RANDOMIZED PARALLEL ALGORITHMS FOR
TRAPEZOIDAL DIAGRAMS

Kenneth L. Clarkson
Richard Cole
Robert E. Tarjan

CS5-TR-318-91

April 1991

Randomized Parallel Algorithms for Trapezoidal Diagrams

Kenneth L. Clarkson
AT&T Bell Labs

Abstract

We describe randomized parallel CREW PRAM al-
gorithms for building trapezoidal diagrams of line
segments in the plane. For general segments, we
give an algorithm requiring optimal O(A + nlogn)
expected work and optimal O(logn) time, where A
is the number of intersecting pairs of segments. If
the segments form a simple chain, we give an al-
gorithm requiring optimal O(n) expected work and
O(lognloglognlog* n) expected time, and a simpler
algorithm requiring O(nlog* n) expected work. The
serial algorithm corresponding to the latter is the sim-
plest known algorithm requiring O(nlog™ n) expected
operations. For a set of segments forming K chains,
we give an algorithm requiring O(A + nlog*n +
K logn) expected work and O(lognloglognlog” n)
expected time. The parallel time bounds require the
assumption that enough processors are available, with
processor allocations every logn steps.

1 Introduction

1.1 Results and related work

*Work was supported in part by NSF grants CCR-8902221
and CCR-8906949.

tResearch at Princeton University partially supported by
DIMACS (Center for Discrete Mathematics and Theoretical
Computer Science), a National Science Foundation Science and
Technology Center, Grant NSF-STC88-09648 and by the Na-
tional Science Foundation, Grant No. CCR-8920505.

Richard Cole*
Courant Institute
New York University

Robert E. Tarjan'
Princeton University and
NEC Research Institute

We give several algorithms for building trapezoidal
diagrams of line segments in the plane. These al-
gorithms reach or approach optimality with respect
to three parameters: the number n of segments, the
number A of crossing pairs of segments, and the num-
ber K of chains. Here a chain is a sequence of seg-
ments such that a segment meets its successor in the
sequence at an endpoint, and no endpoint is com-
mon to more than two segments. Specific values of
these parameters correspond to problems in compu-
tational geometry that have been extensively studied.
We consider these cases, as well as the general case,
in the context of randomized parallel algorithms in
the CREW PRAM model.

Given a set S of n line segments, the trapezoidal
diagram 7(S) is a collection of simple regions de-
fined as follows: for each endpoint of a segment in
S, and each intersection point of segments in S, ex-
tend horizontal segments to the left and right as far
as possible without crossing a segment of S. (Some
of these segments will be rays, in fact.) These hori-
zontal visibility edges, together with the edges of S,
subdivide the plane into polygonal cells with four or
fewer sides, that in general are trapezoids.

Simple polygons. A simple polygon is bounded
by a set of noncrossing edges (line segments), so build-
ing the trapezoidal diagram for a simple polygon cor-
responds to the special case where A =0 and K = 1.
Sometimes a triangulation of a simple polygon is de-
sired, not a trapezoidal diagram. A triangulation of
a simple polygon is a partition of its interior into tri-
angles whose vertices are also vertices of the poly-
gon. Most known algorithms for triangulation begin
by computing a trapezoidal diagram of the polygon’s
boundary segments. Given the trapezoidal diagram,
a triangulation can be found in O(n) operations, both
serially [CI84, FM84] and in O(logn) time in parallel
[Goo89b].

Many problems involving a simple polygon can
be solved in linear time if a triangulation of the

Page 1

polygon is known, so the complexity of triangula-
tion is a particularly appealing question. Chazelle
recently settled this question by finding a sophis-
ticated algorithm requiring O(n) time in the worst
case [Cha90]. An earlier Las Vegas algorithm due to
Clarkson, Tarjan, and Van Wyk requires O(n log* n)!
expected time for any polygon [CTVWS89]. In this
note we describe another Las Vegas algorithm requir-
ing expected O(nlog" n) operations; the serial ver-
sion is much simpler than the earlier Las Vegas al-
gorithm, which is much simpler than Chazelle’s. Sei-
del recently discovered a similar sequential algorithm
[Sei]. A parallel version of our algorithm requires
O(lognloglognlog” n) expected time, with O(n) op-
erations if Chazelle’s algorithm is invoked for sub-
problems, or O(nlog* n) operations if not.

Segments with many chains. In the case
where K = (n), we cannot hope to do better
than ©(nlogn), by reduction from sorting. If we as-
sume nondegenerate input, so that no point meets
more than two segments except at endpoints, the
parameter A is also the output size, so we can do
no better than ©(A + nlogn) operations. This has
been achieved in the serial case both deterministi-
cally [CE88] and with randomization [Mul88, CS89].
Recently Goodrich [Goo89a] has found a parallel al-
gorithm requiring O(A +nlogn)logn operations and
O(log n) time. For line arrangements, where A = (3),
Hagerup et al. [HIW90] have found an algorithm re-
quiring O(n?) operations and O(log n) expected time.
If two sets of segments B and C' are given, with the
segments in each set non-intersecting, then an algo-
rithm of Goodrich et al. [GSG89] can find the inter-
sections between the two sets with O(A+n logn) work
and O(logn) time, where n is the total number of seg-
ments and A is the number of intersections. Here we
use these results to show that O(A+nlogn) expected
operations and O(logn) time suffice in general.

