CHECKPOINTING MULTICOMPUTER APPLICATIONS
Kai Li
Jeffrey F. Naughton
James S. Plank
CS-TR-315-91

April 1991

Checkpointing Multicomputer Applications

Kai Li* Jeffrey F. Naughton' James S. Plank*

Abstract

Efficient checkpointing and resumption of multicomputer applications is essential if mul-
ticomputers are to support time-sharing and the automatic resumption of jobs after a sys-
tem failure. We present a checkpointing scheme that is transparent, imposes overhead only
during checkpoints, requires minimal message logging, and allows for quick resumption of
execution from a checkpointed image. Since checkpointing multicomputer applications poses
requirements different from those posed by checkpointing general distributed systems, ex-
isting distributed checkpointing schemes are inadequate for multicomputer checkpointing.
Our checkpointing scheme makes use of special properties of multicomputer interconnection

networks to satisfy this new set of requirements.

1 Introduction

Recently, multicomputer systems with large numbers of fast processors, high-speed intercon-
nects, and concurrent I/O systems have become commercially available. While the raw hard-
ware on these machines is powerful, multicomputers are still more difficult to use than unipro-
cessors and shared memory multiprocessors. Two important factors making multicomputers

difficult or at least inconvenient to use are

o There is no facility for automatic resumption from failure points for long-running jobs.
Because there is no resumption facility, if the multicomputer has to be taken down.
perhaps because of a failure, perhaps for routine maintenance, all currently active jobs
must be terminated. After the system is brought back up, these terminated jobs must
be restarted from the beginning. This is a serious drawback, since it is precisely the

long-running jobs that require the resources of a multicomputer.

o There is no way to start a job, then suspend it because a higher priority job has arrived,
then resume the job after the higher priority job has terminated. This makes sharing

*Department of Computer Science, Princeton University, Princeton, NJ 08544,
'Department of Computer Science, University of Wisconsin at Madison, Madison, WI 53706

a multicomputer difficult. Once a job has been allocated the multicomputer., or some
portion of the multicomputer (e.g., a subcube in a hypercube), the job must run to

completion or be aborted.

To remove these difficulties requires a checkpoint /resume capability.

Since a multicomputer can be viewed as a distributed system. schemes presented in the
distributed checkpointing literature can be used for multicomputer checkpointing. However,
multicomputer checkpointing presents a set of opportunities and requirements significantly dif-
ferent from those present in general distributed systems. The special opportunities arise because
multicomputers have a lower degree of node autonomy than do distributed systems, and mul-
ticomputer interconnection networks use deterministic, deadlock-free routing algorithms. The
predominant special requirement of multicomputer checkpointing is that both checkpointing
and recovery must be fast. In fact, it is primarily this requirement that renders previous dis-

tributed system checkpointing algorithms insufficient for multicomputer checkpointing.

Previous distributed checkpointing schemes fall into four broad categories: distributed
database checkpointing schemes, pessimistic checkpointing schemes. optimistic checkpointing
schemes, and Chandy-Lamport algorithms. The problem of taking distributed database check-
points has been well-studied. However. distributed database checkpointing schemes, such as
those presented in [Gra81. ML83. LS83]. require that the checkpointed computation consist
of a sequence of transactions. Since multicomputer applications are general purpose parallel

programs, no such computational model can be assumed.

Pessimistic schemes. such as those presented in [BBG83, PP83]. require that every message
be logged synchronously as it is sent or received. The advantage of pessimistic checkpointing
is quick recovery — the synchronous logging of messages makes recovery from a checkpointed
state trivial. However, the overhead of synchronously logging every message makes pessimistic
schemes inappropriate for multicomputer application checkpointing. (The name “pessimistic”
comes from the fact that these schemes optimize recovery at the expense of normal execution.

implicitly assuming frequent failures.)

