of the limits. In
some cases policy 1 may be null, but in other it may be important to initiate some action,
like for example trying to increase the limit. The code pointer parameter T .4 1S useful
for restarting the transaction once the limit has been changed. (An alternative would be
to move the ‘‘abort transaction’’ command in change value into policyl. This way, pol-
icyl could chose between aborting the transaction or simply delaying it until the limit has
been successfully changed.) The second procedure deals with the case where the value is
getting close to the limit. What close means is defined by the constraint specific constant
®;.e. It may be desirable at this point to initiate a change in limits. For instance, if a
base is running low on planes, it may be a good idea to renegotiate its limits with the
other base. The third procedure handles the case in which the value is getting too far
away from the limit, as defined by constant @;.. In our example, if a base has too many

planes, it may wish to notify the other base to arrange new limits.

A fourth policy is needed to cover the case where procedure change limit
encounters a change that exceeds the data value. In Section 4.1, we opted for aborting
the change, but in general we can have a policy that decides what action is to be taken.
This @;.policy4 can be invoked when the LIMIT_BEYOND check in change_limit
detects a violation. Due to space limitation we will not present the modified

change_limit procedure here; a more general version is presented in Section 5.

The policies must also implement some form of load control. For example, say the

system has reached a point where A = A; and B = B;. Transactions that attempt to

-14 -

increase A will repeatedly try to increase A; by sending a message to N(B) to increase
B;. Since B; cannot be raised, all these attempts will fail. Instead of wasting N(B)’s
time, N(A) may remember how many times it has attempted to change the limits and

based on that, decide to wait for a given period of time before trying again.

Finally, there is the issue of how to compute the limits. A formula should be agreed
upon to compute the new values when needed. We illustrate one possible formula for
splitting the available slack, for the constraint A £ B + 8. (A generalization is presented

later.)
A=A+ (B—-A+9d)k (4.1)
B, =A; -9

Equation (4.1) is derived by computing the slack between A and B, and giving a fraction
k of it to variable A as the ‘‘room to move up’’. The remaining 1 — k of the slack is
given to variable B. By setting up k, one can tune the system in order to favor or con-

straint more one of the two variables. By setting £ = 0.5 one divides the interval evenly.

Notice, however, that computing the new limits by using (4.1) requires information
about both variables A and B, and neither one of the nodes know it. However, we can

design policy2 and policy3 to overcome this problem as follows.

®;.policy2(X,0,T ;o4.)
send message to N(Y) requesting it to perform @ ;.split_slack(X)

®©;.policy3(X,6,T .o,)
send message to N(Y) node requesting it to perform ®@;.split_slack(X)

®@; split_slack(X);
¥*% local variable is Y; value of remote variable is parameter X; ***
compute new limits, Y, "W and X I "eW using Eq. (4.1) and X, Y values.

leto=Y;"" - Y;;
if SAFE(Y,0) then invoke @ ;.change_limit (Y,o)
else send message to N(X) requesting it to perform ®;.split_slack(Y)

Notice that we prefixed the function split_slack with the constraint identification ®;. In

general, the way the slack is split will depend on the specific constraint. (The

15

generalization of Eq. (4.1) is given in Section 5.) It may be desirable to include a times-
tamp in a split_slack message, so that the receiving node may discard messages that took
“‘too long’’ in transit and represent stale data. Also note we have ignored load control

issues in these policies.

To illustrate how limit changing and slack splitting work, consider the following
example. Assume that we are using the single constraint A < B + & so that all our con-
stants and policies refer to it. Initially A = 0,B = 20, with d = 10, = 20and e = 2.
The limits have been set to A; = 15 and B; = 5, assuming that we are using £ = 1/2.

Figure 4.1 shows the initial scenario.

Figure 4.1 Initial scenario.

