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Efficient, Scalable Architectures
for Lattice-Gas Computations
—Abstract—

Richard K. Squier
Thesis Advisor - Professor Kenneth Steiglitz

The subject of this dissertation is finding an architecture for two-dimensional cel-
lular automata computations that is verifiably correct, and the fastest and cheapest pos-
sible. The motivating problems for this work are large-scale scientific computations;
the hardware context is that of application-specific processors attached to general-
purpose systems. While the conclusions are derived for a specific class of two-
dimensional cellular automata, the so-called ‘‘lattice gasses,’” they are applicable to a

wide range of similar problems.

By developing and applying solutions to discrete isoperimetric problems to a peb-
bling game, upper bounds on throughput for machines computing problems with data
dependency graphs based on the undirected graphs for the Hardy-de Pazzis-Pomeau
(HPP) and Frisch-Hasslacher-Pomeau (FHP) lattice-gasses are shown. A particular
architecture, the ‘“Wide Serial Architecture’” (WSA), is shown to be within a factor of
approximately 6 of the bound for the HPP-like computations, and within a factor of
about 4.5 of the bound for the FHP-like computations. Besides the insight they provide
into the optimal computational strategy, the methods of solution of the isoperimetric

problems, such as the use of the Wulff Crystal, are of interest in their own right.

An analytic study of the least-cost configuration for a multiple-pipeline WSA
machine is undertaken. The use of overlap-save method is described, and the
efficiency of the WSA architecture using this method is derived. A numerical search is
used to find the least cost machine configuration as the problem size is scaled. A
slightly super-linear speedup is shown over a moderate range of problem sizes, and the

least-cost machine parameters are described.

Finally, a data-embedded, specification-based testing technique for FHP lattice
gasses is introduced. The tests consist of limit cycles in the cellular automaton, and
their error detection coverage is shown empirically to be good. Their use in software,
hardware, and system debugging is described, as well as their use as runtime simulation

error detectors. Machine design tradeoffs relating to testability are discussed.
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Chapter 1
Introduction

1.1. Introduction

The subject of this dissertation is finding an architecture for two-dimensional
lattice-based computations that is verifiably correct, and the fastest and cheapest possi-
ble. The motivating problems for this work are large-scale scientific computations; the
hardware context is that of application-specific processors attached to general-purpose
systems. The results presented here are arrived at by mathematical study of tradeoffs
between machine resources and throughput (Chapter 2), by analytic and numerical stu-
dies of the tradeoffs between cost of construction and throughput (Chapter 3), and by
empirical development of a tradeoff between verifiability of implementation correct-
ness and certain design factors (Chapter 4). While the conclusions are derived for a
specific class of two-dimensional cellular automata, the so-called ‘lattice gasses,’’ they
are applicable to a wide range of similar problems, including local iteration algorithms

for differential equations.

Two areas of recent development have driven this work: theoretical results on cel-
lular automata properties for complex system modeling, and technology for inexpen-
sive custom VLSI. The theoretical understanding of the properties of certain simple
cellular automata has made them interesting candidates for investigating complex sys-
tems by simulation study using these automata. There are two basic reasons why they
are promising: (1) they avoid certain problems of instability and system definition
encountered in the usual numerical approach to modeling complex systems, and (2) the
cellular automata computing paradigm is inherently parallel with simple communica-
tion which suggests that large-scale parallel machines may be easier to build under this

paradigm than others.

The rapid advance of VLSI technology in such directions as silicon compilers;
cheaper, denser, and faster chip technology; and rapid prototyping suggests that, in the
near future, building algorithm-specific adjunct hardware will become increasingly
cost-effective. In general, simulation studies using cellular automata, such as lattice-
gas simulations, require the simulation of automata with a very large number of cells
for many iterations. This type of computation is generally beyond the capabilities of
conventional general-purpose machines, and in the scales proposed, beyond the reach
of today’s super-computers. However, the developments in VLSI technology may
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make special-purpose hardware for the simulation of specific cellular automata practi-
cal.

It is becoming accepted that no single architecture is equally applicable to all
algorithms. In the field of parallel computing, it is not uncommon to find that an algo-
rithm which is efficient on one parallel architecture is inefficient on another. In the
application-specific array community there is currently work proving various particular
architectural organizations are optimal for the particular algorithm they implement.
This dissertation answers some questions of optimality for the lattice-gas algorithm,
and suggests directions for future work that might lead to a more general strategy for
deriving an optimal architecture from an algorithm. The hope that studying the specific
lattice-gas algorithm will teach us about implementing other algorithms affects our
problem formulations, and colors the entire work in many ways.

The remainder of this chapter is organized as follows. Section 2 describes the

lattice-gas automata; Section 3 gives a summary of results found in the thesis.

1.2. Lattice-Gas Automata

In cellular automata, values associated with nodes in an undirected graph are
updated in synchronous steps according to a rule ( the rule may, or may not, be uniform
for every node) applied locally at each node. The edges of the graph define which
nodes are ‘‘neighbors’ of a node, and the update rule determines the new value of the

node from the values of its neighbors and itself.

A lattice-gas automaton is a cellular automaton whose neighbor-defining graph is
a lattice graph. (For a precise definition of a lattice graph, see [1].) The rule defining a
lattice-gas automaton’s evolution generally simulates particles traveling along the
edges of the neighbor graph. Our version of a lattice gas is based on the HPP and
FHP-III models as described in [2, 3] (see figure 1.1). The FHP models are of interest
because they have been shown to correspond to the Navier-Stokes equations for fluid
flow. The HPP models are interesting partly because of their modelling ability, and
partly because the general form of their data dependency graphs conform to the data
dependency graphs of a general class of iterated problems. These types of lattice-gas
automata (FHP and HPP) consist of a two-dimensional lattice graph and a set of update
rules for variables associated with each node in the lattice graph. The lattice is the
integer grid, for the HPP gas, or the triangular lattice, for the FHP gas. The edges of
the lattice graph connect nearest neighbors in the lattice (this can be extended by also

connecting next-nearest neighbors and so forth), resulting in the two-dimensional grid
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figure 1.1.

The lattice graphs for the HPP lattice gas (left) and the FHP lattice gas (right). Dashed lines represent
undirected edges in the graph, and the intersections of the dashed lines represent nodes. On the left of
the HPP example, two particles are shown about to collide at a node; on the right, two particles are exit-

ing a node after a similar collision.

in the HPP case, and the triangular lattice graph in the FHP case. These graphs may be
embedded on the surface of a torus, or in the plane. At each site each incident edge has
an associated variable representing the presence or absence of a unit mass particle with
unit velocity directed toward the site’s neighbor along that edge. An additional dynam-
ical variable can be used to encode the presence or absence of a unit mass particle with
zero velocity positioned at the lattice site (called a ‘‘rest-particle’’). With this interpre-
tation of the variables the update rule is designed so that, letting the edges have unit
length, the lattice is populated with particles traveling along graph edges and colliding
at lattice sites. Figure 1.1 shows a small section of an HPP lattice gas with several par-

ticles, and a small section of an FHP lattice graph without particles.

For the lattice gasses the automaton update rule table is called a collision rule set,
the initial conﬁguration of states determining a cell’s new state is called a collision, the
next state entry in the rule table is called the result of the collision, and the combination
of a collision and its result is called a collision rule. A particular lattice gas is defined
by specifying a collision rule set that gives the results of every possible collision.
These rules can be thought of as rules about the action of particles (variables set to one)
or equivalently as rules about the action of holes (variables set to zero), as they collide
at lattice sites. In an HPP or FHP gas, particle collisions generally conserve momen-
tum and mass, are symmetric with respect to rotation by integer multiples of the basic
angle of the lattice, and are symmetric for time reversal; for the FHP-III gas, collisions
are also symmetric with respect to hole/particle duality (complementation of the

dynamical variables).
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A data dependency graph for the evolution of an automaton is a layered graph,
each layer being a replica of the set of nodes of the automaton’s undirected lattice
graph, there being as many layers as there are total steps in the automaton’s evolution.
Directed edges in the data dependency graph indicate which values were used to com-
pute new values, so arcs go from layer to layer, indicating the state of the automaton at

one step is derived from its state at a previous step.

figure 1.2.

The dependency arcs in the data dependency graph for an update of a single in node in an HPP lattice.
The dotted lines show the embedding of the HPP lattice graph in the layers of the data dependency
graph.

Figure 1.2 shows the dependency arcs from the neighborhood of one node to the
updated node in the next layer in a data dependency graph for an HPP simulation. Data
dependency graphs for many other iterated computations are similar in that, even
though they may not be layered in the strict sense, they may still have a structure simi-
lar to layering in that the there is some connected graph implicitly defined that can be
used to define a layered subgraph. Since many of our results are based solely on the
graph structure of a particular data dependency graph, the results apply to any compu-

tation whose data dependency graph contains a similar sub-graph.
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1.3. The WSA Architecture

Since a considerable part of this work concerns the WSA architecture, we present
here the logical organization of the computation used by that architecture.

cell value array lattice graph
1(2(3|4
5(6(7|8
9 (10(11(12
13]14|15|16
17|18(19|20
21(22|23|24

first stage
shift-register

22 21120 19 18 17 16 15 14 13 12 11|10 9

t:j first stage ALU

l second stage
16 1514 13 1211 10 9 8 7 6 5|4

t;j

i to next stage, or to array
10 9 8 7

figure 1.3.

The logical organization of computation in the WSA architecture. At the top left is shown an array of site
values corresponding to the HPP lattice graph shown at upper right. The lattice site values are passed
to the pipeline stages below the array. Here, the first stage is producing updated values for sites 15 and
16, which are being passed on to the second stage. The first stage’s shift-register contains site values for
sites 11 through 20. The second stage is producing values for sites 9 and 10 which are updated by two

automaton evolution steps from the values originally stored in the array.

The WSA architecture updates the state of a lattice-gas automaton by passing the state
of the lattice through a pipeline. All the stages of the pipe are identical, and each stage
produces lattice site values that are updated one generation from the stage’s input
values (see figure 1.3). The first stage of the pipe receives the lattice site values in ras-

ter scan order from the memory, and passes updated lattice site values in the same
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raster scan order to the following pipe stage. When the complete array of values has
been scanned through the first stage, the entire lattice will have been updated one auto-
maton evolution step by the first stage. As each stage is identical, the output from the
second stage will be the lattice updated two steps, and if there are s stages in the the
pipeline, the lattice values exiting the pipe and being returned to the array will be the
values of the lattice updated s steps. The ‘“width’’ of the architecture is determined by
the number of lattice site values passed along the pipeline from one stage to the next in
one global machine tick, or cycle. In figure 1.3, the width is 2 since each stage pro-
duces two site values simultaneously. We will go into further details of the WSA
architecture, and the LGM-1 machine based on this architecture, in succeeding chapters

when the discussion requires it.

1.4. Thesis Outline

Chapter 1 is this introduction. Chapter 2 develops an upper bound on throughput
for machines computing problems with data dependency graphs based on the
undirected graphs for the HPP and FHP lattice-gasses. Using these bounds, a particular
architecture (WSA) is shown to be within a factor of approximately 6 of the bound for
the HPP-like computations, and within a factor of about 4.5 of the bound for the FHP-
like computations. This work extends previous work by making detailed definitions
and refining the means of estimation. The result is increased insight into the nature of
the constraints limiting throughput. Because Chapter 2 is rather lengthy, we give a
brief summary below.

Outline of Chapter 2

Formal Basis for Input/Output Costs
A pebbling game is an analytical tool for modelling resource usage by a computa-
tion. The game is played on the associated data dependency graph, the pebbles
representing machine storage registers. A pebble placed on a node is interpreted
as indicating the value associated with the node is stored in the register associated
with the pebble. This section introduces a new variant of the red-blue pebbling
game, and shows that it models any computation of a parallel machine with fixed
resources of input/output (I/O) bandwidth and storage. This section defines pre-
cise characterizations of the state of the pebbling game as it progresses, and
proves, for this new pebbling game, two strengthened theorems similar to ones
previously shown for the original red-blue pebbling game: the Partitioning
Theorem, and the Dominator Theorem. These two theorems provide the basis for

making I/O cost estimates using the new pebbling game by providing a
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characterization of sets of nodes in the data dependency graph of equal I/O cost.

Bounding the Size of the Estimators
This section proves two essential theorems: the Dependency Symmetrization
Theorem, and the Dependency Collapsing Theorem. When making size estimates
of the maximum size of the node sets mentioned in the first section, these two
theorems taken together allow the assumption that the node sets have a canonical
shape. Using previous work on discrete isoperimetric inequalities for the discrete
‘ torus, the exact form of these maximum sized sets is found for the HPP-like com-
putations. Using previous work for continuous isoperimetric extremal sets, the
use of the Wulff Crystal is introduced to solve the discrete isoperimetric problem

for the FHP-like computations.

Nearly Optimal Architecture
Using the bounds on set sizes mentioned in the previous section, throughput
bounds are derived in this section, and compared with the throughput of the WSA
architecture for HPP- and FHP-like computations, showing that this architecture is
nearly optimal.

Chapter 3 is an analytic and numerical study of the least-cost configuration for a
WSA-type machine when problem scaling is required. The use of overlap-save method
is described, and the efficiency of the WSA architecture using this method is derived.
A linear cost function is derived for a completely scalable WSA-type machine. A
numerical search is used to find the least cost machine configuration as the problem
size is scaled under the constant-time assumption. A slightly super-linear speedup is
shown over a moderate range of problem sizes. The least-cost machine parameters are

described.

Chapter 4 introduces a data-embedded, specification-based testing technique for FHP
lattice gasses. The tests consist of limit cycles in the cellular automaton. Their error
detection coverage is shown empirically to be good. Their use in software, hardware,
and system debugging is described, as well as their use as runtime simulation error
detectors. A trade-off between the number of ‘‘frames’’ in the design of the cellular-
automaton simulating machine and its amenability to this type of testing is discussed.



Chapter 2
Upper Bounding Throughput and A Nearly Optimal Architecture

2.1. Introduction

Ever since von Neumann and Ulam invented cellular automata [4], computing
under this paradigm has been looked on with optimism because it appears to facilitate a
high degree of parallelism. If cellular automata simulations can be effectively parallel-
ized, methods which can be formulated as cellular automata computations have an
advantage over those that cannot be similarly parallelized. Particular examples of such
computational methods are the cellular automata known as lattice gasses, which are
important candidates as substitutes for other, less easily parallelized computational
methods used in such problem domains as fluid dynamics. Unfortunately, cellular
automata simulations have as yet been unable to fulfill completely the hopes held for
them, even though there have been some machines built specifically for their simula-
tion, for two principal reasons. The first, which we will not address here, is that the
theoretical understanding of complex systems has not matured to the point where such
systems can be modeled by cellular automata with quantitatively predictable results.
The second reason for the slow progress of cellular computing is that sufficiently

powerful hardware has not been available.

The need for hardware with very high throughput for cellular automata simulation
is mostly a consequence of the sizes of the simulated automata. For instance, it has
become clear that applying lattice-gas simulation to interesting problems requires the
use of automata with a very large number of cells [60], and therefore its effectiveness is
dependent upon employing inexpensive, highly-parallel, special-purpose hardware.
Because of the simplicity of the cellular computing paradigm, one would expect that
simulators for cellular automata, and especially for lattice-gasses, should be able to use
the inexpensive logical functionality provided by VLSI technology to achieve cost-
effective performance. .However, hardware with sufficient power to simulate large cel-
lular automata is, as yet, still not cost-effective. The principal shortcoming, as we will
show below, is that it is not possible to devote the majority of the processor’s VLSI
real-estate to usable logical functionality. The aim of this chapter is to identify and
quantify the factors limiting the effectiveness of hardware resources in lattice-gas simu-

lators.
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The goal in designing special purpose hardware for simulating lattice-gas auto-
mata —assuming there is no computational shortcut to determining the automaton’s
future state— is to maximize the throughput for the automaton simulation given the
architectural resource constraints. The most appealing idea for a lattice-gas simulating
machine, or other cellular automata simulator, is a machine with a single processor for
every cell of the automaton. In such a machine communication is strictly local: proces-
sors communicate only with processors assigned to neighboring cells of the automaton.
This aspect of cellular automata, local communication, has been singled out as one of
the fundamental advantages that cellular automata offer [5]. However, because the lat-
tices often must be large for these simulations to achieve interesting behavior, and
because the present technology limits our ability to interconnect and synchronize such
large physical arrays, the usual approach to special purpose hardware has been to scan
the lattice data through some sort of processor that updates the sites’ states. That is, the
current state of the automaton is held in some memory device and portions of the auto-
maton state are passed to some hardware that updates the cells until a new state has
been computed for every cell of the automaton.

Up to now, almost all special-purpose cellular automata machines built have used
a scanning approach, and are similar in their basic logical organization of communica-
tion and processing. For a fairly comprehensive list of examples from CELLSCAN
(1960) to Cytocomputer (1989), see [6]. There has also been a multitude of activity in
this area in the systolic array literature, see [7] for examples, and see [8] for a descrip-
tion of the RAP1 machine which was built specifically with simulating lattice-gas auto-
mata in mind. Some machines have been designed to closely approximate the one-
processor-per-cell concept, such as the Connection Machine [9], and the general cellu-
lar automaton simulating machine, CAM [5]. However, because it is overly restrictive
in practice to add more hardware whenever one has an automaton simulation problem
larger than the current machine can accommodate, these types of machines must resort
to a scanning strategy when the problem size becomes large enough. Therefore, we
will focus our attention on the class of special-purpose cellular automata simulators of
the scanning type. The particular architecture we will concentrate on, the LGM-1
architecture [10], is one devised specifically for simulating lattice-gas automata, and is
a scanning type of architecture employing custom VLSI chips for the update proces-

SOrSs.

Let us make the discussion concrete by looking more closely at the LGM-1
machine. Figure 2.1 shows the top level organization of the machine (we will describe
it in more detail later). The lattice-site state values are stored in the host machine, in
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Host

Bus

figure 2.1.

The LGM-1 machine organization. (a) is a bus interface board, and (b) represents processors boards
containing ten custom VLSI chips each.

this case a Sun 3/160C", and passed to the custom hardware over the VME bus. The
updated site values are passed back over the bus to the host. The custom chips are
arranged in a linear pipeline so that the output of one chip feeds the input of the next
chip; the two end chips communicate with the host via bus interface logic. Repeatedly
scanning the lattice array produces further global updates of the automaton state.
Every custom chip in the processor updates the automaton state by one generation. The
LGM-1 machine is extensible so that adding more chips increases the throughput: an

n-chip machine has nearly n-times the throughput of a one-chip configuration.

Table 2.1 shows the measured performance of the LGM-1 machine and its host.
The performance was measured for three different software C language drivers running
on the host: run_ca, cpu.SFM, and cpu. LOCAL. Each of these drivers was also meas-
ured in an optimized form: /NLINE indicates that all procedure calls were eliminated
by putting the procedure code inline, O2 indicates the code was compiled using an
optimizing compiler, and UNR indicates that the code is 256-fold loop unrolled. The
run_ca.MON code was compiled with a profiler. The run_ca code is the driver for the
LGM-1 pipeline hardware. This code does all the host data handling duties for the cus-
tom boards and controls board operation via the VME bus: the code runs on the host
and writes data and control words to the VME bus and on to the custom hardware; the
results are collected by reading the output register of the custom hardware via the same
route. Each cycle of the pipeline requires two 16-bit writes and one 16-bit read. This
code is responsible for configuring the lattice data into slices 256 sites wide that are

T Sun is a trademark of Sun Micro Systems, Incorporated.
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) effective interface bandwidth
site updates

code data rate total bus traffic

(M sites/sec) | (M sites/sec) (M bits/sec)

run_ca.MON 0.0941 0.188 2.26
run_ca.JNLINE.O2 0.201 0.402 4.82
cpu.SFM 0.214 0.429 5.15
cpu.SFMUNR.O2 0.578 1.16 13.9
cpu.LOCAL 0.0 0.684 - 8.21
cpu.LOCUNR.O2 0.0 1.43 17.1

run_ca.MON profile

function % msec/call total time
ca_pipe 48% 130 260
build_strip 26% 68 136
unpack_strip 25% 67 134
table 2.1.

LGM-1 measured computation and bandwidth performance (M = 10° ). LGM-1 is configured as a
one-stage pipeline. The bus traffic figures for the LOCAL and LOCUNR.O2 codes are projections for

comparison purposes only.

passed consecutively to the custom hardware, and rebuilding the lattice as the results
return from the hardware. As the profile above shows, these slicing (build _strip) and
rebuilding (unpack _strip) functions account for about one-half the total work done by
the host. For comparison’s sake, results are shown for the two cpu codes, which con-
sist of only the five core instructions from the run_ca main loop. These codes do no
computation and no data rearranging: for the cpu. LOCAL code the reads and writes are
always to the same locations locally on the host; for the cpu.SFM code communication

is between local variables and the custom hardware registers.

From table 2.1 we see that the host can provide at most 0.402 M sites/sec
bandwidth to the custom boards when the host is also required to manipulate the
storage location of the data (run_ca.INLINE.O?2). Even when the host’s only job is to
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step through memory and pass data back and forth to the custom boards, the peak rate
is still only 1.16 M sites/sec (cpu.SFMUNR.0?2), which is nearly the peak rate at which
it can read and write it’s own memory (cpu. LOCUNR.02). We will assume the max-
imum data channel capacity between the host and the custom boards is 1.16 M
sites/sec.

Consider the following facts about LGM-1.

(1) The custom chips can run reliably at at least 7 Mhz. Each chip contains storage
for 518 lattice sites, and two programmed logic arrays (PLA’s) that perform the
update operations. At every tick of the global clock, each custom chip (i) reads
two lattice site values from its input pins, (ii) produces two updated lattice site

values, and (iii) writes two lattice site values to its output pins.

(2) The host can deliver at most 1.16 M sites/sec in bandwidth to the custom
hardware: one two-site read, one two-site write, and one global clock pulse at a

time.

(3) Using the minimum local storage per PLA (seven lattice sites), the area of the
chip could hold 10 PLA’s with their local data.

Looking at (3) it seems plausible that one could build, using the same technology, cus-
tom chips with ten PLA’s per chip running at 7 Mhz and get
2-10-(7Mhz) = 140 M site-updates/sec per chip. In contrast, the actual meas-
ured computation rate is about one three-hundredth of this at 0.508 M site-updates/sec.
Even without adding processors to the custom chips, as LGM-1 is presently con-
structed, clocking the chips at 7 Mhz leaves them idle for more than 10 local clock
ticks for every global clock signal received via the bus. Is it possible that by using the
local storage more effectively and reordering the computation and data access pattern
we could use these idle periods to compute ten times more updates before sending the
site values back to the host? If we packed ten PLA’s onto each chip, and reorganized
in just the right way the data sent to the chips, could we get 140 M site-updates/sec per
chip performance? The general question posed by these questions is, how effectively

does LGM-1 use its resources?

In this paper we develop a measure of optimality for scanning type architectures
with respect to two resource constraints, main storage bandwidth and local storage
capacity, that tells quantitatively how well an architecture makes use of its resources
for the lattice-gas simulation problem. That is, we will answer whether or not the
throughput of LGM-1 could have been considerably improved by some clever compu-
tational strategy. In particular, we show that the linear pipeline, as defined by the
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LGM-1 architecture, approaches a bounding throughput value to within a small con-
stant. This suggests that this architecture nearly achieves, or perhaps does achieve, the
maximum throughput possible given the constraints on memory bandwidth and local
storage regardless of the speed, computational power, number, or intercommunication
network of the processors in any parallel machine computing the lattice computation.

Background

Because the structures of the data dependency graphs for cellular automata com-
putations are independent of the input data, the data dependency graph is a particularly
useful characterization of a computation for developing insight into the inherent limita-
tions of the computation. This is done by modeling and analyzing the effects of
machine resources on the computation of the nodes of the data dependency graph
without regard to the values the nodes represent. The resources we have identified
above can be divided into three categories: communication, storage, and computation.
Here we review some of the methods used in analyzing data dependency graphs, along
with some related work specifically dealing with I/O communication requirements.

Perhaps the first factor to consider in analyzing the effect of resources on the com-
putation of a cellular automaton simulation, is the number of processors. Assuming
processors are the only resource, Theorem 1 of the software analysis of Eager, Zahor-
jan, and Lazowska [11], leads to two conclusions. One is that, in simulating a cellular
automaton with K cells, on average no more than K processors can be kept busy simul-
taneously. The other conclusion is that, if storage and communication are unlimited,
then n processors can be kept simultaneously busy without delays, provided n is less
than K. That is, if a simulation requires time ¢ using one processor, then a machine
with n processors can complete the same simulation in time #/n (with the above restric-
tion on n). Referring to our earlier look at LGM-1, this suggests that either LGM-1 can
be sped up linearly by using more processors more intelligently, or resources other than

processing power are the limiting factors.

The effects of communication resources have been studied in several different
ways. The effect of hierarchical communication has been studied by using variations
of the general idea of extending the PRAM model by charging log(i) for accessing the
data item at the i”* address. See Aggarwal, Alpern, Chandra, and Snir [12] and
Aggarwal, Chandra and Snir [13]. Instead of separating communication into hierar-
chies by the above approach, communication can be divided into just two components:

communication local to the machine, and I/O. This leads to the consideration of the
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effect of I/O complexity. For example, Aggarwal and Vitter [14] use a counting argu-
ment on the number of permutations possible using M units of internal storage and
assuming I/O communication is in blocks of size B, to determine a bound on the
minimum I/O required for sorting and related problems. In an approach that is similar
to pebbling, Papadimitriou and Ullman [15] develop tradeoffs between the total I/O and
the time in a parallel processing environment. Other work on communication complex-
ity is exemplified by the recent paper by Lovédsz and Saks [16] which addresses the
communication required between processors jointly sharing the computation of some

function.

The effects of limited storage locally available to the processing machine has been
studied by using various pebbling games. For instance, the articles by Lengauer and
Tarjan [17, 18] give storage-space/time tradeoffs for several families of data depen-
dency graphs. See the article by Pippenger [19] for a general summary of traditional
pebbling analysis.

The combined importance of communication and local storage has been recog-
nized for a long time, and, as was pointed out by H.T. Kung in [20], is especially
important for high-speed special-purpose hardware. In [21] he and Hong devised a
pebbling game that models the effects of these resources on computational power. The
red-blue pebble game described there models the computation and I/O steps in a
sequential computation. They used it to get space-1/O tradeoffs for several problems,
and to get upper bounds on speed-up of a computation of these problems using a
sequential machine. The red-blue pebble game they describe was extended by Savage
and Vitter [22] to the parallel-red and the block-red-blue pebble games, which model
parallel computation without I/O, and with block-parallel I/O respectively.

In [23] Kugelmass, Squier, and Steiglitz introduced a further refinement of the
red-blue pebble game that allows arbitrary computation and I/O parallelism. Based on
this work Lopresti and Nodine [24] developed a lower bound on the the I/O require-
ments for simulating the ‘‘Life’” cellular automaton [25], and applied this bound to

several computational schemes for employing an n by n processor. array.

Chapter Outline
The goal of this chapter is to find an upper bound on throughput for computing the

evolution of a lattice-gas automaton, which we can use to compare with the perfor-
mance of LGM-1 (or any other machine) to determine whether the machine’s resources
have been used to maximum potential. As we mentioned above, limiting factors are



Bounding 15

local storage and I/O costs, and the pebbling games address both these constraints. We
will analyze the data dependency graphs of lattice-gas simulations using pebbling argu-
ments to develop the required bounds on throughput. There are several issues that we
address in this chapter that are essential to making performance comparisons. The first
issue concerns the bounds established in previous work. In [21] and [23] the bounds
are asymptotic in the amount of local processor storage. However, there are two prob-
lems with using these estimates: (1) although the bounds are valid within a finite range
of values for the number of red pebbles used, the bounding arguments are not valid in
the asymptotic limit, and (2) the valid portion of the resulting bounding curve is very
loose. Thus, the primary task taken up here is to establish a sufficiently tight non-
asymptotic bound using a variant of the red-blue pebble game.

The second issue we address is that making tighter bounds requires establishing a
formal basis for these estimates. Previous work [24] attempting to establish tighter
non-asymptotic bounds relied on two premises that were not established: (a) that the
arrangement of r red pebbles in a data dependency graph that results in the largest
amount of pebbling without I/O consists of placing all the pebbles in a single layer of
the graph, and (b) that optimal arrangement within the layer consists of packing the
vertices into a ball, the set of vertices with distance less than some parameter d from a
specified vertex. The tasks taken up here then are the following:

(1) Establish the formal basis for making size estimates of sets of data dependency
graph nodes defined by pebbling. See section 2.2.

(2) Solve the problem of extremal pebble sets, and derive the bounds on I/O costs.
See section 2.3

(3) Apply the I/O bounds to throughput comparisons. See section 2.4

Implicitly, there is another issue that is addressed here, at least partially. The
shapes of sets of data dependency graph nodes defined by pebbling game optimization,
define the computational strategy of least I/O cost. So, we hope to find not only the
numerical value of the least I/O cost for a machine with given fixed machine resources,

but also discover a method of determining the optimal computational strategy.
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2.2. The Formal Basis for Input/Output Bounds

2.2.1. The Parallel Red-Blue Pebble Game

In this section we define the parallel —red —blue pebble game. It models any
computation that can be performed by a machine which has arbitrary parallel I/O capa-
bilities to an external memory, and internally is equivalent to a CRCW PRAM}7.
Before we discuss the necessity of defining a new pebbling game, we first need to

review the definition of the original red-blue pebble game [21].

The red-blue pebble game is played on a directed acyclic graph with uniformly
bounded indegree according the following rules (see figure 2.2).

i) a pebble of any color may be removed from a vertex at any time.
ii) a red pebble may be placed on any vertex that has a blue pebble.
iii) a blue pebble may be placed on any vertex that has a red pebble.

iv) if all immediate predecessors of a vertex v are red pebbled, v may be red peb-
bled.

The “‘inputs’” are those vertices which have no predecessors, and the ‘‘outputs’’ are
those which have no successors. A vertex that is blue-pebbled represents the associated
value’s presence in main memory. A red-pebbled vertex represents presence in proces-
sor (chip) memory. Rules (ii) and (iii) represent I/O, and Rule (iv) represents the com-
putation of a new value. Generally, the game is played with a fixed number of red peb-
bles and an infinite supply of blue pebbles. The goal of the game is to blue-pebble the
outputs given a starting configuration in which the inputs are blue-pebbled and the rest
of the vertices are free of pebbles.

The need to add parallelism to the red-blue game is a consequence of the fact that
it is an open question whether or not the red-blue game is sufficient for modelling I/O
in general parallel computations. One approach to investing it with parallel properties
without defining a new game consists of considering a block of moves as occurring in a
single ‘‘time step’’. This allows a certain form of parallelism, and is the extension used
by Savage and Vitter [22] in the block-red-blue game: the actual play of the game is
not altered, but rather the counting of moves is redefined. However, in the general

case, it is easy to find a simple example in which the number of I/O steps can be

T Such a machine model consists of an arbitrary number of processors communicating via a
shared memory. This model is often referred to as a CRCW PRAM: concurrent-read concurrent-
write parallel random access machine [26].
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rule iv - calculating a new value

figure 2.2.

Interpretation of the rules of the standard red-blue pebble game. Rules i and ii are illustrated in the top
diagram, Rule iii in the middle diagram, and Rule iv in the bottom diagram. Respectively, the interpreta-
tions are, register deallocation, write to processor register, write to main memory register, and write
ALU result to local register. Ellipses labelled “‘r.1," “‘r.2,’" and *‘r’’ represent red pebbles, and those

marked ‘‘b’" represent blue pebbles.
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reduced by allowing the Rule iv red pebbling moves to occur in parallel. The problem
with the standard red-blue pebble game is that lifting a pebble to move it to a node that

is being calculated may destroy the precondition for Rule iv red pebbling another node.