Optimistic schemes, such as those presented in [JZ89, SY85], allow asynchronous logging of
messages, and hence can be implemented to cause less overhead than the pessimistic schemes
during normal operation. However, the optimistic schemes require complex recovery algorithms
in order to discover and restore a consistent state. (The name “optimistic” comes from the fact
that these schemes optimize normal operation at the expense of recovery, implicitly assuming

few failures.)

One of the strengths of the optimistic schemes is that they allow a large degree of autonomy

among the nodes participating in the checkpointing. In particular, each node can choose to

checkpoint its internal state and buffered messages at any time. independent of the other nodes.
This autonomy does not come for free — it is a source of much of the complexity in the recovery

algorithm.

While node autonomy is important in general distributed systems. it is less important
within a single parallel application such as a multicomputer application. By giving up on this
node autonomy, our algorithm achieves both the low overhead of optimistic schemes and the
simple recovery of pessimistic schemes. More specifically, in our checkpointing scheme there are
identifiable global snapshots. and every processor knows approximately when a global snapshot
begins and ends. This is what allows for quick recovery from checkpointed images, since there
is no need for a complex distributed algorithm to determine from which checkpointed state each

processor should resume.

Finally, a host of checkpointing algorithms [SK86, LY87. KT87. Ahu89, CT90] have stemmed
from a paper by Chandy and Lamport [CL85]. They view a distributed system as a set of
processes with FIFO channels for communication. A global snapshot of a distributed system
consists of a set of states for processes and a set of states for channels. Their method suffers on
multicomputers for the following reason: At some point in the algorithm. processor p must be
certain that there are no outstanding messages from a previous checkpoint interval bound for p.
but not yet received by p. The technique laid out by Chandy and Lamport for verifving that
no more messages are outstanding requires O(n?) messages in multicomputers of n processors.
which renders their checkpointing algorithm unacceptably slow when n scales to large machines.
An improvement to this technique has been suggested in [Ven89], but it degrades to O(n?)
messages as the interval between checkpoints grows larger. Thus. it is unacceptable for the

suspending and resuming jobs in a shared environment.

A main contribution of this paper is a new algorithm. based on the deadlock-free routing
algorithms employed by multicomputers. This algorithm guarantees that there are no outstand-
ing messages with far fewer than O(n?) messages — O(nlogn) for the hypercube connected
multicomputers such as the Intel iPSC/2. and O(n) for the next generation of mesh-connected

multicomputers.

2 The Algorithms

The principal difficulty in taking a distributed checkpoint lies in determining and saving a con-
sistent global state. In multicomputer applications, this reduces to ensuring that the processes

involved in the checkpoint agree about which communications have and have not taken place.

A standard way to visualize the problem to view the individual processes as progressing down

parallel, disjoint timelines as the computation proceeds. A communication between process py

CKP1

Time

Figure 1: Two consistent checkpoints.

and process ps is represented by an arrow from the timeline for p; to the timeline for py, with
the tail at the point in p;’s timeline where the message was sent, and the head at the point in
p2’s timeline where the message was received. A possible checkpoint can be represented as a
horizontal line cutting these timelines. For example, Figure 1 shows two possible checkpoints
(labeled CKP1 and CKP2) of a computation involving the three processes P;, P,, and P;. In
the figure there are two messages: my from P; to P, and mq from Py to Ps.

A moment’s thought reveals that a checkpoint is a consistent state if and only if the line
for the checkpoint crosses no message arrows. The reason for this is simple: if an arrow lies
entirely above the checkpoint line, then all processes involved in the communication agree in the
checkpointed image that the message was sent. If an arrow lies entirely below the checkpoint
line, then all processes involved agree in the checkpoint that the message has not been sent.
The two checkpoints in Figure 1 are both consistent; in CKP1, neither m; nor m, has been
sent or received; in CKP2, my has been sent and received, while m; has been neither sent nor

received.

Conversely, if a message arrow starts above a checkpoint line and crosses the checkpoint
line, then in the checkpointed image the sender thinks the message has been sent, while the
receiver thinks that it has not, clearly an inconsistent state. Similarly, if the message arrow
starts below the checkpoint line and terminates above the line, the sender thinks the message
has not been sent while the receiver thinks that it has, again an inconsistent state. Figure 2
shows a checkpoint CKP that is not consistent for two reasons: m; has been sent but not

received, while mo has been received but not sent.