Now assume that a transaction calls change value at N(B) to update B to 30. (Notice
that this update is allowed since B = B;.) Since B — B; > P, the request to change lim-
its is initiated by N(B), by triggering policy3. A message is sent to N(A) requesting it to
perform split_slack(B = 30). Using Equation 4.1, node N(A) computes the new limits
obtaining a value of 20 for A;. (The slack is 30 - 0 + 10 = 40; half of this is added to A to
give the desired new limit.) To obtain A; = 20, N(A) must add 5 to the current limit;
since this is an unsafe increment it does not perform the change. Instead, it sends a mes-
sage to N(B) requesting it to perform split_slack(A = 0). Node N(B) will compute the
same limits, and this time the change in B; will be performed there, updating it to 10.
Node N(B) will send a message to N(A) requesting accept _change(A,5). Finally, N(A)
will raise A; to 20. This example illustrates the case where split_slack is called twice. In

other cases, split_slack is only called once (e.g., from initial scenario, A is updated to 15).

= 15 =

Now consider a scenario with concurrent updates. Starting with the values of Fig-
ure 4.1, assume both N(A) and N(B) complete transactions. The transaction at N(A)
updates A to 13, while the one in N(B) updates B to 5. Both nodes send their new values
to the other node, since both want to change their limits. Upon receipt at N(A) of the new
value of B = 5, the limit A; is computed to be 14 and therefore the change is made, and
a message to N(B) is sent requesting it to perform accept change(B,—1). In the mean-
time, N(B) processes the first message from N(A), computing a desired new limit B7*"
of 4. Since this change is not safe, a message is sent to N(A) requesting that the change
is made there first. Next, each node receives the second message generated by its
partner. When the accept change(B,—1) arrives at N(B), B is updated to 4. When the
second split_slack(B = 5) message arrives at N(A), it is ignored. (A =13, B =5 in Eq.
(4.1) implies that A; should be 14, but that is already the value of the limit, so nothing is
done.) The final values are thus A; = 14, B; = 4, which evenly split the slack. Notice
how the limits converge to the correct values, without any tight coordination. Each node

still makes decisions autonomously.

In general it is difficult to prove formal properties for the policies, first because they
can be arbitrary programs, and second because on purpose we do not wish to guarantee
any properties that may hurt autonomy. For instance, for slack splitting, one may be
tempted to prove that the selected limits are indeed the ones that split the current slack.
However, there is no such thing as the ‘‘current slack’’ as the nodes may autonomously
change A and B at any time (within limits). To enforce such a property, we would have

to restrict updates in one way or another, which is clearly undesirable.

In the sample slack splitting policies, we simply assume that the value received in a
split_slack message is current, and act accordingly. If indeed it is current, then the slack
is split properly; if not, the selected limits will be out of date. But remember that no
matter what the policies do, the underlying constraints are always guaranteed by the

demarcation protocol.

o 1T =

5. Generalizing the Protocol

In this section we generalize the demarcation protocol to operate on an arbitrary
constraint of the form ¢;A + ¢,B < d, where c¢;,c, # 0. We also discuss how to

extend it to more than two data items.

We start by generalizing the predicates SAFE, LIMIT_BEYOND and
VALUE_BEYOND for the constraint ®;: c;A + c2B < d. As before, we use X to refer

to either A or B, and X, for its limit. We use the notation ¢, to refer to the correspond-

ing constant in the constraint (either ¢ or ¢3).

fexo<0
®;.SAFE(X,0) ={ [RUE =%
FALSE otherwise
(For instance, for the constraint A £ B + §, if we wish to increase the limit B; by

¢ > 0, the predicate SAFE would be TRUE.)

if (X; + 6 - X)cx, <0
®; LIMIT_BEYOND(X,c) = { TRUE ¥ (1 o
FALSE otherwise

(For instance, for the constraint A < B + 9, the predicate is true if A; + 6 <A.)

if (X+0-X;)cg, >0
®,; VALUE_BEYOND(X,) = { 1RUE (L)X,
FALSE otherwise

(For the constraint A < B + 9, the predicate istrue if A + 6 > A;.)

Procedure change value (Section 4.2) is unchanged, except that it uses the new
definition of VALUE_BEYOND given here. Procedure accept change (Section 4.1) is
simply generalized for an arbitrary constraint @;, i.e., ¥; is replaced by Y,gj. Procedure
change_limit must be modified as follows. In the original procedure (Section 4.1), when
one node changed its limit by &, the second one would perform a change of the same
value later. For the general constraint, however, the sign of the second change depends
on the constants ¢; and ¢,. For example, for the constraint A + B < §, a positive
change in A’s limit must be followed by a negative change in B’s limit. In the procedure

below, we also incorporate policy4 discussed in Section 4.2.