The general case. Recently Chazelle has posed
the problem of computing the trapezoidal diagram of
a non-simple chain of segments, that is, where K = 1
but A is not necessarily zero [Cha90]. We generalize
this question to allow a dependence on K > 1, and
show that our techniques permit the construction of
7(S) in O(A+nlog* n+ K logn) expected work and
O(log nloglognlog® n) expected time. This is opti-
mal work with respect to A and K, and within log* n
of optimal with respect to n.

Yog* n is the least i such that log(*) n < 1, where]q§(i) n
is the ith iterate of the logarithm: logw) n = n, and log('
loglog('_j) n for i > 0.

n=

1.2 Outline of the paper

The remainder of the introduction has a subsection
devoted to technical issues regarding the representa-
tion of the output, the nondegeneracy assumptions,
and the model of parallel computation that we use.
There follows a subsection giving the probabilistic
lemmas we need in the analysis of our randomized
divide-and-conquer algorithms.

Our serial algorithms are given in the next section;
the parallel algorithms are given in §3.

1.3 Some technical issues

We compute representations of trapezoidal diagrams
that include a data structure for navigating between
adjacent cells; there is a technical issue here of what
constitutes adjacency. We might say that two cells
are adjacent when they share a common visibility
edge, and when no input segments cross, this defi-
nition is adequate. However, when input segments
may cross, we must also be able to navigate between
any two cells that share a common boundary. We will
call a data structure recording adjacency under the
former definition a partial adjacency representation,
and the latter a complete adjacency representation.
A complete adjacency representation might include
for each cell an ordered list of cells incident to it.

The parameter A is the number of pairs of segments
that cross: that is, whose nonempty intersection is
not an endpoint of either segment. We assume in
general that no point meets three segments except at
endpoints; such a condition is easily simulated using
a tie-breaking scheme.

We assume each chain is given as a list of consec-
utive line segments, in clockwise order, and that no
two distinct endpoints have the same y coordinate;
the latter nondegeneracy assumption is also easily
avoided using a simple tie-breaking scheme. Since
each chain is readily transferred to an array with
the edges in chain order, we assume henceforth that
the chains are stored thus. (In the parallel case this
transfer is done by a list-ranking algorithm [AMB8§];
it requires O(m) operations and O(logm) time for m
edges.)

We use the CREW PRAM model for parallel com-
putation, with random integers in the range 1 to n
available at unit cost. We report the complexity as
a pair (W, T), where W is the number of operations
(or the work) done, and T is the parallel time achiev-
able for that number of operations. This contrasts
to the standard form of results, which reports the
pair (P,T'), where P is the number of processors used
and T is the parallel time. Our description eases the

Page 2

analysis of algorithms where the number of proces-
sors used varies over the course of the algorithm. Of
course, in an implementation, the number of proces-
sors used is fixed; phases that require more processors
are handled by a round robin allocation of processors.
It has to be verified that such an allocation of proces-
sors is feasible, but for our algorithms this presents
no difficulty.

The number of processors (and operations) varies
for two reasons: we do not know in advance the
number A of intersections of the segments, and we
don’t know the results of some randomized divide-
and-conquer steps. QOur assumption is that every
log n steps the algorithm is allowed to request an ad-
ditional allocation of processors, which will then be
provided in part or all by the system. As an example
the usefulness of this assumption, in the randomized
divide-and-conquer steps, we obtain a collection of
subproblems with total expected size within appro-
priate bounds; we know the subproblem sizes, and al-
locate processors, before the subproblems are solved.

We assume further that the processors being used
by the algorithm are always numbered consecu-
tively. We make extensive use of the two algorithms
mentioned earlier, due to Goodrich [Goo89a] and
Goodrich, Shauck and Guha [GSG89]. While nei-
ther procedure is described in exactly this format it
is not difficult to rewrite them for this model. Now we
explain the meaning of our complexity results. The
parallel time assumes that processor requests are met
in full; the algorithm will be proportionately slower if
fewer processors are provided; regardless of the num-
ber of processors provided the operation counts are
as stated.

1.4 Probabilistic divide-and-conquer

Our algorithms will depend on the following proper-
ties of trapezoidal diagrams of random subsets of .S,
which we use for divide-and-conquer.

Lemma 1 Given a set S of n line segments with A
intersecting pairs, let R C S be a random subset of
S of size r, with all subsets of size r equally likely.
For cell T € T(R), let ny denote the number of line
segments of S that meet the interior of T', and let Ny
denote the number of cells adjacent to T (sharing a
boundary point or edge). Then:

(i) The ezpected number of intersections of R is no
more than Ar?/n?.

(ii) The expected value
EZTET(S) j"t"i"l?\ri" = O(n -} A?’/n).

(iti) The expected value E} rpcrgynrlogny =
O((n + Ar/n)log(n/r)).

(iv) With probability 1 — 1/n,
maxrer(s) nr = O((logn)n/r).

(v) The expected value
EY rersynr = O(A+n?/r).

Proof. The claim (i) is Lemma 4.1 of [CS89]. Claim
(ii) can be proven analogously to Lemma 4.3 of that
paper, and claim (iv) follows from Corollary 4.4 of
[CS89]. Claim (iii) is a corollary of Theorem 3.6 of
that paper, with ¢ = 2 and W(j) = +/7logj in the
notation of the theorem, and claim (v) also follows
from that theorem using ¢ = 2 and W(j)=j. O

2 Serial Algorithms

We start by describing an algorithm for segments that
form a simple (non-self-intersecting) polygonal chain,
then the case of a single polygonal chain that may
have self-intersections, and finally the general case of
several polygonal chains.