The parallelism we want to model in the red-blue game is to allow any number of
pebble moves to occur simultaneously, so long as their preconditions allow a move in
the non-parallel game, yet we also want to maintain a pebbling game that moves a sin-
gle pebble at a time. The reason we want to maintain a linear ordering of pebble place-
ment is that the method of bounding I/O cost depends on dividing any pebbling of a
data dependency graph into pieces of equal I/O cost in such a way that the division
induces a partition of the nodes of the graph into pieces whose sizes can be easily
estimated. The size estimates on these pieces are derived from a bound on the max-
imum amount of pebbling possible given an arbitrary placement of red pebbles, but
without the use of blue pebbles. Consequently, we must be sure that the partitioning
does not violate the data dependencies; otherwise, an element of the partition might
contain more nodes than the method of estimation allows, invalidating the estimate. If
the pebbling moves are linearly ordered without data dependency violations, then the
pebbling can be divided into contiguous pieces that result in a valid partitioning of the
nodes. The red-blue pebble game can be so divided because it is a strictly sequential
game: a single pebble is moved on the data dependency graph according to the rules
stated above, and and the resulting configuration determines the applicable rules for the
next move. Since we want to use the same techniques for bounding I/O cost in the
parallel case as was used for the red-blue game, we want the parallel game to be a
sequential game as well.

Definition: the rules of the parallel —red — blue pebble game:
The game is similar to the red-blue pebble game with the addition of a new pebble
(pink, for ‘‘place holder’’), and a modified Rule iv:

i)  apebble of any color may be removed from a vertex at any time.
ii) ared pebble may be placed on any vertex that has a blue pebble.
iii) a blue pebble may be placed on any vertex that has a red pebble.
iv) if all predecessors of a vertex v are pink pebbled, then v may be red pebbled.

v) the game consists of cyclic repetition of three consecutive phases: write-

phase, calculate-phase, read-phase.

vi) the write-phase consists of only Rule i and iii moves (output).
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vii) the calculate-phase comprises the following moves
a) pink pebbles are placed on every node containing red pebbles
b) red pébbles are moved according to Rules i and iv.
c) at the end of the phase all pink pebbles are removed.

viii) the read-phase consists of only Rule i and ii moves (input).

O

A complete cycle represents a single parallel step in the computation. We use the fol-
lowing terminology: placing a red pebble on a node that contains no red pebbles is a
calculation. The node pebbled is called the dependent node, and the nodes with arcs
ending at the dependent node are called the supporting nodes. Usually, the game is
played with a restricted number of red pebbles.

It is easy to see the parallel-red-blue pebble game allows the parallelism we want.
Consider a computation which proceeds by doing many steps in parallel in real time.
Decompose the computation into pieces which occur simultaneously designated C;; we
say the complete computation C consists of their concatenation:
C=CyCyq- ++- Cy. Consider the pebble moves within a single parallel move C;:
memory reads, memory writes, and register to register calculations. Since all these
actions take place simultaneously, we can order them arbitrarily because they are not
interdependent. Thus, we may order them exactly as the phases are ordered in the
parallel-red-blue game. Within the phases there are no interdependencies, and the indi-
vidual moves may be arbitrarily ordered. Consequently, there is a pebbling that models
the steps of the computation.

We next show that every pebbling represents a valid CRCW computation.
Assume that every pebble move is valid, so far. The first phase of a cycle is the write-
phase: some nodes with red pebbles on them get blue pebbles. The red pebbles were
placed in an earlier cycle, so they are not a concern. A blue pebble that is moved onto
a node containing a red pebble might have been sitting on another node previously;
however, this simply represents a memory register overwrite of previously stored data,
in the case that the blue pebble was not moved previously during this cycle, or it
represents the concurrent writing of more than one register to the same memory loca-
tion, in the case the blue pebble was moved in this cycle. Neither case conflicts with

the model of computation. See figure 2.3.

The second phase is the calculate-phase: some nodes with all their supporting
nodes pink-pebbled get one or more red pebbles. The sources for any calculation in
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figure 2.3.

Left: A blue pebble, by, is placed on a node of the data dependency graph that already has a red pebble
r; on it. Right: the hardware interpretation is that the data held in register r; is written to the main
memory register by. If pebble by is moved to another such node, say one containing pebble r ;, the in-
terpretation is that the two registers make concurrent writes to the same memory location; in this case
the result is that the contents of v ; end up in memory because the by ends up on the same node asr ;.
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figure 2.4.

Left: a red pebble r; is placed on a node by using the calculation rule (the node may or may not have
pebbles on it already). Right: the possible interactions are summarized. The output side of a master-
slave register p; feeds into an ALU while the input side r; receives the result of the calculation. The red
pebble r; may have been used in another calculation during this calculation-phase (indicated by dashed
lines from ALU 2) which is interpreted as a concurrent write to register r;. The previous write-phase of
the cycle also allows p; to concurrently fan-out its data to a memory location (that is, the pebble r; may
have been moved from a node that was blue-pebbled in the write-phase).

this cycle, the supporting nodes, were red pebbled in a previous cycle (as opposed to
having red pebbles during this cycle), so the input to the calculation is valid. There are
two possible sources of conflict. The red pebble placed on the dependent node could
have been on a node which was newly pebbled either blue or pink during this cycle. In
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either case this represents simultaneously reading and writing the register associated
with the red pebble. This is within the CRCW model, and is commonly implemented
in practice. If the red pebble was used previously in this cycle to receive the results of
a calculation, this is again a concurrent write to the same register; the ‘‘last write
wins.”” See figure 2.4.

'
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figure 2.5.

Left: a red pebble r; is placed on a node holding a blue pebble b|. Right: summarizing the result shows

another concurrent write to register r; (possibly from multiple memory locations).

The last phase is the read-phase: some blue pebbled nodes get red pebbles. There
are again two possible conflicts: the red or blue pebbles may have been moved previ-
ously during this cycle. The blue pebble may have been used to receive data in the
write-phase. Again this is concurrent reading and writing of a register. The red pebble
may have been used as a data source for writing to memory, as a data source for a cal-
culation, or as a destination for a calculation during this cycle. Again this represents
concurrent read/write and again ‘‘last write wins.”” See figure 2.5.

2.2.2. Dependency Graph Partitioning and Partition Element Estimators

This section sets forth the foundations of making input/output cost estimates (the
‘‘Partitioning Theorem’’, Theorem 1, and the ‘‘Dominator Theorem’’, Theorem 2).
We use the general strategy introduced by Hong and Kung in [21] to get an estimate of
the total input/output cost of an optimal pebbling using r red pebbles. Their strategy is

as follows.

(1) Establish the existence of a partitioning of the nodes of a data-dependency graph
G for any pebbling P of that graph using r red pebbles. The partition has the pro-
perty that each element of the partition accounts for k£ I/O moves of P, where k is a
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fixed constant parameter.

(2) Find a bound 3 on the maximum number of elements in a member set of the parti-

tion.

(a) Identify a convenient containing set for each element of the partition. The
containing set is characterized by a ‘‘dominator’’ set of known size less than
or equal to (r + k).

(b) Establish an upper bound B(r, k) on the size of sets dominated by sets of
size (r + k).

(3) Estimate the number of sets in the partition as 4 2 J—g—[ This gives a lower

bound on the I/O costas & - k.

In the next section we address steps (1) and (2a). The method we use for (1)
replaces the arguments based on paths in the data dependency graph used in [21] with
careful definitions of vertex sets in pebbling games. The results are then simple conse-
quences of the definitions, and allow precise identification of the sets for which we later
develop size estimates. The method we use for (2a) significantly improves the estimate

of maximum partition size so that the estimate is tighter.

We will need to develop some terminology which will allow us to precisely define
the sets for which we want to develop size estimates. The appearance of the result may
seem unnecessarily complicated; however, the need for such precision is demonstrated
when subtle errors appear in arguments that do not use carefully defined terminology.
For instance, in [14] the authors attempt to prove a result found in [21] concerning a
lower bound on the total I/O of an FFT computation. The proof fails because of the
mistaken identification of the sets of nodes red pebbled during I/O operations under dif-

ferent I/O conventions.

The Partitioning Theorem

This section develops notation for defining sets of vertices that arise implicitly in
the play of the red-blue and parallel-red-blue pebble games. We begin with the
definition of an I/O-division of a pebbling game, and conclude with a description of the
induced partition of the nodes of the data dependency graph. In the following let a peb-
bling P = ( py, p2,..., Pn), where each of the p; is a single pebbling move, be a
pebbling of a computation graph G = ( X, A), where X is the set of vertices of G and
A 1s the set of directed edges in G. A sub-pebbling of P is any sub-sequence of con-
secutive pebbling moves of P. Let C o be the number of p; in P that are I/O moves.
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Let k£ be a positive integer not greater than C,, and define 4 as

h = {C;’O],when Cro # 0,and otherwise & = 1.

Definition: A sequence of non-negative integers G is a k —1/0 —division of a pebbling
if it satisfies the following: '

(i) o=(0p,01,..., Gp) is a monotonically increasing sequence in the range
[0, n]withoy = 0,and 6, = n.
(ii) o divides a pebbling P into % pieces ( P, P,,..., P};) in the following sense:
Each of the pieces is a sub —pebbling of P:
P;i=(Po,,+1: Po,_1+2+ -+ s Pg;) for1<i <h.
Exactly & of the p; contained in P; are I/O moves, except that P, may con-

tain any integer number of I/O moves in the range [0, k]. ( For instance, if

there are k or fewer I/O moves in P,thenc = ( 0, n),and P, = P, = P.)

O
Definition: The Red Set at step i , R;, is the sub-set of X containing the vertices which
have red pebbles:
R; = {x|x has ared pebble after p; }.
O

Note that R; — R;_; identifies a vertex —if one exists— that was red-pebbled by peb-
bling move p;. A pebbling begins with Ry = O.
Definition: The Blue Set at step i , B;, is defined analogously to R ;.

Definition: The Computed Set at step i , ¥;, is the sub-set of X that has been red-
pebbled at or before step i, or are inputs:

i
¥, = U Ry + Yo where
k=1

¥y = { x|xisaninput vertex }

L
We interpret this set as the set of vertices that have been calculated up to the end of

pebbling step i. (See figure 2.6.)
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figure 2.6.

A pebbling game at the end of pebble step ps . (Note that nodes 7, 14, 21, and so on are not shown.)
R, is the red-set at the end of move ps . The nodes in the region labelled ¥ ; were red pebbled by
some  pebbling move p; where 1<i<oc; Also, Y, indicates that the nodes
{20, 26, 27, 33, 34, 38—41} were not red pebbled by any of these pebbling moves. The kernel is
P; = {12, 13, 15-19, 22-25, 29-32, 36, 37}.

Definition: The Kernel of a sub-pebbling P; is the set f’,- of vertices which get red-
pebbled for the first time by some move in P;:
Pj = ‘PGE = ‘PG;-_; .

O
Note that ¥, the set of inputs, is not contained in any kernel.
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—R
Definition: The Red Closure of a sub-pebbling P; is the set P; of vertices that have
been red-pebbled by some move in P;:

—R 0;
P_,g = U (Rj_Rj—l) .
j=(0;,_1 +1)
B
In general, ;6,- * Ff since the red closure includes vertices which are red pebbled and
already contain blue pebbles (input from main memory), and vertices which had been
previously red-pebbled and were red-pebbled again during P; (recalculation). The

Blue Closure is defined analogously (see figure 2.7).

figure 2.7.

A Venn diagram of the sets defining the closure of a sub-pebbling. The region marked “‘a’’ indicates
nodes that had red or blue pebbles on them at the start of sub-pebbling P ;, and were pebbled again in P;
(recalculation or I!O or both). The region marked ‘b’ indicates nodes that had been calculated by pre-
vious sub-pebblings and were recalculated and possibly used for I!O in P ;.

Definition: The Closure of a sub-pebbling P; is simply the set of vertices which were
either red or blue pebbled during P ;:

- —B —R
szprPi .

L]
We now state a partitioning theorem similar to the partitioning theorem in [21]. This

theorem simply states that the kernels defined above partition the nodes of the data
dependency graph.

Theorem 1: The collection of kernels of the sub-pebblings defined by a &-I/O-division,
V= {131 , }32 e IA’h }, is a partition of the non-input vertices of the computation
graphG = (X, A).
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proof:

1)  We assume throughout this chapter that the data dependency graphs do not con-
tain useless nodes: nodes without incoming or outgoing arcs. Consequently, every
vertex x € X is red pebbled at least once, and therefore every vertex must belong
to at least one red-set R ;:

B h
U P =y (Y - ¥, )
i=1

i=1

h G Gi-1
= u (UR - UR; - %)
i=1 j=1 j=1
h G
= U ( Rj) - Yo
i=1 j=0;_,
n
- URJ = ‘PO
j=1
=X - ¥, .

ii) By definition the 13,- are all disjoint.
O

The Dominator Theorem

We now turn our attention from the sets defined by a pebbling, and define sets which
are implied by the dependenciesinG = (X, A).

Definition: The Support Neighborhood N( M ) of a set M < X is the set of nodes
which can be said to “‘support’’ the calculation of the nodes in M (see figure 2.8):

N(M) = {ye X|(y,m) isanarcin Aand me M }.

N*( M )is the support neighborhood k levels back in the graph:
N¥(M) = N [N’C"l(M)] , where

N (M) = M .

The Support N( M) of a set is the union of all nodes necessary to calculate the set M:

NM) = G N(M) .
=1
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figure 2.8.

The support of the set R; = {22, 23, 24}. The set {1-5, 8-11, 15-17} constitute the support of R;: every
node in this set must be pebbled before R ; can be completely pebbled.

Definition: The Dependent Neighborhood D( M ) of a set M < X is the set of vertices
which could be calculated by the next pebbling step if M was entirely red-pebbled but
nodes outside of M were un-pebbled:

DM) = {x| Nx) cM} — M.
The Dependency D (M) of set M is the set containing all the vertices for which

knowledge of M is sufficient for their computation:

D/ (M) where
1

D(M) =

j:
D¥(M) is the k™ recursive iteration of D( M ), taking the union of previous neighbor-

hoods to describe the next:

D¥(M) = D(M \j ©;_1 ), where

®, = U D/(M) , and
j=1
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Q) = I

O
Note that M ~ D¥(M) = forallk. See figure 2.9.

As an aside, note that, given a set of nodes in a data dependency graph, it is intui-
tive that nodes that are not in its dependency cannot become a part of its dependency
by addition of nodes and arcs to the graph. Establishing this allows the bounds on the

sizes of dependencies to be

A
N
N
¥
'd

D(R;)
JRE—— .

figure 2.9.

The dependency of the set R; = {4, 5, 8-10}. The set of nodes {15-17, 22-24, 29, 30, 36} is the depen-
dency of R;: knowledge of the values in the nodes of R; is sufficient to calculate all the nodes in its
dependency.
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applied to any super-graph. The statement of this proposition and its proof can be

found in the appendix.

The estimates on the number of sets in a partition mentioned at the beginning of
section 2.2.2 come from estimating the size of a convenient super-set: the dependency
of some of the nodes containing pebbles before P; begins. These pebbled nodes are
called the dominator of P ;.

Definition: A set dj; is a Dominator of a set M, if
M c 5 ( d M )

L]
Definition: The Kernel Dominator , d;, of the sub-pebbling P; is

- R
di = Rci—l U (Bo'i—l ﬁPi ) .

O

We will show below that d; is in fact a dominator of 13,-. First we will show that the
closure of P; is contained in the union of d; and the dependency of d ;.

Lemma 1:
Pi c (D(d;) U d;i).
proof:
We use a straightforward induction to establish the above. In the following let P; be a
sub-pebbling with
P; = (Do ptls Py #3r """ Pay) -

For convenience, let us write

Pi =(p1'7p2 RO ) Pr) ’

where it is understood p. represents pg, 4., and that t = 6; — 6;_1. Let Q; be a

sub-pebbling formed from P ; by taking the first j elements,

Q] =(p1 y P2 sy p_]) fOI'].S]Sf

The induction will be over j and we will show that the condition above is satisfied by
é ;- Then, since P i = Q , we will have the result. Since the Rule i pebbling moves
and any move of a pink pebble do not affect the definitions of the various node subsets,
we will assume the moves in P; consist only of moves placing a red or blue pebble on a
node.
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(basis):
Q1 = (p1)- Let p; pebble node x, then é 1 = { x }. There are three possible
cases forp:

[1] p;q is acalculation. Then
N(x) € Rgs,_, ,and by definition

xe D'(Rs,_, ) c D(d;) .

[2] p. is an input operétion (adding red to blue on x). Then
—R
1€ (Bg, M C1) < dy,by
—R
definition of P; and the definition of d;.
[3] p; is an output operation (adding blue to red on x). Then

x€ Rg, , < d; .

(induction):
Assume Or € (d; U D(d;)) for 15k <j. Now
é i = {x}lyu é -1, and we need only determine whether { x } is contained in

(di U D(d;)).
[1] pj is acalculation. Then
N(x) c (Q_Zf_l U Rs,_, ) . which implies that
N(x) < ( 5( d; ) U d;) by the inductive hypothesis and
the definition ofd;, and consequently
x € D(d;) .
[2] p; is an input move. Then either
X € By, , ,inwhichcase x € ( B, , M Q_Zf ) <€ d; ,or

—B —R —
x € Qj-1 ,inwhichcasex € (Rs,, \U Qj-1) < (d; y D(d;)) .

The first instance follows from the definition of d;; and the second from the
R s
definition of d;, the fact that Q ey & (0] s and the inductive hypothesis.

[3] p; is an output move. Then
R s
x€ (Rg,, U Qj-1) < (d; \ D(d;) ) , which follows

i -
again from the definition of d;, the fact that Q;_; < Q;_1, and the
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inductive hypothesis.

L]
Theorem 2: The set d; is a dominator for IA’,-.

~proof: We want to show that P g s D( d; ). Using the previous lemma and the

definition of a kernel gives us
P, c (d;i y D(d;))

We need only to establish that P i M di = @, which follows immediately from

~

Pi N (Rg,, UBGi—x)zg and

the definition of d;.
O

2.3. The I/O Bound from the Maximum Kernel Size

A data dependency graph can be pebbled in many ways. The optimal pebbling, from
an I/O cost standpoint, makes the fewest I/O pebble moves. While we cannot find the
optimal pebbling strategy for an arbitrary lattice-graph computation, we can at least
lower bound its I/O cost. The bound comes from an upper bound on the size of a sub-
pebbling kernel. That is, since almost every sub-pebbling in a k-1/O-division contains
exactly k I/O moves, and the kernels partition the nodes of the data dependency graph,
dividing the number of nodes by the maximum size of a kernel leads to the desired
bound on I/O cost.

Let P be a pebbling of a computation graph G = (X, A ) with input vertex set

I¢ < X where the number of non-input vertices in G is z = |X — I°|. Forany k a
k-1/O-division divides P into k(k) pieces, { P1 ,..., Ppuy }. The I/O cost, Cy g, of
pebbling P is given by

Crho = (h=1)k+¢e(k) , ek) e [0, k] where

the last sub-pebbling has €(k) I/O moves. Suppose we have a lower bound h for h,
then the I/O cost is bounded below:

Cro 2 (h(k) -=1)k .
Bounding & can be done by finding some upper limit § on the size of a sub-pebbling

kernel, 13,-. Then, because Theorem 1 tells us that {}31-] partitions X — [ G,

h ~
:= |Xx-1° = 3 |B| < np,

i=1
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and the desired bound for 4 is

The bound for the I/O cost of P becomes

z
Cio 2 | = -1k .

B
By Theorem 2, }35 c 5( d; ), and the size of each kernel is bounded above by
|5 (d;)|. A suitable choice for B then is B = max| D( d; ) | where the maximum
is taken over all pebblings using at most r red pebbles. In general, B is a function,
B = B(r, k), of the number of red pebbles used by P, r = max |R; |, and £, the

r

number of I/O moves per element of the k-I/O-division. The rest of this section

develops bounds on 8

In particular, the following subsections present a method of estimating the max-
imum size of the dependency of a set. Section 2.3.1 establishes the the necessary basis
for assuming the dependency takes a general shape, the ‘‘Symmetrization Theorem”’,
Theorem 3, and the ‘‘One Level Theorem’’, Theorem 4. Section 2.3.2 finds the partic-
ular shape and size for the discrete torus, and Section 2.3.3 does the same for the tri-

angular lattice.

2.3.1. Bounding the Size of the Dependency of a Set

The previous section established the basis for making I/O estimates based on peb-
blings. In particular, a suitable estimate comes from bounding the maximum size of
the dependencies of a special collection of sets, the kernel dominators. The bound on
the maximum size of such a dependency is derived from (1) bounding the size of the
dominator by some value m, and (2) deriving a tight isoperimetric inequality for
|D( M ) |for sets M with | M | = m. This isoperimetric problem is

(ISO-1)

Given a computation graph G and m € Z, find a function f such that

f(m) = |D(M)]

for any subset M of the vertices of G where |M | = m. (The symbol Z, represents
the non-negative integers = {0, 1, 2, ,... }.)

]
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A simple estimate can be made for part (1), and we leave it for later. Part (2) requires
finding the shape of at least one extremal set D ( M ) for each value of m, and that prob-
lem is addressed in two parts: (a) we show that for every extremal set D ( M) there is
another extremal set which is a symmetrized version of D (M), and (b), we show that
for any symmetrized extremal set there is another extremal set with the vertices of M
compacted together into a special form. This special form will allow us to find an f
such that f(m) = |f5( M ) |for any extremal set for (ISO-1) with|M | = m.

Although the results in the previous section apply to general data dependency
graphs, in order to get these results we will restrict our attention in (a) to graphs that
represent ‘‘lattice-graph computations’’ with the ‘‘nested’’ property, and in (b) add the
further restriction to computations on the discrete torus. The types of data dependency
graphs we will define as ‘‘lattice-graph computations’’ are layered directed graphs. In
cellular automata, and particularly lattice—gaS automata, values are associated with lat-
tice points in an undirected lattice graph (see [1] for the precise definition of lattice
graphs) and these values are updated in synchronous steps. Similar conditions also
hold for many other iterated computations whose computation graphs may not be lay-
ered in the strict sense, but still have a structure similar to layering in that there is some
connected undirected graph implicitly defined that can be used to define a layered sub-
graph. Theorem 2 in the previous section allows us to apply results for a graph to any

of its supergraphs as well; consequently, we need only consider strictly layered graphs.

Dependency Set Symmetrization

This section will show that an extremal D ( M) can be transformed to another extremal
set whose layers are extremal sets in the undirected graph defining the data dependen-
cies. We will rely heavily on recent results by Bollobds and Leader [27, 28] for
extremal sets in undirected graphs, and our notation will attempt to conform to theirs
whenever possible. In the following let L = ( V, E ) be an undirected graph with ver-
tex set V and edge set E.

Definition: The Distance d( x, y ) between a pair of vertices in an undirected graph
G = (V, E) is the number of edges in the shortest path connecting x and y. A vertex
is connected to itself and d( x, x ) = 0.

]
Definition: The Neighborhood, AM, of a vertex subset M < V is the set of vertices at

most unit distance from M

AM = {ve V| d(vwm)<1, me M} ,and
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AF = A(ARD)
Definition: The External Perimeter, d ..M , of M is the set of vertices at unit distance
from M :

OexM = AM - M.
The Internal Perimeter, d;, M , is the subset of M adjacent to M’s external perimeter:

0isM = AM¢ - M |, where

M€ is the set complement of M with respect to the set of vertices V:
M=V - M.
The Interior, VM , is the subset of M which has no neighbors outside of M :

VM = M - 9;,M .

L]
See figure 2.10. Equivalently, one can say that a vertex x is in the interior of M if

Ax c M.

figure 2.10.

Sets defined in an undirected graph by a subset of the vertices M = {1, 2, 3, 4}. The interior is
VM = {1}, the internal perimeter is 9, M = {2,3,4}, the external perimeter s
d..M = {5,6,7, 8,9}, and the neighborhood is AM = {1-9}.

To clarify the relationships between these set operators, note first that, generally A
is not a left inverse of V. That is, AVM may be a proper subset of M. Another way of
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saying the same thing is to say that d ., VM may be a proper subset of d;, M.

Let G = (X, A), be a data dependency graph for some computation. Let the
inputs of G , those vertices in X with in-degree zero, be [ G Recall that Di( M) is the
subset of X that is the i iteration of the dependency operator D operating on M. Thus,
D'(I%) is the set of vertices at the i level of a breadth-first search from the input
vertices of G.

Definition: The i Layer of G is
G; = D'(I%) , where

we define G, = I%. We say that G has k layers if k is the least i such that
Di(I°) = @.
O

Definition: The Sections S; of a set S, where S is a subset of the vertices of a computa-

tion G, are the subsets of S contained in the layers of G:
S i = S M Gi .

O

We are now ready to define a type of layered data dependency graph we will call a
lattice-graph computation. The idea behind the definition is simply a formalization of
the structure of the data dependency graph of a lattice-gas simulation. In the data
dependency graph of a lattice-gas simulation, each layer can be augmented by
undirected edges to form an undirected component identical to the lattice-graph
defining the lattice-gas automaton. These undirected edges define the arcs from layer
to layer: the undirected neighbors of a node in one layer form the directed support
neighborhood of the corresponding node in the next layer down. The following two

definitions state the above formally.

Definition: A Layer Stencil Graph of a data dependency graph G, whose non-empty
layers have equal numbers of nodes, is any undirected graph L = ( VE, EL ), with
vertices V; and edges EL, such that the number of vertices in V is equal to the

number of vertices in any non-empty G;.

Given a fixed layer stencil graph L and a fixed set of functions {¢;} such that ¢;
maps G; to V% bijectively, the i Layer Graph of G is the undirected graph
L; = (G;, E; ), with vertices G; and edges E;, such that ¢; is a graph isomorphism
between L and L;.

O
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Assuming a fixed layer stencil graph L and fixed mapping {¢;} we can use the follow-
ing notation for nodes and their neighborhoods. If x is a node in the layer stencil graph
L,x € VL, we write x ; for the vertex in L; that maps to x; if s is a subset of vertices in
VE we write s ; for the corresponding vertices in L;; Ax; is taken to be the undirected
neighborhood of x; in layer graph L;: Ax; = (Ax);.

figure 2.11.

The mapping between layers in a lattice-graph computation. The undirected graph L defines the data
dependencies between every consecutive pair of layers in the data dependency graph. Dashed lines

represent data dependency arcs.

We now give the definition of a lattice-graph computation. See figure 2.11.
Recall that if y is a vertex in a data dependency graph, then y’s support neighborhood
N( y ) is the set of vertices in the graph with arcs going to y.

Definition: A computation graph G is a Lattice-Graph Computation if we can find
some layer stencil graph and corresponding set of layer graphs L; such that the follow-
ing holds, '

N(x;) = Axg-y,
for every x; and for every 7 greater than zero.

O
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We will want to speak of the image of a section in a different layer. So, if §; is a sub-

set of the vertices of layer G ;, we write (S; )j for the set of vertices in layer G; that are
identified with the S; via the layer-graph L.

Before we go further we want to emphasize a simple property of dependencies in
lattice-graph computations. Because all the data dependency arcs go between layers
and the neighborhoods of vertices map uniformly between layers, nothing can be com-
puted in one layer that is not part of the interior of the set of known or computed infor-

mation in the previous layer. The following lemma formalizes this statement.

Lemma 2: If G is a lattice-graph computation, M is a vertex subset of G, and
S=M D( M), then the i section of the dependency of M lies in the image of

the interior of §; _:
D(M); < (VS;_y),.
Proof: If D(M ); is empty the result is immediate, so suppose it has at least one
member x;. Suppose, in contradiction to the hypothesis, that
x; ¢ (VS8;_1),, orequivalently,

Xit & VS o
By definition then, the neighborhood of x; _; contains some element not in §; _1, that is

Axi_1 & Si_1 . 1)
Since G is a lattice-graph computation,

N(x;) = Axi_yp, ()

and consequently the support neighborhood of x; is not contained in M or anything
computable from M. That is, substituting (2) into (1) and using the definition of §;_;
we have,

N(x) ¢ Mg g (D(M))i-g,
or
N(x;)) ¢ M D(M),
contradicting the assumption that x; € 5( M).

O

The above proof works identically if the hypothesis is changed so that, instead of
assuming that
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S = M ( D(M),
one only assumes that
Si-1 = (M D(M))_;.

This is the form of Lemma 2 we will use in the proof of Theorem 3. An obvious, but
nevertheless useful, corollary lets us assume the ‘‘shadow’’ of the previous section is

always in the dependency.

Corollary: If x; € (VS;_4 ); and x; is not in the i h section of M, then
x;e€ D(M) .
The corollary follows from the observation that Ax;_; < S;_;.

O

We now describe the ‘‘nested’” property for lattice-graph computations. This pro-
perty allows us to assume that extremal sets in the layer-graph form a sequence of sets
that are ordered by set inclusion. Recall that a vertex subset S in an undirected graph

consists of its interior points, V.S, and its interior perimeter 9, S.
Definition: A lattice-graph computation G with layer-graph L has the Nested Property
if
(1) there exists a sequence { B(x) } of extremal sets for the undirected graph L for the
following isometric problem on L:
(ISO-2) ‘ :
Given x a non-negative integer, find B(x) a vertex subset in L such that
|B(x)| = x, and
|VBx)| = | VS|
for any S with | S| = x. (Such a set B(x) will be called a 0 ;,-extremal set
because it has a minimum internal perimeter.)
(2) the sequence { B(x) } has the property that the interiors of the extremal sets form a
linear order under set inclusion:
VB(x) < VB(x+1).
The sequence {B(x) } is called a nested extremal sequence for L.
Ll

In general, the sequence {B(x)} is assumed fixed in any discussion of a nested,

lattice-graph computation G.
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With our data dependency graphs restricted to lattice-graph computations with the
nested property, we can proceed to show that for any set M we can find a *‘symmetri-
cal’” set whose dependency is at least as large as D(M). A ‘‘symmetrical’’ set has

every section in the form of a nested extremal set.

Definition: A vertex subset S of a nested, lattice-graph computation G whose layer-
graph L has a nested extremal sequence {B(x) }, is Section-symmetric if every section
S; of § is an element of the nested extremal sequence {B(x) }.

A vertex subset §° is a Section-symmetrization of set S if S’ is section-symmetric and
each section of §” has the same number of vertices as the corresponding section of S,
that is:

|Si] = [Si] = x,and
@ = Pl .

]
We are now ready to take the first step in identifying a class of (ISO-2) extremal

sets in lattice-graph computations that have a simple formula for the size of their
dependencies. The following theorem establishes that any vertex subset of a nested,
lattice-graph computation can be transformed into a set that generates a section-
symmetric dependency that is at least as large as the dependency of the original set.
This class is extremal, but does not yield a simple formula for the size of the dependen-
cies. The proof uses the notion that, in any section of the dependency set, the elements

of the extremal set always lie in the exterior perimeter or beyond.

Theorem 3: If S’ is a section-symmetrization of S, where
S = M D(M)

and M is any vertex subset of a nested, lattice-graph computation G, then there exists a
vertex subset M’ of G such that

§ = M \yD(M ), and
(M| < M.