- 18 -

®;.change_limit(X,c)
if ®;.SAFE(X,0) is FALSE then
Send message to N(Y) requesting it to perform
®;.change_limit(Y, —sign(c 1) sign(C2,)G)
else if © ;. LIMIT_BEYOND(X,0) is TRUE then
{ fire up @;.policy4(X, G);
abort this change)}
else
{X;, « X} + 0
send message to N(Y) requesting it to perform
®;.accept_change(Y, —sign(c lj)sign(czj)o)).

For splitting the slack in the constraint ¢ ;A + ¢,B < 8, ¢1,c; # 0, we generalize
Equation 4.1 as follows:
k
A1=A+(6"C1A'—6‘23)— (51)

C1

B - (d—-c1A - c3B)k

C2

B

Equation 5.1 can be easily derived from ¢ A + ¢ B < §, noticing that the slack is equal
tod — c;A — ¢yB.

To conclude this section, let us consider constraints of more than two variables.
First, observe that if only two nodes are involved, nothing is different. For example, if we
have the constraint A + B + C < 9, and the items A, B are stored in one node, while C
is stored at another, A and B can be treated as a single variable as far as the demarcation
protocol is concemed. That is, it would be enough to have two limits: AB; and C; and

follow the protocol.

If there are three or more nodes involved, then whatever node performs a safe
operation must indicate what other node gets the amount. For unsafe operations, a node
must select a particular node for its request to change limits. For instance, consider the
inequality A + B < C + 8. Say N(A) wants to raise its limit, an unsafe operation.
N(A) has a choice: it may ask N(B) to lower its limit, or N(C) to increase its. Suppose
that N(C) is selected. If N(C) does raise C;, a message to perform accept change is
sent only to N(A), so only it consumes the available slack. Now suppose that both N(A)

and N(B) want to raise their limits concurrently, and send requests to N(C). N(C)

-19-

should indicate to each the amount of their change. For example, if N(C) raises C; by
10, it may indicate to N(A) that A; can be raised by 6 and to N(B) that B; can be raised
by 4. The generalizations we have illustrated here are straightforward and will not be

discussed further.

6. Other Constraints

In the introduction we argued that inter-node constraints tend to be simple. So far
we have studied one class of such simple constraints, arithmetic inequalities. In this sec-
tion we illustrate how the demarcation protocol and its policies can be used to manage
other types of simple constraints. The key idea is to convert these other constraints into
arithmetic inequalities.

To illustrate, consider a referential constraint of the form

Exist(A,a) = Exist(B,b) (6.1)

where A, B are data objects, a, b are nodes, and Exist(A,a) is a predicate that is TRUE if
object A is stored in node a and Exist(B,b) is TRUE if B is at node b.

We can define the following function

1 if Exist(X,x) = TRUE

_ (6.2)
0 if Exist(X,x) = FALSE

f(X,x) ={

where X stands for either A or B, and x corresponds to either node a or b. With this equa-

tion, the referential constraint becomes:
f(A,a) < f(B,b) (6.3)

This constraint can now be enforced via the demarcation protocol, as long as we interpret
arithmetic an operation on f(X,x) to be the appropriate create or delete operation. That
is, changing f(A,a) from 1 to 0 means that A is deleted at a; changing it from 0 to 1
means that A is created. We must also define policies that implement the correct seman-
tics for this case. One possibility is to define the following policies. (Policies 2 and 3 are

not necessary in this case.)

00 -

@, .policyl(f(X,x),0,T coqe)
*** An invalid change to f(X,x) has been attempted;
first change limit and then try transaction later **%*
®;.change_limit(f(X,x),0);
resubmit later T .,4,.

@ ; policy4(f(X,x),d)
*** An unsafe limit change has been attempted ***
®,.change_value(f(X,x),0,null)
resubmit @ ;.change_limit(f(X,x),d).