In our checkpointing algorithms, there are explicitly identifiable system checkpoints, and the

Time

Figure 2: An inconsistent checkpoint.

nodes involved in a checkpoint are coordinated to the extent that each node understands that a
particular local checkpoint corresponds to a particular svstem checkpoint. (A local checkpoint
is simply saving the local state of the process to disk.) This is in contrast to the optimistic

schemes [JZ89, SY85] in which there are no explicit system checkpoints.

We define two algorithms for checkpointing, each of which consists logically of two parts,
checkpoint coordination and enforcement of message consistency. Checkpoint coordination
makes sure that all processes take part in the checkpoint, and that each process knows when
global checkpoints begin and end. Enforcement of message consistency ensures that messages
like m; in Figure 2 are recorded as part of the receiving process’s local checkpoint, and that

messages like my are eliminated entirely. Each part is explained in further detail below.

3 Checkpoint Coordination

For checkpoint coordination, we designate a special process p. to be the coordinating process.
Note that this is a departure from most standard distributed checkpointing algorithms, which
typically assume no such coordinating process. While the requirement of a coordinating process
is unreasonable for distributed systems in general, for multicomputers it is entirely reasonable,
since at any given time the entire machine is coordinating to execute a single application. P,

goes through the following steps to coordinate each checkpoint:

1. P. checkpoints itself.

2. P, broadcasts a “start checkpoint” message to all other processes.

3. When p. determines that all the processes have checkpointed, and that all necessary

messages have been logged. it is free to start a new checkpoint.

Steps 1 and 2 are straightforward. Step 3, however, requires further explanation. The
challenge here is to accomplish step 3 without flooding the interconnection network with control
messages. The difficulty is the following: How can process p; ever be sure that there is no
pending message en route to p; from process p;? The simplest solution is the one suggested by
Chandy and Lamport [CL85]: After taking a local checkpoint, process p; sends a “local state
checkpoint complete™ message to every process p; such that p; can communicate directly with p;.
When p; has received a “local state checkpoint complete™ message from every process p; such
that pj can send a message to p;. then p; knows that there are no outstanding messages bound
for p; from the previous checkpointing interval. At this point p; can complete the checkpointing
of its message state, and send p. a “message state checkpoint complete” message. When p.
has received a “message state checkpoint complete” message from each process, the global

checkpoint is guaranteed to be completed.

Such a method is correct and works effectively for distributed systems that are sparsely
connected. For multicomputers with “wormhole routing™ interconnections. everv processor can
send messages directly to every other processor. This means that on a multicomputer with n
processors, the preceding solution requires O(n?) messages, and hence cannot be scaled to large

configurations.

We have developed a new technique for determining when there are no outstanding messages
in much less than O(n?) messages. The method is somewhat intricate: to avoid complicating the
overview of our checkpointing algorithm we have moved an explanation of our new technique.
including a proof of the general case and examples of how it applies to hypercube and mesh

interconnects, to Section 6.

4 Enforcement of Message Consistency

The inconsistencies that arise from messages come in two flavors: Those that are recorded as
sent but not received (e.g. ms in Figure 2) and those that are recorded as received but not sent
(e.g. mq). These inconsistencies can be eliminated if at all times the following two properties

are gu aranteed:

1. If a process p; has not taken its local state checkpoint corresponding to system checkpoint
k. then p; does not “receive” any messages sent by a process p; after p; has taken its local

state checkpoint for checkpoint k.

2. If a process p; has taken its local state checkpoint for checkpoint k, then p; appends to
its message checkpoint state any message m sent by any other process p; such that m
was sent before p; took its local state checkpoint for checkpoint k. Upon failure, these

checkpointed messages can be “replayed” so that they will not be lost.