2.1 A single simple chain

The algorithm for a simple polygonal chain is a mod-
ification of the randomized algorithm of [CTVW89];
this version also has a running time of O(nlog* n)
time; its novelty is that it does not require Jordan
sorting.

Given a polygon P with set S of n edges, the al-
gorithm builds 7(S) in log* n phases; in phase i, the
diagram 7 (S*) is found, where S* is a random subset
of S of size r; = [n/[log™ n]]. In fact we will use

SICSZC"'CSIOB.n=S,

with S* a random subset of S*+! of the given size;
imagine the segments of S to be randomly permuted,
and take S* as the first »; segments in the permuted
order.

Each phase will require an expected O(n) opera-
tions, as discussed below.

The diagram 7(S?) can be computed in O(n) time,
by various algorithms that require O(mlogm) time
for a set of m segments. [CE88, Mul88, CS89] This
completes phase 1.

Each phase ¢ > 1 has three parts:

e insert the segments of S into 7(S*~'); that is,
find the cells that meet each segment, and so

the set of segments Sy that meet each cell T €
Ty

Page 3

o for each cell T € 7(5*~!), compute T N T(S}),
where Sp = Sp N S*.

¢ merge appropriate cells of the diagrams 7' N
T(S%) to build cells of T(S5%).

To do the first step of inserting the segments, we
walk along the segments of P, and simultaneously
through 7 (S*~!), finding for each segment in turn the
cells of 7(S*~1) that it meets. By the nondegeneracy
assumption, no cell shares a bounding horizontal edge
with more than four others, so O(1) time is required
for each cell that a segment meets.

To compute the diagrams 7'N7(S%), we again use
an algorithm requiring O(mlogm) time for a set of
m segments.

The resulting visibility edges, over all the cells, to-
gether with the visibility edges for 7(S*~'), form a
superset of such edges for 7(S*). Some visibility
edges of 7(5'~!) are not in 7(S%), so the merging
step of phase i is needed to obtain the cells of 7(5?).
Note that a group of cells that we need to merge are
in some collection of T € T(S*~1) that are in order
along a segment e € S?, and we know this order be-
cause it was obtained during the walk of the polygon

and T(S—1).

2.1.1 Analysis

As noted, each phase of the algorithm requires O(n)
expected time. For phase i > 1, the expected total
time of the insertion step, to find all the sets Sr, is
proportional to

E 2.

TeT(Si-1)

S| = O(n)

by Lemma 1(ii). Letting ny = |S}| (so S* plays the
role of S in Lemma 1, and S*~ the role of R), the ex-
pected time to compute TNT (S%) forall T € T(S~1)
is

10 IS
E Z'_ nr lognr = O(|S*|log IS'._ll)
TeT(5i-1)
(i-1)
= O 2 loglog .
log®™ n log® n
= 0O(n)

by Lemma 1(iii). Finally, the merging step can be

done in time proportional to the number of trapezoids

in all the 7(S%), which is certainly an expected O(n).
‘We conclude:

Theorem 2 There i1s a randomized algorithm that
triangulates n-edge simple polygons in ezpected
O(nlog* n) time.

2.2 A single chain

The algorithm requires few changes when the chain
has A > 0 pairs of intersecting segments, except to
require the use of more sophisticated algorithms to
compute 7 (S5'), the T(Sgﬁ*’l), and to do the walks.
The “base” algorithm for trapezoidal diagrams must
take O(k + mlogm) expected time to compute the
trapezoidal diagram of m segments with k intersect-
ing pairs.

For the analysis, it suffices to bound the work
due to intersecting pairs, since the remaining work
is O(nlog® n) as in Theorem 2. By Lemma 1(i), the
expected number of intersections among segments of
S is O(A/log® n), which bounds the expected work
in computing 7(5"). Since the work in traversing a
cell T adjacent to Np other cells is proportional to
Nr, the work in walking the chain to find the sets St
is bounded, by Lemma 1(ii), by O(A/logn) (ignor-
ing the term not dependent on A). In general, the
work to compute the intersection points of S* is ex-
pected O(A/(log(")n)z), which is dominated by the
time to traverse 7(S) to find the sets Sy, which is
0(A/log™ n). The expected work dependent on A is
therefore

O(4- o
log®) n

1<i<log* n

),
which is O(A).

2.3 Many chains

To complete this section, consider the general case:
the input is a set of K chains comprising n segments,
having A intersecting pairs. We modify the above al-
gorithm only slightly: for each chain, choose one of
its endpoints to be the leader of the chain. The al-
gorithm will maintain the cells of 7(S') containing
these leaders, and use planar point location proce-
dures to make this operation fast. With such leaders
known, the walk through 7(S?) is as before, starting
with the leader for each chain.

Recall that a planar subdivision defined by m non-
intersecting straight edges can be preprocessed in
O(mlog m) time so that the region containing a given
query point can be found in O(logm) time (various
such algorithms are discussed in [Ede87]). We apply
such a procedure to 7(S!), and find the cell contain-
ing each leader. To find the cell of 7 (S**!) containing
each leader, given that information for 7(S*), we pre-
process each T(S}H) for point location, locate each
leader within the appropriate cell, and maintain that
information when creating 7(S*+1).

