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Abstract

Discovering efficient algorithms to compute flows in networks has been a goal of
researchers in operations research and computer science for over 35 years. In this paper
we review some recent developments in algorithms for the single-commodity maximum
flow problem, and we comment on possible additional improvements. Our criterion
for efficiency is theoretical worst-case running time on large sparse problems, ignoring

constant factors.
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1. Terminology
A directed graph G = (V, E) consists of a vertex set V and an edge set E, each element
of which is an ordered pair of distinct vertices. We shall allow only symmetric graphs,
which are graphs such that (v, w) € F if and only if (w,v) € E; this assumption entails
no loss of generality. A network is a symmetric directed graph with a real-valued capacity
Junction u on the edges. We denote the capacity of an edge (v, w) by u(v,w), deleting
the redundant set of parentheses, and similarly for other functions on the edges. We
denote by U the maximum absolute value of any edge capacity.

A pseudoflow on a network is a real-valued function f on the edges, satisfying the

following constraints for every edge (v, w):

(1) f(v,w) < u(v,w) (flow capacity constraint);

(2) f(v,w)= —f(w,v) (flow antisymmetry constraint).

The antisymmetry constraint is somewhat nonstandard but simplifies the statements of
certain definitions and results; for some discussion of this see [18].

For a given pseudoflow f, the flow excess at a vertex v is

(3) e(v) = Z f(u,v).

(uv)EE

A pseudoflow is a preflow (with respect to a designated source vertex s) if e(v) > 0 for
every vertex v # s. A pseudoflow is a flow (with respect to a designated source vertex
s and a designated sink vertex t) if e(v) = 0 for every vertex v ¢ {s,1}. The constraint
e(v) = 0 for v ¢ {s,1} is called flow conservation. The value of a flow is e(t) . It is easy to
show that the value of a flow is equal to the negative of the excess of the source, —e(s).
A flow is mazimum if its value is as large as possible. The mazimum flow problem is that
of computing a maximum flow for a given network with a given source and sink.

In the remaining two sections we shall discuss algorithms for the maximum flow
problem, along with some possible directions for future research. Classical results on
network flow theory can be found in the books [13, 24, 27]; two more-recent surveys of
work in the area are [1, 18]. Section 2 discusses the classical augmenting path method
and algorithms based on it. Section 3 discusses the preflow push method, a relatively

recent discovery that leads to simplified algorithms and improved running times.



2. The Augmenting Path Method

The maximum flow problem is a special case of linear programming, and can thus be
solved by applying any linear programming algorithm, such as the simplex method [8] or
an interior point method [21]. The fastest known methods for this problem are, however,
specialized combinatorial algorithms. But, as we shall see, a specialized version of the
simplex method is also quite efficient.

We shall briefly examine some general approaches to computing maximum flows and
discuss what is known about each. To simplify matters, we assume that the function that
is identically zero on all edges is a flow; that is, 0 < u(v, w) for every edge (v, w) (capacity
nonnegativity constraint). We use the zero flow as a starting flow and gradually improve
it to a maximum flow. If the nonnegativity constraint is violated, the problem of finding a
starting flow can itself be solved as a maximum flow problem satisfying the nonnegativity
constraint [24]; thus there is no loss of generality in assuming nonnegativity.

The classical combinatorial algorithm for the maximum flow problem is the augment-
ing path method of Ford and Fulkerson [12, 13]. To define this method we need a few
more concepts. The residual capacity of an edge (v, w) with respect to a pseudoflow f
is ug(v,w) = u(v,w) — f(v,w). An edge is saturated if its residual capacity is zero and
nonsaturated otherwise. An augmenting path is a path from the source s to the sink ¢
consisting entirely of nonsaturated edges. Given an augmenting path with respect to
some flow, the value of the flow can be increased by adding to the flow of each edge along
the path any positive value § not more than the minimum of the residual capacities of
the edges on the path (and subtracting § from the flows of the reversals of the edges on
the path). The augmenting path method consists of beginning with the zero flow (or any
flow) and repeatedly finding an augmenting path and sending as much flow as possible
along it, continuing until there are no augmenting paths.