In short, these properties ensure that messages like m; in Figure 2 will be saved for replay,
and that messages like my will never occur. The two algorithms that we describe differ in the

specifics of how they enforce these two properties.

4.1 Tag Bit Toggling

The first algorithm, which we call Tag Bit Toggling, uses an extra bit in each message to
guarantee the above two properties. This extra bit is called the tag bit. (The use of a tag bit in
distributed checkpointing has been proposed previously in [LY87].) In this scheme the tag bit
toggles between two values, and at all times a process can examine the tag bit of an incoming
message to determine if the message is from the current checkpoint interval or the previous

checkpoint interval (the algorithm guarantees that there are no other possibilities.)

Suppose all processes have completed checkpoint & — 1. but have not started checkpoint
k. Furthermore, assume without loss of generality that the tag bit value for messages in the
interval between checkpoints k£ —1 and k is zero. At some point p. determines that a checkpoint
needs to be taken, and sends “begin checkpoint™ messages to all processes. Each process then

observes the following protocol to ensure the above message consistency properties.

o If process p; sends a message m before it takes its local state checkpoint for checkpoint
k, then it sets m’s tag bit to 0. If it sends m after taking its local state checkpoint. then

it sets m’s tag bit to 1.

o If process p; has not taken its local state checkpoint for checkpoint £, and it receives a
message with a tag bit of 1, then before processing that message, it must take its local

state checkpoint.

o If process p; has taken its local state checkpoint for checkpoint k, and it receives a message

with a tag bit of 0, then it logs that message as part of its message state checkpoint.

o When the processes determine that global checkpoint % is finished, the function of the
tag bit is flipped —- p; continues to send tag bits of 1 until it takes its next local state
checkpoint, for checkpoint & + 1, after which it sends tag bits of 0.

The disadvantage of this approach is its per-message overhead.

-1

4.2 Checkpoint Demarcation Messages

The second algorithm eliminates the per-message overhead of the tag bit. Instead, it uses check-
point demarcation messages, which are variants of the marker messages described by Chandy
and Lamport [CL85]. For this algorithm, each process maintains two bit vectors SENT and
RECEIVED which contain n entries each (where n is the total number of processes). Moreover.
there exists a special demarcation marker message M which every process recognizes. Suppose
again that processes have completed global checkpoint k£ — 1, but have not started checkpoint

k. Then they observe the following protocol:

o If process p; has not taken its local checkpoint for checkpoint k and it receives M from
pi, then before processing M. it must take its local checkpoint, clear the vectors SENT
and RECEIVED, and then set RECEIVED[:] to 1.

o If process p; has taken its local state checkpoint for checkpoint k. and RECEIVED[:] is
0, then if it receives any message other than M from p;. it logs that message as part of
its local state checkpoint. If it receives M from p;. then it sets RECEIVED[i] to 1.

e If process p; has taken its local checkpoint for checkpoint k, and SENT[j] is 0, then before
it may send a message to p;, it must send M to p;, and set SENT[;] to 1.

e When checkpoint coordination determines that the global checkpoint is finished, then all
bits of SENT and RECEIVED are set to 1.

The advantage of this method is that it does not add any overhead to existing messages, and
it may be easier to implement (no need to add a bit to the message format). The method is
superior to the scheme proposed by Venkatesan [Ven89]: In this scheme, each process remembers
whether or not it has sent a message out on each of its channels since the previous checkpoint.
If it has not, then it need not send a marker through that channel. Thus, if checkpoints are
recorded at a frequent rate, the number of markers should be reduced. However, with this
algorithm, the number of markers becomes a function of the time between checkpoints, which
can be large. Our method only adds extra messages during the time a global checkpoint is

being taken.

5 Recovery

Recovering from a system checkpoint made from these algorithms is fast and simple. Each
process needs to retain only its previous two checkpoints and message logs. As part of its

local state. p. retains the number of the last completed system checkpoint. Upon recovery, p.

broadcasts that number to all the other processes, which have retained their local checkpoint
corresponding to that system checkpoint, as one of their last two checkpoints. The processes
then recover to the state of that local checkpoint. and then replay the messages from their

message logs. The recovery is then complete.