Page 4

Theorem 3 Given a set of S line segments forming
K chains and with A intersecling pairs of segments,
the trapezoidal diagram T(S) can be found in O(A +
nlog® n+ Klogn) expected time.

Proof. Since the preprocessing for point location
in the various trapezoidal diagrams takes no longer
than the construction of those diagrams, it remains
only to find the time needed for the queries.

Locating the K leaders within 7(S) requires
O(K logn). By Lemma 1(iv), for ¢ > 0, the max-
imum size of a set Sy', over all cells T € T(S),
is

|S£+1|

—1) = O(log nlog®) n/logt+V) n
5]

O(logn

with probability 1 — fl; The query time for locating
leaders within 7(S") for ¢ > 1 is thus O(loglogn).
The cost of all queries after the first is therefore
O(K loglognlog™ n), which is dominated by the cost
for locating within 7(S'). If some trapezoid T' €
T (S) contains more than ©(logn log™ n/loglt!) n)
edges, then the point location takes at most O(logn)
time; but this happens with probability at most ,l-l-,
and so makes a contribution of O(K logn log™ n/n) to
the overall expected running time, a negligible term.
]

3 Parallel Algorithms

We describe several parallel algorithms: first, one
suitable for A = Q(n?), then for K = Q(n) (or at
least, any chain connectivity is unused). Following
this is an algorithm for a single simple chain, then
one for a single chain with intersections, and finally
the general case. First we discuss the use of random
subsets for divide-and-conquer, in the parallel setting.

3.1 The divide-and-conquer scheme

Each parallel algorithm described below generally has
one or more phases like those of the serial algorithm,
applying randomization for divide-and-conquer:

e Compute 7(R) for random R C S of size r, and
possibly a point location data structure for it;

e insert the segments of S into 7(R); that is, find
the cells that meet each segment, and so the set
of segments S7 that meet each cell T € T(R);

o for each cell T € T(R), compute T'N T (S7);

e merge appropriate cells of the subdiagrams 7" N
T(Sr) to build cells of T(S).

The first step generally applies some previous, pos-
sibly suboptimal, algorithm. The insertion step is
more problematic for parallel algorithms than in the
serial case: we cannot simply walk along chains. In
fact, single segments may meet (r) trapezoids, even
though an average segment meets no more than 6,
and so walking through 7 (R) along some segments is
too slow. This difficulty is the main problem for the
rest of this paper.

In many variations of the insertion step, we obtain,
in effect, a collection of pairs, comprising segments of
S and cells of 7(R) that intersect. We do not have,
for each cell T € T(R), a list Sy of segments of S
that meet it. To create such lists, the pairs are integer
sorted, using their trapezoid as the key. Such sorting
can be done with the algorithm of Rajasekaran and
Reif [RR88] in O(logn) time and work linear in the
number of sorted pairs.

As in the sequential algorithms, the merge step
builds a trapezoid T of the final diagram from several
trapezoids in the subdiagrams. This is done as fol-
lows. Implicitly, for each edge of S, the trapezoidal
diagrams (for each cell T € T(R)) define a linked
list of its intersections in order. By applying a list
ranking algorithm to this list [AM88, CV86] we elim-
inate the intersections with visibility edges of T(R).
This leaves the intersections among the edges of S
together with the visibility edges of 7(S); the com-
putation of 7(S) is completed by linking adjacent
edges. The complete adjacency representation, which
by Lemma 1(ii) is of size O(n + A), is obtained by a
further application of list ranking to the edges of S
so as to determine for each trapezoid the number of
its neighbors; a proportionate number of processors is
then allocated to each trapezoid; these processors are
used to create the adjacency lists, each processor be-
ing responsible for copying the name of one trapezoid
to the adjacency list. Owverall, this takes O(n + A)
operations and O(logn) time.

3.2 General line segments

This subsection gives an algorithm supporting the fol-
lowing theorem.

Theorem 4 Given a set S of n line segments in the
plane with A intersecting pairs, the trapezoidal dia-
gram T (S) can be found in O(A+nlogn) ezpected op-
erations and in O(logn) worst-case time on a CREW
PRAM.

The algorithm uses the divide-and-conquer ap-
proach described above: first, find an estimate A
of A. Then take a random subset R C S of size

Page h

r = n?/(A 4 nlogn). Compute 7(R) and pro-
cess it for point location using previous algorithms
[Goo89a, ACG8Y]; then for each cell ' € T(R), find
the sets Sy of segments that meet it, and compute
visibility information among the segments of St us-
ing an adaptation of the algorithm of Hagerup et al.
[HIW90]. Finally, merge the resulting cells to form
7(9).

The idea is to balance between these known al-
gorithms, building the relatively small T(R) to give
subproblems with many intersecting pairs relative to
the number of segments, so that an algorithm like
that of [HIW90] is economical.

_ Here is the algorithm in more detail: the estimate

A is found by taking n random pairs of segments
and counting the number of intersecting pairs among
them. Each pair (a;, b;) is chosen from among the ("2')
pairs of segments of S, with all pairs equally likely.
If this count is C, take A = (C + 1)(3)/n. (Other
methods for estimating A might well be acceptable,
but this is easy to analyze.) In particular, we note
that

Lemma 5 The ezpected value EA = A+ (3)/n, and
E[1/A] < 1/A.