Proof: In the following let layer index i be the least i for which M; # . Assign ver-
tices of §* to M’ as follows:

S; , if Siop =

%)
M,i = ’ ’ . ’
S ~ (V8-1J), £ S # O
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We proceed by first establishing that this assignment of vertices to M’ results in
S =M U D(M’). This is done by induction on the layer index i with the
hypothesis:

S; = M, U D(M ). (1)

(basis)
Since M; = @ foralli < ig, then D(M’); = @ foralli < iy. In par-
ticular, wheni = iy,

M., U DM, = @,
from which it follows that
D(M'), = @&.
By the definition of §” we know that S; = @ for all i < iy. Consequently,
again setting i = i, the definition of M’ gives us
S = M, = M} + D(M);.
So, (1) holds for i < ij.
(induction)

Suppose (1) holds for i. By Lemma 2

D(M’ )1 < (VS))

i+1 °

Since M, and ( VS; )., are disjoint by the definition of M’, the corollary to

Lemma 2 gives us

(VS$i);,; < D(M )iy,
that is,
D(M )is1 = (VS8i),,, - | ¥)
Writing S}, as
Site1 = (Siy1 - (VS8i),.,) + (VS§),,, ,and

substituting for the two terms on the right using the definition of M7, | and (2) we
get

= M, + D(M )i

which is the desired result for the (i + 1) section of S’.
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Summing (1) over i gives the first part of the hypothesis. It remains to be shown that
|M"| < [M] .
Lemma (2) applied to S tells us that

D(M);,;, < (VS§;)

i+1°?

and, consequently, it follows that

|ID(M)isr| < [(VS;) = |VSi| .

io1 |
Because the sets in { B( x ) }, the extremal sequence for G’s layer graph, are extremal,

and because S; = B(|S;|) we have

[VSi| < |VSi] = (VS -

In the previous induction it was shown that

(VS)) = D(M )i

i+1

Combining the previous three statements results in

ID(M)is | < [(YS),,, | = |V
< VS|
= [(VYS8}),,,]
= |D(M )iy -
That is,
|ID(M);| < [D(M )], 3)
for all j.

Because M and D ( M) are disjoint for any set M, and because
S = M y D(M),
we have
1S:] = M| + [D(M);] .
Similarly, since (1) holds for §’, we have
ISil = IMi| + |D(M')]| .

From the definition of §” we know that |S;| = |S;| , which gives us



Bounding 42

| M|+ [D(M);| = |M{| + |D(M");| , and
applying (3) to this identity we have
IM;| =2 |M;]| . 4)

Summing (4) over i gives the desired result. Also, taking (3) and (4) together and sum-
ming shows that M” is (ISO-1)-extremal.

O

We have thus far established a canonical form for (ISO-1)-extremal sets M in a
nested, lattice-graph computation. Unfortunately, the shape of the set is still not well
enough defined to allow an easy estimate of the size of its dependency. A natural and
intuitive idea is that all the elements of an (ISO-1)-extremal set can be moved to a sin-
gle layer. In that case, the size of the dependency can be found easily since it is the
sum of powers of the interior operator V operating on the set M. The next section

shows that for two specific layer-graphs this can be done.

Moving the Supporting Set into a Single Layer

Theorem 3 showed that if M is an (ISO-1)-extremal set in a nested lattice-graph
computation G with layer-graph L, then the set S = M D( M ) could be assumed
to be in a form where every section S; is a d;,-extremal set for L. That is, an (ISO-1)-
extremal set M has every section in the shape of an annulus between two 9 ;,-extremal
sets. In this section we will show a sufficient condition on d;,-extremal sets for L
which, when satisfied, allows us to assume S can be further transformed so that the sup-
port set M lies in a single layer in a d;,-extremal form. This will allow us to find a con-

venient expression for the value of the size of the maximum dependency of any set M.

We will proceed by supposing that S has more than one section containing ele-
ments of M. Taking the last section §; that contains elements of M, we move M; up to
the next layer G;_1 (see figure 2.12). The result gives a condition on the extremal
function | VB(x) | sufficient to assure the transformed set M” has at least as large a
dependency as M. Iterating the process brings all the elements of M to the top level.
Thus, if the condition on | VB(x) | is satisfied, all the elements of M can be moved to
the same layer containing S and the result has the maximum dependency possible for
a support set of size| M |.

Since we will assume that the sections of S are in the form of d;,-extremal sets
{B(x) }, we only need to consider the sizes of sets. Consequently, we will find it con-
venient to use the notation in table 2.2. The entries there are self-explanatory except
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Notation

L
]

| M |

oo
i

|D(M); |

e
—~ )
-
-
i

| VIB(x) |

=
=
S
i

| AB(x) |

=
=2
i

M D(M) |

table 2.2.

for the definition of the ‘*volume’’ of a set of a given size, V(m). If we suppose M is a
standard sphere, that is, M is a subset of a single layer G; and M = B(m) with
m=|M

, then V(m) can be written as,

Vim) = Y Vim) = Y |VBm)].

i=0 i=0
We will not use the notation V(m) in any situation where M is not a d ;,,-extremal set,

so this equation can serve as an alternate definition of V().

We now give a sufficient condition for assuming that any (ISO-1)-extremal set M

is equivalent to a standard sphere of the same size.

Theorem 4: Suppose G is a nested lattice-graph computation with layer graph L whose
nested d;,-extremal sequence is {B(x) }, and let M be any (ISO-1)-extremal set in G.
If the following condition holds for the function V (x) defined by the nested sequence

{B(x)},

Given integers a, b, and ¢, with a and b positive and ¢ non-negative, such that,
b 2 V(c¢) , and
a - b =2 ¢ - V() ,
then
Via) = V(b) = V(o) - V().
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then there exists a set M” with | M’ | = | M | which is also (ISO-1)-extremal, M’

lies in a single layer of G, and M" = B(|M’ | ).
Proof: We will work backwards by assuming M” is (ISO-1)-extremal and discovering
a sufficient condition. Since G is a nested lattice-graph computation, we can assume
that the sections of § = M D ( M ) are elements of { B(x) } by Theorem 3. Sup-
pose there are at least two sections of S containing elements of M. Let S; be the section
with greatest index containing elements of M, and let S j be the section from § — §;
with greatest index containing elements of M (see figure 2.12).

figure 2.12.

Transforming the last section of M. The left figure shows the lowest and second lowest sections contain-
ing elements of M (the sections of S with the largest indices containing elements of M), with their depen-
dencies. The right figure shows the effect of moving the m; vertices of M ; up from section S; and adding
them to the perimeter of section S;_;. If this new support M is also (1S0)-extremal, then the new depen-
dency must be at least as large as M’s. The only sections that change under the transformation are the
sections at i — 1 and below. Thus, the ‘‘volume’ of M"’s lower cone minus its top (S;_,) must be at least

as large as the “volume’’ of the cone at S; minus M ;.

Let M’ be formed from M by removing M ; and adding m; points to S; _1: that is, let
Si-1 = B(|Si-1| +m;),

by setting

Mi_; B(|Si—1| +mi) — D(M)-y.
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Clearly, | M’ | = | M| since M;_; = S, — D(M);_y. If the resulting depen-
, then M’ is also (ISO-1)-extremal.

dency is at least as large as| 5( M)

Since M and M are identical in any section above S;_;, in comparing the depen-
dencies of M and M’, we only need to consider the parts below the (i —1 )”’ section.
That is, we want to compare the old dependency in the lower section of S with the new
dependency in the lower section of S’. The first quantity is the volume of the cone

formed from §; but excluding M ;,

v D(M),

sl

= VS - M) M

= V(ml-+di)—mi.

Similarly, the second quantity is the volume of the cone formed by S;_; but excluding
Si-15

’ U DM, | = V(Sia]) = [Sial. e

12

Since we know that M is extremal, we have D (M); = (VS;-1 )i, which gives us
(AE(M),- );_; € Si-1, which we can write equivalently as A(d;) £|8i-1 |
Now, because V (x) is monotonic’ , we can substitute for the right-hand side of (2) to
get,

w D(M’"), > V(m; + Ad)) — (mp+Ad)). )

t2i

Combining (1) and (3) we get
V(mi + A(d;) ) - V( m; + d;) =2 A(d;) .

Because m; and d; are independent of each other, and because VAd; = d;, we can

rewrite this last inequality as,

Vix+y) - V(x+V()) 2 y. “4)

Inequality (4) gives a condition which, when satisfied, shows that M’ has at least
as large a dependency as M. However, we can simplify this further. Let 7, 4 y) be the

T Since V() is monotonic, and V(m) = ¥, V(m), then V(x) —x = V(y) — y whenever
x 2y. Setting x =|S§;_;| + m; and setting y = Ad; + m; gives the inequality on the right-
hand side of (3).
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greatest ¢ such that V/(x + y) > 0, and similarly define t(x+Vy) and ¢,. Now, rewrit-
ing (4) by replacing V() with a summation in terms of V, and replacing y by the sum
-V )+ (V) - Vi) + ---,gives us,

I(1+y) 't(x+VyJ ty

Y Vi(x+y) — ¥ Vi(x+Vy) = Y (Vi) -Vt .
=0 t=20 t=0

Since 7y < f(x 4+ vy) S f(x + y)» We can take the summation over all terms simultane-
ously, giving,

r(.z:+y)

S| Virey) - Vi Wy 2 (VR -V |- ©
t=20

Suppose we decide to establish this last condition by induction on the terms of the sum.

Since V° (x) = x, the basis case is immediate:
x+y) - x+Vy) =2 y-Vy.
The inductive step would then be satisfied if
Vi(x+y) = Vi(x+Vy) 2 (Vi) - V1)) , implies  (7)
Vil (x+y) = VP (x+ Vy) oz (V) - VIR

- Substituting a for (x + y), substituting b for (x + Vy), and substituting ¢ for y, we can

rewrite this last statement as, 7
a —b 2 ¢ - V() = V@ - Vb)) =2 V) - V) .@®)

Because of the monotonicity of V (), it follows from (7) that we only need to verify this
last inequality when @ = c and b = V(c). Of course, if the left-hand side of (8) holds,
then it follows from b = V(c) that @ = ¢. We then have the condition stated in the
hypothesis.

O

2.3.2. Size of the Dependency for The Discrete Torus

Here we show that any lattice-graph computation whose layer graph is a two-
dimensional discrete torus is nested and we show a nested extremal sequence satisfying
the condition stated in Theorem 4. Once that has been established we will give the
maximum size of a dependency as a function of the size of the d;,-extremal set. We
will restrict the sizes of the (ISO-1)-extremal sets to be less than a fixed fraction of the
number of nodes in a single layer. This restriction limits the generality of the results in
this section, but suffices for the application of these results to the architecture problem.
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We will use some techniques developed by Bollobds and Leader [27] as they
apply to the results of Wang and Wang [29, 30]. The main result we use comes from
[28] which can be used to give, among other things, the shapes of d ;,-extremal sets in
the discrete torus.

The discrete torus is a d-dimensional grid graph wrapped around a d-dimensional

toroid.

Definition [28]: the d-dimensional mod-k Discrete Torus zﬁ is the undirected graph on
the finite lattice of the (mod k) d-dimensional euclidian integers ( Z/kZ )d fork =2
and d = 1 formed by connecting vertices x and y if and only if x and y differ in exactly

one component by +1:

z¢ = (V,E) , where
V = {xeZ%|0<x;<k ,for 1<i<d } ,and
E = {{x,y}|xi:yiilforsomei,and Xj =y forj:&i}.

The graph for the d-dimensional infinite (k — o) torus, or equivalently the d-
dimensional infinite grid, is written Z¢.

O

A Nested Extremal Sequence for the Two-Dimensional Discrete Torus

We first want to show that if G is a lattice-graph computation with layer-graph
L = Zf, then G is nested as well. That is, we wish to show that there exists a
sequence { B(x) } of d;,-extremal sets for Z; such that VB(x) < VB(x+1).
Actually, it is not necessary to confirm that the B(x) are nested extremal sets for x
greater than the number of points in any section of the union of a dependency and its
supporting set. In the application of these results to bounding throughput we will make
the assumption that the size of the set whose dependency we want to estimate is small
compared with the number of nodes in the layer graph. Consequently, in the following
we will assume any sets in the discrete torus we have interest in have a maximum
diameter less than £/2. Thus, we can think of the torus as an infinite grid, or a discrete

torus, depending on which is more convenient.

The nested extremal sequence we will use is a simple rearrangement of the sets
Wang and Wang showed were extremal for the infinite grid graph [30]. In that paper
they called their sets ‘‘standard spheres of size v,”’ v referring to the number of vertices
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in the set. The sequence of subsets of Z" that we propose to show is a nested extremal
sequence we will also call a sequence of standard spheres of size v. It should be noted
that the isoperimetric problem addressed in [28] and [29] is not the same as the 0 ;,-
minization problem. The problem addressed in those two papers concerns minimizing
d ¢y for a set of given size. However, since this problem is very closely related to d;,-
minimization, attention to a few details is sufficient to apply their results. In particular,
the authors in [29] give a 9 ,,-extremal nested sequence for Z¢. It is easy to see that if
S is a d ,-extremal set, then AS is d;,-extremal. If we could show that every B(x) in
Wang and Wang’s extremal sequence was equal to AB(j) for some j < x, then we
would know that the sequence was also d;,-extremal. Unfortunately, this is not true.
We therefore need to prove that those elements in the sequence which are not the
neighborhood of a previous element, that is, not A of a previous element in the
sequence, are also d;,-extremal. Unfortunately, the nature of Wang and Wang’s
sequence makes this somewhat more difficult than starting from scratch with a new
sequence of sets and proving that this new sequence is d;,-extremal. Also, this new
sequence is somewhat more amenable to summing the sizes of its elements. Conse-
quently, we now introduce our version of standard spheres in Z2, and then proceed to
show that they form a nested d ;,-extremal sequence (see figure 2.13).
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figure 2.13.

A standard sphere. The circled vertices indicate the vertices in the standard sphere B(v, + 4). The
vertices between adjacent concentric dashed diamonds constitute a shell. Shown are the shells Shell; for
i =0,1,2,3. B(vy + 4) has four vertices in its partially filled outer shell, Shell 5.
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Definition: the Standard Spheres of size x in the undirected graph Z 2 are the sets
{B( x )} defined by the following. Let

Shell, = {xe Z?>|d(x,0) = r} , where

0 is the origin (0, 0) of Z? and the distance d() is graph distance. Let

v, = | Shell;| .
i=0

Note thatv,,.; = v, + 4(r+1). We then define

BW0) = @ ,and

B(v,) = Shell; .

i=0

Define the Spiral Order on the elements of Shell, by setting x; = (1, r—1) and
setting x;,; to be the element in Shell, that a half line with endpoint at 0 sweeping
clockwise intersects next after x;. Then,if 1 <z < 4(r+1),

B(v,+z) = B(v, ) { thefirst z elements in the spiral order of Shell, , }

L]
We now show that the standard spheres form a nested d ;,-extremal sequence.

Theorem 5: Let {B(x) } be the sequence of standard spheres in Z 2. This sequence is
nested, that is, for every x = 0,

VB(x) < VB(x+1) , and

each element of the sequence is d;,-extremal. That is, if A is any subset of vertices in
Z? with

|A| = x , then
|VA| < |B(x)| .

Proof: The proof will proceed by proving a series of simple lemmas. Let {S(x)} be
any sequence of d;,-extremal sets for Z2, and let f(x) = | VS(x) |. We will show
that the standard spheres are extremal at x = v,, that is, we will show that
VB(v,) = f(v,). Then, we will show that the standard spheres at
(v, + j(r+1) + 1) are extremal for 0 < j < 3, from which it will follow that the
standard spheres are extremal for all x except at x = v, + j(r+1) for 1 < j < 3.
Finally, we will handle this remaining case. We begin with a general observation on
the function f(x).
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Definition: A Loose Vertex v is a vertex in any subset of vertices M of an undirected
graph that is not connected to the interior of M. That is,

Ve amM , and
v ¢ AVM .

O

Lemma 3: (No-Jumps Lemma) If {S(x)} is a sequence of d;,-extremal sets for Z%
then f(x+1) < f(x) + 1,thatis,

|VS(x+1)| < |VS(x)| +1

Proof: Suppose by contradiction that,
[VSx+1)| > |VS@x)| +1

First, if S(x + 1) has any loose Verﬁces, then VS(x+1) = VS(x), since if we remove
the loose vertex the interior of S(x+1) is not affected and the resulting set has total
size x which is the same as the size of S(x). That is, since S(x) is extremal, VS(x) is at
least as large as this new set’s interior. On the other hand, since any set with an interior
at least as large as VS(x) could be formed by adding arbitrary vertices to S(x), the
interior of S(x+1), which is also the interior of the new set, is at least as large as
VS(x).

So S(x+1) has no loose vertices. Consequently, every v € d;,S(x+1) has at
least one neighbor in VS§(x+1), which is to say that S(x+1) = AVS(x+1) and
0;nS(x+1) = 9, VS(x+1). Suppose such a v has only one neighbor in VS(x+1).
Then removing v decreases the interior of the resulting set to| VS(x+1) | — 1. Since
the resulting set has size x, this contradicts that S(x) is extremal. So every
v € d;,S(x+1) has at least two neighbors in VS(x+1). We will next show that this
last statement is a contradiction, that is, there must be some v € 9;,S(x+1) with at
most one neighbor in VS(x+1).

Let v = (v, v2) be the vertex in S(x + 1) whose component sum (v; + v,) is
at least as large as the component sum for any other element in S(x+1) and whose
second component, v, is at least as large as the second component of any other
element’s. The vertex v is then the furthest ‘‘upper right’’ element in S(x+1). Two of
v’s neighbors, v + (1, 0) and v + (0, 1), cannot be in S(x + 1) because v was chosen
to have the largest component sum. The vertex v + (—1, 1) cannot be in S(x+1)
because v’s second component is maximum, and consequently, v’s neighbor
v + (=1, 0) cannot be in VS(x+1). Since we have accounted for three of v’s
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neighbors, v has at most one neighbor in VS(x +1).
O
Lemma 4: The standard sphere B(x) is d;,-extremal forx = v,.

Proof: Corollary 6 to Theorem 4 in [28] can be rewritten as follows:
|A| < |B(v,)| = |VA| < |VB(,)| .

Consequently, f(v, — 1) < |VB(v,)|. That is, f(v, — 1) < |VB(v,)| - L
Because of the No-Jumps Lemma (Lemma 3) f(v,) £ f(v, — 1) + 1. Combining
these two statements we have f(v,) < | VB(v,) |, which states that B(v,) is d;,-
extremal.

O

At this point we want to show that the standard spheres B(x) are extremal for
x =v, + j(r+1) + y with suitable restrictions on j and y. The proof will be a sort
of induction on j. That is, as can be seen in figure 2.14, the function g(x) = | VB(x) |
is naturally broken into sections at x = v,.+j(r+1) forj = 0, 1, 2, 3, 4. In that
figure, the circles indicate the value of g(x) at the points x = v, + j(r+1) + 1. The
next lemma will show that if g is optimal at x — 2 (the points marked with triangles) or
x — 1 (the squares), then g is optimal at x (the circled points). Once this is established,
since g(v,) is already known to be optimal, we can conclude that the first circled point
is optimal. By Lemma 3 (No-Jumps Lemma), it then follows that every point up to and
including the next triangle marked point is also optimal, and induction on j shows that
g is optimal at all x except at the points x = v, + j(r+1). These last remaining

points will require a separate treatment.

Figure 2.15 shows the situation at one of the knees of the function g(x). Recall
that if {A(x) } is any sequence of extremal sets, then the optimal values | VA(x) | are
written f(x). Suppose in figure 2.15 we know that the triangle marked point is optimal,
that is, g(x) = f(x). By the No-Jumps Lemma (Lemma 3), f() must lic on or below
the dotted line of slope one from g(x). Suppose f(x+1) does lie on the line, then any
- extremal set A(x+1) cannot have a loose vertex since otherwise f(x) is not optimal by
the same reasoning used in the proof of the No-Jumps Lemma. If f(x+2) lies on this
line, then because there are no jumps in f(), and because g(x) is optimal, f(x + 1) must
also lie on the line and neither A(x+1) nor A(x +2) can have loose vertices. Stating
that A has no loose vertices is equivalent to saying A = AV A, which is the premise of

our next lemma.



Bounding 52

¥ S—
_ g(x) = | VB()|
— \\_ ___________________ oY
+ 3r—1
+ 2r—1
+ (r—-1)
Vr-1

ol

Yy + (r+1) + 2(r+1) + 3(r+1) Wipapd

figure 2.14.

The graph of the function g(x) = |VB(x) | for v, < x < v,,; withr > 0. Squares mark values that
are known (by the previous lemma) to be the best possible. If a circled point is shown to be an extremal
value, then every point on g(x) from that circled point to the next point marked with a triangle is also an
extremal value.

Lemma 5: If A is any subset of vertices in Z¢ with
|A| = v, + j(r+1) + 1, and
A = AVA , then
|VA| < v,y +jr+1.

The proof is very short, but we will use a result from [28], so we will delay the proof of
this lemma until after introducing some of their definitions and the required result. For
our purposes, the main point behind these definitions is to define a continuous approxi-
mation to a discrete standard sphere.

First, one needs a generalization of an indicator function for points in a subset: if a
universal set is of size z then a subset can be identified with a z-component vector with
each component equal to 0 or 1 depending on whether the associated element is in the

subset or not. This vector can also be identified with a {0, 1}-valued function. This
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= f(x+2)?

= f(x+1)?

f(x) = gx)

figure 2.15.

An enlarged portion of the graph of g(x) at a knee.

function can be generalized by allowing points to map to values intermediate between
0 and 1.

Definition: [27] A Fractional System fis a function from points in a set S to the closed
interval of the real numbers [0, 1]: '

f:5 —> [0,1].

For our purposes, we can think of S as either Z¢ or Z¢. If f identifies a subset A, that is,
each element of the domain maps to one if the element is in the subset and otherwise
maps to zero, then we can ignore the difference between f and the subset itself and
write A for f interchangeably. Thus, if we write A where a fractional system is
expected, there should not be any confusion. Standard spheres are treated differently

since one wants to smooth out the ‘‘rough outside.”’

A Fractional Hamming Ball (or ball) b(x) is a fractional system of the form

1 if dx,0) <r
bx) = o if d(x,0) =r
0 if dx,0) >r

where OSrSE, o € [0,1] , and

d() is edge distance. A fractional Hamming ball smooths out the partially filled outer
shell of any standard sphere and distributes it over the entire outer shell. That is, sup-
pose one has the standard sphere B(v,_; + x) for some x in the interval [1, 4r]. Then
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there is a fractional Hamming ball which assigns each element in VB(v,_; + x) the
value 1, assigns each element in 0, VB() the value x/4r, and assigns all other points
the value 0. In fact, given any set A of size a, there is a standard sphere of size a, and
also a corresponding ball.

The Weight w(f) or| f | of a fractional system fis the sum of f over its domain:

I fl = w(f) = Y fk)

x € domain(f)

For a fractional system that defines a subset A, its weight is simply | A | . A ball of
weight @ = |A|, which we will write b4 or b?, essentially converts A into a
‘“smoothed’” standard sphere with the same total weight as the number of the vertices
in A. The advantage of balls is that the measurement of neighborhoods is simplified.
That is, define any vertex with non-zero value to be inside ball b, and all others outside.
Then the neighborhood of b is Ab with each vertex in b getting the value one, vertices

weight 3/4r

figure 2.16.

The neighborhood of a ball. The circled vertices represent the standard sphere B(vy + 3). The
corresponding ball is b"*® and includes all the vertices on or inside the inner dashed diamond. For

b"*2 all the vertices inside or on the solid diamond have weight 1, and all vertices on the inner dashed

diamond have weight 41 where r = 4. The neighborhood of the ball AL includes all vertices in-
r

side or on the outer dashed diamond. Every vertex in AD"*? has weight 1 except those on the outer
dashed diamond which get the weights previously assigned to vertices on the ball’'s exterior: 3/4r,
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in d,, b getting the value o, and all other vertices remain at value zero. We then will
augment the notation for A to include this new meaning of neighborhood for fractional

systems.

The Neighborhood of a Fractional System f is the fractional system

1 if f(x) #0

P = { max {f(y) : d(x,y) = 1} if f(x) =0

For a subset A, this definition is identified with the previous meaning of AA: the ver-
tices in AA all have value one. Thus, the weight of AA is| AA | . For a ball the result
of taking its neighborhood is that the outer shell vertices get value one, and the values
that were on the outer shell get assigned to the vertices in the next larger shell. So, for
the ball 5”"~' ** corresponding to the standard sphere B(v,_; + x), the vertices in
B(v,) get the value one, while those in Skell, , ; get the value x/4r. See figure 2.16.

O

‘We now can state Theorem 4 of Bollobds and Leader.

Theorem 6 [28]: Let k =2 be even, and let f be a fractional system on Zf of weight v.
Then w(Af) = w(Ab"). '

In terms of our present problem this can be rewritten as follows.

If A is a subset of Z§ with interior VA, then
|AVA| = |AbYA].

As was mentioned earlier, for our purposes, the set A will always be small enough that
the graph can be either Z¢ or Zf.

O

Now that these preliminaries are out of the way, we can give the proof of Lemma

5. Essentially, Theorem 6 does all the work for us.
Proof: (Lemma 5) The proof will be by contradiction. That is, suppose A = AVA,
|A] = v, +j(r+1) +1 , and
|[VA| 2 v, +jr+1.
Consider a ball of weight | VA | . The vertices in the outer shell of »¥4 have weight

(jr+1)/4r, which is also the weight of the vertices in the outer shell of Ab VA Since
there are 4(r +1) of these vertices in Shell , , 1y, we have the weight of Ab VA as,

154 = v, + 4+ EH
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= v,.+j(r+1)+1+—!—.
r

However, this contradicts Theorem 6 since
|AVA| = [A]
= v, + jir+1) + 1
» |bVA| '
]

Now that Lemma 5 has been established, it follows from the induction we
described earlier that g(x) = f(x)atall xexceptx = v, + j(r+1).

The last lemma needed for Theorem 5 tells us that the standard spheres at
X =v, + j(r+1) are extremal. To prove this, we will use the sequence of J .-

extremal sets described by Wang and Wang [29] to show that any set with an interior
larger than V B (x) must contain more than x points.

figure 2.17.

The order of choosing points from Shell.., for the d.-extremal sets W(x). The inner diamond
represents B(v,), which is, in the case shown above, B(v4). The outer shell ( Shells ) is filled by travel-
ling along each of the arrowed lines, marked 1 through 4, in turn, starting at a square-marked vertex and

ending at a circled vertex. The arrowed line 1 covers r vertices, lines 2 and 3 cover r +1 vertices each,
and line 4 covers r +2.
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In two-dimensions the Wang and Wang sequence of d . .-extremal sets, { W(x) },
is described by the following. Leteach g = (g1, ¢2) € Z 2 be associated with the 4-
tuple ( iz, i1, g1, g2 ), where i; = 1 when g; is strictly positive and equals zero oth-
erwise. Write xasx = v, + zforsome rand 0 £ z < 4(r+1). Then W(x) consists
of all the points in B(v,) together with the z points in Shell, .| whose associated 4-
tuples are the first z tuples in lexicographic order of the tuples associated with
Shell . 1. See figure 2.17.

(©) (b) (a)

figure 2.18.

The neighborhoods of the 9 ,.-extremal sets W(x) at x = v,_, + jr. The top figure in each of the
columns (a), (b), and (c), represents W(x) for j = 1, 2, 3, respectively. The bottom figures represent
AW(x). Forr > 1, it is easy to see that AW(x) is W(v, + j(r+1)) with one additional vertex. The
case r = 1 can be checked easily and gives the same result.
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Because | VB(v, + j(r+1))| = v,_; + jr—1, we are interested in the
minimum size of a set whose interior is one larger than this value. In figure 2.18, the
minimum size set is shown as the neighborhood of the d,.-extremal set
W(v,_1 + jr). It is simple to check that AW(v,_; + jr) = v, + j(r+1) + 1
forj = 1, 2, 3and r =2 1. This is all that is necessary to establish the lemma.

Lemma 6: the standard sphere B(v, + j(r+1))is d;,-extremal for1 < j < 3.

Proof: Suppose, in contradiction, that B(x) is not d;,-extremal, where
X =v, + j(r+1)). Let S(x) be a d;,-extremal set of size x. Because of the No-
Jumps Lemma (Lemma 3), we must have,

|VS(v, + jor+1))| = |VB(v, +j(r+1) =1)| + 1
' = (vp1 + jr=1) + 1
Because the sets in the sequence { W(y) } are d ,,-extremal, we have,
|[AW(v,_y + jr)| < v, + jr+l),
since
|AVS(v, + j(r+1))| = |S(v, + j(r+1))|
= v, + j(r+1)
However, in the previous paragraph we showed that,
|AW(v,_y + jr)| = v, +jr+1)+1 ,and

therefore, the set S(x) cannot exist.
J

The condition on the V() function given by Theorem 4 is easily verified for the
layer graph Z2. '

Theorem 7: If V(x) = [ VB(x) | for the standard spheres in Zz, and given non-
negative integers a, b and ¢, and given that,

b 2V() and a - b 2 ¢ - V(o),
then
V(@) = V(b) = V() - V(o).
Proof: We will prove a slightly simpler form of the hypothesis which replaces the ine-
quality in the first line with equality:
a-b=c=-V() = V@ - Vb)) = V) - Vi) . G
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figure 2.19.

The graph of V(x) fromx = v,._j to v, (here v, = v,). With the distance between a and b held con-
stant at (¢ — V(c)) and starting with b = V(c), proposition (i) says that sliding b to the right never
causes the distance (V(a) — V(b)) to become less than (V(c) — V*(c)).

It will be obvious from the method of proof that making a larger than
b + (¢ — V(c) ) can only strengthen the argument, and the proposition therefore fol-
lows in its more general form. Proposition (i) holds trivially when V(c¢) = 0 because
of the monotonicity of V (), so we assume in what follows that ¢ > 5 (the least x for
which V(x) > 0).

Figure 2.19 illustrates the proposition in a general context. The question is then,
if b starts at V(c) and slides to the right while a maintains a distance of ¢ — V(c) from
b, does the distance marked V(a) — V(b) ever decrease to less than its starting value
of V(c) — V%(c)?
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v, + (r+1) + 2(r+1) + 3(r+1) Vril
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figure 2.20.

The phases of two adjacent periods of V(x). The lower curve can be thought of as a copy of the upper
curve with a shifted origin. In this case the lower curve would have its origin shifted by
(v, = v,_1) = 4r, that is, the lower curve is the graph of V(x — (v, — v,_1)). Phase j of period r of
the curve V(x) includes all the points from V(v, + &(r, j)) up to but not including
Vv, + o@r, j+1)).

Let us refer to the portion of the x axis from v, to v, as the r™ Period of V(x),
these are the values associated with filling Shell, , ;. Within each period the graph of
V (x) can be broken into four Phases atv, + ¢(r, j)forj = 0, 1, 2, 3, where

_ 0, for j =0
r, =
LUR) {j(r+1)—1,for0<j£3

The i phase of the r period of V(x) is the half-open interval
[v, + &(r, i), v, + ¢(r, i+1) ). Figure 2.20 shows the general structure of the
graph of V (x) for two adjacent periods with the phases numbered and indicated by dot-
ted lines.
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We can produce a graph similar to figure 2.20 by graphing g; = V(x) and a
shifted version of this curve, g, = V(x — (¢ —V(¢)) ), above the same axis. In fact,
figure 2.20 is a representation of such a graph of these two curves when ¢ = v, and
V(c) = v,_;. The two curves produced in this way show the difference
(V(c) - v (c) ) as the vertical distance between the two curves at x = ¢. Also, the
vertical distance between the two curves at x = ¢ +y is equal to (V(a) — V(b)) when
a = c+y, that is, when b has moved y to right of its starting point at V (¢).