It is efficient as far as space is concerned, because for fault-tolerance, only the previous
two checkpoints and message logs need be retained. This is to guard against a failure while
a checkpoint is being taken. For job suspension and resumption, only the current checkpoint
and message log need be retained. As far as time is concerned, the recovery is efficient, as all
processes may recover in parallel — the only extra comunication is the initial broadcast of the

svstem checkpoint number by p..

6 Determining Quiescence

In this section we address a key problem in our checkpointing algorithm: How a processor p in
a multicomputer can determine that there are no more messages from the previous checkpoint
interval that are bound for p but have not yet been received by p. The problem is complicated
by the fact that multicomputer interconnects provide the illusion of complete connectivity.
That is, while a given processor may only have physical connections to a few processors (for
example., each node is connected to logn neighbors in an n-node hypercube), at the process
level, messages can be sent between any pair of processors. Furthermore. if a message m is sent
between processors p; and p;. and the message traverses the route p;pgp;, there is no way for

P to know whether or not m has been sent.

If we view the multicomputer as being completely connected. then there are n? links in the
svstem, and an apparent lower bound on the number of messages to ensure no outstanding
messages is n”. However, while the interconnect provides the illusion of full connectivity, in
reality each of these n? links corresponds to a route through some subset of the physical links
of the system. Furthermore, with the exception of the original store-and-forward hypercube
multicomputers, all of the multicomputer interconnection networks of which we are aware satisfy

the following three conditions:
1. Routing in the system is deterministic, using a deadlock-free routing algorithm as defined
by Dally and Seitz [DS87], and

2. Allocation of a route is non-preemptive; that is, once a message is allocated a route, no
other message travels along the same channels until the message has been completely

transmitted, and

3. Queueing for incoming messages in the system is strictly FIFO.

We will call an interconnection network that satisfies these conditions a well-behaved intercon-

nection network.

For well-behaved interconnection networks, we can determine that there are no outstanding

2 messages. For example. in the current generation of hypercube

messages in far fewer than n
connected multicomputers (e.g.. the Intel iPSC/2 or iPSC/860), our algorithm takes O(nlogn)
messages; on the next generation of mesh-connected multicomputers, our algorithm takes only
O(n) messages. The next three subsections consider our algorithm for the general case. for the

case of hypercube interconnects. and for the case of mesh interconnects.

6.1 General Case

Dally and Seitz [DS87] define an interconnection network I to be a strongly connected. directed
graph I = G(N.C'), where N is the set of nodes. and C is the set of channels, or physical links
which connect the nodes. A routing function f : C x N — ' maps the current channel ¢; upon
which a message resides, and its destination node ng, to the next channel c; that it will take
on its way to ny. Thus, f is a non-adaptive, memoryless routing function. It's non-adaptive
because it always vields the same path from one node to another. and it's memoryless because
the function works from channel to channel, retaining no knowledge of the source node once

it’s underway.

To prove a routing function deadlock-free, they define a channel dependency graph D =
G(C, E). where C is the same set of channels described above. and F is a set of edges determined
by f as follows:

E = {(ci.c;) | f(cisng) = c; for some ny € N}

They show that f is deadlock-free if and only if D has no cycles.

We use the results of Dally and Seitz to define an algorithm which lets every node determine
that there are no pending messages destined for it which were sent before the sender check-
pointed. It is assumed that each process p; resides on node n;. Moreover, if the interconnection
network contains the channel ¢ = (n;.n;). then the path of a message from p; to p; is routed
through ¢. Finally, when we say “p; sends a message on channel ¢,”, we mean that if ¢ = (n;, n;).

then p; sends a message to p;. thereby using channel ¢. The algorithm is defined as follows:

e Assume that p; has checkpointed itself.

e For all outgoing channels ¢, from p;, if there is no ¢; such that (¢, c,) € E, then p; sends

a “local state checkpoint complete™ (LSCC) message on channel c,.

e For all other outgoing channels ¢, from p;, when LSCC messages have been received from

all channels ¢; such that (¢j,¢,) € E, p; sends an LSCC message on channel c,.