Proof. The quantity C' is a binomial random vari-
able with n trials and success rate per trial p = 4/(3).
We have

1
j+1

E/(C+1)]=) (?)p"(l—p)""',

iz0

and since (?)(n +1)/G+1)= (;‘_‘:_‘11), we have

1

B/ 1S gy 3

N1\ e veej
" -,

which is no more than 1/pn, or (3)/An, and so
E[1/A]<1/A. DO

Insertion. The insertion step of finding the sets
S for cells T € T(R) is done as follows: process
T(R) for planar point location [ACG89], locate the
endpoints of §'\ R within 7(R), and then in paral-
lel, walk along each segment through the diagram,
finding cells that it meets. This is done until all but
n/logn segments are completely traversed: do the
walk logn steps, check the number of segments not
yet completed, walk along logn steps, check again,
and so on, until the condition holds.

There remain at most n/logn segments not com-
pletely inserted, that is, not completely traversed.
To insert these, we split them, at random, into logn
groups each of size at most n/log” n. The algorithm

of [Goo89a] is applied to each group to find all its
intersection points, and to split the segments of the
group up into segments that meet only at endpoints.
For each group, we find the intersections of the result-
ing segments with the visibility edges of 7(R) using
the algorithm of [GSG89].

‘We now have the pairs of segments of S and trape-
zoids of 7 (R) that meet; as discussed in §3.1, we now
use integer sorting to obtain the list Sy of segments
that meet a trapezoid T, for every T' € T(R).

Subdiagrams. Next, for each cell T € T(R),
we compute the subdiagrams T'N 7(Sr) using an
adaption of the algorithm of [HJW90]. Our adap-
tion takes O(n?) expected operations to compute the
trapezoidal diagram of a set of n line segments, and
requires O(logn) time. While their algorithm finds
triangulations of arrangements of lines, we are in-
terested in trapezoidal diagrams of line segments.
Nonetheless, their algorithm can be adapted to our
purpose; we omit the details in this abstract.

The merge step proceeds as discussed in §3.1.

Proof of Theorem 4. The proof of Theorem 4 is
completed by analyzing the above algorithm. By
Lemma 1(ii), the expected work in walking along the
segments through 7(R) is O(n + An/(A + nlogn)),
excluding busy waiting by processors handling seg-
ments whose traversal is complete. But E[A/A] < 1,
so the expected work is O(n). This implies that after
some clogn steps, for a large enough constant e, at
most n/logn segments are not completely traversed.

The cost of inserting these remaining segments is
bounded as follows. The algorithm of [Goo89b] re-
quires an expected O(nlogn 4+ A) operations and
O(logn) time (for by Lemma 1(i), there are an ex-
pected O(A/logn) intersections overall present in
these randomly selected subsets), while the algorithm
of [GSG8Y] requires an expected O(nlogn+ A) oper-
ations and O(logn) time (the expectation arises be-
cause there are an expected O(n + A/logn) edges
present over all the subproblems).

The expected number of operations for all ex-
ecutions of the algorithm of Hagerup et al is
O(Xrer(r)"7); by Lemma 1(v), this has expected
value O(A + n?/r) with respect to the choice of R,
and the expected value of n?/r with respect to the
estimation of A is O(A + nlogn), using Lemma 5.
The running time of this step is O(logn).

The complexity of the final step (merging trape-
zoids) is bounded as follows. By Lemma 1(ii), there
are an expected O(n + Ar/n) = O(n) intersection
points along the edges of S (including intersections
with the visibility edges of 7(R)). So the complex-
ity of the prefix lists algorithm is an expected O(n)
operations and O(logn) time.

Pace 6

On summing the complexities of each step, the the-
orem follows readily. 0O

3.3 A single simple chain

The algorithm proceeds in the same log* n phases as
the sequential algorithm; each phase uses the ran-
domized divide-and-conquer scheme, with 7(S*—1!)
used to build 7(S5*) in phase i > 1.

The diagram 7(S') is built in phase 1 using the
algorithm of Atallah, Cole and Goodrich [ACG89];
it does O(n) operations in time O(logn). Also, we
create a planar point location structure for 7(S!),
again using an algorithm of Atallah et al.

First we consider phase 2, where we build 7(S?)
in parallel using an expected O(n) operations and
O(lognloglogn) time.

Insertion. The insertion of edges for phase 2 is
done by traversal of 7(S5') and the edges of the chain,
as in the sequential algorithm. However, we do many
such traversals independently from several places.

Initially, the chain is partitioned into subchains
of length logn. This takes O(n) operations and
O(logn) time. There are then at most 2n/logn sub-
chains. We use n/(lognloglogn) processors. We
proceed in stages, continuing until at most n/logn
edges have yet to be completely inserted. A stage
lasts logn steps. Each step comprises the traver-
sal of an edge to its next intersection point or to
its far endpoint, whichever is nearer. At the end
of a stage, if fewer than in/(lognloglogn) chains
remain, the chains are evenly partitioned to obtain
between in/(lognloglogn) and n/(lognloglogn)
chains anew (since the chains are contiguous se-
quences of edges of the polygon, storing these edges
in clockwise order in an array makes the partition-
ing straightforward). The new endpoints are located
using the point location data structure, at a cost of
O(logn) operations per endpoint. So a stage does
O(n/loglogn) operations. It either detects at least
%n/ loglog n intersection points and endpoints, or it
halves the size of each remaining chain (or possibly
both). By Lemma 1, there are an expected O(n) in-
tersection points, so after an expected O(loglogn)
stages, each chain comprises at most one edge, so
there are at most n/logn edges which have not been
completely inserted; that is, the procedure terminates
within an expected O(loglogn) stages.