(V(e) = V2(c))

phase i
period r

(V(c) = V2(c)) e

) phase i
period r — 1

figure 2.21.

The two possible alignments of the curves V(x) and V(x — (¢ =V (c)) ) at phase i when c is assumed
to lie somewhere in phase i of period r. The dashed, arrowed lines represent the vertical distance

between the curves at x = c for all possible choices of ¢ in phase i.

It is easy to verify that if ¢ is in phase i of period r, then V(c) is in phase i of
period (r—1). Figure 2.21 shows the two possible orientations of the two curves at
phase i. The left portion of that figure shows the orientation that results when c is at the
beginning of phase i. If ¢ is not at the beginning of the phase, then the orientation is as
shown in the right portion of that figure. The dashed lines show the distances
representing (V(c¢) — V2(c) ) for the various possible values of c.

It is clear that, given any starting position at x = c, the vertical distance between
the curves at x either remains the same or increases by one as x moves right to the end
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of phase i in period r. Now, the distance between the curves, as x moves right beyond
the end of phase i, remains the same or increases by one whenever x coincides with a
horizontal segment in the lower curve, that is, at the initial segment of a phase. On the
other hand, the distance remains the same or decreases by one when x coincides with
the initial segment of a phase of the upper curve. In any case other than these two, the
distance remains the same. Because the horizontal span of phase j in period ¢ — 1 is one
less than the horizontal span of phase j in period ¢, it follows that, as x moves to the
right from the end of phase 7 in period r, that m initial segments in the lower curve will
always be reached at least as soon as m initial segments in the upper curve for any
m > 0. Consequently, V(a) — V(b) = V(c) = V3(c).

O

2.3.3. Standard Spheres for the Triangular Lattice

Part of the general program presented previously for the layer graph Z? can be
carried out in a somewhat simpler way for other layer graphs. Using the same language
as was used to define the standard spheres in Z2, we define shells and standard spheres
in the triangular lattice. In this case, as in the case for Z 2, the standard spheres with
“full”” shells are  defined by B(v,) = {x|d(x,0) <r}, where
v, =|{x|d(x, 0) <r}|. The principal work done in this section will be to make
use of the *“Wulff Construction’’ for continuous extremal sets to show that the standard
spheres B (v, ) for the triangular lattice are d;,-extremal. Although, as we will demon-
strate below, the specific standard spheres B(x) are extremal when x = v,, we will not
prove this for general values of x, that is, we will not show here that the standard
spheres {B(x)} form an extremal sequence. However, is should be clear that the
approach used for Z? could, with the necessary attention given to details, be applied
here. Technically, the demonstration of the existence of a nested, extremal sequence is
required in order to apply Theorems 3 and 4 and thereby make pebbling set size esti-
mates and apply the I/O cost analysis to throughput bounds. However, since it is intui-
tively apparent that, if the standard spheres B(v,) are extremal it is only a matter of
details to establish the intermediate spheres are also, we will assume that the our stan-
dard spheres do form an extremal sequence for the triangular lattice when we come to
analyzing the performance of LGM-1.
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The Wulff Crystal

The Wulff construction in its general form is presented in [31] (see [32] for an
introduction to geometric measure theory). We will only paraphrase it here in
sufficient detail to allow us to handle the present problem. We will also present in
abbreviated form the Wulff theorem which addresses the optimality of the result of a
Wulff construction, a Wulff crystal. The Wulff theorem states that the result of the
Waulff construction for a given function f; is a set of a given ‘‘mass’’ (its size by some
measure) that is minimized for the integral of f over its surface. For instance, in three
dimensions, when the integrand is 1 identically and the mass is the usual volume, the
mtegral is simply the surface area of the set, and the Wulff crystal gives the set that

solves the isoperimetric problem of least surface area for a fixed volume, a sphere.

In two dimensions, the d;,-extremal sets are the discrete analog of least-perimeter
continuous sets. In the discrete case, the perimeter of a set S is measured by the
number of lattice points in d;,S, and the mass is the number of points in VS. In two-
dimensions, we can make the connection between the Wulff crystals and our discrete
sets by assigning a tile of unit area to each point in VS, and connecting the points in
0, S with a piecewise linear closed curve C. The value of f at a point on C at which the
tangent to C has a given orientation, will be the mean density of lattice points per unit
distance along a line of that orientation. That is, taking a line of the given orientation,
count the least number of vertices per unit length along the line whose removal parti-
tions the lattice into two pieces so that one piece lies on one side of the line and the
other piece lies on the other side of the line. Integrating f around C gives the number of
lattice points in d;,S. The area inside the curve C will approximate the number of lat-
tice points in VS. The Wulff Crystal for f will give the shape of a d ;,-extremal set in

the triangular lattice.

Wulff’s Construction and Theorem in their general forms are stated for d-
dimensional real space and for more general measures; however, we will only state the
construction and theorem for the plane o using the usual measures on the plane and
restricting the the range of subsets of the plane to which the theorem applies. Further,
we find it more convenient to state the integrand f as a function of the unit vectors and
integrate f of the outward normal to C.

Wulff’s Construction [abbreviated]: Let f be a function from the unit vectors in R2%to
the reals. For each unit vector x, form the vector xf(x). At the point xf(x), construct
the line normal to x: [(a) = ay + xf(x) where xy = 0 (that is, “*-’” is the inner pro-
duct, so x and y are orthogonal). For each such line /, discard the open half space not
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figure 2.22.

The Wulff Construction. The unit vector x ( x is shown on left lying on the unit circle), are scaled by f(x)
to get the vector xf(x) (the curve shown on right beyond the unit circle is the scaled transformation of
the unit circle). The half-space defined by the line normal to xf(x) is discarded for every x (the half-
plane indicated by the dotted lines is discarded). The remaining set is the Wulff Crystal for f.

containing the origin. The union of the remaining half spaces defines the Wulff Crystal
for f, Wy. See figure 2.22.

[
Wulff’s Theorem is also abbreviated and stated only for R 2,
Waulff’s Theorem [abbreviated]: Let S be any region of R? bounded by a simple closed

piecewise C'! curve @S whose outward unit normal to the tangent of S exists at almost
all points s on dS and is n(s). Define F(S) as,

F(S) = [f(n(s)) ds.
a8

Also, define the mass of § as M (x),

M(S) = [dxdy.

3

Then,

F(Wp) < F(),
for every S such that

M(W )

M(S) .
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Since the measures used in the integration are uniform on R 2, the theorem applies to
any scaled version of Wy as well. The above theorem states that the Wulff crystal for f
minimizes the ‘‘length’’ of the perimeter for a given area, where the length is general-
ized to mean the integral of any function which is only dependent on the orientation of
the tangent to the boundary.

figure 2.23.

An arbitrarily oriented line in the triangular lattice with unit edge length d,. Separating the lattice
along [ requires removing one vertex for each edge parallel to u that | intersects.

We want to find a function f that, when integrated around the curve C defined by
the vertices in d;, S for some set S, gives the number of vertices in d;,S. The function f
in this case is found by counting, per unit distance, the number of lattice points required
to separate the lattice in two along a line with normal x. In figure 2.23 an arbitrary line
[ is drawn through a portion of the infinite triangular lattice graph whose edge lengths
are dy. As can be seen in that figure, it is sufficient to measure the distance along /
between lines parallel to the lattice-generating unit vector u passing through the lattice
points. We place the separating line / so that it coincides with a lattice point to make
the calculation more convenient (see figure 2.24). We then want to find the distance
along ! between the lattice point and the nearest line through a vertex parallel to u. If
the line / lies at an angle O to the angle bisector b in figure 2.24, then the distance is
do~3/(2cos(0)), and thus f for the normal to such a line / is equal to 1 over this quan-
tity. Now that we know what the function fis, we can proceed to find its Wulff Crystal.

The upper diagram in figure 2.25 shows a unit vector normal to line [,
normal(l) = xg. (There are two such normals for each line /. We assume the follow-
ing arguments apply to both.) The lower left diagram in figure 2.25 shows the result of
scaling xg by f(xg) = 2cos(0)/(dg~3). A little trigonometry will show that for @ in
the range [0, /6] the line normal to xg at xgf(xg) intersects normal(b) at the point
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figure 2.24.

The distance along line | between lines parallel to u. The left diagram shows the line | as a dashed line
passing through a vertex (circled). On the right, the angle bisector b makes an angle 6 with I. The dis-
tance, when the graph edges have length d, is d v3 /(2cos(8).

marked a = xgf(xqg). Since in this range of values for 0, f(xg) is minimum at
0 = 1/6 (f(xge) = 1/dg ), the Wulff Crystal Wy is defined by the lines normal to

the unit vectors x,6. The result is as shown in the lower right of figure 2.25.

Extremal Standard Spheres for the Triangular Lattice

Now that we have a Wulff Crystal for the function f defined in the previous sec-
tion, we can use it to prove that the standard spheres B(v,) = {x| d(x, 0) £r} are
dj,-extremal. The method will be to compare the area of a Wulff Crystal with the area
of a region with the same perimeter integral. The region will be the area inside a curve
drawn through the vertices of the interior perimeter of a set of vertices. See figure 2.26.
Suppose B(v,) is not d;,-extremal. That is, suppose there exists some set S which is
the same size as B(v, ), but has a larger interior. We first find a planar region defined
by set § which we can compare with a Wulff Crystal.

Scaling the triangular lattice so that the plane is tiled by unit area hexagons cen-
tered at the lattice points (see figure 2.27, the unit edge length becomes dy = 2 37,
construct a curve C by connecting the vertices in d;,S in the following way. Suppose
the interior of S, V S, forms a connected component. (If VS is disconnected, each con-
nected component can be treated separately.) Consider the perimeter C of the region
defined by the union of the hexagons associated with vertices in VS. Clearly, this is a
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normal(l) = xg

figure 2.25.

Constructing the Wulff Crystal for the function f defined above. The line  is pushed away from the origin
along both its normals *xq (only one is shown) for a distance f(xg). The top diagram shows the unit
normal to I, xy. The lower left shows | pushed away from the origin. The point a is common to all such

“pushed’’ lines for O in the range [0, £n/6]. The resulting crystal is shown at lower right.

simple closed curve. (If VS contains ‘‘holes,”” then the function | VS(x) | for the
extremal sets S(x) of size x has jumps, violating the No-Jumps Lemma.) Let us call the
edges with one end in VS and one end in d;,S the hair of VS. Curve C; intersects
every hair of V'S at its midpoint. Produce curve C, from C; by deforming every sec-
tion of C; lying between between adjacent hair intersections into straight line seg-
ments. Now form curve C by sliding every hair intersection point until it coincides
with a vertex in d;,S. Curve C is a simple closed curve. Vertices adjacent along C are
neighbors in the lattice graph because every line segment in C, either contracted to a
point or is coincident with an edge. This last follows from the fact that adjacent hairs
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figure 2.26.

The curve C through the vertices of 0,5 defines a region whose are can be used to compare with the
area of a Wulff Crystal whose perimeter integral is identical to that around C.

figure 2.27.

The tiling of the plane with hexagons. Edge lengths are scaled so that the area of each hexagon is 1.

share a common vertex, either in V§ or in d;, S. In referring to the region of the plane

bounded by the curve C, we will write 5.
We will use the following notation when referring to the areas associated with sets
of vertices and regions in the plane. If A refers to a Wulff Crystal or the region S, let
|A]] = M(@A).
If A is the interior of a set of vertices, say A = VS, then let || VS || be the area of the

union of the unit area hexagons associated with vertices in V S,

Ivsll = % 1.
xe VS

Finally, if A = 9,5, let|| d;,5 || be the area inside S associated with vertices in 9inS,

[[omS]l = ISl = [IVS]].
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The region Sisa region of the plane to which Wulff’s Theorem applies: we can
compare its area with that of a Wulff Crystal for f whose perimeter integral is the same
as the perimeter integral for S. That is, for any j there is a scaled Wulff Crystal for f,
W(J), such that the integral of f around its perimeter is j: j = F(W(j)). It follows
from Wulff’s Theorem and from the fact that the area of W(j) is a strictly increasing
function of j, that if, for some set N to which Wulff’s Theorem applies,
F(N) = j = F(W())), then||N|| <||W(j)||- So, setting

j = F©&),
we must have
st < [Iwll- 1
We will show that this inequality is a contradiction, and thus B(v, ) is extremal.

First, we can rewrite the left-hand side of (1) to get
VS + lloaSIl < [[WII - @
Now, we have, by supposition, that S and B(v, ) are the same size,
S| = [Bv)| = vy,
and that S has a larger interior than B(v,.),
|VS| = |VB(,)| + u,
for some positive integer u, and it also follows that
|9inS| = |9uB(,)| — u.
Because | VS| = || VS||, we can rewrite (2) by substituting for || V.S

?

[|VB(v,,)| " u] + 3.8l £ 1w,

and, substituting for| VB(v,) | and rearranging we have
[omSIl < [[WWDIl = vr1 = u.

Recalling that r is the edge distance from the origin to d;, B(v,), it is easy to verify that
v, = 3r% + 3r + 1, and that | 3;,B(v,) | = 6r. Substituting for v,_; in the previ-

ous inequality results in
19asSIl < WDl - (3r* =3r+1) - u. @)

We will show below that expressing the terms || 9, S || and|| W(j) || in (4) in terms of
r, u, and the number of loose vertices in d;, S, gives a contradiction.



Bounding 70

We now want to to find an expression for || W(j) ||. We first need to find the
value of j = F(S' ). The function f was chosen so that, if we integrate f around C, the
result gives us the number of non-loose vertices in d;,5. To see this, note that C fol-
lows edges in the graph, and the portion of C traversing the hexagon tile assigned to a
specific vertex in d;,S covers a distance of exactly one edge length d. Integrating f
along this portion of C gives the value 1 because f(n(x)) at a point x where the tangent
to C is parallel to an edge is 1/d. That is, if d;, S has g loose vertices, we have

i = F(S) = IainSI - 9q.
Substituting for| d;, S, and recalling that| d;,B(v,) | = 6r, we have
j = 6r—-u-q = 6r-t,

where we set# = u + g. Now that we have j, we can proceed to evaluate || W () || by
finding an expression for the area of a hexagon in terms of its perimeter.
The integral of f around the perimeter of W(j) is
. . I
FWG) = J = pig— (5)
0

where p; is the length of the perimeter of W(j). We can write the area of a hexagon as

a function of its perimeter p as,

V3 2
A = —“‘—p°,
rea(p) a P
We then have,
. _ N3 o
v il = -}

Solving (5) for p;, and substituting for p; on the right-hand side of the above gives us,
. 1 .,
W = —j°,
WD ] TE
and substituting for j and simplifying yields,
2

WG| = 3r2——rt+;—2. 6)

We next develop a lower bound for the quantity on the left-hand side of (4)
The left-hand side of (4) can be expressed as

1 2 3 1
IEPN I 301 & gcz + EC3 + Ec4. (8)
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/3

figure 3.28.

The four possible angles the curve C can make at a vertex. The solid line represents a portion of the
oriented curve C, and the circle represents a vertex in d;,S. Assuming the region S extends to the left
and down, the area the vertex contributes to || S || is shown inside the unit hexagon. Note that an angle

of 21/3 is impossible at a non-loose vertex.

To see this, note that for any vertex v in d;, S, there are only four possible arrangements
of the curve C through its associated hexagon tile. See figure 3.28. If we traverse C in
a counterclockwise direction, the possible angles C can make at v are 1/3, —7/3,
—2m/3, and 0, and the area contributed to || 9, S || by the associated hexagon in each
case is respectively 1/3, 2/3, 5/6, and 1/2. Letting ¢ be the number of /3 angle
turns, ¢, the number of —xt/3 turns, ¢ 3 the number of —27/3 turns, and ¢ 4 the number
of 0 angle turns in a complete counterclockwise traversal of C, and summing the areas

for each vertex lying on C, gives (8).

Noting that the sum of the angles in a complete traversal of C must be 27, we

have

q(%) + c2<~%) + c3(~213‘—) + c4(0) = 2m,



Bounding s

solving for ¢ | and simplifying gives,
¢1 = 6 + ¢2 + 2¢c3. 9

Substituting (9) into (8) yields

3 1
||8mS|| = 2 + c9 + "'2"'6‘3 + "5'04 . (10)

A lower bound on this quantity requires a minimization of the right-hand side of (10).
With the following two constraints, this becomes an integer linear programming prob-
lem. First, all the ¢; are non-negative. Second, the sum of the c; is the number of

non-loose vertices in 9, S, that is
Xci =,
which, when the right-hand side of (9) is substituted for ¢ gives
2cy + 3¢c3 + c4 = (j-6).
The linear program is then
Minimize (c,, c3, ¢4, )*(1, 3/2, 1/2) subject to
(c2, €30 ¢4,)°(2,3,1) = (j=6) , and
c; 2 0.
Since any feasible solution lying in the plane c¢+(2, 3, 1) = (j—6) is also optimal (the
cost vector and the normal to the constraint plane are parallel), we get an optimal solu-

tion by setting c4 = j — 6, ca = ¢3 = 0. Substituting these values into (10) yields
the desired lower bound,

lowsll = L -1 = £20

5 = = - 1. (11

We now have expressions for all the terms in (4).

We substitute (11) on the left-hand side of (4), and (6) on the right, and after com-
bining terms, rearranging, and simplifying, we have

12r + 6 < t + ¢,
and since g < t, we have
6r + 3 £ t.

However, the number of non-loose vertices in the interior perimeter of S must be non-

negative,
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so we have

and we have reached the desired contradiction. This establishes the following proposi-

tion.

Theorem 8: The standard spheres B(v,) = {x|d(x, 0) < r} are d;,-extremal in the
triangular lattice.

2.4. Applying the Pebbling Bounds to Measure Architectural Optimality

The question that motivated the preceding development of pebbling arguments
was whether or not the LGM-1 machine made reasonable use of its resources. That is,
can the elements of LGM-1 be rearranged, and the computation steps reordered, so that
a significant improvement in throughput is achieved. Here we will answer that ques-
tion negatively by getting an upper bound on throughput for any machine with
equivalent resources, and showing that the throughput of the LGM-1 architecture is

within a small factor of this bound.

There are many ways to apply the pebbling arguments to an architecture. Apply-
ing them to a real machine, or a proposed architecture, requires that one define the
resources of the machine in such a way that one clearly distinguishes between registers
assigned to different parts of the machine. The pebbling game itself makes no distinc-
tion between memory locations, except that some are assigned one color and others are
assigned other colors. In fact, there is no reason to associate any particular collection
of registers together. The important element of assigning memory elements to classes

is the definition of the communication capacity between the classes.

To define the memory locations for a given color, say color C-i, we enclose those
elements in a collection of disjoint volumes (bounded by simple closed surfaces). Say
V-1 is this collection of volumes associated with color C-i. Whenever a datum node in
the computation graph is pebbled with a C-i colored pebble, the meaning is that the
given datum (or a copy) resides within some memory element inside this volume. If
we wished, we could identify each pebble with a particular memory register, and it is
tacitly assumed that this is done; however, there is no practical point in keeping track
of the identities of the pebbles. We can identify some, or all, of the machine’s memory
registers outside of volume V-i with another color C-j by enclosing them in a similar

volume V-j.
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Communication between different parts of the machine is interpreted by the act of
pebbling a node with a C-i colored pebble when it is not already pebbled by a C-i
colored pebble. If the node was pebbled by a C-j colored pebble, then the interpreta-
tion is that the datum was communicated through whatever physical medium intercon-
nects the two parts of the machine enclosed in V-i and V-j. This interconnection
between parts of the machine is thought of as a communication channel. The channel
capacity is measured by assuming the machine does nothing but transfer data through
the channel. This allows one to separate the machine’s processing capability from its
communication capability. The capacity of the channel can be defined as the average
sustainable rate that useful data can be transferred between the two portions of the
machine inside the two volumes V-i and V-j, disregarding delays caused by the

required data not being available.

Communication Channel

Main

Memory

Processor

figure 2.29.

The machine model implemented by the standard parallel red-blue pebbling game. The diagram shows
the processor as a collection of processor elements (ALU’s) communicating through a shared memory.
Thus, every local register is available to every local processing element (ALU). This allows infinite
internal communication capability within the processor: any ALU that wants to use a datum stored in a
local register (the corresponding node in the computation graph is red-pebbled) has direct access to that

register. Results are written to local registers as well.

The pebbling bound allows us to bound the throughput of any machine with given
resources, no matter how its resources may be arranged and used, so long as that
arrangement allows a well defined division of the machine’s registers into color classes
corresponding to the assumptions the pebbling implies. The first bound we develop for
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machines that compute lattice-graph based computations restricts the possible rear-
rangement of resources into thoses that can be divided into two pieces: a ‘‘main
memory’’ piece, and a ‘‘processor’’ piece with a well defined communication channel
between them. The range of possible machines is then restricted to those that store the
initial state of a lattice-graph based system in some storage medium (this medium
could be tapes, disks, RAM chips, or whatever) and sends data to a processor which
cannot contain the entire lattice state in its local registers. No updating of the lattice is

done in the ‘‘main memory.”’

The first bound mentioned in the preceding paragraph restricts the class of archi-
tectures to one that is close to the general shared-memory PRAM model.. In the general
model the processors can read and write to memory directly without requiring local
storage of input or output. The two-piece pebbling forces the machine to have at least
enough local registers (registers in the ‘“processor’’ portion of the machine) so that the
required inputs to a calculation step can be held locally. The processors may share data
among themselves so that the local memory together with the processors form a local
shared-memory PRAM. See figure 2.29. This division of resources is modelled by the
standard parallel red-blue pebble game, where data held in blue registers is not updated.

The throughput bound for this model is derived from the I/O cost inequality from

the beginning of section 2.3:

£
B

where z is the number of nodes in the computation graph (excluding input nodes), f is

Cro 2 ( -~ EJ &y, (1)

some bound on the maximum size of a dependency of a kernel dominator, and £ is a
free parameter defining the number of I/O steps per I/O-division of the pebbling game.
The quantity represented by B is defined by

B = }%a()r(){m?x|5(d,-)|}, . )

where Peb(r) is the collection of all pebblings of the computation graph which use at
most r red pebbles, and where i ranges over all elements of a k-1/O-division of a peb-

bling. From Theorem 2 in section 2.2.2, we have d ; as
di = Re,, U (Bo, A Pi).
We can rewrite the right side of this as
= Ro, U (Bo, A Pi) =R} O

The size of first term on the right is bounded by
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|Rg < r

i-1 | d

since r is the maximum number of red pebbles allowed. The second term on the right
of (3) represents the number of nodes that were read into the local memory during the
i™ sub-pebbling (these nodes were blue-pebbled but not red-pebbled at the beginning
of the sub-pebbling, and had red pebbles placed on them during the sub-pebbling).
Since the total I/O for the sub-pebbling is at most k, we have

[dzl < r + k.
So, we can write (2) as

B = max|5(M)

k]

where the maximum is taken over all sets M of size (r +k). This implies that we can
set B to

B = |DWM)|,
where M is an (ISO-1)-extremal set M of size (r +k).

The throughput bound comes from noticing that the communication capacity of
the channel between the red registers and the blue registers must be sufficient to
accommodate the communication in the time allowed by the computation. Letting this

time be ¢, we have
Vcom 4 2 CI;’ 0 »

where V ., is the communication capacity (bandwidth) of the channel between the red
and blue registers. Substituting the right side of (1) on the right we have

Z

Veom | 2 (B 1) k.
Setting A = 1 — B/z, and dividing by ¢ this becomes
A(z/t) k
Vcom = _(B—) ’
and rearranging gives
z
? < Veom E E

The left side of this inequality is the average effective computational speed of the
machine. We take the right side as the definition of the bounding throughput V,

V = Vwm—f—k .



Bounding 71

This expression holds for any lattice-graph based computation.

We now want to apply this limit on throughput to a lattice graph computation
whose layer graph is the two-dimensional toroidal grid. We know from section 2.3.2
that the (ISO-1)-extremal sets of size x, for a lattice-graph computation with layer graph
G, are the standard balls in G containing x points, B(x). Suppose

(r+k) = v, 4)

| {x :d(x,0) < n}|
= |B(vn) I >
for standard balls in the toroidal grid. Sincev, = v,_; + 4n,and vo = 1, we have

ve = 1 + §4i ®)

i=1

= 2n% + 2n + 1.

As was shown previously, the dependency of the standard balls consists of a series of
standard balls of decreasing radii. The size of the dependency of the standard ball
B(v,) is then

R

_ -1
I DB | = X |B)]| (6)
i=0

n-1
= Evi
i=0
n—1
= Y (2% + 2i + 1)
i=0

A
T3 3

Substituting (r +k) for v, in (5), solving for » and taking » positive we get

(2(r+0) - 1312 ~ 1
5 .

n

Substituting for # and v, in (6) we get an expression for 3 as,
B = |D(B(r+k))|

Qr+ k) —1Y2 + 520 +k - 1)2 - 6(r+k)
12 ‘

This expression was derived by assuming (r + k) was exactly the size of a standard ball.
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It turns out, though, that if one uses a general value for (r + k&) and proceeds as above,
then the expression given above for B} is nonetheless an upper bound. This expression
for the size of the dependency of a standard ball on the toroidal grid is valid only when
the diameter of the standard ball is smaller than the smallest dimension of the grid. (As
the ball wraps around the grid, its dependency increases more rapidly than the above
expression.) Let’s suppose the grid is /| X [, sites on the two-dimensional torus, and
[1 £ 1,. The restriction is then that the radius of B(v,) is less than /{, that is,

n < [1/2. So, there is a restriction on (r +k):

12
r+k < (12) T %

which comes from substituting for # in (5). It’s worth pointing out at this point that the
pebbling argument gives an essentially infinite bounding value for the throughput when
(r+k) = 3, since the dependency of a set of this size contains the entire computation
graph. This is why the pebbling argument is not an asymptotic result in terms of r.
Consequently, the limitation on (r + &) given by (7) is not a serious restriction.

We want to compare V against an equivalent expression for the throughput of the
LGM-1 machine. The LGM-1 is an implementation of the ‘““WSA’’ architecture intro-
duced in [23]. The WSA architecture consists of an s stage pipeline of identical pro-
cessors through which the lattice-graph data is passed in a raster scan order. Each stage
of the pipeline contains W update units (ALU’s), and produces W updated lattice sites
per global machine clock tick. The lattice exits the pipeline in raster scan order
updated s time steps. See figure 2.30. Suppose the capacity of the communication
channel between the pipeline and the main memory is again V,,. As we mentioned in
the introduction to this article, the LGM-1 machine pipeline is much faster than the
memory channel. Consequently, suppose the pipeline clock is triggered by the com-
munication channel and the channel never waits on the pipe. As 2W lattice sites are
transferred per machine clock tick and W lattice sites updated per pipeline stag-e'per
tick, the speed of the machine is then

v . Vieom (sites/sec)
et OW (sites/tick)

s W (site updates/tick ) (8)

T s (site updates/sec) .

Since each stage of the pipeline has storage for 2/; + W sites, we have the total pro-

CESSOr memory as

ro= s(20, + W) .



Bounding

LA

Write Updates

79
14
//
[T TTIT1] P .
[TTTT1T1T1] o
[TITTTT] | | (CCCLICP LTI ¢ First Stage
[TT1111] Lol ECOLTT |
[TITTI0 | e J
[TTTT11] | [T :
[TTTTTT] I TTTITIIT1] :
[TIIIT] | | ‘LTI Second Stage
[T 1] Eol CEELTE] | 3 :
: ! !
Lattice in Main Memory S ——————— e —— -
:  Succeeding Stages
Ly ]
P
o Processor Boundary

figure 2.30.

The WSA architecture for 2-d lattice-graph computations. The lattice data is stored in a ‘‘main

memory’’ and fed to a pipeline of processors. The global machine clock ticks once for every t}ansfer of

W lattice sites into the pipe. At the same time, W sites are transferred from the pipe to memory. Also,

each stage of the pipe passes W updated sites to the next stage down the pipe. Each stage has enough

memory to hold two complete lines of the lattice, plus W sites, and has W processors. The pebbling argu-

ment will be applied with the division of resources shown by the dotted line enclosing the pipeline.

Although the communication lines are shown as W sites wide as they are in the LGM-1 machine, they

could, of course, be any width.

Solving for s and substituting for s on the right in (8) gives

Vwsa

Vcom r

2 2 +W

This is the “‘raw’’ processing capability of the WSA architecture as a function of com-

munication bandwidth and the amount of local storage. This throughput is achieved by

the WSA architecture in the limit as /, becomes infinite. We will consider the effect of

a finite /, later, but let us first see what the general form of the ratio Vg4 /V is.



Bounding 80

First, note that k is a free parameter of V and we may adjust it to maximize the
ratio Vysa/V. We have estimated an optimal value for £ as k = 2r using symbolic and
numeric means employing Mathematica’. When /, goes to infinity, A becomes 1. Tak-
ing s as r/(21;), and dropping the lower order terms of 3, we have

Vcom _1;_
v Veom (6r)32
2 12r
.
V614
2

An approximate upper limit for r of comes from substituting 2r for & in (7).

Setting r to this limit we get

Vwsa 1
= - 9
v 6 9

So, the WSA architecture is within a factor of 6 of the optimal throughput, given the
fixed resources r and V ,,,. We leave it as a conjecture that the WSA architecture has
throughput of at least two-thirds the optimal throughput for fixed resources. There are
two facts that strongly support this conclusion.

The first is that the pebbling argument giving the expression for V' ignores output
I/O: the parameter k actually divides the pebbling into pieces with k inputs steps each.
All that is necessary to introduce a factor of 2 improvement in the bound is for the
input nodes of a sub-pebbling kernel to be identified with nodes in proximity to the
nodes in the kernel. In that case, since the input in most cases must come from nodes
computed in the processor, these input nodes must have been written to main memory
at some point. Thus, the output I/O is the same size as the input I/O. Then, in the
expression for V the denominator becomes 2Ak instead of Ak.

The second has to do with the storage of information. In the pebbling argument,
one bounds the amount of computed information in a single I/O sub-division by, in
essence, supposing one starts with (r + k) red pebbles and pebbles as much of the com-
putation graph as possible, and these nodes are never recomputed. Suppose one can

+ Mathematica is a trademark of Wolfram Research, Incorporated.
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identify these nodes spatially in the data dependency set. As the sub-pebbling shape
theorems (Theorems 3 and 4) show, these sets would be cones. Applying a little ele-
mentary geometry to these cones, it is easy to see that, if one were to proceed in this
manner, computing the maximum possible volume of nodes, that at least 3/4 of the
nodes computed require recomputation. Suppose we assign the input I/O costs to the
nodes by averaging the I/O cost by the number of nodes in the sub-pebbling. The
nodes that do not require recomputation incur an average input I/O cost of k/B(r +k)
each from the sub-pebbling, while the recomputed nodes incur at least twice this much.
Summing the input I/O cost over the all the nodes in the data dependency graph results
in 7/4 the cost when not considering recomputation, introducing nearly another factor
of two in I/O cost.

The preceding two plausibility arguments suggest that a different way of looking
at the pebbling is required to improve the bound. This new approach must spatially
associate nodes with nodes that are read in support of red-pebbling them. The current
I/O-division of the pebbling game associates nodes temporally with input operations.
That is, one is really not concerned with when a particular group of nodes is computed,
but what the shapes are of regions of nodes that never get blue-pebbled, and the shapes
of regions that get recomputed.