To illustrate, assume that A and B are stored in nodes a and b respectively. Thus,
f(A,a) = 1,and f(B,b) = 1. Equation 6.3 must be enforced at all times. Therefore, the
system establishes two limits f(A,q); and f(B,b);, such that at all times
f(A,a) £ f(A,a);, f(B,b) 2 f(B,b);, and f(A,a); < f(B,b);. In this initial scenario,
these limits can be f(A,a); = f(B,b); = 1. The safe operations are for ¢ to decrease
f(A,a); and for b to increase f(B,b),.

Assume now that there is a transaction 7 that wants to delete B at b. The transaction
will try to change f(B,b) by -1 to 0. However, since the limit f(B,b); = 1, the transac-
tion will be aborted and policy! fired. This policy will force the change of -1 on limit
f(B,b),, invoking change limit(f(B,b),—1). However, this is not a safe operation for
b, so a message to g will be sent requesting it to change f(A,a) by -1 to 0. In turn, g will
invoke change limit(f(A,a),—1). Since the desired new limit f(A,a); = 0 violates the
constraint 1 = f(A,a) £ f(A,a);, policy4 will be triggered (and the limit change
aborted). This policy will force the change in f(A,a) by -1 to 0, deleting A from a. The
policy also resubmits the change in the limit f(A,a); to 0. This time, the change will be
successful. As a consequence of the change, a message will be sent to b allowing it to
change f(B,b); by -1. This makes f(B,b); =0. When T is resubmitted and attempts the
deletion of B again, it will find that the new limit allows it, and will proceed to delete B.
Thus, the existential constraint is obeyed at all times. Note that if T is resubmitted early,
before f(B,b); has had a chance to change, unnecessary (but unharmful) messages will
be triggered. One way to avoid this is to have the change in the limit f(B,b); trigger the

re-submission of the pending transaction.

5

While this may not be the most efficient way to enforce existential constraints, we
believe it is very useful to have a uniform strategy for handling distributed constraints.

The demarcation protocol provides such a strategy.

As stated in Section 1, approximate equality constraints of the form
|A — B — &|< & can be implemented via the two constraints A — B — & < ¢ and
—A + B + 0 < &. Each constraint can then be enforced by the demarcation protocol.
We do not have space to describe the associated policies in detail but the key idea is as
follows. Node a, holding A, will have an upper and a lower bound for A. Changes to A
that leave it in this range can be done autonomously. If A gets ‘‘too close’’ to its upper
limit, and thus ‘‘too far’’ from its lower one, two messages are sent to b: one stating that
A’s lower limit has been moved up (a safe operation for a), the second requesting that b
up its lower limit (so that A upper limit can be moved accordingly). After these opera-
tions finish, A range will have moved up, so that A is no longer too close to its limit. To
avoid unnecessary messages, the first message sent by a needs to be processed by b
before the second one. What we have described here can be accomplished by writing the

appropriate policies for the two constraints we have.

Finally, note that the demarcation protocol may also handle object copy constraints
(see Section 1). The basic idea is to associate with each object a version number or
counter that is incremented each time period. Constraints such as ‘‘the copy of O at a
site must be within two version of the master copy’’ can be translated into arithmetic ine-

qualities that can be managed via the demarcation protocol.

7. Conclusions

We have presented a strategy for enforcing arithmetic inequalities in distributed
databases. Limits are defined for each of the participating variables; a node is free to
update a variable as long as it stays within its bounds. The demarcation protocol is used
to change the limits in a dynamic fashion. We also showed how this strategy can be used

for other types of constraints, such a referential constraints and approximate equalities.

Intuitively, we may view a system that uses the demarcation protocol as a ‘‘spring.”’
When a constraint has a lot of slack, limits will not be tight, and many transactions will

be able to perform their updates locally. This corresponds to a loose spring. As the slack

Wi

is reduced, the spring is compressed, and more and more transactions will hit against the
limit. The transactions will be more expensive to run, as they will require negotiations
with the other node to change limits. When there is no slack e.g., A = A; and B = B, the
spring is compressed the most. Even at this point, the system may be more efficient than
a conventional one (which requires two phase commit for every transaction) because

transactions that move a variable away from its limit may be done locally.