To insert these remaining bad edges, we find the
intersections between them and the 2n/logn visibil-
ity edges. The intersections among these segments
are computed using the algorithm of Goodrich et al.
[GSG89]; for our application, it requires an expected
O(n) operations and O(logn) time (the expectation

arises because the number of intersections is an ex-
pected O(n)).

As discussed in §3.1, we now use integer sorting
to collect the sets Sy for each T' € 7(S*), using the
algorithm of [RR&8].

Subdiagrams. Next, for each T € 7(S'), we
find T'NT(S%), and also build a point location data
structure for it, with the procedures of Atallah et al.
[ACG89]. (The point location structure will be used
for later processing.) We use |S%| processors for this
task.

Merging. Finally, we need to merge cells from
among those of the subdiagrams to find those of
7T(S?). To carry out this process, for each edge in
S?, it is useful to have a linked list of its intersection
points with the visibility edges of 7(S'). Addition-
ally, in phase 3, it will be useful, for each edge in S, to
have in sorted order its intersections with the visibil-
ity edges of 7(S'). So next we compute for each edge
in S a list of its intersections with 7(S?), in sorted
order along the edge.

It suffices to sort the intersection points for the
O(n/logn) bad edges, since the other intersection
points are already in order along the edges on which
they lie. First, we randomly select n/logn of these
intersection points. For each bad edge, we sort the
selected points along the edge and split the edge
into edge portions accordingly (this requires two
sorts); sorting takes O(n) operations and O(logn)
time [Col88]. Next, we traverse the edge portions,
seeking intersection points; each edge portion is tra-
versed until either 2 logn loglogn intersection points
are found, or the portion is completely traversed,
whichever occurs sooner; « is a constant to be spec-
ified. The edge portions are evenly redistributed
among the n/(lognloglogn) processors every logn
traversal steps, called a stage. For any stage, ei-
ther at least %n /loglogn intersection points are tra-
versed, or the processing of at least one half of the
remaining edge portions is completed. Now we ana-
lyze this traversal: the expected number of edge por-
tions containing more than clognloglogn intersec-
tion points is O(n/(logn)'*®(?)) = O(n/(logn)'t2¢),
say. It follows that the edge portions containing
more than %logn loglogn intersection points be-
tween them contain an expected O(n/logn) inter-
section points. So the procedure lasts an expected
O(loglogn) stages, which is O(lognloglogn) time;
an expected O(n) operations are done. In addi-
tion, there now remain an expected O(n/ log n) untra-
versed intersection points. These points have already
been determined in the previous paragraph; they can
now be sorted with respect to the bad edges on which
they lie and then merged with the intersection points

Page 7

already on these edges. Overall, sorting the intersec-
tion points takes an expected O(n) operations and
expected O(lognloglogn) time.

With this information, the merging step can be
done as discussed in §3.1.

The algorithm for finding the diagrams in phases
i > 2 is analogous. Before we describe this step, here
is analysis of resource bounds for building 7(5?): as
noted, the insertion step requires O(logn loglogn)
expected time and O(n) expected operations, and
building the lists S; requires no more resources.
The construction of the diagrams T'N 7(S}) for all
T € T(S') requires expected

S2
oS |s%|log|s%n=oasz|1ogﬁ)=0(n)
TeT(51)

operations, and O(logn) time. Sorting the inter-
section points, as already observed, requires an ex-
pected O(n) operations and O(lognloglogn) time.
The list ranking algorithms require O(m) operations
and O(logm) time for a list of length m, so the ex-
pected number of operations to merge cells is only

O(> IS7)=0(IS?)) = O(n/loglogn).
TeT(S?)

We turn to the procedure for building 7(S*) given
T(S*-1), for i > 2. The first step is to insert the
edges of the polygon into 7(S*~'). The edges are
partitioned at the points at which they cross visibil-
ity edges of 7(S*~?); this increases the number of
edges to an expected O(n). The same edge insertion
method is used as for the case i = 2. Following the
partitioning of chains into subchains of length logn
there are an expected O(n/logl=2 n) chains at hand.
As before, we proceed in stages until at most n/logn
edges have not been completely inserted. The only
detail of the insertion that is novel is that for each
endpoint of each edge, the cell T € 7(5°~2) con-
taining the endpoint is known; thus a point location
on an endpoint requires a search in the point loca-
tion data structure for T'. Note that only O(n/logn)
point locations are done, as before. The insertion
of the n/logn bad edges proceeds essentially as be-
fore, except that a separate subproblem is created for
each cell of 7(5'~2). However, the processor alloca-
tion and reallocation is done globally across all these
subproblems; this allows for variations in the num-
ber of intersections found in the various subproblems
and allows expectations to be with respect to the sum
of the sizes of the subproblems. Then, for each cell
T € T(S"~1'), we obtain a list of the segments S that
intersect it, as before.

Next, for each cell T' € T(S*~1), we find TNT(S%)
and also build a point location data structure for it,
using the procedure of Atallah et al. [ACGBY]. We
use |S%| processors for this task.

Finally, the cells are merged and for each edge the
order of its intersection points with 7°(S*~1) is com-
puted as before.