10

o When p; has sent LSCC messages on all of its outgoing channels. and has received LSCC’s
on all its incoming channels, then it can send its “message state checkpoint complete”

(MSCC) message to pe.

The following theorems prove that the algorithm is correct:
Theorem 1 Given a deadlock-free routing function, the above algorithm will terminate.

Proof: Since D is a graph with no cycles, we can number the channels from 1 to |C| in such
a way that if (¢;,¢;) € E, then i < j. Now, since there is no ¢; such that (¢;.c;) € E, an LSCC
message can instantly be sent on ¢;. The proof proceeds by induction. Suppose that LSCC
messages have been sent on channels ¢; through ¢i, but not on channel c;4;. Consider all ¢;
such that (¢;.cx41) € E. From our numbering, i < k + 1, so LSCC messages have been sent
out all channels ¢;. As f is deadlock-free, the messages are eventually received, and an LSCC
message is sent out cpy;. Therefore, LSCC messages are sent and received on all channels.

prompting all the processes to send MSCC messages to p.. Thus. the algorithm terminates. O

Theorem 2 After sending its MSCC' message, no process p; will receive a message from p;
which was sent before p; checkpointed itself, provided that all processes receive messages in a

FIFO order from their incoming channels.

Proof: Suppose p; sends a message m to p; before p; has taken its local state checkpoint.
Further, let ¢y...., ¢, be the route that m takes; that is. f(cr_y.ng) = ¢ for 1 < k <. Since
allocation of a route is non-preemptive, m will be received by p; before p; can send out another

message on channel ¢;. In particular, p; receives m before p; sends LSCC on ¢;.

We now show that LSCC is received on all channels ¢y....,¢; after p; has received m. This
is done by induction on [. First. as noted above, LSCC is received on c¢; after p; has received
m. Next, suppose that for all & < [. LSCC is received on ¢, after p; has received m. Since
fleiz1,ng) = ¢, (¢1-1.¢;) € E, and the LSCC message will not be sent on ¢; until it has been

received on ¢;—y. Thus, LSCC is also received on ¢; after p; receives m.

Therefore., p; receives LSCC on ¢; after receiving m, and cannot send MSCC until after it

has received all messages which were sent before their sender checkpointed. O

6.2 Hypercube Interconnections
The Intel iPSC/2 [Nug88] is a multicomputer with a hypercube interconnection network that

is well-behaved. Each process is associated with a node on a hypercube. In an N-dimensional

hypercube, nodes are numbered 0 through 2 — 1. If the binary representation of nodes i and

11

110 111

010 011

— Dimension 0 links
— — Dimension 1 links
--- Dimension 2 links

101

]
|
I
|
|
I
I
-
' -
"- | "-
(=) (=)
Figure 3: A 3-dimensional hypercube

j differ by exactly their k-th bit, then they are physically connected by a link which is said to

be in dimension k. As an example, Figure 3 shows a 3-dimensional hypercube with its links.

Each link is bidirectional, and thus can be divided into two uni-directional channels. The
iPSC/2 uses the e-cube routing function, which is deadlock-free. It specifies that the only
channels used are those in the dimensions in which the binary representation of the source and
destination nodes differ. These channels are used in increasing order of dimension. For example.
in Figure 3, a message from node 000 to node 111 will use the channels (000.001), (001,011),
and (011,111).

To put this in the notation of Dally and Seitz. let ¢; = (nq.n). Then f(e¢;.ng) = c,. where
¢, is the channel emanating from n; in the lowest dimension in which the binary representations
of ny and ny differ. For example, in Figure 3, f({000,001).111)= (001,011).