The bound in (9) was for an infinite lattice, /[, — eo. When [/ is finite, the speed
Vwsa decreases by a factor dependent on the number of stages in the pipeline because a
toroidal lattice must be cut in order to allow it to be fed into the pipeline. The sites on
one side of the cut are updated incorrectly since the portion of the lattice on the oppo-
site side of the cut is not available. Consequently, one line of the lattice is corrupted at
one side of the cut and another on the other side of the cut for every stage in the pipe-
line. The solution is to pad the input with sufficient lines from the other side of the cut
to account for this. Figure 2.31 shows the input preparation required. In that figure one
can see that 2s lines (or rows) of the lattice must be copied into the portions labelled Z;
so, there are an additional 2s/; site values added to the input stream. At the tick mark-
ing the input of the last set of W sites into the first stage of the pipeline, the first stage
shifts in this last data item (the last group of W sites), and during the time to the next
tick, calculates its last correct result. This last result from the first stage is available to
the second stage at the next tick. As shown in figure 2.32, the last correctly updated
group of W sites from the second stage is calculated one tick after the last correctly
updated group is produced by the first stage. In general, the last correct piece of data is
output from the last stage of the pipeline s ticks after the last “‘real’’ input. Thus, if

there are z items of input, the pipeline must operate for z +s ticks to output all the
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figure 2.31.

Preparing pipeline input of a toroidal lattice. Shown on the left, the torus is cut arbitrarily. The two
portions abutting the cut, X and Z, each contains s lines (or circles). The torus is unfolded and the the
two abutting pieces are copied so that the information on the opposite side of the cut is available when
the X and Z sections are updated. The resulting raster scan of data to the pipeline is shown at the bottom
of the figure. In a left-to-right scan, the Z portion is scanned in first, followed by the X portion, the ¥
portion, the Z portion again, and finishing with the X portion again.

useful update information available, and z ‘‘real’’ inputs and s ‘‘dummy’’ inputs must
be supplied to the first stage as input. The real inputs for an /| X [, site lattice amount
to zW = [1l, + 2sl; sites. So, the pipeline produces s(z + s)W total results in the
process of updating the lattice s times. The ratio of effective work to actual work done

by the pipeline to update a [ X [, lattice s times is then

s(ly x 1) (effective updates)
s(ly X1y + s2l7 + s) (actual updates)

So, the WSA throughput becomes
%
“2"’" riyly
Vwsa = (10)

"
20 + W) |11y + ——— (21
(20 ) (1112 2[1+W( 1)
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last output from second stage

figure 2.32.

The timing of pipeline output. The input to the first stage of the pipeline is shown as a left-to-right scan
of groups of W sites. The last group is labeled “‘z"’. Below the input is shown a representation of the
shift registers of the first stage. The registers can be thought of as moving to the left and containing
within them the information directly above. At the z™ tick, the first stage shifts in the last ‘‘real’’ group
of W sites. By the end of this clock period, the group of sites labeled *‘x"’ is calculated and available to
be shifted into the second stage registers (or shifted into main memory, if no second stage exists). The
second stage contains the group “‘x’’ at the (z+1)" tick. Thus, s dummy groups must be shifted into the
first stage to produce the last usable result from the s™ stage of the pipeline.

Vwsa

as a function of local storage

(1,)*
6

Figure 2.33 shows a typical plot of the ratio 6 =

capacity r over the allowable range of r, 2/ < r < . The resulting value of 6

ranges from approximately —2—% to approximately %

We began this paper with the intention of estimating the degree of optimality of
the throughput of the LGM-1 machine with respect to main memory bandwidth and
local storage. Recall that the LGM-1 computes a lattice gas on the two-dimensional
triangular lattice, and that at the bcginning of section 2.3.3 we stated that we would not
show the standard spheres for the triangular lattice, B(x), were extremal for arbitrary x.
Rather, we showed the specific standard spheres B(v,) were extremal, and suggested
that the same general program that was used to show the standard spheres for Z, form
an extremal sequence could be applied to the standard spheres for the triangular lattice.

So, with the caveat that this has not been done here, and that we are assuming the
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figure 2.33.

Viwsa

The ratio 8 = for the two-dimensional toroidal grid ( see (10)). The argument r, total local

memory capacity in lattice sites, is shown in percent of its maximum value as determined by the pebbling
argument validity restrictions. The plot is shown over the permissible range of r. The curve is typical

over the range of parameter settings. Here the parameters are set to match the LGM-1 resources and its
1 1

16 2 =. = = 2 1 m——— S
typical usage: 1, = 256,15, = 1024,z = [,(l,)". The range of 0 is from 6.3 to 573"
validity of the extremal sequence B(x) for the triangular lattice, we now repeat the
steps shown above in the comparison of the WSA architecture, substituting the the tri-
angular lattice for the grid. Using the same parameters as before, we get the curve

Vwsa

shown in figure 2.34 for 6 =

211 3 to 2—15— In order to simplify the design the LGM-1 machine actually uses twice

the local storage required by the WSA architecture. Consequently, the performance

for the triangular lattice. There 0 ranges from

Vwsa

. M .
ratio is about one-half that of

2.5. Summary, Conclusions, and Future Work

This chapter presented a refinement of existing pebbling games in order to model
I/O in parallel computations, defined precise characterizations of the subsets in a peb-
bling, developed estimates on the sizes of these subsets, and used these estimates to
establish an upper bound on throughput for two computational problems, the lattice-
graph based computations on the two-dimensional toroidal grid and the two-

dimensional triangular lattice on the torus. The result shows that the throughput of the
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figure 2.34.

Viwsa

The ratio 6 = for the two-dimensional triangular lattice on the torus. The setting of the parame-

ters are the same as those used in figure 2.33. Again, the range of r is restricted to values valid under

the pebbling argument assumptions.

WSA architecture is within a small factor of the throughput of any machine with identi-
cal fixed resources of main memory communication bandwidth and local storage capa-
city. The factors are about 6 for the two-dimensional grid, and 5 for the triangular
lattice-graph. That is, the WSA architecture (a linear pipeline machine) runs a least
1/6™ the speed of any machine computing similar problems in two-dimensions with
similar resources. So, for these types of problems, no other organization of computa-
tion steps and internal communication (internal to the processor) —even given infinite
internal communication capacity and infinite calculating power (arithmetic-logic opera-
tional speed)— can attain significantly better performance, given the fixed amount of

local memory and communication to main memory available.

It is not surprising that a pipelined machine makes efficient use of communication
resources. In fact, approximate bounding values for throughput were known through
previous work, but only to within one or two orders of magnitude of the present results.
And while the suspicion that reorganization of the computation steps and machine
resources could not improve LGM-1’s throughput by more than a small amount ini-
tially motivated the work in this chapter, there was another motivation as well. The
motivation behind this work was not only to find out precisely how good or bad the
WSA architecture is, but the considerable effort put into refining the pebbling argu-

ments stems from the desire to find a method of determining an optimal computational
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strategy and thereby the most powerful machine possible within the resource con-

straints.

To find an optimal strategy, we need to understand the nature of the forces
induced by resource constraints and how these forces work to form an optimal parallel
computational strategy. The optimal strategy is embodied in the moves of an optimal
pebble game and can be determined from the shapes of the pebbling sets defined by
sub-pebblings: if the shapes of sub-pebblings in an optimal pebbling can be discovered,
the optimal order of computation and I/O strategy will be known. Before this effort,
the pebbling arguments gave little or no clue to the shape of a sub-pebbling. The
present work makes some headway in this direction by suggesting the shapes of sub-
pebbling sets when the only constraint is to maximize the number of nodes calculated.
The candidate sets are the (ISO-1)-extremal sets presented in section 2.3. We have
shown that they can be characterized essentially as cones within the data-dependency
graph.

However, the present method of analyzing the pebble game is done only on a tem-
poral basis: the nodes associated in a sub-pebbling set do not necessarily have any con-
nection spatially, but are associated by their proximity in time in the pebbling moves.
Consequently, the shapes of these sets do not give direct information about the optimal
strategies. An area for further investigation is to add this spatial information to the
pebbling analysis. For example, as was mentioned in section 2.4, a factor of two
improvement in the bounds derived here can be attained easily, if the spatial relation-
ship of nodes was characterized by the extremal sets presented here. The possible
improvement in the bound is a consequence of the fact that the present analysis charac-
terizes only input I/O, and the observation that a node that is not an input node and is
used for input must have been used as output previously. If the sub-pebbling sets were
spatially related, one could determine where in the graph the nodes used for input were,

and thereby determine which nodes where used for output.

In the process of refining the pebbling set size estimations, this chapter also intro-
duces the use of the Wulff Construction to solve a discrete iso-perimetric problem. The
method introduced here solves a discrete isoperimetric problem by starting with the
solution of a closely related continuous isoperimetric problem and deriving the result
for the discrete case. This approach makes an interesting counterpart to previous work
by Bollobds and Leader [27] which works in somewhat the reverse direction by
““smoothing out”’ a discrete problem to a more manageable continuous one. An
interesting question is whether the two methods can be used to show a way of
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connecting continuous and discrete problems more closely.

Aside from the application of Wulff’s Construction to isoperimetric problems,
there is another possible use for this tool. It would be interesting to attempt to apply
the Wulff Construction directly to the data dependency graph. This would require a
careful definition of the integrand to correspond to the costs of recomputation and
storage of information. One can look at the data dependency graph as dynamically
maintaining a red-and-blue-pebbled surface that descends in the graph as the computa-
tion proceeds. The cost associated with the surface of a crystal set would have to
correspond to the cost of maintaining this red-blue surface.

Finally, another direction open to investigation has to do with applying the peb-
bling techniques to expanded classes of machine architecture. The communication
bound derived previously used the terminology of red and blue pebbles. The essential
distinction was simply that the registers associated with the blue pebbles communicated
through some limited capacity channel with the registers associated with red pebbles.
In fact, there was no restriction made that every register in the machine was either red
or blue. It is easy to see that the machine can be divided up into as many different
pieces as desired and each piece assigned a color. The form of the communication
bound between different pieces remains the same. This would allow the modelling of
communication in a distributed or hierarchical context. Consequently, another area for
future work would be the extension of the present methods to allow the analysis of
hierarchical and distributed machine designs.



Chapter 3
Optimal Machine Scaling

3.1. Introduction

An important property of any architecture for large scientific computation, such as
lattice gas simulations, is scalability. Generally, once the answer to a problem of a
given size is known, attention turns to scaling the size of the problem up. This scaling
of problem size involves three goals in scaling the corresponding computing machine:
(1) scaling throughput, (2) accommodating the new dimensions of the input data, and
(3) achieving both of these goals as cost-effectively as possible. The previous chapters
have established that the WSA architecture has nearly optimal throughput for any
organization of hardware designed for lattice-gas simulations in which the hardware
must communicate with a main memory. As well, the general organization of this
architecture can be applied to any computation whose data dependency graph is similar
to those of the lattice-gas simulations, regardless of the size of the operands represented
by the nodes or the complexity of the operations required to produce the values in the
nodes. These features make this architecture an interesting one for investigating

optimal scaling as defined by the three goals above.

Before we discuss the scaling of the WSA architecture, it is worthwhile to point
out a few obvious aspects of scaling in a general context. For the class of high-speed
general-purpose machines goal (2) above is of secondary importance because of their
flexible data handling capabilities. However, scaling throughput is usually cost-
effective only over a small range of improvement in performance. Beyond that range,
an entirely different machine is required because the original machine generally has
one or more performance bottlenecks for a specific problem that cannot be removed by

adding hardware.

For the class of special-purpose machines both goals (1) and (2) can be serious
obstacles to cost-effective scaling. Even for special-purpose machines that theoreti-
cally can scale throughput, goals (1) and (3) often conflict. For instance, scaling a
two-dimensional array processor quickly becomes unattractive because the cost of wir-
ing the two-dimensional processor communication grid across processor boards
becomes excessive. Similarly, goals (2) and (3) often conflict because special-purpose

machines also often have built in restrictions on the dimensions of the input data.

88
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The WSA architecture is a special-purpose machine for which goals (2) and (3)
also conflict: throughput can be scaled cost-effectively by adding additional pipeline
stages, but one dimension of the input data is fixed by the design of the custom VLSI
chips. This restriction can be eased by using an overlap-save method. Once this
method is employed there is no reason to restrict the architecture to a single pipeline.
The resulting architecture we call the Multiple Wide Serial Architecture (MWSA). As
the previous chapters showed, the main-memory bandwidth is critically important in
determining throughput. The MWSA architecture allows scaling of I/O bandwidth as
well as all other resources of the machine. Therefore, we can investigate the most
cost-effective combination of resources as a function of increasing problem size. The
result is that, over a fairly large range of problem size, the MWSA architecture
achieves linear speedup as a function of machine cost. The conclusions hold for any
other iterated computation with similar layer graphs, including those whose operands at

the nodes of the data dependency graph have arbitrarily many bits.

The remainder of the chapter is organized as follows. Section 2 defines speedup
and our concept of machine cost. Section 3 describes the overlap-save method as it is
used with a single WSA pipeline. Section 4 derives the computational efficiency of a
single WSA pipeline using the overlap-save method. Section 5 describes the MWSA
schemes for scaling all resources of the WSA pipelines. Section 6 defines the cost
function for the MWSA machine, and derives the objective function for finding the
maximum throughput configuration at the minimum cost. Section 7 presents the results
of the numerical optimization on the objective function presented in Section 6. Section
8 gives a summary and our conclusions. And Section 9 presents open questions and

possible future work.

3.2. Speedup and Cost

The usual measure of effectiveness applied to scaling parallel computing
machines is speedup. This is usually taken to be a function of n, the number of proces-
sors employed in a machine. However, the number of processors is a crude estimate of
the cost and complexity of the machine. In fact, one is not really concerned with how
many processors a machine has, but how much it costs to build the machine. Particu-
larly when expanding a machine, the question is whether the incremental cost of
expanding the machine is reasonable given the resulting throughput. ‘‘Reasonable’
usually means an incremental increase in cost for a incremental increase in throughput.
Consequently, we say that a machine has linear speedup if the throughput is a linear
function of the cost of wiring, local memory and processor chips, data paths, and so on.
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Notice that the cost of main memory was not mentioned. The assumption here is that
memory must be paid for, if the machine is to hold the problem at all, and that this cost
is therefore a constant regardless of the processor used to do the computation. If the
entire machine, memory and processor taken together, is evaluated, then the cost may
not be linear even though the cost of the processor alone is. In fact, if the memory is
random access, the cost probably cannot be made linear as the size of the memory is
scaled. However, we will expand the memory by adding memory modules with
independent ports so that the memory as a whole does not act as a random access
memory. We will not address the question of whether or not such a memory can be
scaled linearly, and, consequently, we will ignore the memory cost in scaling the WSA
architecture, except as it is reflected in the cost of new ports to new memory modules.

In the definition of linear speedup, the intention is that the cost of the machine is
the least cost for the throughput demanded. However, this can conflict with the notion
of scalability if the organization of least cost for a given throughput is incompatible
with the organization of least cost for a greater throughput. It is intended that, in scal-
ing up a machine, the existing machine is added to, not rebuilt from scratch. This is not
the general meaning of the term ‘‘scaling up’’ for a machine architecture. Here, the
context within which this scaling is to take place restricts our particular notion of scal-
ing. As we will explain below, the context is that of requiring existing hardware to
handle ever larger problems of the same type. This is motivated by the economics of
scientific computation in that the money for a machine is not infinite, and as time
progresses, more money becomes available to expand the research effort. Conse-
quently, our bias is to assume an existing machine is added to incrementally. Further,
we assume that the available parts are fixed, that is, chips have a fixed feature size,
area, and communication capacity (‘‘pins’’), and so forth. For instance, if the shift-
registers are contained on-chip, then this organization limits the size of the shift-
registers when scaling the machine. Consequently, we will look at the most cost-
effective tradeoff of parameters for a given organization (partially determined by the
fixed sizes of available parts), and determine speedup as a function of the specific cost
function for that organization of resources. Specifically, this will mean that we will not
address the the general question of the most cost-effective machine design for a specific
throughput performance level, or the effect of technology improvements such as denser
chip technology and advances in inter-chip communication capability. However, the
results we will show apply, with proper scaling of the costs and capabilities, to the
optimal design of a machine using whatever fixed technology is available to the

designer.
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3.3. The Overlap-Save Method

Before we expand on the context of machine scaling mentioned above, we need to
give a brief introduction to the overlap-save method. The overlap-save method of com-
putation allows the computation of problems whose size is larger than can be accom-
modated naturally by the computing hardware and is a particular type of problem
decomposition and sub-problem communication strategy. In the systolic processing
literature the problem of fitting large problems into smaller arrays is known as ‘‘parti-
tioning™’ (see [34], for instance). Two common methods are called ‘‘coalescing’ and
“‘cut-and-pile.”” These two methods preserve the communication pattern of the origi-
nal problem by assigning a region, or ‘‘block,”’ of the problem data to each processor
[35, 36]. Communication with memory or processors holding surrounding blocks is
done whenever information from neighboring blocks is required.

Another approach, called ‘‘overlap-save’’ in the signal-processing literature [37],
is based on a method that probably predates modern computers’. This technique gen-
erally consists of processing a block of the problem by padding it with information
from neighboring blocks and computing a result without using any further I/O. The
padded data is sufficient to allow the computation of any results that might be needed
from neighboring blocks, and thus the shared ‘‘edges’’ between blocks are computed
multiple times. A recent example of a custom pipelined processor for video processing

employing this method can be found in [38].

3.4. Overlap-Save Applied to WSA

The overlap-save method has another motivation besides allowing the introduc-
tion of multiple pipelines. As was pointed out by Snyder [33], large scientific problems
can be considered ‘‘fixed time’’ computations because a scientist is generally interested
in solving the biggest problem possible in the time she can afford to wait until results
are available. It follows that increases in computing capability will be used to solve
larger problems of the same type in this fixed ‘‘tolerable’’ amount of time. However,
this ‘‘tolerable time”’ is only approximately fixed because the situation surrounding the
use of the machine and the importance of the delay in getting the result vary. For
instance, a tolerable delay during the working day may be several minutes to an hour

for the average level of importance, but a simulation may be left running overnight, or

1 Richard Feynman relates an anecdote in his book ‘‘Surely You're Joking, Mister Feynman”’
which seems to suggest the use of a method similar to overlap-save by a team of people using
hand calculators to find numerical solutions to some unspecified engineering problem.
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even over a weekend, if the machine is usually unused at those times. Even a delay of
a year may be acceptable, for instance, when the simulation result cannot be gotten any
other way. As a consequence, a machine that can turn around a job in the minimum
tolerable delay should also be able to handle larger jobs with increased delay. Since it
is important to be able to handle larger problems than the hardware naturally accom-
modates, and the overlap-save method allows this even for a single pipeline, it is rea-

sonable to look at the WSA architecture as always using overlap-save.

Lattice
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figure 3.1.

A portion of a two-dimensional grid lattice and the shift-registers of one pipeline stage of the WSA archi-
tecture for the two-dimensional grid. Here, values for sites 22 and 23 are about to be shifted in, and up-
dated values for sites 12 and 13 are ready as output. Above is a portion of a lattice: the sites whose
values are currently held in the shift-registers are shown in dashed boxes superimposed on the lattice.
Below are the shift-registers of one stage of the pipeline with their current contents shown. The lattice
sites are shifted in one ‘‘word’’ at a time (in this case the word size W is 2 sites), and one word of output

is produced. The “‘width’’ of the pipeline, w,, is 8 site values.

The LGM-1 machine was originally designed to operate on fixed-width lattices
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determined by the width of the local shift-registers in each stage of the pipeline (see
figure 3.1). As that figure shows, there is only one shift-register per stage, but it is con-
venient to view it as consisting of three serially connected shift-registers: two shift-
registers w g, wide where the ‘‘pipeline width’’, w,, is the number of lattice sites in a
single ‘‘row’’ of a ‘‘natural’’ lattice; and a third shift-register holding the W site values
where W is the ‘‘data path width’’ and is the number of site values passed between
stages per global machine tick. The ‘‘natural’’ row size for the machine is determined
by the total shift-register capacity per stage, that is, if the total capacity is x, then the

natural lattice row size is wg, = x/2 — W.

We adopted the overlap-save method for use in LGM-1 so that we could process
lattices with rows wider than the width of the local shift-registers, wy, sites wide. In
this case, the lattice is divided into vertical slices, or blocks, each block is padded to
form a sub-lattice that fits the width of the pipeline, and the sub-lattices thus formed are
fed individually into the pipeline in raster scan order. See figure 3.2. When every
block has passed through the pipeline, the process is begun again with the first block.
Processing the lattice in blocks like this allows the processing of arbitrary size lattices.
However, it also introduces overhead because the the processors only have communica-
tion capability in one direction: down the pipe. Consequently, there is no communica-
tion with neighboring blocks when the sites at the edge of the sub-lattice being fed to
the pipe are updated. One can imagine bad information traveling inward one column or
row for each iteration from any edge of the sub-lattice and corrupting the site informa-
tion. So, for a one-stage pipeline, the left and right columns of the sub-lattice will con-
tain incorrect values when the block exits the pipe. If the pipe has s stages, then the left
s columns and right s columns will be corrupted. In addition, the first and last s rows
will also be corrupted. Consequently, only the core of the sub-lattice is saved: the s
wide border of the sub-lattice is discarded. Thus, if the shift registers are wy, sites
wide, the lattice is sliced into blocks w, — 25 sites wide, and each slice is padded
with s columns from its left neighboring block and s columns from its right neighboring
block. Additionally, the top of the block is padded with s rows and the bottom like-

wise. See figure 3.3.

The WSA architecture on which the LGM-1 was based can be implemented in
such a way so as to avoid the corruption of sites at the left and right edges, but only
when the lattice row size matches the shift-register width, and when the lattice is
assumed to be toroidal ( so called ‘‘wrapped around’’, or ‘‘periodic’’ boundaries).
When the lattice has rion—periodic boundary conditions (not toroidal), the edges still
propagate bad information, unless special hardware provisions are added to introduce
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Pipeline Input

First Stage
Second Stage
1 2 3 4
Additional Stages
Return Updated Sites
figure 3.2.

The overlap-save method as used in the LGM-1 machine. The lattice on the left is partitioned into blocks
numbered 1 to 4. Each block is fed individually to the processor pipe. The block (3) being fed into the
pipe is padded on the left by s columns from block 2 and padded on the right with s columns from block 4
(the individual cross-hatched squares represent groups of s adjacent sites on a single row of the lattice).
The pipeline width, w,, is the width of the blocks plus 2s. The top and bottom of the block also require s
rows of padding, but this is not shown. If the pipe has s stages, then this is just sufficient padding so that
all the sites in block 3 are updated correctly and written back to the lattice storage as they exit the pipe.
The padded sites are corrupted by the pipe and are therefore thrown away.

boundary information. This was proposed in [10] as an additional special pipeline
stage for the LGM-1. The LGM-1 was built with the goal of simulating lattices with
boundary conditions which were non-periodic. The lattice was assumed to be embed-
ded in an infinite lattice with an induced flow of particles. In order to correct the cor-
rupted sites after a number of iterations, a special chip was to be inserted in the pipeline
every ten stages. This chip would fill the ten columns on each side and ten rows at the
top and bottom with random site values biased so as to correspond to the induced flow
conditions. This solution works well for the fixed-size lattice and results in a machine
with linear speedup (we will come back to the issue of speedup later). However, larger
lattices with non-periodic boundaries will still suffer corruption at the left and right
edges of blocks, and furthermore, lattices with periodic boundaries at the top and
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Block after Padding

figure 3.3.

Padding a block of a grid lattice. The block consists of the nodes shown inside the rectangle. If the pipe-
line has s stages (here s = 2), then the left and right edges are padded with s columns of nodes from
neighboring blocks. Additionally, s rows at the top and bottom are added. The WSA architecture would
have shift-registers with width w, = 9 for the block shown. In this figure it is apparent that the block
could be a rectangular section from the interior of the lattice. In general, there is no advantage in the
block having fewer rows than the lattice itself has.

bottom will suffer corruption at all edges. The actual method we used with the LGM-1
machine for setting non-periodic boundary conditions was to precompute a large circu-
lar buffer of properly biased random site values. These site values were then used to
pad the top and bottom edges of the lattice, to pad the left edge of the leftmost block,
and to pad the right edge of the rightmost block. In general, this is the overlap-save
technique. Of course, when the boundary conditions were periodic the overlap-save
method was also used. (In fact, it was found that for monitoring and testing purposes,
it was always advantageous to have periodic boundaries. The non-periodic boundaries
were then implemented by padding the ‘‘inside’” of the lattice with random site
values.) The performance is identical whether one has periodic boundaries or not, if
the lattice is wider than the pipeline. Consequently, we will concentrate our attention
on the speedup and cost-effectiveness of the WSA architecture employing the overlap-
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save technique on the torus.

3.5. WSA Efficiency and Throughput

We first want to determine the throughput of a single WSA pipeline using
overlap-save. We can express the throughput Vg4 as the product of the raw process-
ing capability and the efficiency in terms of effective site updates per total site updates
computed in a fixed time. To get the efficiency of a single WSA pipeline we use the
space-time approach [39]. Let the pipeline’s processing word size be W sites (W sites
are shifted in, and W updated sites are shifted out, in a single shift operation). Let the
line length of its shift-registers be wy, sites. And suppose the lattice’s total size is
- 11 %1, sites: /; sites per row, and /, rows. Now, we can look at the pipeline as process-
ing a wg, wide lattice that is infinitely long (infinite number of rows): the garbage in the
shift registers at startup are considered simply site values of an infinite lattice. Just
before the first site is read into the first stage of the pipe, we can think of the first stage
as updating the W sites lying w, backwards in raster scan order from the first input
site. See figure 3.4.

first stage shift registers

O @ OO _ first updated sites

for first stage

O OO0 O T garbage lattice

figure 3.4.

The pipeline at the start of input. The garbage data already in the shift registers can be considered part
of an infinitely long lattice. The first stage of the pipe will shift in sites 1 and 2 at the first tick of opera-
tion (W is 2 in this picture). At that time, the garbage sites marked ‘‘X’’ will be updated by the first
stage. Likewise, the second stage will update sites *‘Y"’, and the third stage sites *'Z."”’

Since the second stage is reading the output of the first stage, it is positioned W + w,
sites further back in the lattice. By the time the first stage has reached the position of
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updating the first input site, it will have updated (W + wy,) garbage sites. Similarly,
the i stage of the pipe will have updated (W + w,) garbage sites by the time site 1

18 in a position to be updated the i time.

Let us look at the total space-time used by the last stage of the pipeline, stage s.
There will be s(W + wy, ) garbage sites computed by this stage. The pipeline is halted
as soon as the last good output exits the s™ stage. With a pipeline width of w ., the
block size must be (wy, — 25) by 12. The last output from this stage is the last site in
this block. This stage must update s rows of padding at the top of the block. This
amounts to swy, sites. After that, to update all but the last row of the block requires
updating (/, — 1) rows of w, sites each. Finally, the last row of the block requires
(wg — s) site updates since the right-hand s columns of the padded sub-lattice are use-
less and are not needed as space holders. See figure 4.5.

y A7
i s
first updated Wer—25 —
non-garbage
site y "
Block
last site updated
P by last stage
ez
I
....................................... \............................
s
figure 4.5.

The lattice sites updated by the last stage of the pipeline, excluding garbage sites. The block is shown
with s padding on all sides. The first non-garbage site to get updated and last updated site are shown by
the small rectangles with cross diagonals. If the raster scan order is left-to-right and top-to-bottom (row
major order), then all sites above the dotted line are updated by the last stage of the pipeline.

The total space-time is identical for every stage, so we have

Space —Time/Stage = s(W + wg) + swy, + (I — Dwg, + (wg — 5)
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= lawg + s(2wgy + (W=1)).

The space-time for the last stage that corresponds to real output is simply the size of the
block. Since this is the same for every stage, we have

Effective —Space —Time/Stage = 1y (wg — 25) .
The efficiency, e, is then

E ffective —Space —Time Iy (Wg = 25)
Space —Time lLawg + s(2wg + (W=1)) °

Now that we have the efficiency of the WSA architecture, we can get its throughput.

The raw throughput, before efficiency is considered, of the WSA architecture is
derived under the assumption that the memory modules can deliver W sites of input
data and receive W sites of output data per global machine cycle, or tick. In the LGM-1
machine this is accomplished by reading and writing the memory bus sequentially, one
bus cycle for a write of W site values and one for a read of W site values, with buffering
on the processor board. From the pipeline side, at the abstract level, it appears that
there are two W wide data paths to the memory: one for reading and the other for writ-
ing. Since we are assuming the machine is scalable, and we intend to scale it to accom-
modate larger problems, we assume the memory expands to fit the problem. In this
case, it is reasonable to assume there are in fact two memory modules: one receiving
the write data, and the other supplying the read data, each with W wide ports. The
pipeline performs one shift and update operation for every global tick, and reads and
writes W site values. If the memory modules perform at ®,, ticks per sec, then the
raw throughput of the WSA pipeline is,

Wea = (@ gom)(ticks/sec) W(site-updates/tick/stage ) s(stages)
= o Ws(site-updates/sec) .
The throughput is then
Vwsa = wsWe,

where e is the efficiency derived above. In general, we will assume that the memory
technology remains fixed, so that the parameter ® is a constant, and therefore the

throughput will be normalized by ®, giving
VWSA = sWe )

as the normalized throughput for a single WSA pipeline machine.
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We have assumed that the main memory is sufficiently large so that a problem of
size [1 X[, can be stored. Increasing the problem size implies scaling the memory to fit.
Also, as the problem size increases, the throughput of the machine must increase to
satisfy the constant time requirement. We will show below that it is reasonable to
assume the memory scaling can be done with a fixed technology in such a way that the
total number of wires for I/O between the WSA machine and memory increases with
linearly total memory size. The machine can also have more than one pipeline. Conse-
quently, the machine’s throughput can be increased by scaling any combination of the
machine resource parameters: number of stages s, data path width W, pipeline shift-
register width w,, and the number of independent pipes p. Different combinations
result in machines which scale with different cost-effectiveness.

3.6. Scaling Resources

Before we present the scaling schemes for MWSA, we should explain why simply
adding identical stages to the pipeline does not scale the machine effectively. In this
case, the only parameter of the throughput Vg4 that can be varied is the number of
pipeline stages s: the shift-register width w, and the data path width W are fixed, and
there is only one port to memory (and only one pipeline).

Yisa
4007
3007
200t
100t
t + + + 1 S
100 200 300 400 500
figure 3.6.

WSA throughput as a function of the number of stages in the pipeline (overlap-save method). V is the
throughput, s is the number of stages. The lattice is 4000 ( = [, ) sites deep, the shift-registers are 1000
( = wy,) sites wide, and the data path is 4 ( = W) sites wide. The throughput is normalized to the
memory channel clock rate. For a clock rate of 1 MHz, the throughput peaks at almost 112 G site-
update/second for a pipeline of 250 stages.



Scaling 100
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2
there is nothing left that hasn’t been corrupted by the time the lattice exits the pipe, that

As figure 3.6 shows, the throughput of the pipeline falls to zero at about s =

is, the efficiency becomes zero. Consequently, some other aspect of the machine must
be scaled as well as s, if the throughput is to increase beyond the limit of peak perfor-

mance for a given w .
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figure 3.7.

Scaling the WSA architecture by adding multiple pipes. Additional memory modules with independent
ports and switches connecting modules holding neighboring blocks of the lattice are added as the
machine is scaled. The switches allow each independent pipe to receive padding data from neighboring
lattice blocks. The overall structure is a ring of pipelines with the left most and rightmost memory

modules connected by a switch.