The analysis is similar to that for the case i = 2.
Again, the insertion step requires O(lognloglogn)
expected time and O(n) expected operations. The
only difficult part is to analyze the cost of inserting
the bad edges. Let nf denote the number of bad
edges intersecting cell 7 € 7(S*~2). Then the op-
eration count for inserting the bad edges, using the
algorithm of Goodrich et al. [GSG8Y], is

O(> (IS7 "1+ np)log(IS7 |+ n7))
TeTl'—7
. S:‘-—l
= O(|5"1|log:5‘._2l+ Z n’p logn’)
TETi—z

This is an expected O(n), since ETGT(SFQ) np =
O(n/logn). Building the lists Sy requires an ex-
pected O(n) operations and O(logn) time. The con-
struction of the diagrams 7(S%.) requires expected

o Y,

TeT(5-1)

) . : St
S4110g]S41) = O(1S") log ey = O()

operations and O(logn) time. Sorting the intersec-
tion points, as before, requires an expected O(n) op-
erations and O(lognloglogn) time. The expected
number of operations for merging cells is only

o >

TeT(Si-1)

IS]) = O(1S*]) = O(n/log®) n).

Summing over all phases, we obtain that the
overall expected number of operations done is
O(nlog"n) and the expected time required is
O(lognloglognlog® n). This constructs the hori-
zontal visibility structure. It remains to obtain the
triangulation from the visibility structure, but this
can be done in O(logn) time and O(n) operations
([Goo89b]). We have shown

Theorem 6 There is a parallel randomized CREW
PRAM algorithm for computing a triangulation
of a simple polygon which runs in expecied
O(lognloglognlog” n) time and does an expected
O(nlog” n) operations.

A more complex algorithm which does an expected
O(n) operations in expected O(lognloglogn) time

Page R

can be obtained; it uses Chazelle’s linear-time trian-
gulation algorithm as a subroutine.

Here, 7(S?) is constructed as before and the
edges of the polygon are inserted into 7(S?). By
Lemma 1(iv), with probability at least 1 — 1, each
cell 7' € T(5?) contains at most logn loglogn edges.
Using the method of Clarkson et al. [CTVW89] the
edges crossing each visibility segment of 7(S?) are
Jordan sorted by a sequential algorithm (this can be
done using Chazelle’s observation that Jordan sort-
ing can be reduced in linear time to triangulation,
and applying Chazelle’s linear-time triangulation al-
gorithm); this then creates a set of visibility sub-
problems which are solved sequentially by applying
Chazelle’s linear-time algorithm. Since each subprob-
lem is of size O(logn loglogn) with overall probabil-
ity 1— 1, this takes an expected O(n) operations and
expected O(log nloglogn) time. This then yields

Theorem 7 There is a parallel randomized CREW
PRAM algorithm for computing a triangulation
of a simple polygon which runs in expected
O(lognloglogn) time and does an ezpected O(n) op-
eralions.

3.4 A single chain with intersections

The algorithm for a single chain with A > 0 intersec-
tions is similar to that for a chain with no intersec-
tions.

We begin by computing an estimate A for A as in
the algorithm of §3.2. If A > nlogn, then we use
the algorithm given in Theorem 4 to compute the
trapezoidal diagram induced by the chain.

Otherwise, we define sets S, 52, ..., 598" a5 in
the algorithm for a simple chain. We begin by de-
termining 7(S'), but now we use the randomized
algorithm given in §3.2. By Lemma 1(i), the ex-
pected number of intersections among segments of
S' is O(A/log®n), so the randomized algorithm of
§3.2 requires an expected O(A/ log® n+n) operations
and O(logn) time. Then we insert the edges of the
chain in 7(S') as in §3.3. The one change to the
traversal, as in the sequential case, is that when and
if the traversal crosses a segment of S! the work re-
quired is proportional to the number of cells adjacent
to this edge of the cell. So to analyze the traversal,
we count both the number of intersections found and
the number of cells considered in crossing segments
of S'; by Lemma 1(ii), this totals an expected O(n),
and so after an expected O(loglogn) iterations, at
most n/logn edges are not fully inserted. A new
method is needed to find the intersection points in-
volving these bad edges, for it is not guaranteed that

the bad edges do not intersect. Instead of using the
algorithm of Goodrich et al. [GSG89], the randomized
parallel algorithm given in §3.2 is used. To apply it,
as in §3.2, the n/logn bad segments are randomly
partitioned into logn groups of n/log?n segments.
By Lemma 1(i), each group of segments has an ex-
pected O(A/log®n) intersections. The algorithm of
§3.2 is applied separately to each group of segments
with the edges of 7(S'). Over all logn groups the
algorithm requires an expected O(n+ A/ logn) oper-
ations and O(logn) time (for there are an expected
O(n+ A/logn) intersection points over all log n sub-
problems).

The sorting of intersection points is done as in §3.3.

For each cell T € T(S) we obtain a list of the
segments intersecting 7" as in §3.1. Overall this first
phase requires an expected O(n+ A/ logn) operations
and expected O(lognloglogn) time.

The algorithm proceeds as in the simple chain
case, as modified four paragraphs above, until
n/logl+V n = |Si+1| > n2/(n + A) (i.e. nlog¥) n >
n+A > nlogi+h n). So for each cell T' € T(57) the
set St of segments intersecting 7" has been computed.
For if we tried to proceed further, the insertion of
the chain in 7(S/*!) would be too expensive. Then
the randomized algorithm of §3.2 is applied to each
set Sp. The expected work for this final phase is
O(2rer(siynr lognr + A) which by Lemma 1(iii)
is O(n + |S7|A/n)log(n/|S7]) = O(nlogi*Vn) =
O(n + A); the running time is O(logn).