There are two ways to implement the demarcation protocol in a database system.
One is to use an existing system, and provide the user with a library of procedures (e.g.,
change value), sample policies (e.g., for splitting slack), and definitions (e.g., for limit
variables). The user’s code could then call these procedures to update values or change
limits. The disadvantage of this approach is that a user could circumvent the rules, e.g.,
by updating a constraint variable directly and not through change value. The other
option is to incorporate the procedures into the system itself. The database administrator
(or possibly an authorized user) would define the constraints and policies and give them
to the system. The variables involved would be tagged. When a transaction updated one
of these variables, it would trigger the necessary procedures. With either one of these
approaches, there are clearly many issues that still need to be resolved, such as language
used for defining the constraints, load control strategies, dealing with contradictory con-

straints, and so on.
Acknowledgements

We would like to thank Luis Cova and Ken Salem for helpful discussions, and Naf-

taly Minsky and Patrick O’Neil for pointing out some useful references.

8. References

[ABG90] R. Alonso, D. Barbard, and H. Garcia-Molina, ‘‘Data Caching Issues in an
Information Retrieval System,”” ACM Transactions on Database Systems,
Vol. 15, No. 3, September 1990.

[CR82] O.S.F. Carvalho and G. Roucariol, ‘‘On the Distribution of an Assertion,”’
Proceedings of the ACM-SIGOPS Symposium on Principles of Distributed
Computing. Ottawa, 1982.

[DATS3]

[DAVS2]

[DE&9]

[FGL82]

[FZ89]

[GARS&3]

[HS80]

[KS88]

[KuS88]

[LBS86]

[ONES6]

-23 .

C.J. Date, ‘‘An Introduction to Database Systems,”” Volume 2, Addison-

Wesley.

S. B. Davidson, ‘‘An Optimistic Protocol for Partitioned Distributed Data-

base Systems,”’ Ph.D. Dissertation, Princeton University. October 1982.

W. Du, and A. Elmagarmid, ‘‘Quasi-Serializability: A Correctness Criterion
for Global Concurrency Control in InterBase,”’” Proceedings of the 15th

Conference on Very Large Data Bases, Amsterdam, Aug. 1989.

J.M. Fischer, N.D. Griffeth, and N.A. Lynch, ‘*Global States of a Distributed
System,”’ IEEE Transactions on Software Engineering, SE-8, 3. May 1982.

M. F. Fernandez and S. B. Zdonik, ‘“Transaction Groups: A Model for Con-
trolling Cooperative Work,”” Proceedings of the Third International
Workshop on Persistent Object Systems. Queensland, Australia, January
1989.

H. Garcia-Molina, ‘‘Using Semantic Knowledge for Transaction Processing
in a Distributed Database,”” ACM Transactions on Database Systems, Vol.§,
No. 2, June 1983.

M.M. Hammer and D. W. Shipman, ‘“The Reliability Mechanisms of SDD-
1: A system for Distributed Databases,”” Computer Corporation of America
Technical Report CCA-80-04, January 1980.

H. F. Korth, and G.D. Specgle,‘ “*Formal Model of Correctness Without Seri-
alizability,”” Proceedings of the ACM SIGMOD International Conference on
Managemeht of Data, Chicago, June 1988.

A. Kumar, and M. Stonebraker, ‘‘Semantics Based Transaction Management
Techniques for Replicated Data,”” Proceedings of the ACM SIGMOD 1988

International Conference on Management of Data, Chicago, 1988.

N.A. Lynch, B. Blaustein, and M. Siegel, ‘‘Correctness Conditions for
Highly Available Replicated Data,”’ Proceedings of the Fifth Annual ACM
Symposium on Principles of Distributed Systems, Calgary, August 1986.

P. O’Neil, ‘“The Escrow Transactional Method,”” ACM Transactions on
Database Systems, Vol. 11, No. 4, December 1986.

- -

[SS90] N. Soparkar, A. Silberschatz, ‘‘Data-Value Partitioning and Virtual Mes-
sages,”” Proceedings of the Conference on Principles of Database Systems,

1990.