The easiest, but probably not the least expensive, way of scaling up the WSA
architecture is to add more memory ports and attaching a separate pipe to each port.
See figure 3.7. We assume the memory ports provide their own addressing logic.
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Between each port and its associated pipeline input, is a switch. The switch routes the
output from the memory either to the pipe, or to one of its neighbors. From the
viewpoint of the pipe, in normal operation its input comes from the block of the lattice
held in the pipe’s memory module. However, when the raster scan reaches the limits of
the block and padding from the neighbor block must be used, the input to the pipe is
switched to the memory module of its neighbor’s pipe. Thus, the left and right limits
of the raster scan come from the left and right neighboring modules. Writing does not
need to be switched since the padding garbage is ignored and only good site values
exiting the pipe belong in the pipe’s module. Of course, the pipe is not limited to
operating on a single block: the memory module can hold multiple blocks, as long as
the neighboring modules hold neighboring blocks. This is accomplished by distribut-
ing the blocks to the memory modules modulo the number of modules and connecting
the first and last modules to form a ring of memory modules. The effect on the
throughput Vg4 for the resulting machine is to multiply the previous expression for
Vwsa by a parameter p, the number of pipelines.

External Shift-Registers
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figure 3.8.

Extending the shift-registers off-chip in a single stage of the WSA pipeline. The on-chip shift-registers
communicate with the shift-registers off-chip via the paths shown in dashed lines. Each square in the
shift-registers represents a data word, W site values. The lower-left single square on the chip would nor-
mally communicate with the next shift-register above, but, with the shift-registers extended oﬁ-chi’p, pin
usage can be conserved by adding a single word’s storage to the external shift-register and copying the
input word to that register as well as passing it onto the chip. If the chip has Il pins available for data
(measured in bits per site value), then the maximum data path width is T1/5. When all the shift-registers

remain on chip, W can be 11/2.

While it is not obvious from the expression for the efficiency, e, that it results in

an improvement in throughput, another possibility for scaling the WSA architecture is
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enlarging the shift-register width, w,.. Generally, up to the limits of the chip area, w,
is made as large as possible since not doing so simply leaves chip area unused. But, it
is possible to extend the shift-registers off-chip, and this is probably one of the least
expensive expansions available. As figure 3.8 shows, the shift-registers are extended
off-chip by sacrificing W since pins must be used to communicate between sections of
the shift-register held on-chip, and those held off-chip. As an approximation, if the
chip has IT pins available for data, then keeping the shift-registers on-chip allows the
data path to be W = I1/2 sites wide. Moving the shift-registers off-chip allows a data
path to be only two-fifths as wide. Balancing this penalty somewhat, is the reward
from using denser chip technology for the shift registers, for instance, the off-chip
shift-registers can now be DRAMs instead of custom shift-registers.

| updatestomemory -
Memory
W
Modules N
N

T |

WSA Pipeline

figure 3.9.

Interleaving additional memory modules to form a single memory port with a large data path width W.
The i memory module holds values for sites whose column address is i modulo the number of memory

modules.

The last parameter of the WSA architecture that has not yet been scaled is the data
path width W. When each stage is contained on a single chip, there is not much oppor-
tunity for for adjusting W because the pin limit keeps the data path width strictly lim-
ited. However, when scaling the machine, one adds chips and wiring, and there is no
inherent reason why one ought to avoid scaling W. The first step in scaling W requires
widening the path from the main memory. This is simply accomplished by interleaving
additional memory modules to form a wide data path, see figure 3.9. Again, the
addressing logic is assumed provided by the memory modules themselves. In this case,
no side-to-side communication between modules is necessary: the i” module contains
the values for sites that are i
Widening the data path in this way can be combined with the previously mentioned

, modulo the number of modules, in raster scan order.

expansion in the number of pipes, so that both W and p can be expanded
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simultaneously.

The next step in scaling W is to form the stages of the pipe from slices with fixed
data path widths . As figure 3.10 shows, the same modulo decomposition of the ras-
ter scan as was used for increasing W at the memory module’s ports is used to split the
W wide data stream into separate Q wide paths in the pipeline. The resulting organiza-
tion is shown in figure 3.11, and is similar to the Sternberg architecture [40] and con-
sists of identical parallel pipelines with cross communication. (The main difference
between the two architectures is the data is fed into the expanded WSA machine in
such a way that the individual pipelines update €2 wide strips so that the pattern of sites
updated by the several sub-pipes looks like intermingled stripes, while the Sternberg
method assigns a fixed-width swath to each sub-pipe.) The shortcoming of this
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figure 3.10.

Slicing a single WSA stage to accommodate a large data path width W. The logical organization of the
shift-registers for a single stage is shown in dashed lines. Each square in the shift-registers represents
storage for a single site value. In this figure, there are four physical sub-stages composing a single logi-
cal stage. The squares with diagonals represent the shift-registers of a single sub-stage (those with dou-
ble diagonals represent the sites that get updated), and the communication along the physical shift-
register for this sub-stage is shown in solid lines. In this case, the sub-stages can accommodate a data
path width of two site values, while the entire stage has a path width of eight site values. If the site
values are numbered consecutively starting from zero in raster scan order, then the marked stage re-
ceives sites (2,3), (10,11), (18,19), and so on. Each memory module need only communicate with one
sub-pipe.
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organization is that the side-to-side communication between sub-pipes in the same W
path requires two-dimensional wiring. Since our cost model will assume wiring cost
increases linearly with the number of wires in the machine, and we assume that two-
dimensional wiring has a cost function which is at least quadratic in the number of
wires, the number of parallel sub-pipes is limited to the number that will fit side-by-
side on a single processor board. While this doesn’t allow much latitude in adjusting
W, it at least allows us to consider its effects on cost-effectiveness of the overall

machine.

figure 3.11.

The macro-organization of the WSA architecture of a single pipeline with a W wide data path. The indi-
vidual sub-pipes have data paths of size Q. Side-to-side communication between the sub-pipes is one site
wide. The extreme left and right sub-pipes’ side-to-side communication is wrapped around (not shown).

3.7. The Cost and Objective Functions

Optimizing the cost of the design of a scalable machine can be done by optimizing
the the cost-effectiveness of the design as the machine is scaled. The resulting curve in
the design parameter space defines the cost and throughput at each point along the
optimal cost-effectiveness curve. The throughput can then be written as a function of
cost, thereby defining the speedup function for the architecture. Thus, the problem is to
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define the costs for the previously presented scaling schemes, and using cost-
effectiveness as an objective function, maximize the objective over the design parame-
ter space variables w,, s, and W, while scaling the machine. Under the constant-time
assumption, the machine’s throughput must scale with the size of the lattice, /X[,
and the number of iterations or global update generations. We will assume the lattice is
square and the number of iterations is determined by the number of generations
required for a ‘‘sound’’ wave to traverse the lattice, which is a constant times the shor-
test dimension of the lattice, and therefore the design space curve can be parameterized
by /. In this section we will define the cost of a machine, and state the objective func-

tion.

Throughout the following, we use the following conventions. All values are in
terms of site datum size (for instance, if the datum of a lattice site is eight bits, and a
data path can pass one datum in parallel, we say the path is one wire wide. Properly,
this should be called one ‘‘datum-wire,”” which equals eight actual wires, but the mean-
ing should be clear without complicating the wording this way.) We assume there are
p independent, parallel pipelines. If the processor chips have II pins (datum-pins) for
communicating site values on and off chip, then Q is the largest data path the chip can
accommodate under the data path expansion scheme shown in the previous section
(figure 3.11). Thus, IT = 2Q + 4 when the shift-registers fit on-chip, and

IT = 5Q +4 when the shift-registers are extended off chip.

For a one dimensional homogeneous pipeline where every stage has identical cost,

a first order cost estimate given by [41],
Cost = ok + B,

where o is the cost per stage in the pipeline, and B is a fixed initial cost, is adequate.
Expanding on this approach we will assume the cost of a scaled MWSA architecture is
linear in each component, and the component costs are linearly related. The cost com-
ponents we consider are:

(1) memory communication ports at a cost of C,,,, per wire,
(2) shift-register storage area at a cost of C ., per site,

(3) processor silicon area at C .. per processor,

(4) downstream (stage-to-stage) pipe wiring at C,,;., per wire,
(5) W expansion wiring (side-to-side) at C,;,, per wire.

(6) w, expansion wiring at C ., per wire.

The costs associated with each of these components for a pipeline with parameters W,
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Wgr, S, [7, and p are:

(1) ports for p pipes each W wide,
Costesm = CanpW.

(2) shift-registers w g, wide for p pipes and s stages,
Costy, = CaeaDs(Cwg + W).

(3) processors, W per stage, s stages, and p pipes,
Cost proc = CprocpsW.

(4) downstream wiring, p pipes, W wide, s stages,
Costiowm = Cwire2psW.

(5) side-to-side W expansion wiring with W/£2 slices per stage,
Costane = Coire 4pSW/.Q.

(6) off-chip shift-register wiring,
Cost g _yire = ps3QW/Q).

Item (6) can be explained by noting that there are 32 wires to the external shift-
registers for each stage in a sub-pipe, and there are W/Q sub-pipes per pipeline of
width W. With the assumption of a linear relation between the various costs we can

write each of the cost multipliers in terms of a scalar times C g;,:

Ceom = OeomCarea
C proc = Oproc Carea
Cyire = OwireCarea-

Adding the six cost components, substituting the above expressions for the cost multi-
pliers, factoring out C 444, ps 5, and W, and normalizing the cost by C 4,4, the resulting
cost function for a completely expandable MWSA machine is,

Ceom 2w

C, = psW( + W + 1+ Oprge + Qyire (5 + 4/Q)) .

o 2w
Co = psW( ‘;"’” + W“ + 1+ Oproe + 2Cyire) -

This last cost function can be used when scaling MWSA resources up to the limits

imposed by the processor chips on W and wg,. The scaling would thereafter only be

allowed by increasing p or s.
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Using the cost information for the LGM-1 machine [10] and rules-of-thumb for
work-station costs [42] we can get a crude estimate on the proportionality terms in the
above cost expressions. The cost of a custom LGM-1 chip with 10° shift-register sites
is, assuming quantity production, about $100 with the processors taking up space for
about 128 sites worth of storage. The rule-of-thumb estimate gives us a cost of about
$100 per processor board for wiring and glue chips. The communication board is about
$1000. These cost estimates give the '
following proportionality constants:

Ol yire = 50
Oeom = 5000
Oproc = 128

The cost of storage on the custom chips is rather high, and if we instead use an estimate
based on 1Mbit DRAM chip costs we get the following proportionality constants:

D = 5-10%
Oeom = 5°108
Oproe = 128

Note that the processors are implemented in the same technology as the on-chip
storage, and therefore, the cost of processors falls with respect to inter-chip wiring
under this cost. Although these proportionality estimates are crude, the general
behavior of the cost functions leads to conclusions that can be applied over a plausible

range of proportionality values.

Conveniently, because the both the cost functions and the thrbughput functions
are linear in the number of pipelines, p, the objective function for minimizing the cost
of a machine at a specific scale turns out to be the cost-effectiveness, V ywsa/C, where
C is either Cy or C x.' To see this, write Vysa as the product of the number of

independent pipes p and a function of the remaining design variables s, W, and w .,

Vuwsa = psWe = pg(s, W, wg),

where e is the efficiency, e = e(s, W, wg.). The cost function can be written simi-

larly,
C = pfis, W, wg),

where C is either C, or Cy. As was mentioned earlier, because of the constant time
assumption, the lattice size [, and the throughput V54 are related by the “‘tolerable
delay’’ time constant. So, scaling the lattice to some size determined by /,, scales the
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throughput to some value V. Setting V y;ws4 to V and solving for p gives,

V
p = —
8
and substituting this for p in the expression for cost gives,
C =V L
8

Minimizing the cost C requires maximizing f/g over the variables s, W, and w,. This

is equivalent to maximizing the cost-effectiveness CE over these same variables since,

V mwsa
C

CE

8

}_" .

For each [/, value, minimizing the cost-effectiveness CE over the variables s, W, and

w - gives the least-cost MWSA machine for that size lattice.

3.8. Analysis

We will numerically determine the most cost-effective configuration of resources
for the fully expandable scheme whose cost function was shown in the previous sec-

tion, C,. That is, we will maximize

8
CE = =
f

over the variables w,, s, and W, for varying lattice size /,, where

lh(wg — 2s
g - W 2 sr ) ’
laowg + sQ2wg + W = 1)
and
o w
f = sW(—— + 2 v;r + 1+ Qg + Oyire (5 + 4/Q) .
s

The value of CE will be in units of the cost-effectiveness for a single stage, one word,
minimum size machine (essentially a uniprocessor) for an infinite lattice, that is,
CE(wg, s, W, l,) is normalized by CE(3, 1, 1, o).

Since W is the most restricted variable, we begin by exploring its effect on the
cost-effectiveness CE. We will use a fixed lattice size [, = 10* which shows the typi-
cal behavior of CE for a wide range of /, values. The general shape of the CE function
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figure 3.12.

Cost-effectiveness CE as a function of s and W. CE is normalized by its value at
(Wgr, 5, W, 13) = (3,1, 1, o).

for w, fixed at 500 in shown in figure 3.12. The effect of W there is mostly negligible
for W larger than 20. However, although it is not obvious in figure 3.12, a slice through
the surface parallel to the s-axis shows that an approximate doubling of CE takes place
for W increasing from 1 to about 10.

Fixing s instead of w, results in the behavior shown in figure 3.13. Here, the
effect of W depends on wy,: as w, increases, the dependence of CE on W becomes
flatter, suggesting that W may be almost linearly related to CE in the range of optimal

values for s and w ..

Maximizing CE over (wg,, s) for twelve values of W results in the curves shown
in figure 3.14. Here, a steepest decent search method in the (w,, s) space was used
for the values of W = { 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000 }. (Note
that the larger numbers for W are not properly modelled in the cost function. However,
using them allows us to see the general behavior of the dependence on W.) The result-
ing CE value is plotted as a function of log;oW for the three cases
ls = 103, 104, 106 (dashed, solid, and dotted lines, respectively). The lowest value
on the curve has a CE value of about 11. Generally, the curves show slow monotonic
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figure 3.13.

Cost-effectiveness as a function of wg and W. Here s = 15.

CE

257

22.57

figure 3.14.

Maximum cost-effectiveness as a function of log oW for three values of 1. The dotted line has
1, = 10%, the solid line has |, = 10*, and the dashed line has I, = 103,
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increases in CE as W gets larger. However, the curve for [, = 103 shows a peak and
thereafter decreasing CE. This behavior is the result of the optimal w g, value reaching
its limit of 2/. Generally, the optimal values for w, and s increase with increasing W,

as is shown in figure 3.15 for the case [, = 10%.
s

150¢
125¢
100f
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5000 10000 15000 20000 25000

figure 3.15.

The optimal w, and s combinations plotted as a curve parametrized by W. W increases as the curve

moves away from the origin. Lattice dimension I, is fixed at 10%,

The parameter w,, cannot increase indefinitely for fixed /, and we ‘have assumed
[{ = I, in figure 3.14. The other two curves in that figure would show similar peaks,
if the range of W was extended far enough, and the definition of /; remained the same.

The behavior of maximum cost-effectiveness is more strongly dependent on W
when W is small. Figure 3.16 is a plot of the same curves as in figure 3.14, except that
here CE is plotted as a function of W over the range 1 to 100. As this figure shows,
most of the increase in CE occurs when W is between 1 and 100, and CE approximately
doubles for all curves as W covers this range. The conclusion is then that, while it is
always more cost-effective to increase W, increasing W from 1 to some value less than
100 achieves most of the benefit. Since the cost function C, is only intended to model
the cost of increasing W when two-dimensional inter-board wiring is not required, the
limit on W is small, and it is apparently advantageous to set W to its upper limit.

A reasonable upper limit on W, in the case of the chips and boards used in the
LGM-1 machine, is about 10. The reason is that the chips have an € of 1 under the
present scaling scheme (the chips can accommodate 1 word wide data paths) because

of pin constraints, and therefore each stage would require ten chips. Since each board
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figure 3.16.

Maximum cost-effectiveness as a function of W for three values of 1,. The dotted line has 1, = 109, the
solid line has 1, = 10*, and the dashed line has I, = 10,

can only accommodate a maximum of ten chips, widening the data path further would
require two-dimensional wiring over board boundaries, which is not accounted for by
the present cost function. Although the LGM-1 was built with what is now old technol-
ogy and the above estimate is rather restrictive by today’s standards, the general results
hold, with appropriate scaling, for newer technology. With improved packaging, more
pins per chip, and larger boards, W could probably be extended to at least 20 in the
LGM-1 system. However, noting that for the [, = 103 curve, setting W to 10 gives
about 50% of the maximum possible increase in maximum CE, we will fix W at this

value for the remainder of the discussion.

Having fixed W, the next step is to determine the optimal sizes for s and w i, as the
problem and the machine are scaled. Figure 3.17 shows a typical CE surface as a func-
tion of wy, and s for a fixed lattice size, [, = 10* in that figure, and fixed data path
width, W = 10. A unique peak in the surface makes it possible to define the optimal
values of wg, and s as functions of /, by using a steepest descent search over the
(wg-, 5) space for a series of /5 values. We used nine values of [, nearly equally
spaced along a logq scale: [, = 3 fori=4,5,6, -+, 12, that is, [, runs from
about 100 to about 0.5 10°.

Figure 3.18 shows a point plot of the (/5, s) pairs resulting from the gradient

log o (12)

search mentioned above. Also show there is the curve of the best-fit e approxi-

mation. The approximation curve’s equation is,
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figure 3.17.

Cost-effectiveness as a function of w, and s for W fixed at 10 and 1, fixed at 10*.

log i

figure 3.18.

The optimal s values as a function of logo( I, ) for the nine values of 1, used in the gradient search.
The solid curve is an approximate fit to the points.

191.621

S([z) = 41.4852 W

This curve gives reasonably accurate values for s, although s is actually restricted to

positive integer values.
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figure 3.19.

The optimal w values as a function of logy( 5 ) for the nine values of I, used in the gradient search.
The solid curve is an approximate fit to the points.

Figure 3.19 shows the results for the optimal w . values. The approximate fit to
the data points is given by,

1588.45
wy(ly) = 630011 — A -

The flattening of the optimal wg and optimal s curves is a consequence of CE’s
decreasing sensitivity to /, as [, becomes large. Cost-effectiveness CE is shown as a
function of logo( /5 ) in figure 3.20. As this figure shows, and as can be seen from
the expression for CE, CE is independent of /, in the limit as /, goes to infinity:

(W, — 25
lim CE = =z .
[ =00 O com W

o (= 4 2

+ 1+ Oprge + Oyire (5 + 4/2))

Consequently, optimizing CE fixes wg and s when [, is large. However, for smaller
values of /5, CE increases with problem size, and the optimal values for w, and s

increase as the previous figures show.

The remaining parameter of the machine is the number of independent pipelines,
p. Under the constant time assumption, p is a function of the total amount of work
done, work = [{xIl,xn where n is the number of iterations. Given work, the required

throughput is

work
V = ;
to
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figure 3.20.

Optimal cost-effectiveness CE as a function of log o (1,) plotted at the same data points as were used for

the optimal w . and s plots.

where t( is the fixed amount of time allowed for the computation. Setting the un-
normalized expression for V,, equal to the right-hand side of the above, and solving

for p gives,

workl/t
p =
wsWe

where @ is the cycle rate of the main memory, and e is the WSA efficiency and is a
function of the variables (wg,, s, W, [,). From the previous discussion we have fixed
W at 10, and the optimal values of w, and s are functions of /,. Also, work is a func-
tion of /1, [,, and n. The variables in the expression for p are then ®, #¢, /1, /5, and n.

We will make a series of assumptions and reduce p to a function of a single variable.

Generally, the dimensions of the lattice, /{ and [, are not equal. For instance,
flow simulations may need the channel length, say /,, to be several times the channel
width, in this case /{. However, this asymmetry is usually not more than a factor of 4,
and we will therefore assume the lattice is square: /{ = [, = [. The number of itera-
tions required is not as easy a number to fix because it depends on the nature of the
study in which the simulation is being used. For instance, to follow moving, large-
scale, turbulence patterns in a flow may require the number of iterations be large
enough to allow such a feature to traverse the entire channel. Since its velocity may be
only a fraction of the sound velocity in the lattice (1/~/2 for the hexagonal lattice), the
number of iterations can be on the order of 103 times /. On the other hand, the number
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of iterations required for a particle to cross the entire lattice without collisions is only /.
As a matter of convenience we will take the number of iterations to be /, and the prob-

lem size is then 3.

Now the fixed time is, as we said at the outset, a rather loose concept. However,
for medium-to-large simulations, a reasonable turnaround time is about 1.5 hours. So,
we set 7y = 5x10> seconds. Finally, we set the main memory cycle time to ® = 10
MHz.

So, with the above parameters set accordingly,

l4 = 1

I = [

n = [
work = I’

W = 10

) = 5‘103
® = 107

and w, and s set to their limiting values, the expression for p becomes approximately,
pll?y) = 20°BP. (1)

More precisely since p is at least 1, the ceiling function should be applied to the right
side. Actually, the fit to a log-log plot of p versus I3 gives a slightly less than linear
dependence of p on I3, as is expected since w, and s are not fixed.

Using the expression for p in (1), we can determine the throughput and cost of the
optimal machine for each value of /,. Figure 3.21 shows the nine resulting cost-
throughput points in a log-log plot, and a linear fit to the points. The fitted curve shows
a slightly super-linear relationship between throughput V pws4 and C:

1
Vuwsa = k + 1316 ()0

where k is an undetermined constant. As we mentioned previously, as I, goes to
infinity, w, and s become fixed, and, consequently, each independent pipeline
increases the throughput and the cost of the machine by fixed increments. This implies
that the MWSA architecture has linear speed-up asymptotically. However, there are
two problems with this conclusion: there is a further constraining relationship between
the parameters p, wg,, and s. This comes from noting that the total number of blocks
that the lattice is partitioned into times the width of the blocks cannot exceed the width

of the lattice, /1. Since each independent pipe must be associated with at least one
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figure 3.21.

MWSA throughput plotted as a function of cost using the optimal values of w ., s, and p found by maxim-
izing cost-effectiveness. The scales for x and y axes are the natural logarithms of C . and V yyysa, respec-
tively. The value used for p comes from equation (1).

block, and the width of a block is (wy — 2s), we have the following constraint:
pwg —2s) < 1. (2)

As a consequence of this constraint, the ninth point (corresponding to / = 531441 ) in
plot 57 is actually infeasible, and the machine cannot be scaled in this manner for
larger values of /. Scaling the machine optimally beyond the point where (2) makes the
current scaling scheme infeasible, requires a different optimization procedure, which
we have not attempted. However, we can say one thing about the asymptotic behavior:
under the constant-time constraint, the required throughput cannot be achieved. This
follows from the fact that the maximum parallelism possible is /X[, or [ 2 in the
present case. Consequently, the total time for the computation is at least some constant
(dependent on the clock speed) times /, which is certainly not constant unless one pro-
poses ever increasing clock speeds, that is, @—ee as /—eo. Thus, asymptotically, in
order for linear speed-up to hold, clock speed would have to increase linearly with cost.

Finally, we take a look at the optimal configurations of the MWSA machine for /
in the range where the current optimizing method yields feasible machines. Constraint
(1) also makes the first point (corresponding to / = 81 ) in plot 57 infeasible. The
value for p given by (1) is less than one in this region. In fact, p is less than one for the
first five points in figure 3.21. As a consequence, the actual value for p is 1 for all these

values of /, and under the current optimization method, all machines are essentially
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identical up to the point where [ = 19683. Again, a different optimization method
would have to be applied to determine the optimal machine configurations for / below
this value. The optimal machine configurations are shown in table 3 for the three
values of [ = 19683, 59049, and 117147. This table shows the optimal combinations
of wy,, s, and p for these three / values used in the optimization. At the bottom of the
table is shown the cost of the machine ( in millions of dollars), according to the un-

normalized cost function C ., and the throughput (in Giga updates/second).

Optimal MWSA Machine Configurations

l 19683 59049 177147

p ] 12 318

Wy 614 618 619

s 40 41 41

cost 0.033 0.392 10

14 34 41 10°
table 3.

The feasible configurations shown in table 3 represent a ‘‘window’’ of feésibility for
the least-cost configurations found using this optimization method. When costs are
fixed, the placement of this window along the / line is determined by the parameters ®
and t(: decreasing either moves the window to smaller / values, increasing either has
the opposite effect, although as we assumed throughout, ¢( is essentially fixed and can-
not therefore be adjusted. Outside this window, the cost-effectiveness decreases as the
machine parameters are forced away from their optimal values by the constraints. Con-
sequently, the configurations within the window give a good representation of the least

cost that can be attained.

3.9. Summary, Conclusions, and Future Work

We have presented a scalable architecture, MWSA, based on multiple, indepen-
dent WSA-architecture pipelines for two-dimensional cellular automata. The scaling
scheme for this architecture avoids wiring a two-dimensional wiring pattern across cir-
cuit boards which justifies our definition of the cost function for the machine as a linear

function of its size. Avoiding two-dimensional wiring is accomplished in the MWSA
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architecture by using an overlap-save strategy to allow the computation of independent
blocks of the lattice without cross communication between neighboring pipes. We
have derived the efficiency and throughput of the MWSA architecture, and we have
derived its cost function by employing known costs from previous machines and rules-
of-thumb in workstation construction. We have introduced a definition of throughput
speed-up based on the least total machine cost rather than the number of logical pro-
cessing units, where speed-up is taken to be the relative increase in throughput as the
machine resources and problem size are increased. Using a numerical gradient search
method to find the least-cost configuration of MWSA machine resources for a given
size lattice problem under the constant time constraint, we have shown that the MWSA
scalable architecture has slightly superlinear speed-up, as a function of cost, over a
moderately large range of lattice sizes. We have shown that the optimal-cost
configurations have essentially fixed, short ( circa 40 stages) pipelines, with moderately
wide local shift-registers (circa 600 lattice sites), and narrow data paths (circa 10 lattice
sites wide), for the range of lattices with 10* to 2+ 107 lattices sites on an edge.

As the previous chapters have emphasized, the bandwidth to main memory is crit-
ically important in the cost of the machine. In this chapter, the bandwidth has been
scaled by adding multiple ports. However, the total machine cost is linearly dependent
on the memory cycle rate, . Thus, although the previous chapters suggested total
bandwidth is the important quantity, this chapter stresses the importance of the speed of
the communication channel. A special-purpose processor for scientific computation
has to compete favorably with general-purpose machines to be cost-effective. The con-
clusion suggested by this work is that the economy of VLSI cannot alleviate the need

for cheap, fast communication in special-purpose machines.

Future Work

The cost function we used was based on relatively high cost per shift-register cell.
The above analysis can be redone using a cost more in line with current costs of 1Mbit
DRAM'’s. We have started this and found that, in this case, the asymptotic values for s
and w g, are about 200 and 10% respectively. This causes the p limit mentioned above
to be reached much sooner, and consequently, incorporating this constraint in the
optimization becomes more important. It would also be interesting to see what effect

this new cost has on the overall machine cost as compared with the above results.

In general, it would be interesting to find the optimal configurations outside the p

limit window. This would allow finding the complete speedup curve over /. Then,
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using the non-expansion cost function C, and finding the complete speedup and cost
functions for this scaling scheme, the different scaling schemes could be compared in
total machine cost. More ambitious work along this line would be the task of compar-
ing the cost of these MWSA scaling schemes with other commercial and special-
purpose machines. This would address the general question of whether special-purpose
machines are cost-effective and the applications in which they can be employed effec-
tively.

The advancing developments in communication bandwidth using optical technol-
ogy suggests two areas for further work. One is to look at the consequences of
improved bandwidth across chip boundaries (increasing €2). The other area has to do
with the decreasing cost and increasing bandwidth of inter-board wiring. These tech-
nology improvements will significantly effect the above analysis, and make much
larger W values practical. As well, they may allow less chip area be devoted to storage
and thereby allow more processors per chip.

Finally, it would be interesting to include the main memory cost in the analysis.

Two questions should be addressed here: whether or not it is possible to attain linear

speedup with fixed-access-time memory, and what the optimal organization might be.



Chapter 4
Testing Parallel Lattice-Gas Simulators

4.1. Introduction

Since Frisch, Hasslacher, and Pomeau [43, 44] introduced the use of lattice-gas
automata to simulate hydrodynamics, their FHP models [3] and variants have been
used in many simulation studies. Some simulations have used commercial super-
computers or parallel processors (see references [45-54], for example) and others have
used special purpose hardware [8, 55, 10]. Because it is not yet known how well the
lattice-gas automata model physical systems, there has been interest in comparing
lattice-gas simulations with theoretical and experimental results. The validity of such
comparisons depends on the correctness of the implementation. (The situation is illus-
trated in figure 4.1.)

Model pedcamevameenmtnss > Implementation Reality
(a)
A ®) 7
5 © o
figure 4.1.

The solid line (b) shows the comparison we really make when we compare a computer model of a system
to experimental results for that system. We would like to say that the comparison we are making is effec-
tively between the model and the physical experiment (dashed line (c)). The dotted line (a) suggests the
missing piece of information that would allow us to say this with conviction: the knowledge of the
correctness of the implementation.

It is not usually possible to establish independently the correctness of an implementa-
tion because of the complexity of the operations used in the implementation. For
instance, the complexity of floating point arithmetic makes verifying the correctness of
an implementation of a finite-difference scheme for integrating the Navier-Stokes equa-
tions impossible in practice. The state of affairs for lattice-gas simulations is quite dif-
ferent: the data movement and logic operations are simple. It is therefore possible and
practical for the correctness of an implementation of a lattice-gas automaton to be

tested exhaustively before runtime and monitored during runtime.

121
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We became interested in verifying the functional correctness of a lattice-gas simu-
lator while running fluid flow simulations on a custom VLSI processor, LGM-1 [10],
built here as an experimental prototype. The particular simulation project we under-
took involved comparing our simulation results for a specific flow problem with the
results from other methods for the same problem. In making these comparisons we
discovered that it was impossible to determine whether the discrepancies we saw were
caused by the differences between the methods, or by artifacts of incorrect implementa-
tion of our system. Furthermore, interspersed with simulations we were also modifying
both the hardware and software of the system, requiring a concrete testing method for
debugging purposes. From this experience we realized that a complete system testing
method was needed which could be run independently of any simulations to verify
functional correctness of the simulator system.

Our experience with simulations on LGM-1 also convinced us that system func-
tional testing was not sufficient: we also needed runtime fault detection. We often ran
simulations continuously for 24, 36, and more hours, and discovered that, aside from
the errors caused by incorrect implementation of the algorithm, there were other
sources of error of a more transient nature. For instance, we found that during long
runs the host system or the network facility could cause errors, even though the system
did not crash and the simulation ran to completion. Similarly, temporary failure of cus-
tom chips, pin connections, and so forth, could occur during a simulation, and not be
detectable either before the run or after its completion. Although we realized that
detecting every transient error during simulation was probably not possible, we guessed
that the most likely kind of transient error was not the random single bit error, but
failures that would effect large pieces of the simulation, large either in time or space.
We therefore began to look for ways of embedding runtime fault detection in the initial
state of the simulated automaton.