The algorithm for sending LSCC messages. therefore, works as follows:
o After process p; takes its local state checkpoint, it sends LSCC on its outgoing channel

co of dimension 0. This is because ¢g always starts a message route: There are no ¢; such

that (¢j,co) € E.

e P; sends LSCC on its outgoing channel ¢, of dimension k only after it has received LSCC
on each incoming channel ¢; of dimension j < k. This is because for each of those ¢;,

(¢j,cx) € E.

o When LSCC has been received on all incoming channels and sent on all outgoing channels,
p; sends MSCC to p..

Thus, this algorithm results in two LSCC messages sent per physical link. As each node

12

g ig e e
0121 /J\ 0122 0120
A 21) } 22\—‘::;:
0021 NoZ 0022 N 0020
g |2 e
0111 -"\ 0112 N 0110
11) iy
011 Nod 0012 0010
— — 2 o~
gl = gl |=
0101 /""'\ 0102 R ~ 0100
3 01 [T A 02] S
0001 Nod 0002 0000
g8 gl g gllg

Figure 4: A 3 x 3 toroidal mesh

has logn links incident to it. this results in nlogn LSCC messages. a significant improvement

over Q(n?).

6.3 Mesh Interconnections

As a second example for this algorithm. consider a toroidal mesh. (The next generation mul-
ticomputers, including the Intel Touchstone Delta and Sigma machines will use toroidal mesh
interconnection networks.) In this interconnection network. the nodes are laid out on a grid.
and each node has two outgoing links: one to its right. and one going up. To be more formal.
in a R x C toroidal mesh. I = G(N. L). where:

N = {nj|i<Randj<C}
L = {(nijini;) | = (G +1)mod C} U {(ni,ns;) | ' = (i+ 1) mod R}

As before, for the purposes of the deadlock-free routing function, we split each link into two
channels. This time we call them high and low channels, for reasons discussed below. To be

more clear, we give each channel a 4-digit identification number dhrc, where

d = The channel’s dimension: 1 if it is of the form (n;;. ni;). 0 otherwise
h = 1ifit’s a high channel, 1 if it’s a low channel

r = The row number of its destination node

¢ = The column number of its destination node

13

Figure 4 shows an example of a 3 x 3 toroidal mesh.

Deadlock-free routing on the mesh is similar to the routing on the hypercube. The message
first gets routed to the correct column, and then to the correct row. When routing to the
correct column, low channels are used when the number of the current column is greater than
the number of the desired column. and when routing to the correct row. low channels are used

when the number of the current row is greater than the number of the desired row. To be

formal:

coor((c+1) e >jand e #C —1

¢ s wif(e4+1)mod C < j

Floanres tsg) = - 7 derlimod0) - . /
clopr41)cifc=jandr >tandr # R -1

€11((r+1)modR)c if ¢ = jand (r + 1) mod R < ¢

The first thing to notice about this function is that channels with identification numbers
of the form ¢gor0. €o1r1- €100c» and c111c never get used. Thus, they can be removed from the
network. Next, a moment’s thought shows that in terms of the channel identification numbers,
this function is strictly increasing. In other words, if (¢;,¢;) € E, then i < j. Therefore, the

channel dependency graph has no cycles, and the routing function is deadlock-free.

The algorithm for sending LSCC messages now works in a manner similar to the hyvpercube

example:

e P;; sends an LSCC message on outgoing channel cqp;; only after it has received LSCC

messages from each incoming channel ¢gipr,.. where d'h're < dhij.

e When LSCC has been received on all incoming channels and sent on all outgoing channels.

pij sends MSCC to p..

Thus, unlike the hypercube algorithm. where every process can start sending LSCC messages
after checkpointing. in this algorithm only the processes p;p can start. by sending LSCC on chan-
nel cooi1. Like the hypercube algorithm. however, it sends approximately two LSCC messages

per physical link. which results in 4n LSCC messages.

Therefore, by using properties of an interconnection network. and its deadlock-free routing
function, our algorithm only sends O(m) extra messages, where m is the number of physical
links in the network. This is a significant savings over the O(n?) messages which occur when

the properties of the network are ignored.