With arbitrary selection of augmenting paths, the augmenting path method can be
very inefficient. Indeed, it need not even terminate after a finite number of augmentations
if the capacities are irrational numbers [13]. A careful choice of augmenting paths does,
however, lead to a polynomial time bound. Edmonds and Karp [11] showed that if
each augmentation is on a path of fewest edges, then the augmenting path algorithm
runs in O(nm?) time; successive augmenting paths are nondecreasing in length. Dinic [9]

independently made essentially the same discovery, and noted further that all augmenting



paths of the same length can be found in a single computation, called a phase, resulting in
an overall time bound of O(n?m). Sleator and Tarjan [25, 26] discovered a way to make
Dinic’s algorithm run in O(nmlogn) time using a sophisticated data structure called a
dynamic tree, and Dinic [10] and Gabow [14] independently found a relatively simple
capacity-scaling algorithm that runs in O(nmlog U) time on a network with integer edge
capacities.

Recently, Goldfarb and Hao [20] have taken a careful look at the simplex algorithm
as applied to the maximum flow problem. They have devised a version of the primal
network simplex algorithm in which pivots are chosen using a shortest path strategy as
in the Dinic and Edmonds-Karp versions of the augmenting path method. The time
bound of their algorithm is O(n*m). Using dynamic trees, Goldberg, Grigoriadis, and

Tarjan [17] have improved the running time of this algorithm to O(nmlogn).

3. The Preflow Push Method

Somewhat better bounds have been obtained by using alternative algorithmic approaches.
We shall describe the preflow push method, invented by Goldberg [15] and developed
more fully by Goldberg and Tarjan [16, 19] and others. Not only does this method give
improved worst-cast time bounds, it leads to very simple computer codes that run fast
in practice.

The preflow push method is based on two ideas. The first is to break the flow
movement into smaller steps. Instead of moving an amount of flow all the way from the
source to the sink at once, flow is moved through one edge at a time. The second idea
is to provide directionality to the flow movement by maintaining an estimate at each
vertex of the distance to the sink via a path of residual edges. Flow is moved toward
the sink with respect to these estimates, and the estimates are intermittently updated
as they become less accurate.

The distance estimates are defined by a valid labeling of the vertices. A valid labeling

is a nonnegative integer function on the vertices, with the following properties:

(4) d(s)=mn,
(5) d(t) =0,
(6) d(v) <d(w)+1 for every residual edge(v,w).



For two vertices v,w, let £(v,w) be the minimum number of edges on a path of residual
edges from v to w. Then (4), (5), and (6) imply that, for any valid labeling d, d(v) <
min{{(v,t), £(v,s)+n}. The labeling given by d(v) < min{{(v,t), {(v,s)+ n} is a valid
labeling, and is the largest possible valid labeling.

We call an edge (v, w) admissible with respect to a valid labeling if (v, w) is residual
and d(v) = d(w) + 1. The preflow push method begins by choosing an initial preflow f
that is zero on all edges except those incident to s and that saturates every edge out of
s. That is, f(v,w) = 0if s ¢ {v,w}; f(s,v) = u(s,v); f(v,8) = —u(s,v). Then the
method chooses an initial valid labeling d . One possibility is d(v) = 0if v # s, d(s) = n;
another possibility is d(v) = min{{(v,t), £(v,s)+ n}. The latter labeling, which we call
the tight labeling, can be computed by performing breadth-first searches from s and from
t. The main part of the algorithm consists of repeating the following two steps in any