In this chapter we describe a testing method for lattice-gas simulators. The
method can be categorized as specification-based system-level functional testing [56]
because we use the specification of the behavior of a lattice gas to derive input data that
tests the correct functional operation of a simulator system. This means we do not do
any modelling of hardware faults although the test method is used to test custom VLSI
chips of a special-purpose hardware simulator. Our approach consists of using graphic
display of the lattice-gas state to detect errors in the evolution of cyclic sub-lattices.
The collection of sub-lattices exhaustively exercises the update logic of the simulator,
and is built from a small library of hand-coded test pattern templates. The test system
consists of the template library, a small function library for creating patterns in a
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lattice-gas state, and a library of routines for image manipulation and display. In prac-
tice, we have used the test method in a ‘‘prevention oriented’’ [57] manner in the con-
struction of the testing facilities themselves. That is, during construction of the tem-
plate library, image manipulation, display software, and a simulator for the special-
purpose hardware, the test patterns were used to prevent, detect, and debug implemen-
tation errors. Using a ‘‘destruction oriented’’ approach we have used the test method
to test custom VLSI chips, custom circuit boards, and general control software of the
special-purpose system. Finally, we have used the testing facility to embed test pat-
terns in the input data of lattice-gas simulations used in fluid flow experiments to indi-

cate simulator system functional runtime errors.

The remainder of the chapter is organized as follows. Section 2 briefly describes
the FHP-III and LGM-1 lattice-gas models. Section 3 introduces some terminology
and definitions. Section 4 gives a general description of the test ensemble and some
description of the methods used in its construction. Section 5 gives a detailed descrip-
tion of a single test pattern template. Section 6 describes the construction of specific
collections of test patterns that constitute the test ensemble. Section 7 discusses the
error detection and experimental results for multiple error coverage. Section 8
discusses the issue of applying the test method to different architectures. Section 9
contains a summary of our experiences using the test method, and our conclusions.

4.1.1. Lattice-gas automata

Our version of a lattice gas is based on the FHP-IIT model. As described in [3]
this type of lattice-gas automaton consists of a two-dimensional lattice graph [1] and a
set of update rules for variables associated with each node in the lattice graph. The lat-
tice is the triangular lattice on the plane geherated by the unit vectors e; = (1, 0)
and e, = (1, ®/3), in polar coordinates. The edges of the graph connect nearest
neighbors in the lattice (see figure 4.2). In cellular-automata terms [6, 5], each site
together with its variables constitutes a cell of the automaton; the edges define the
cell’s neighborhood. Each cell has eight bits of state information: seven one-bit
dynamical variables and one bit defining the type of site. In the lattice-gas view, at
each site each incident edge has an associated variable representing the presence or
absence of a unit mass particle with unit velocity directed toward the site’s neighbor
along that edge (see figure 4.3). The seventh dynamical variable encodes the presence
or absence of a unit mass particle with zero velocity positioned at the lattice site (called
a ‘‘rest-particle’’). The eighth bit encodes the presence of a barrier at the lattice site.
With this interpretation of the variables the update rule is designed so that, letting the
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figure 4.2.

(a) A finite lattice generated by the unit vectors e and e,. (b) The lattice-graph produced from (a) by
nearest neighbor connections.

figure 4.3.

The seven velocity vectors at a lattice site. The seventh is represented by a circle and has zero magni-
tude.

edges have unit length, the lattice is populated with particles traveling along graph
edges and colliding at lattice sites (see figure 4.4).

A lattice-gas automaton evolves by synchronously updating the state of every cell
of the automaton: the next state of a cell is determined by the states of its neighbors and
its own state, and the automaton’s update rule table. For the lattice gasses the automa-
ton update rule table is called a collision rule set , the initial configuration of states
determining a cell’s new state is called a collision, the next state entry in the rule table
is called the result of the collision, and the combination of a collision and its result is
called a collision rule. A particular lattice gas is defined by specifying a collision rule

set that gives the results of every possible collision. These rules can be thought of as
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figure 4.4.

(a) The state of a lattice site and associated one-bit variables. r represents a rest-particle, b a barrier
site. (b) The input variables that affect the next state of the lattice site. (c) Shorthand notation for the
state of a lattice site. (d) Shorthand notation for the input to the next-state computation. The combina-
tion (d) —(c) represents an update rule: (c) is the next state of the lattice site after an input of (d).

rules about the action of particles (variables set to one) or equivalently as rules about
the action of holes (variables set to zero), as they collide at lattice sites. In an FHP gas,
particle collisions generally conserve momentum and mass, and are symmetric with
respect to rotation by integer multiples of 7/3, and time reversal; and for the FHP-III
gas, collisions are also symmetric with respect to hole/particle duality (complementa-

tion of the dynamical variables).

These symmetry properties and hole/particle duality make it possible to define a
collision rule set in a compact way: for each equivalence class of collisions induced by
equivalence under duality and rotation transformations, pick one example, called a

canonical collision, and show its next-state result; the combination of canonical
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collision and result is called a canonical collision rule. There are 28 canonical colli-
sions for the eight bit FHP-III and LGM-1 lattice gasses, and figure 4.5 shows the four-
teen ‘‘non-barrier’” canonical collision rules for these two automata. Using the list of
fourteen canonical collisions, ¢ through c 3, all 256 possible collisions for the LGM
or FHP-III gasses can be generated by applying the symmetry transformations plus bar-
rier presence or absence. When the barriers implement the ‘‘non-slip boundary condi-
tion’’, the remaining fourteen rules can be stated in a single sentence: all particles col-
liding at a barrier site reverse their direction of travel, and the last row of figure 4.5

shows a generic example.

The second column of figure 4.5 shows the results of the canonical collisions for
the FHP-IIT gas. Where there are two entries for a single canonical collision we mean
that the two possible results occur equally often determined by some explicit rule.
LGM-1 implements this by using one rule on even rows and the other rule on odd rows.

The third column of figure 4.5 defines the LGM-1 gas. Only the results that differ
from FHP-IIT are shown. The c3 and c 5 results are different for the dual cases only,
while the cg, ¢1q , and ¢ 17 results differ for both non-dual and dual cases. Because of
the lack of dual symmetry in the c3 and c¢5 collisions, we have been mildly deceptive
in figure 4.5: the ¢ 3 and c 5 collision classes are not equivalence classes for the LGM-1
gas. Nevertheless, we shall continue to speak of them as if they were, pointing out the

difference when necessary.

There is one other difference in the LGM-1 rules: a rest-particle at a barrier site
vanishes. This violates conservation of mass, but does not change the behavior of the
lattice gas. Because this last property of the LGM-1 gas creates some difficulties in
testing, we will have more to say about this when we discuss the construction of a com-
plete test set for LGM-1.

The canonical collisions can be used to specify a particular collision by providing
the rotation, duality, and barrier status. The collisions listed in figure 4.5 are presumed
in rotation 1, written c 1y for collision c¢;. Clockwise rotation by increments of 7t/3
are Written ¢ (), € k(3) - Ck(6)- Lhe dual of a collision is written by cz, and the pres-
ence of a barrier by cz. For example, figure 4.6 shows that canonical collision ¢, gen-
erates 24 distinct collisions: six rotations, their duals, six rotations with barriers, and
their duals.
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figure 4.5.

127

The rule sets for the FHP-III and LGM-1 gasses. The first column shows all canonical collisions, c,

through c 3, and a single example of the barrier version, c?. The second column shows the results for
the FHP-IIT gas. The LGM-1 rules are shown only in the cases where they differ from the FHP-III gas.
(1) The canonical collisions c 1 and ¢, are reflections of each other through a horizontal line. Shown is

the canonical rule for c .
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figure 4.6.

The actual collisions generated by canonical collision ¢,. There are 24 total: six rotations for each of

ca, ¢y, ¢3, and (cig’)*.

4.1.2. Definitions and Notation

Before beginning a discussion of the test mechanisms, we need to establish some
definitions and conventions. As we described above, a particular lattice-gas automaton
consists of a rule set, a lattice-graph, and the variables associated with the elements of
the lattice-graph. Throughout the following we will assume the rule set and the form of
the lattice-graph are both fixed and correspond to the LGM-1 lattice gas unless other-
wise stated. Consequently, we may think of any such automaton as a system of indivi-
dual particles that obey the collision rules and exist on a lattice-graph. An instance of a
lattice-graph together with a specification of the barrier sites we call a space, a combi-
nation of a collection of particles and a space we call a system, and an arrangement of
particles in the space a state of the system. With each system there is an associated
time ¢ defined by assuming some specified initial arrangement of a system is assigned
time r = 0 and each subsequent update of the automaton state increases ¢ by one. A
sub-system may have a local time 7,., with an origin different from the global time
origin; we write local time as a function of global time: #;,.,(¢). The idea is that an
initial state of a system is built up from smaller systems whose states at global time
zero are achieved by starting the local systems in their initial states and running them
forward or backward to #,.,;(0). Thus, a local system can have its time origin shifted
from the global clock’s. A system is termed cyclic if in its evolution it ever repeats a
state. A system is said to be closed if boundaries are placed in such a way that particles
outside the system can never enter. When we wish to indicate the state of a system I at
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time ¢ we write "), For the period of " we write 3.

A collision is said to occur at time t in system I' if the collision exists at some site
in T, If a collision occurs at some positive 7 in T" we say " contains the collision.
When we discuss systems that detect evolution errors we will want to know not only if
a collision is contained in the system, but also whether the system detects bit errors in
the result. Before we go on, we should pause to explain what we mean by detection of

bit errors.

Detection of bit errors in this testing method does not have the usual meaning.
For instahce, even though the final result of a computation may have one or more
incorrect bits, this is not necessarily a detectable error by our definition. Detection of
an error here is somewhat subjective in that the human detects the error by looking at a
signal on a computer screen. Determining that the signal is not correct depends on the
level of detail and complexity that the human eye and brain can cope with “‘easily.”’
The tests we have devised give a clear, visual, graphical signal of failure for most
errors. However, for some errors the signal is not apparent to the human eye, unless
close inspection is done. In that case, we say the error is not detectable. Because of
this human factor, we cannot say with mathematical precision what determines a detec-
tion event; however, it should be clear, at least intuitively, what we mean by detection,

and the figures presented below should make the matter obvious.

We will say a system covers a bit error if the system detects the error. There are
eight possible one-bit errors in any collision result, which we denote
{e, ep €1, eq e3 ey es eg}, corresponding to the eight variables associated with
a lattice site. When we wish to specify a particular error in a particular collision we
will append the bit-error notation to the collision notation with a colon separating the
two: for instance, c;(1):e, shows that the result of a ¢, collision at rotation 1 has the
rest-particle bit set to the complement of its value in the correct result.

4.2. Test Sets and Their Constituents

A particle system that tests a simulator for all one-bit errors in the evolution of a
lattice gas we call a complete test ensemble. A test ensemble consists of a collection of
cyclic sub-systems called test-cycles. Test-cycles are built from elementary generic
sub-systems called pattern templates. (A pattern is produced from a pattern template
by setting parameters related to the size of the pattern, its spatial orientation, the
number of particles contained, and so on. Any such pattern could serve as a template,
and we shall sometimes refer to templates and patterns interchangeably as patterns.) A
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test-cycle consists of a collection of sub-systems derived from a set of pattern templates
by applying symmetry operations and time translations to the patterns produced from
the templates. A test-cycle can constitute a portion of a complete ensemble, or it may
be inserted into a larger system simulating a fluid flow problem, to serve as a runtime

error detector.

While one might consider trying to compile a pattern template set that has as few
members as possible, each one covering as many collisions as possible, we found that a
simple greedy algorithm lead to a set of templates that allowed us to construct a com-
plete test ensemble that was small enough to be practical. To be more specific we pro-
ceeded as follows:

(1) Select a canonical collision
(2) Design a pattern template that contains that collision.

(3) Simulate every one-bit error for that collision and check to see that the error is
detected by that pattern. If a single-bit error is not detected, return to (2) for a

new test pattern template. Record which canonical collisions are covered.
(4) Repeat (1)-(3) until all collisions are covered.

Note that it is only necessary to simulate bit errors (Step (3)) for an update of the
canonical collision. If an error is detected in the canonical configuration, every bit error
in its equivalence class will also be detected by an appropriately transformed version of
the pattern.

After we had a complete set of pattern templates we could proceed with the con-
struction of a complete test ensemble. Starting with an empty ensemble and using the
test pattern collision coverage table, we proceeded as follows:

(1) Select a canonical collision/one-bit error combination not yet covered by our

ensemble of test-cycles.
(2) Select a pattern covering that error.

(3) Build a test-cycle from the pattern by applying all the symmetry transformations
to the pattern so that all actual collisions generated by the canonical collision are
contained in the test-cycle.

(4) Complete the test-cycle started in (3) by making time delayed versions' of the sys-

tem constructed in (3).

T We will explain this in detail later. The reason for time-delayed versions is to ensure that
every processor in a pipeline will *‘see’” the collision.
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(5) Continue in this way, checking off the covered collisions , until all one-bit errors

are covered by our ensemble of test-cycles.

Our complete set of test pattern templates contains 51 templates. Each pattern is
enclosed in a square 30 x 30 box of barriers. If we naively build the test-cycles for the
LGM-1 lattice gas, we need, for each pattern, six rotations of the pattern and its dual,
and about three different time delayed versions of each of these. In addition, a com-
plete ensemble for the LGM-1 architecture requires every collision on both even and
odd rows. Altogether the complete ensemble built this way requires close to thirty-five
hundred copies of the patterns. On the host machine for LGM-1, a SUN 3/160C*
workstation, we can display about one-thousand patterns per screen, and thus we can
see the entire ensemble in four screens of bit-mapped graphics. In practice, we reduce
this considerably in two ways. First, we skip step (4) above: no time delayed versions
are required if we make the pipeline length relatively prime to the least common multi-
ple of pattern cycle times. The length of our pipeline has been set to a prime number of
stages. Second, we are slightly more careful in constructing the ensemble: not every
pattern requires all twelve combinations of rotations and duals. The ensemble we use
for a complete system test contains 786 patterns and its display occupies about three-
quarters of the host’s screen. We will return to the topic of display when we discuss
error detection, but now we want to describe patterns and test-cycles in detail.

4.3. A Test Pattern

Patterns are generic, self-contained sub-systems designed to contain one or more
canonical collisions. Our collection of pattern templates is divided into groups of simi-
lar type designated by roman letters A through K. There may be more than one version
of a particular type; for instance, type K has twenty-eight versions K | through K g (see
appendix B for a catalog of the complete template library).

The patterns are built using a small library of particle/barrier devices which act as
control mechanisms for collections of moving particles and individual moving parti-
cles. Groups of moving particles are called chains. A chain is simply a collection of
particles laid out uniformly in a line, all following an identical path. The control
mechanisms for chains consist of devices to deflect a chain, called turns. There are
also mechanisms called gates that reflect single particles at only one phase of a cycle,

while letting particles pass at all other phases, and detectors that detect the incorrect

1 SUN is a trademark of Sun Micro Systems, Incorporated.
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presence or absence of a particle involved in some cyclic collision. We will discuss a
few of the components in detail below as we describe the construction of pattern A;

descriptions of the other components can be found in appendix B.

Pattern A was designed to test the c3 and cs collisions, and consists of three
chains traveling around a roughly triangular circuit (see figure 4.7).

Tl@ QTI

N

Tle"'@Tl

figure 4.7.

Pattern A schematic. (a), (b), (c) are chains of particles with velocities V¢, V4, and v, respectively. The
deflectors at the corners are type T'| turns.

The chains are of the ‘‘paired’’ type: they consist of pairs of particles such that the
members of a pair are separated by an empty site. The turns in A are designated type
Ty turns, and are designed to handle paired chains (see figure 4.8). The collisions con-
tained in A occur, for the most part, in the turns, which we now describe in detail.

The T'{ turns used in A consist of a rest-particle in the path of the oncoming
stream, and a barrier at an adjacent lattice site. The location of the rest-particle is
called the origin of the turn: the incoming stream will experience a 7t/3 deflection from
its path at the origin. Let us follow a pair of particles, p; and p,, through a counter-
clockwise T turn (see figure 4.9). The lead particle of the two-particle stream, pq,
collides with the rest-particle, ry, in a c3 collision at + = 0. The resulting state of the
origin has two particles leaving the site: one at ©t/3 counterclockwise from the p;’s ini-
tial direction and one at 1t/3 clockwise, which we take to be p; and r, respectively.
The barrier is located one site away from the origin, and at ¢+ = 1 particle r; experi-
ences a c"fj collision with the barrier sending r; back to the origin. At ¢ = 2 particles
r1 and p, collide in a ¢ 5 configuration at the origin, leaving r; in its original location
at rest and sending p, out the same edge that p; used to exit the turn. The pair of parti-
cles have thus turned a corner, and any stream consisting of similar pairs can likewise
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figure 4.8

Pattern A detail. Particles p, and p, constitute a one-pair chain with velocity v,. Two type T | turns are
shown in detail at the top of the figure: rest-particle r| and barrier site b constitute one turn, r, and b,

constitute the other.

be turned.

In this section we have shown the details of a single test pattern. The next task is
that of constructing a test-cycle from such a pattern, which is taken up in the following
section. To do that we will need to know the error coverage of our patterns, that is,
what errors are definitely detected by each pattern. (See figure 4.12 for an example of
pattern A detecting an error.) By simulating the patterns as closed systems with a simu-
lator that has its rule set altered by the corresponding error, we can test error coverage
of the patterns. Table 1 shows the confirmed error coverage for all errors. From that
table we can see that pattern A covers all one-bit errors for the non-dual ¢35 and non-
dual c¢5 collisions. Another piece of information we will need is the collision timing
table for our patterns. Table 2 shows the local time of each of the collisions c3 and c5
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figure 4.9.

Four consecutive time steps of a pair of particles being deflected by a T, turn. (a) p, and the rest-
particle collide in a c5 collision. (b) p, is deflected by ©/3, r, collides with a barrier in a b collision.
(c) pp and 1 collide in a c 5 collision. (d) p, is deflected by ©/3, r1 is again at rest.

in pattern A.

4.4. Constructing a Test-Cycle

This section shows the construction of a test-cycle from several copies of pattern
A. We have two goals in building test-cycles: (1) to build a system that contains the
complete collision class for one or more canonical collisions, and (2) to build a system
that can present every processor in a multi-processor machine with collisions. The
second goal can be achieved for our parallel machine, LGM-1, by including in the test
ensemble patterns with shifted time origins, and we will return to this below. The first
goal can be achieved by looking at the collisions contained in a pattern and adding
enough symmetry transformed copies of the pattern to form a system that contains all

the collisions of a particular class.
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Confirmed One-Bit Error Coverage
collision error collision error
1-6 T b 1-6 T b
E E K E K
o | BB TE [y & z
E; Ky | Ey E, E,
E;3 Ky | E; Ey E;
(:2 B: B] B: C'g Bi Bl
B, K | By B, B,
¢s A* A A* 613; Gi Gf
H, Ky | Hy G2 Ga
¢ K c G G
o o I&Tal g T 6 :
Cy Ke¢ | C Gy Gy
S I R 7
B, Kz | By Gs Gs
ce F3 Ky | Fs ¢ G G
F3 K, | F3 G; G
¢ K G G G
S BN N P :
c. | & | C Gl G
B B B G G
o |2 BBy G ;
B, Ky | By Gg Ge
F K F G G
o [ B T&TRT T 6 :
Fy Ky | Fy G G3
€10 Bi K B: C?O D:(Cl) Di(d)
B Ky | By D (cl) D;(cl)
e Bl Klz Bi C?I D:(CC[) Dl(ccl)
Bl K!3 Bl Dz(CC[) DZ(CCI)
12 Ff Ko Ff b G: G:
F, Ky | Fa Gy Gy
i Di(d) Ky | K3 et Gf Ko
Di(cl) | K15 | K» Gs Kos
table 1.

For each collision each one-bit error was simulated in both dual and non-dual forms. The upper rows in

each collision category are the non-dual cases, the lower rows are the duals.
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Pattern A Collision Containment
period 84 = 6
phase 0 1 2 3 <4 5
Co Co Co Cp Co Co
c c c c c c
collision 2(2, 4, 6) ;(2, 4,6) g(z, 4, 6) 2(2, 4, 6) 2(2, 4, 6) 2(2, 4, 6)
(o] C2(1,3,5) | €2(2,4,6) C1 C1 Cq
€3(1,3,5) | €3(2,4,6) | €5(1,3,5 | €5(2,4,6)
table 2.

The period of pattern A is adjustable by lengthening its chains; shown here is the containment for A with
minimum period. Where more than one rotation of a collision occurs in a phase we have written the ro-

tations in a list: for instance, {c22), Ca(4y» C2(6) } becomes ca2, 4, 6)-

From the collision containment of pattern A listed in table 2, one can see that a
single instance of A contains collisions cg, ¢, C1, cg, c3, and c5. The dual of A, A*,
would contain the duals of the collisions just mentioned. In pattern A, the canonical
collision c3 occurs in every rotation, c3(1y — C3(e), as do all the collisions in table 1
except ¢, which appears only in even rotations. Consequently, if we want a test-cycle
that covers all ¢, collisions we must combine A with a copy of A rotated by 7/3 by
abutting the two patterns side-by-side without interference. Let us call this combina-
tion test-cycle £ L

The test-cycle Q) covers every rotation of the collisions listed in table 2. If we
build a new test-cycle Q3% by combining a copy of Q}; and a dual copy (Q1)7, again
abutting them side-by-side, we will have a test-cycle containing the complete collision
classes for every collision contained in pattern A. Unfortunately, Qi does not achieve
our goal for the collision class ¢3. As we mentioned earlier, the c3 and c5 classes are
each split into two because of dual asymmetry. As a consequence, pattern A does not
cover any of the dual cases for c 3, but patterns H, and K {7 together do, as can be seen
in table 1. Consequently, a test-cycle combining Q) with test-cycles built from these
two additional patterns is required. Nevertheless, for the sake of simplicity in the fol-

lowing, we will assume that Q3 covers the c3 and c5 classes.
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The second goal in test-cycle construction involves collision containment for
multi-processor implementations of the lattice-gas simulator. If the machine doing the
lattice-gas simulation is a uniprocessor machine, we would be satisfied with this Qﬁ
test-cycle. Simulating this test-cycle would cause the machine to repeatedly update the
test-cycle and every site would be processed by the same processor. Then, in a single
period of the test-cycle, the processor would ‘‘see’” every collision in the collision
classes contained in Qﬁ. If, however, we are interested in testing a multi-processor
machine, we need to insure that every processor sees every collision. We have been
interested primarily in testing the LGM-1 machine, which is a linear pipeline in which
each stage of the pipeline executes one update of the entire lattice-gas. In each stage
there are two processors: one updates odd rows of the lattice, the other updates even
rows. We next discuss the construction of a test-cycle specifically targeted for the
LGM-1 architecture (see figure 4.10).

sites out

| N o,

array of lattice sites sites in

figure 4.10.

The LGM-1 architecture. The lattice sites are stored in an array and fed in raster scan order to a pipe-
line of processors. Each processor advances the lattice gas system one evolution step and sends the data

out in the same raster scan order.

For the moment we will assume each stage of LGM-1 has only one processor. If
we look at the second stage of the pipeline, P‘?), we see that it updates the automaton
at global update steps £, = 1 (mod N), where N is the number of stages in the pipe-
line. Consequently, in order for P(?) to see collision ¢ k(i) We must build our test-cycle

so that at some 7, = 1 (mod N) we have c(;, occurring somewhere in the cycle.

Because all the copies of pattern A in test-cycle Q3 have the same phase,
f10car (0) = 0, individual collisions are contained in some phases of Qﬁ and not others.
For instance, from table 2 we see that the period of pattern A, 4, is six global update
steps and that collision ¢ 3 occurs in even rotations at local time ¢ = 0 ( mod &,4), and
odd rotations at f = 1 ( mod &4). Therefore, a copy of Qﬁ with its local time set to
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Zero, Qi (0)7, has a period of six and contains all rotations of ¢c3 at = 0 ( mod &,),
and at = 1 ( mod 6,). Nevertheless, unless the period is relatively prime to N or
N/3, every stage of the pipeline will not see c3. One way to overcome this is to build a
test-cycle that contains every collision on every phase of its cycle. As table 2 shows,
we can cover the missing cycle steps by reproducing Qﬁ three times with local time
origins 0, 2, and 4; the result we will call Qfl. The complete test-cycle Qf’q containing
six copies of pattern A has a cycle time of six and contains c 3 in every rotation at every

phase of the cycle.

As we mentioned above, LGM-1 uses two processors within each stage; one pro-
cessor handles the odd numbered rows and the other processor, the even ones. To han-
dle this we must check that our test-cycle also contains every collision on both even
and odd numbered rows. The simplest way around this problem is to make two copies
of the test-cycle, installing them so that their row positions differ by one. Alternately,
one can ensure that every collision is represented for both row parities by adding more

turns to pattern A to make a new pattern.

4.5. Error Detection and Experimental Results.

Our method of testing a simulator consists of simulating a complete test ensemble
for many generations, and after the simulation, graphically displaying the ensemble
system to detect errors in its evolution. For our machine, LGM-1, the state of a lattice-
gas system is stored as a two-dimensional array of bytes in raster scan order, each byte
containing the state of a single lattice site. Because we want to be confident that we are
actually seeing the state of the system, we want the process of displaying it to minimize
the amount of transformation done to the original data. We therefore treat the array as
a bit-map graphics file, and display it with a color map that color codes each byte.

The color coding is done so that if there is only a single particle present at the site,
the presence of the particle is indicated by a color corresponding to its velocity (see
figure 4.11); if there are several particles present, their colors will add in such a way
that the resultant color corresponds to the vector sum of the velocities. Higher intensity
corresponds to greater number of particles present. So, for instance, if all six non-zero
velocities are present the site will appear bright white (white represents zero velocity),
if no particles are present it will appear dim white, and if only a rest-particle is present

1 System S with local time origin shifted so that #(0) = x will be written S(x). That is, the
state of S(x) at global time 0 is §.
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figure 4.11.

Color coding of unit vectors. Each direction vector is associated with an rgb (red, green, blue) color
coding, and the zero vector is coded 111 (white). We imagine that the colors change continuously and
linearly with the angle of rotation. For instance, v is associated with the triple 110, and v, is associat-
ed with the triple 100. Any vector between v and v, will have a triple of the form {1, x, 0}, where
0 < x £ 1. Given a collection of velocity vectors at a lattice site, adding the corresponding rgb triples
and normalizing gives an rgb triple that codes a color that matches the resultant vector sum’s direction.
The number of particles present determines the brightness of the color. Thus v + v, — 210, and nor-

malizing gives {1, 0.5, 0} as the sum’s color with a relative brightness of 2.

it will appear a noticeably brighter white than when no particle is present.

Different color maps can be used to bring out different features: for instance, in
the color map described above, barrier sites are coded without color so that they appear
black unless other particles are present at the site. If seeing the location of the barriers

is important, the barriers can be coded with some distinctive color.

We want the presence of an error to result in a state of the system that is visually
easily distinguishable from any of its correct states. Our patterns have the general pro-
perty that an error will disrupt the cycle and result in one or more particles straying
beyond the sites occupied by the pattern. In most of our patterns we put a rest-particle
in any lattice site which is not part of the pattern but inside the containing box of bar-
riers. A stray particle passing into the space occupied by rest-particles usually results
in the rest-particles erupting in a chain reaction that floods the box with moving parti-

cles. This chaotic state is visually unmistakable.

Shown in figure 4.12 is a small, example test-cycle evolving in the presence of a
one-bit error: the lattice-gas rules in a software simulator have been altered to contain
the one-bit error c3(1y:eq. The test-cycle consists of six copies of pattern A and is
designed for periodic boundaries so that one of the patterns wraps around the sides.
The pictures in the figure are the color-coded bitmaps of the states converted to gray
scale: each pixel represents a lattice site, and the color scheme described above has
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(a) (b)

© (d

figure 4.12.

A test-cycle containing six copies of pattern A simulated with the c:e error at every step. (a) The cycle
in its initial state,t = 0. (b)t = 10. (c) t = 20. (d) t = 100. The second row of patterns in each pic-

ture above contains two patterns: one is “‘wrapped around’’ the left and right edges of the lattice.

been mapped to a gray scale.

In (a) the initial state of the test-cycle is shown, and each succeeding image shows
the system ten time steps older. As is easily seen even in gray scale, the chaotic result
is clearly distinguishable from the initial state. Because any legal state of the test-cycle
looks very similar to the initial state, we have no problem in distinguishing the error
indication from the system’s correct states.
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Besides having extension in evolution time, these test sub-systems also have
extension in the space of the lattice-gas, allowing them to detect errors such as those
caused by incorrect data addressing by the lattice-gas simulator. For detecting these

2

types of errors, the patterns that are “‘loops,”” such as pattern A, are useful. For
instance, in LGM-1 a lattice-gas system is ‘‘cut’’ into strips that are fed to the pipeline
one at a time and ‘‘sewn’’ together as they exit the pipeline. Placing a loop pattern
across such strip boundaries makes it easy to see if there are any addressing errors
made in the cutting and sewing operations. Likewise, if the lattice-gas’s boundaries are
periodic, the loops can be placed across the boundaries. In LGM-1 the boundaries can

be either periodic or not, and we test both cases with different test ensembles.

4.5.1. Detection Difficulties

Our ensemble detects all significant one-bit errors, but not all are detected by
chaotic conditions. One reason for this is the lack of dual symmetry for the collision of
a single particle with a rest particle in the LGM-1 gas: we cannot have ‘‘explosions’’ in

a dual world. We have two methods of getting around this.

One method is to build a pattern with many particles moving in an orderly
fashion. Disruption of the pattern results in many stray particles and, while not giving
the magnitude of chaos in an explosion, it is easy to see when the system fails to evolve

correctly.

Another method is to enclose the dual pattern in a box with a device that functions
as a gate for dual particles (holes). The dual particle is transformed to a real particle

and the real particle can cause an explosion outside the dual box.

For some of our patterns, instead of employing either of these two methods, we
have relied on being able to see one or two stray particles or a global change that is not
chaotic. While this is not the most desirable method of detecting errors, employing it
allowed us to complete the set of patterns without spending time attempting to produce
explosions for every error. Indeed, the attempt might be futile: it is an open question
whether or not it is possible to find a collection of patterns that results in chaotic condi-

tions for every one-bit error.

Another problem in detection is a consequence of the mismatch in scales caused
by detection without chaos and the large number of patterns in our test ensemble. As
we mentioned in section 4, our ensemble contains close to one-thousand patterns. A
chaotic change in any of one-thousand 30 x 30 pixel boxs displayed at one time is easy
to see at a glance. But, because the size of the ensemble is much larger than the area of
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a single pixel (which may show the presence of a stray particle), the patterns that do not
become chaotic require closer inspection. We have handled this by scanning a display
of the test ensemble using a mouse driven ‘‘magnifier’’ that allows us to see the pat-

terns individually. While this works, it is not entirely satisfactory.

One way to approach this, besides trying to make all patterns detect by chaotic
results, is to reduce the size of the ensemble. If the ensemble were small enough, a sin-
gle particle would occupy a sufficient portion of the display so that, again, a glance
would suffice. We have made no attempt to minimize our set. Rather, we have been
interested in ensuring its completeness, and we have, for the most part, used each pat-
tern as a test of a single canonical collision. As the description of test pattern A
showed, a single pattern contains several collisions, and for this reason we estimate that

our complete set is considerably larger than necessary.

For instance, the pattern that was specifically designed to test the ¢ (quiescent
lattice site) collision is simply an empty box. If any particles or barriers appear in the
box the error is detected, but the result will not necessarily be chaotic. It seems likely
that the ¢ test pattern is superfluous, and other patterns will detect any error that it can.
Confirming this could be done by simulating the eight possible one-bit errors for the
canonical collision ¢ on the entire ensemble and checking to see that the errors were

detected by some other pattern in every case.