Phases 1 through j each have an expected opera-
tion count of O(n+ A/ logn) and an expected running
time of O(lognloglogn).

Overall, we obtain

Theorem 8 There is a parallel randomized CREW
PRAM algorithm for computing the trapezoidal dia-
gram of a chain with A intersections which runs in ex-
pected O(lognloglognfB(A,n)) time and does an ez-
pected O(A+ nB(A, n)) operations, where (A, n) =
minj such that A > nlog(j)n, for A > n, and
B(A,n) = log* n for A < n.

3.5 Many chains

As in the serial case, consider a set of n segments com-
prising K chains, having A intersecting pairs. For
each chain, choose one of its endpoints to be the
leader of the chain. The algorithm maintains the cells
of T(S*) containing these leaders, using planar point
location procedures to make this operation fast. The
walk through 7(S?) proceeds as before, starting at
the leader of each chain. Since a planar point loca-
tion data structure has already been computed for

Page 9

T(S'), and for T(S**!) with respect to each trape-
zoid of 7(S*), the additional expected work for doing
the point locations on the leaders is just O(K logn),
as in §2.3, and takes expected time O(logn). (As
in §2.3, with probability at most %, a point loca-
tion takes time O(logn), and otherwise takes time
O(loglogn) for i > 1; overall, this is an expected
O(logn).) So we obtain:

Theorem 9 There is a parallel randomized CREW
PRAM algorithm for computing the trapezoidal di-
agram of K chains with A intersections which runs
in ezpected O(log nloglognB(A,n)) time and does an
ezpected O(A+ nB(A,n) + K logn) operations, where
B(A,n) = minj such that A > nlog(j) n, for A > n,
and B(A,n) =log" n for A< n.

References

[ACG89] M. Atallah, R. Cole, and M. Goodrich.
Cascading divide and conquer: a tech-
nique for designing parallel algorithms.
SIAM Journal on Computing, 3:499-532,

1989.

[AM8S] R. Anderson and G. Miller. Deterministic
parallel list ranking. In Proceedings of the
Third Aegean Workshop on Computing,
volume 319 of Lecture Notes in Computer
Science, pages 81-90. Springer-Verlag,

1988.

[CE88] B. Chazelle and H. Edelsbrunner. An op-
timal algorithm for intersecting line seg-
ments in the plane. In Proceedings of the
29th Annual IEEE Symposium on Foun-
dations of Compuler Science, pages 590—

600, 1988.

[Cha90] B. Chazelle. Triangulating a simple poly-
gon in linear time. In Proceedings of the
31th Annual IEEE Symposium on Foun-
dations of Computer Science, pages 220—

230, 1990.

[CI84] B. Chazelle and J. Incerpi. Triangulation
and shape complexity. ACM Transac-
tions on Graphics, pages 135152, 1984.

[Col88] R. Cole. Parallel merge sort. SIAM Jour-
nal on Computing, 4:770-785, 1988.
[CS89] K. L. Clarkson and P. W. Shor. Appli-

cations of random sampling in computa-
tional geometry, I1. Discrete and Compu-
tational Geomelry, pages 387-421, 1989.

[CTVW89] K. L. Clarkson, R. E. Tarjan, and C. J.
Van Wyk. A fast Las Vegas algorithm for
triangulating a simple polygon. Discrete
and Computational Geomeiry, 1989.

R. Cole and U. Vishkin. Deterministic
coin tossing with applications to optimal
list ranking. Information and Conirol
1:32-53, 1986.

H. Edelsbrunner. Algorithms in Combi-
natorial Geometry. Springer-Verlag, New
York, 1987.

[CV86]

[Ede87]

A. Fournier and D. Y. Montuno. Trian-
gulating simple polygons and equivalent
problems. ACM Transactions on Graph-
ics, pages 153-174, 1984.

[FM84]

M. T. Goodrich. Intersecting line seg-
ments in parallel with an output sensi-
tive number of processors. In Proceedings
of the First Symposium on Parallel Algo-
rithms and Architectures, pages 127-137,
1989.

[Goo89al]

[Goo89b] M. T. Goodrich. Triangulating a poly-
gon in parallel. Journal of Algorithms,

10:327-351, 1989.

M. T. Goodrich, S.B. Shauck, and
S. Guha. Parallel methods for visibil-
ity and shortest path problems in simple
polygons. Technical report, Computer
Science Department, The Johns Hopkins
University, 1989.

T. Hagerup, H. Jung, and E. Welzl. Ef-
ficient parallel computation of arrange-
ments of hyperplanes in d dimensions.
In Proceedings of the Second Symposium
on Parallel Algorithms and Architectures,
pages 290-297, 1990.

[GSG8Y]

[HIW90]

[Mul88] K. Mulmuley. A fast planar point loca-
tion algorithm: part I. In Proceedings
of the 29th Annual IEEE Symposium on
Foundations of Computer Science, pages

580-589, 1988.

S. Rajasekaran and J.H. Reif. Optimal
and sublogarithmic time randomized par-
allel sorting algorithms. SIAM Journal
on Computing, 1988.

[RRSS]

[Sei] R. Seidel. A simple and fast incremen-
tal randomized algorithm for computing
trapezoidal decompositions and for trian-
gulating polygons. manuscript.

Page 10