14

7 Conclusion

We have designed a new distributed checkpointing algorithm, specialized for the demands and
opportunities that arise in checkpointing multicomputer programs. The checkpointing algo-
rithm is unique in the distributed checkpointing literature in that it is highly efficient both when
taking checkpoints and when recovering from checkpointed images. The algorithm achieves its
high performance by making use of assumptions not satisfied in general by distributed systems,
but satisfied by all of the existing and proposed multicomputers of which we are aware. We
are currently implementing the algorithm on the Intel iPSC/2 hypercube. It is our hope that
through checkpointing our algorithm will greatly reduce the chances of lost work due to system
failures, and will also for the first time enable efficient time-sharing of multicomputers.

Acknowledgements

Kai Li was supported in part by NSF grant CCR-8814265 and Intel Supercomputer Systems
Division. James Plank was supported in part by AT&T fellowship.

References

[Ahu89] Mohan Ahuja. Repeated global snapshots in asynchronous distributed systems. Tech-
nical Report OSU-CISRC-8/89 TR40, Ohio State University, August 1989.

[BBG83] A. Borg, J. Baumbach, and S. Glazer. A message system supporting fault tolerance.
In Proceedings of the ACM Symposium on Operating System Principles, pages 90-99.
Atlanta, Georgia, October 1983.

[CL85] K.Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global states
of distributed systems. ACM Transactions on Computer Systems, 3(1):3-75, February
1985.

[CT90] Carol Critchlow and Kim Taylor. The inhibition spectrum and the achievement of
causal consistency. Technical Report TR 90-1101, Cornell University, February 1990.

[DS87] W. J. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor inter-
connection networks. IEEE Transactions on Computers, C-36(5):547-553, May 1987.

[Gra81] Jim N. Gray et. al. The recovery manager of the System R database manager. ACM
Computing Surveys, 13(2):223-242, June 1981.

[7Z89)]

[KT87]

[LS83]

[LY87]

[MLS83]

[Nug88]

[PP83)

[SKS6]

[SY85)

[Ven89]

David B. Johnson and Willy Zwaenepoel. Recovery in distributed systems using op-
timistic message logging and checkpointing. Computer Systems Research at Rice Uni-
versity: Annual Report 1988-1989, pages 83-102, 1989.

Richard Koo and Sam Toueg. Checkpointing and rollback-recovery for distributed
systems. IEEE Transactions on Software Engineering, SE-13(1):23-31, January 1987.

Barbara H. Liskov and Robert W. Scheifler. Guardians and actions: Linguistic support
for robust. distributed programs. ACM Transactions on Programming Languages and
Systems, 5(3):381-404, july 1983.

Ten H. Lai and Tao H. Yang. On distributed snapshots. Information Processing Letters.
25:153-158, May 1987.

C. Mohan and B. Lindsay. Efficient commit protocols for the tree of processes model
of distributed transactions. In Proceedings of the ACM Symposium of Distributed
Computing, pages 76-80. Montreal. august 1983.

Steven F. Nugent. The iPSC/2 direct-connect communications technology. In Proceed-
ings of the Third Hypercube Conference. Association for Computing Machinery (ACM).
1988.

Michael L. Powell and David L. Presotto. Publishing: A reliable broadcast commu-
nication mechanism. In Proceedings of the ACM SIGOPS Symposium on Operating
System Principles, pages 100-109, october 1983.

Madalene Spezialetti and Phil Kearns. Efficient distributed snapshots. In Proceedings
of The Sizth International Conference on Distributed Computing Systems. pages 382—
388, Cambridge, Massachusetts, May 1986. IEEE Computer Society.

Robert E. Strom and Shaula Yemini. Optimistic recovery in distributed systems. ACM
Transactions on Computer Systems, pages 204-226, August 1985.

S. Venkatesan. Message-optimal incremental snapshots. In Proceedings of The Ninth
International Conference on Distributed Computing Systems, pages 53-60, Newport
Beach, California, June 1989. IEEE Computer Society.

16