order, until the preflow f becomes a flow.
push (v, w):
applicability: e(v) > 0, v # t, (v, w) is eligible.
action: increase f(v,w) by min{e(v), us(v, w)}.
relabel (v):
applicability: e(v) > 0, v # t, and no edge of the form (v, w) is eligible.
action: set d(v) = min{d(w) + 1| (v, w) is an eligible edge}.
A push is called saturating if us(v,w) units of flow are moved and nonsaturating other-
wise.
In discussing various versions of the preflow push algorithm we omit implementation
details; see [16, 18, 19]. Ignoring certain overhead issues, the running time of the algo-
rithm depends on the number of saturating and nonsaturating pushes and the number

of relabelings. The following lemmas, whose proofs we omit (see [16, 18, 19]), provide a

running time analysis of the generic algorithm.
Lemma 1. For any active vertez v, d(v) < 2n—1.

Lemma 2. The label number of relabeling operations is O(n?), taking a total time of
O(nm).



Lemma 3. The total number of saturating pushes is O(nm).
Lemma 4. The total number of nonsaturating pushes is O(n*m).

The nonsaturating pushes dominate the time of the generic algorithm, and result in
an overall time bound of O(n?m). In order to obtain a faster version of the algorithm,
either the number of pushes must be reduced or the time per push must be reduced.

Goldberg [15] (see also [16, 19]) suggested a strategy for selecting pushes called the
FIFO (first-in, first-out) method. The FIFO method maintains a queue of all the vertices
other than ¢ with positive excess. The method consists of repeatedly selecting the first
vertex on the queue, pushing flow from it until it can be relabeled, relabeling it, and
adding it to the end of the queue if it still has positive excess. Vertices made newly
active by pushes are also added to the end of the queue.

The FIFO method reduces the number of nonsaturating pushes, and the overall run-
ning time of the algorithm, to O(n®). This matches a bound previously obtained by
others [22, 23, 28], and it leads to a simple computer program that is fast in practice. A
parallel version of the FIFO method, in which all active vertices are processed at once,
runs in O(n?logn) time with n processors [16, 19].

A variant of the FIFO method, the largest label method [16, 19], always processes
a vertex of largest label. This method has a running time of O(n%,/m) [7]. Ahuja
and Orlin [2] found an ezcess-scaling version of the preflow push algorithm that runs in
O(nm + n®log U) time for networks with integer capacities. An improved version of this
algorithm runs in O(nm + n2(log U)'/2) time [3].

The use of the dynamic tree data structure further improves some of these algo-
rithms. With dynamic trees, the FIFO algorithm runs in O(nmlog(n?/m)) time, as
does the largest label algorithm [16, 19]. The improved excess-scaling algorithm runs in
(nm log (%(log PR 2)) time on integer-capacity networks [3].

Recently, Cheriyan and Hagerup [5] and others have explored ways to reduce the
running time of the preflow push method by using randomization, excess scaling, dynamic
trees, and array-based table lookup techniques — in short, by combining most of the
previously known techniques for the problem with several new ideas. The first step
in this line of research was a randomized algorithm with an expected running time of
O(nm + n*(logn)?) devised by Cheriyan and Hagerup [5]. The time bound for this
algorithm was reduced to O(nm + n%(logn)?) by Tarjan in unpublished work. Alon [4]
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found a way to make the Cheriyan-Hagerup algorithm deterministic, but with an increase
in the time bound to O(nm + n®3logn). Cheriyan, Hagerup, and Mehlhorn [6] devised
a simpler algorithm giving the same time bounds; in addition, they found a way to
use table lookup techniques to obtain an O(n®/logn) deterministic running time on a
unit-cost random-access machine.

At the heart of the Cheriyan-Hagerup approach is a way of reducing pushes by ana-
lyzing a combinatorial game that arises in the operation of the preflow push algorithm.
This game is still only incompletely understood. and it seems likely that a better anal-
ysis of the game will lead to improved running times for the maximum flow problem for
both randomized and deterministic algorithms. Although the maximum flow problem

has been extensively studied for over three decades, it has not yet revealed all its secrets.
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