There is one type of one-bit error which we make no claim of detecting. Because
these errors do not effect the lattice gas behavior in a way that changes its modeling
capability we consider these types of errors insignificant. As table 1 shows, these
errors are all rest-particle errors in collisions in which a rest particle and a barrier exist
at the same site. As we mentioned when we described the LGM-1 rule set, in the
LGM-1 gas the rest-particle disappears in these configurations. Consequently, any test
pattern for this type of collision can only be used as a one-shot test, and this test must
occur att = 0.

The patterns we have devised for these collisions do detect all one-bit errors, but
the one-shot nature of this testing forces us to deny fully covering these collisions for
two reasons: one is that the errors cannot be detected in any processor other than the
first one in an LGM-1 type pipeline machine, and the other is that the patterns must be
inspected very closely to detect the error of a rest-particle remaining at the site after
t = 0. In general, this is a difficult type of change to detect because the rest-particle at
a barrier lattice site has no interaction with other particles. Altogether, twenty-eight of
our test patterns K; through K,g, were created especially to deal with these rest-
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particle/barrier problems.

4.5.2. Experimental Results

In this section we describe the results of experiments with simulated multi-bit
errors. The experiments we have done for the c3 collision show it is unlikely the
ensemble will fail to detect multi-bit errors. Using a software simulator for the LGM-1
gas, we ran simulations of the test-cycle in figure 4.12. For each simulation run we
altered the rule set to include an error in the result of the ¢ 31 collision. A total of 117
simulations were run, each for 20 update steps: all 8 possible one-bit errors, all 28 pos-
sible two-bit errors, all 56 possible three-bit errors, and 25 selected four-bit errors. The
four-bit errors were all those of the form e3 5 . y and es , , , because these were
the types of errors that resulted in detection difficulties in the two-bit and three-bit
cases. After each simulation the state of the test-cycle was observed using the tech-
nique described in section 7.1. As table 3 shows, there was only one error that failed
the test completely: the c3(1y:es, , error.

The reason the e 5, error escaped detection is that in this test-cycle this error par-
tially erases its own mistake in such a way that the cycle continues on undisturbed. Of
course, a careful inspection of the individual pixels would reveal the error, but from our
viewpoint this is not an acceptable method of error detection. Rather, we want the
error to expose itself in such a way that a glance at a monitor screen would suffice to
determine its existence. One remedy for this particular detection problem is to make a
copy of pattem A with the particle chains traveling around the loop in the opposite
direction. The new pattern would detect the c3(jy:es, , error, but would fail for the
c3(4):€g, » error, which one would expect since the two patterns are mirror images of

each other as are the two errors just mentioned.

4.6. Architectures and Applicability of the Test Method

The testing method we have described was conceived with the LGM-1 pipeline
architecture in mind. Coincidently, the method also works well for testing software
implementations. The element that makes the method applicable to LGM-1 is the scan-
ning style of data flow through the update processors. Because of this data scanning,
the entire lattice is passed through every processor, every collision contained in the
lattice-gas system is processed by every processor, and thus all the update logic is
tested.
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Experimental Results for Simulated Errors

number of incorrect bits 1 2 3 4
stray parti- 0 €3 5 €3 4,5 0
non-chaotic cles
detection lack of par- 0 0 €3 5, r €3 4.5 r
results fidies
undetected 0| es» 0 0

table 3.

The results of experiments simulating multi-bit errors in the evolution of the test-cycle shown in figure
4.12. All errors simulated resulted in a chaotic system except those listed above. For instance, the two-
bit error e s resulted in “‘stray particles’” occurring in the test-cycle. Stray particles are defined as
particles in the test-cycle which are moving beyond the limits of the particle paths in the correctly func-
tioning cycle. A ““lack of particles’ result means that all the moving particles have disappeared from
the cycle. An “‘undetected’’ result means that the cycle is visually indistinguishable from a correctly
evolving test-cycle. This last result could be detected by a program directly comparing two cycles.

Contrasted to this scanning data flow is the parallel implementation of a lattice-
gas automaton that assigns a single processor to each lattice site. Here, the test method
described in this chapter implies building a lattice-gas system that has every collision
occurring at every lattice site. This is probably impractical for two reasons, one of
which is that the test ensemble would be excessively large. For instance, one would
need a separate lattice-gas system for every possible collision, which amounts to
28 X 6 X 2 = 336 lattice-gas systems the size of the entire automaton. Which brings
us to the second reason this is a bad idea: even if the set of test patterns was much
smaller, the detection would have to be done without the aid of chaotic ‘‘explosions’’
contrasting with an ordered system. While it is true that an entire lattice initialized to
contain the same collision at every lattice site may appear organized to start with,
detecting the failure of a small percentage of randomly located processors would prob-
ably require looking closely at every lattice site because the lattice-gas system would
likely appear randomized after a few updates. An alternative that could be investigated

in the future would entail shifting the lattice state so that the test patterns travel from
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processor to processor. However, this approach is beyond the scope of the present

work.

Between the the architecture mentioned above using one processor per lattice site,
and the architectures that scan the entire lattice, such as uni-processors and linear pipe-
lines like LGM-1, lies a continuum of architectures we dub ‘‘frame-oriented architec-
tures.”” A frame-oriented architecture processes a lattice by assigning the update of
some fixed region, or frame, of the lattice to each processor and exchanges information
about the frame boundaries between appropriate processors. Our test method is
directly applicable when the number of frames is small because we can duplicate the
test ensemble for each frame and proceed as usual, treating each frame as if it were
handled by a separate machine. The LGM-1 machine is a two-frame architecture
because the lattice sites in even and odd rows are processed by what amounts to two
separate pipelines of processors. As we said earlier, we handle this by duplicating the
test ensemble and translating it by one row in the lattice. In general, this approach is
only worthwhile when the number of frames is small, and consequently this presents a
trade-off in the design of architectures for lattice-gas simulations. That is, one must
trade testability, at least by our method, against the number of frames the architecture

employs.

4.7. Summary and Conclusions

This chapter has presented a testing method based on visual detection of errors in
a complex simulation. Because the detection mechanism is based on the
human/machine interface, it presents both advantages and some disadvantages over
traditional concepts of error detection. Here, the ‘‘detection’” of an error is subjective:
a human must be able to ‘‘easily’’ see that the test pattern is displaying incorrect
results. The advantages of this method are mostly related to the interactive debugging
of hardware and software. The individual patterns have limited error coverage so that
an error can be traced to a specific rule failure in the implementation. Because timing
information is implicitly displayed, a faulty processor can be singled out in a pipelined
environment. As well, the types of errors encountered in data manipulation show up in
particularly characteristic ways that help to pin point the fault. Finally, the level of
confidence in correct behavior is enhanced because the operator can see the test pat-
terns in the simulation data rather than depending on an abstract message from a “*hid-
den’’ testing facility which, in the complex computing environment, can be completely

unrelated to the object the operator supposed was being tested.
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We have shown how to test lattice-gés simulators with reasonable resources.
Easily discernible changes in cyclic ‘‘particle’” patterns signal an evolution error in the
lattice gas, and a brief visual scan of bitmapped graphics suffices to determine whether
or not an error has occurred. More precisely, our test ensembles are built from a library
of 51 pattern templates, each pattern occupying roughly 50 lattice sites contained in a
““box’" of barrier sites 30 lattice spacings on a side. A naively constructed ensemble to
test a software simulator of an LGM-1 gas requires 612 patterns: two duals and six
rotations of all 51 pattern templates. The ensemble we have used for this purpose con-
sists of 393 patterns. An ensemble for the two-frame architecture of the LGM-1
requires twice that many, or 786 patterns. The display of this 786 pattern ensemble
occupies about 77% of the host’s display screen. For the purposes of testing every pro-
cessor in an LGM-1 type architecture containing an arbitrary number of stages, time
shifted copies of the patterns are required resulting in an ensemble about three times
larger, that is, containing about 2400 patterns displayed on two and one-half screens of
bitmapped graphics. In practice, we have always set the number of pipeline stages so
that the number of stages is relatively prime to the cycle times of the patterns, and con-
sequently only 786 patterns are needed for our complete ensemble. Because of the
hole/particle symmetry of the FHP-III gas, a complete ensemble for it requires only
about two-thirds the number of patterns as the LGM-1 gas.

These ensembles detect all significant one-bit errors in the evolution of a simu-
lated lattice-gas system, and our experiments suggest that multiple errors are unlikely
to escape detection. Simulating the complete ensemble tests the correctness of the
implementation of the update rules, the data addressing logic, and data transmission
and general system functions to the extent that they effect the lattice-gas system’s evo-
lution. Because the patterns are cyclic, testing continues for as long as the lattice-gas
system containing them is evolved. This allows the ensembles to test every processor
in a pipelined architecture such as LGM-1, and it also allows them to act as runtime
error detectors by incorporating them into real fluid flow lattice-gas systems. Also,
these embedded tests allow some detection of transient failures in the simulating sys-

tem during simulation runs.

The technique described in this work can be used in any software implementation.
For hardware implementations the technique’s applicability depends on the way the lat-
tice sites are assigned to the processors. If the lattice is split into non-overlapping
pieces, or frames, that are updated by disjoint sets of processors, the ensemble must be
duplicated for each such frame. As the number of frames increases the technique soon

becomes impractical, and there is consequently a tradeoff between testability by this
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figure 4.13.

Test patterns embedded in an 800 x 800 site lattice-gas fluid flow experiment. The staie of the lattice is
represented by a gray scaled version of the color scheme mentioned in section 7. The light gray border
on three sides contains 76 test patterns. The stippled center section contains the lattice-gas flow, seen
here after 10,000 update generations. Although it cannot be seen, there is a forced flow across the top
edge of the image. The test patterns are incorporated into the boundaries defining the shape of the flow

“well.”’

method and the architectural parameter associated with the number of frames.

Of course, as with any testing facility, the issue of the correctness of the thing
being tested becomes the issue of the correctness of the test. For our test method, the
issue becomes one of verifying the correct implementation of the test patterns, and the
question then becomes one of establishing the correctness of the software, amounting
to several thousand lines of code, that constructs and manipulates the test ensemble.
While confirming the software is free of bugs by traditional software testing and
verification methods is difficult, we have been able to refer to the resulting patterns

themselves for confirmation. The reason is that the patterns are simple and easy to
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understand visually, even when displaying them amounts to no more than color coding
an octal dump of the data. Thus, we have been able to use the patterns themselves to

debug the software that creates them.

The use of this test method in practice has shown it to be an efficient aid in the
construction, verification, and operation of lattice-gas simulators. In the construction
of the machines we have used it to to screen for faulty custom chips that contain the
processors of the LGM-1 lattice-gas simulator, and to detect hardware design errors in
the custom boards. For these purposes we have used a subset of the complete set of
patterns and found that screening a single chip requires about three minutes of real
time. Most of this time is spent inserting the chip in the test socket, setting up the
simulation, and displaying the result. We have used the test method during construc-
tion of software controlling the simulation. We found that writing simulation software
was speeded up considerably by the availability of a concurrent test facility: the code
could be quickly written, modified, or redesigned because a simple five minute test
would detect errors as they were introduced into the system and allow them to be
corrected immediately. In fact, the test template library routines, the software simula-
tor, and the image handling library were developed in parallel: the simple graphical
nature of the test patterns allowed debugging of each concurrently, even though none
of these systems was complete. For verification of the system before and after simula-
tion runs, the entire system test required about five minutes of real time. We have also
conducted fluid flow experiments on LGM-1 using an 800 x 800 lattice containing
embedded test patterns to detect runtime errors (see figure 4.13). These embedded test
patterns added about 10% to the simulation time, and the complexity of specifying the
initial state of the lattice was increased by approximately a factor of two.
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Chapter 5
Conclusions

5.1. Summary, Conclusions, and Future Work

Chapter 2 presented a refinement of existing pebbling games in order to model I/O
in parallel computations, defined precise characterizations of the subsets in a pebbling,
developed estimates on the sizes of these subsets, and used these estimates to establish
an upper bound on throughput for two computational problems, the lattice-graph based
computations on the two-dimensional toroidal grid and the two-dimensional triangular
lattice on the torus. The result shows that the throughput of the WSA architecture is
within a small factor of the throughput of any machine with identical fixed resources of
main memory communication bandwidth and local storage capacity. The factors are
about 6 for the two-dimensional grid, and 5 for the triangular lattice-graph. That is, the
WSA architecture (a linear pipeline machine) runs at least 1/6” the speed of any
machine computing similar problems in two-dimensions with similar resources. So, for
these types of problems, no other organization of computation steps and internal com-
munication (internal to the processor) —even given infinite internal communication
capacity and infinite calculating power (arithmetic-logic operational speed)— can
attain significantly better performance, given the fixed amount of local memory and

communication to main memory available.

It is not surprising that a pipelined machine makes efficient use of communication
resources. In fact, approximate bounding values for throughput were known through
previous work, but only to within one or two orders of magnitude of the present results.
And while the suspicion that reorganization of the computation steps and machine
resources could not improve LGM-1’s throughput by more than a small amount ini-
tially motivated the work in this chapter, there was another motivation as well. The
motivation behind this work was not only to find out precisely how good or bad the
WSA architecture is, but the considerable effort put into refining the pebbling argu-
ments stems from the desire to find a method of determining an optimal computational
strategy and thereby the most powerful machine possible within the resource con-

straints.

To find an optimal strategy, we need to understand the nature of the forces
induced by resource constraints and how these forces work to form an optimal parallel
computational strategy. The optimal strategy is embodied in the moves of an optimal

149
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pebble game and can be determined from the shapes of the pebbling sets defined by
sub-pebblings: if the shapes of sub-pebblings in an optimal pebbling can be discovered,
the optimal order of computation and I/O strategy will be known. Before this effort,
the pebbling arguments gave little or no clue to the shape of a sub-pebbling. The work
in Chapter 2 makes some headway in this direction by suggesting the shapes of sub-
pebbling sets when the only constraint is to maximize the number of nodes calculated.
The candidate sets are the (ISO-1)-extremal sets presented in section 2.3. We have
shown that they can be characterized essentially as cones within the data-dependency
graph.

However, the present method of analyzing the pebble game is done only on a tem-
poral basis: the nodes associated in a sub-pebbling set do not necessarily have any con-
nection spatially, but are associated by their proximity in time in the pebbling moves.
Consequently, the shapes of these sets do not give direct information about the optimal
strategies. An area for further investigation is to add this spatial information to the
' pebbling'analysis. For example, as was mentioned in section 2.4, a factor of two
improvement in the bounds derived there can be attained easily, if the spatial relation-
ship of nodes was characterized by the extremal sets presented there. The possible
improvement in the bound is a consequence of the fact that the present analysis charac-
terizes only input I/O, and the observation that a node that is not an input node and is
used for input must have been used as output previously. If the sub-pebbling sets were
spatially related, one could determine where in the graph the nodes used for input were,

and thereby determine which nodes where used for output.

In the process of refining the pebbling set size estimations, Chapter 2 also intro-
duced the use of the Wulff Construction to solve a discrete iso-perimetric problem.
The method introduced there solves a discrete isoperimetric problem by starting with
the solution of a closely related continuous isoperimetric problem and deriving the
result for the discrete case. This approach makes an interesting counterpart to previous
work by Bollobds and Leader [27] which works in somewhat the reverse direction by
‘‘smoothing out’’ a discrete problem to a more manageable continuous one. An
interesting question is whether the two methods can be used to show a way of connect-

ing continuous and discrete problems more closely.

Aside from the application of Wulff’s Construction to isoperimetric problems,
there is another possible use for this tool. It would be interesting to attempt to apply
the Wulff Construction directly to the data dependency graph. This would require a
careful definition of the integrand to correspond to the costs of recomputation and
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storage of information. One can look at the data dependency graph as dynamically
maintaining a red and blue pebbled surface that descends in the graph as the computa-
tion proceeds. The cost associated with the surface of a crystal set would have to

correspond to the cost of maintaining this red-blue surface.

Finally, another direction open to investigation suggested by Chapter 2 has to do
with applying the pebbling techniques to expanded classes of machine architecture.
The communication bound derived previously used the terminology of red and blue
pebbles. The essential distinction was simply that the registers associated with the blue
pebbles communicated through some limited capacity channel with the registers associ-
ated with red pebbles. In fact, there was no restriction made that every register in the
machine was either red or blue. It is easy to see that the machine can be divided up
into as many different pieces as desired and each piece assigned a color. The form of
the communication bound between different pieces remains the same. This would
allow the modelling of communication in a distributed or hierarchical context. Conse-
quently, another area for future work would be the extension of the present methods to
allow the analysis of hierarchical and distributed machine designs.

In Chapter 3, we have presented a scalable architecture, MWSA, based on multi-
ple, independent WSA-architecture pipelines for two-dimensional cellular automata.
The scaling scheme for this architecture avoids wiring a two-dimensional wiring pat-
tern across circuit boards which justifies our definition of the cost function for the
machine as a linear function of its size. Avoiding two-dimensional wiring is accom-
plished in the MWSA architecture by using an overlap-save strategy to allow the com-
putation of independent blocks of the lattice without cross communication between
neighboring pipes. We have derived the efficiency and throughput of the MWSA
architecture, and we have derived its cost function by employing known costs from pre-
vious machines and rules-of-thumb in workstation construction. We have introduced a
definition of throughput speed-up based on the least total machine cost rather than the
number of logical processing units. Using a numerical gradient search method to find
the least-cost configuration of MWSA machine resources for a given size lattice prob-
lem under the constant time constraint, we have shown that the MWSA scalable archi-
tecture has slightly superlinear speed-up, as a function of cost, over a moderately large
- range of lattice sizes. We have shown that the optimal-cost conﬁgurations have essen-
tially fixed, short ( circa 40 stages) pipelines, with moderately wide local shift-registers
(circa 600 lattice sites), and narrow data paths (circa 10 lattice sites wide), for the range

of lattices with 10* to 210 lattices sites on an edge.
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As Chapter 2 emphasized, the bandwidth to main memory is critically important
in the cost of the machine. In Chapter 3, the bandwidth has been scaled by adding mul-
tiple ports. However, the total machine cost is linearly dependent on the memory cycle
rate, ®. Thus, although results in Chapter 2 suggested total bandwidth is the impbrtant
quantity, this chapter stresses the importance of the speed of the communication chan-
nel. Since a special-purpose processor for scientific computation has to compete favor-
ably with general-purpose machines to be cost-effective, the conclusion suggested by
Chapter 3 is that the economy of VLSI cannot alleviate the need for cheap, fast com-

munication in special-purpose machines.

In Chapter 3, the cost function we used was based on relatively high cost per
shift-register cell. The above analysis can be redone using a cost more in line with
current costs of 1Mbit DRAM’s. We have started this and found that, in this case, the
asymptotic values for the number of pipeline stages and the pipeline width are about
200 stages and 10* lattice sites, respectively. Possible future work would look at what
effect this new cost has on the overall machine cost as compared with the results in
Chapter 3. |

In Chapter 3, the analysis was only carried out in the regions of parameter space
where a single scaling scheme was applicable. Another possibility for future work
would be to extend the analysis beyond the points where the match between the prob-
lem size and the machine size cause some parameters to become fixed. For instance,
the present analysis breaks down when the number of independent pipelines in the
optimal configuration becomes less than one: obviously, this is an impossible
configuration. The analysis can be carried forward, however, by fixing the number of
pipelines at one, and scaling other parameters accordingly. Similarly, at the upper limit
of the parameters in the current analysis the size of the shift-registers exceed the size of
the lattice, which is again an impossible configuration, and the analysis could again be
carried out by fixing the shift-register size. This would allow finding the complete
speedup curve for each scaling scheme. Then, the different scaling schemes could be
compared by comparing total machine cost. More ambitious work along this line
would be the task of comparing the cost of these MWSA scaling schemes with other
commercial and special-purpose machines. This would address the general question of
whether special-purpose machines are cost-effective and the applications in which they
can be employed effectively.

The advancing developments in communication bandwidth using optical technol-
ogy suggests two areas for further work. One is to look at the consequences of
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improved bandwidth across chip boundaries. The other area has to do with the decreas-
ing cost and increasing bandwidth of inter-board wiring. These technology improve-
ments will significantly effect the above analysis, and make much larger data paths
practical. As well, they may allow less chip area be devoted to storage and thereby

allow more processors per chip.

Finally, it would be interesting to include the main memory cost in the analysis.
Two questions should be addressed here: whether or not it is possible to attain linear

speed-up with fixed-access-time memory, and what the optimal organization might be.

Chapter 4 has presented a testing method based on visual detection of errors in a
complex simulation. Because the detection mechanism is based on the human/machine
interface, it presents both advantages and some disadvantages over traditional concepts
of error detection. The advantages of this method are mostly related to the interactive
debugging of hardware and software. The individual patterns have limited error cover-
age so that an error can be traced to a specific rule failure in the implementation.
Because timing information is implicitly displayed, a faulty processor can be singled
out in a pipelined environment. As well, the types of errors encountered in data mani-
pulation show up in particularly characteristic ways that help to pin point the fault.
Finally, the level of confidence in correct behavior is enhanced because the operator
can see the test patterns in the simulation data rather than depending on an abstract
message from a “‘hidden’’ testing facility which, in the complex computing environ-

ment, can be completely unrelated to the object the operator supposed was being tested.

Chapter 4 showed how to test lattice-gas simulators with reasonable resources.
Easily discernible changes in cyclic ‘‘particle’” patterns signal an evolution error in the
lattice gas, and a brief visual scan of bitmapped graphics suffices to determine whether
or not an error has occurred. These ensembles detect all significant one-bit errors in the
evolution of a simulated lattice-gas system, and our experiments suggest that multiple
errors are unlikely to escape detection. Simulating the complete ensemble tests the
correctness of the implementation of the update rules, the data addressing logic, and
data transmission and general system functions to the extent that they effect the
lattice-gas system’s evolution. Because the patterns are cyclic, testing continues for as
long as the lattice-gas system containing them is evolved. This allows the ensembles to
test every processor in a pipelined architecture such as LGM-1, and it also allows them
to act as runtime error detectors by incorporating them into real fluid flow lattice-gas
systems. Also, these embedded tests allow some detection of transient failures in the

simulating system during simulation runs.
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The technique described in Chapter 4 can used in any software implementation.
For hardware implementations the technique’s applicability depends on the way the lat-
tice sites are assigned to the processors. If the lattice is split into non-overlapping
pieces, or frames, that are updated by disjoint sets of processors, the ensemble must be
duplicated for each such frame. As the number of frames increases the technique soon
becomes impractical, and there is consequently a tradeoff between testability by this
method and the architectural parameter associated with the number of frames.

Of course, as with any testing facility, the issue of the correctness of the thing
being tested becomes the issue of the correctness of the test. For our test method, the
issue becomes one of verifying the correct implementation of the test patterns, and the
question then becomes one of establishing the correctness of the software, amounting
to several thousand lines of code, that constructs and manipulates the test ensemble.
While confirming the software is free of bugs by traditional software testing and
verification methods is difficult, we have been able to refer to the resulting patterns
themselves for confirmation. The reason is that the patterns are simple and easy to
understand visually, even when displaying them amounts to no more than color coding
an octal dump of the data. Thus, we have been able to use the patterns themselves to

debug the software that creates them.

The use of this test method in practice has shown it to be an efficient aid in the
construction, verification, and operation of lattice-gas simulators. In the construction
of the machines we have used it to to screen for faulty custom chips that contain the
processors of the LGM-1 lattice-gas simulator, and to detect hardware design errors in
the custom boards. For these purposes we have used a subset of the complete set of
patterns and found that screening a single chip requires about three minutes of real
time. Most of this time is spent inserting the chip in the test socket, setting up the
simulation, and displaying the result. We have used the test method during construc-
tion of software controlling the simulation. We found that writing simulation software
was speeded up considerably by the availability of a concurrent test facility: the code
could be quickly written, modified, or redesigned because a simple five minute test
would detect errors as they were introduced into the system and allow them to be
corrected immediately. In fact, the test template library routines, the software simula-
tor, and the image handling library were developed in parallel: the simple graphical
nature of the test patterns allowed debugging of each concurrently, even though none
of these systems was complete. For verification of the system before and after simula-
tion runs, the entire system test required about five minutes of real time.
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Future work suggested by Chapter 4 includes automating the pattern design pro-
cess so that the specification of a lattice gas or other similar simple cellular automaton
can be used directly to produce the test patterns. Also, an interesting and obvious
extension of this work would be to tackle the problem of testing simple 3-dimensional
automata. In line with automating the pattern generation, the development of a graphi-
cal interface of this type could be explored as test and debugging tool for more general
programs. A logical first step in this direction would be to explore the possibility of
adopting the present work to automata whose state information consists of finite preci-
sion floating point values. Another direction for future work is to include the possibil-
ity of more flexible automaton rules such as would be found in non-homogeneous auto-
mata or automata with dynamic boundary conditions. Finally, developing the theoreti-
cal basis to understand the error coverage limits of this testing technique would be

interesting.

5.2. Related Future Work

There several other areas for future work that are less specifically related to the
present work or are broader in scope than the above. The testing work raises interest-
ing epistemological issues related to human/machine interaction and confidence in
results in the complex interactive computer environment. It would be interesting to try
to define and quantify the theoretical relationship between testing, interfaces, and
confidence. For instance, how inaccurate is a person’s feeling of confidence about
results returned by a computer, and how much effect can graphical tools, or other data

presentation media, have on the accurate evaluation of these results.

In the area of architectures and machines, there are several possible projects of
interest. One would be to actually build a multiple pipeline machine using the MWSA
design using optical data paths wherever possible. This naturally leads to the option of
using more general purpose pipeline stages allowing flexibility in the automaton func-
tions. The increased functionality of the pipeline stages brings up several interesting
questions. For instance, if the pipeline stages are programmable, how does one pro-
gram them without adding additional communication lines?

Another interesting problem brought up by considering generalizing the MWSA
functionality has to do with the post/pre-processing required by simulations. The
results of the simulation must be processed to produce images, spatially averaged
results, and so on, sometimes while the simulation is running. The work presented in
this thesis has not addressed the architectural requirements of this collateral processing.
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What features added to the present architecture would best serve these collateral pur-
poses? How much does this affect the basic premises of the design tradeoffs, and can
this type of processing be incorporated into the pipeline stages?

The work presented here on throughput bounds suggests several possibilities for
further work. One would be to adapt the present discrete analysis to cover systems,
such as analog neural nets, that compute and communicate using analog signals.
Another would be to reconsider the definition of main memory bandwidth used in the
present work to accommodate the analysis of machines, such as the Connection
Machine " whose main memory is essentially distributed. Also, as communication
speeds become faster, it may be useful to reconsider the pebbling analysis by introduc-
ing the computation time (that is, number of calculation pebbling steps) required
together with the I/O time.

The use of discrete, deterministic, cellular automata to model continuous systems
presents some interesting questions as well. How does the complexity of the lattice-gas
simulation compare with an equivalent floating point finite-differencing method when
the operations are compared at the bit level? What are the relative sensitivities to ran-
dom bit errors of the two methods? Is there some general relationship between finite
precision floating point methods and discrete bit level methods suggested by the rela-
tionship demonstrated between lattice gasses and fluid flow modelling? Additionally, it
is still unknown exactly what the complexity of the lattice gasses are.

1 Connection Machine is a trademark of Thinking Machines, Incorporated.



Appendix A
Supergraph Complexity Theorem (Chapter 2)

Essentially, this theorem states that the I/O complexity of a data dependency

graph cannot be more than the I/O complexity of any supergraph. The theorem actu-
ally shows that any dependency set of a set of nodes M in the original graph is a subset
of the dependency of the set M in the supergraph. The proof hinges on the fact that if
H is a subgraph of a computation graph G, then N H(x)y < NC(x) . Thisis
seen by noting that if y € N (x) then there is an arc ( y, x)fromytoxin H.
As this arc is also in G it follows that y is also in NO( v ) .
Theorem: Suppose we have a computation graph G = (V, A ), where V are the
vertices of G and A are the arcs belongingto G . Let H = (V7 | A7) be a sub-
graph of G, where V' are the vertices of H and A" are the arcs belonging to H .
Let M be a subset of the vertices of H. Consider the vertices of H that are in the
dependency of M where the dependency is with respect to G, D G( M) N L
Then the number of such vertices is at most the number of vertices in the dependency
of M where the dependency is with repect to H . That is,

(D°(M) A V®) < D" (M)

proof: The proof will be an induction on the dependency levels.

(basis):
Suppose x € ( D(f( M) N VH ) .| As the support neighborhood of x is in
M it follows immediately that

NE(M) < NS(M) < M ,andthus
x e D¥(M).

(induction):
Assume (D§ (M) ~ VA) < Df(M) fork < i.

Suppose X € (D,G(M ) N VH) . We need to show that
X € D? (M) . Applying the definition of D,G(M ) we have
Ne(x) c M G ©f, wher (1)
i-1
e, = (-UlDfG(M”
J:
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From the observation made in the preceeding paragraph we have
Ni(x) < (N°(x) ~ V),
and applying (1) to this expression gives
c (M y 6L, ) n VA

i—1
= M U {.I(DJG(M) A VH)}.
J:

Applying the inductive hypothesis to the term in parentheses in this last expres-
sion results in

Ni(x)y ¢ M y O, ,and

appealing to the definition of D‘? (M) establishes the desired result.



Appendix B
Test Pattern Library Catalog (Chapter 4)

This catalog contains the descriptions of 51 test patterns for the LGM-1 lattice-gas
simulator. Some of the patterns depend on a function of the row number of the lattice
site designated as the origin for the pattern. This function is written site _rotation( x ),
and pertains to the result of the ¢4 and c¢7 collisions at the lattice site x. As shown in
figure 5, there are two possible results for these collisions, and in the LGM-1 machine
the choice is determined by the row number of the lattice site at which the collision
occurs. The rotation of a lattice site is defined to be the direction of the smallest rota-
tion that transforms an input vector into an output vector for the c4 collision.
Site_rotation( x ) returns the symbolic value clockwise if the head-to-head ¢4 collision

results in a clockwise rotation at lattice site x, and counterclockwise otherwise.

Some of the patterns have a rotation parameter. This is not to be confused with
the parameter of the same name used to describe the “‘turn’’ devices. For patterns, the
rotation indicates the handedness of the layout of the pattern. Reversing the handed-

ness amounts to reflecting the pattern through a horizontal line.

To save space, many patterns have devices symbolized by a small square labeled
with the device name and its parameters. Barriers are also indicated by squares, but

they are larger.
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P,

T ( origin, in_vector, rotation )

acts on: paired chains

j rotation
delaysmone hadee i elesnteiin

deflection: 1/3 in rotation direction

collisions: ¢, ¢3, C5

(+ = origin)

T,.

T ( origin, in_vector )

acts on: solid chains (length = 0 (mod 2)

in_vector ———=
delay: 2 steps

deflection: 7t/3 in site_rotation( origin ) direction

collisions: ¢, c3, ¢4, (cg)

T5.
T3( origin, in_vector, rotation ) /

5 Nrotation
rotation = site_rotation( origin ) i

in_vector —————>

acts on: endless solid chains G W °

delay: 2 steps

deflection: 1/3 in rotation direction

collisions: 5, ¢4

/ rotation

rotation # site_rotation( origin ) E d x

in_vector ———=

acts on: endless solid chains o —— b ARSI HOoR

delay: 4 steps

deflection: 7/3 in rotation direction

collisions: ¢, ¢ 19 (¢11)
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T,

T,( origin, in_vector, rotation ) rotation

acts on: solid chains ( length = 0 (mod 4))

in_vector ————= Ll
deflection: 1t/3 in rotation direction e —+— """"""""

rotation # site_rotation( origin ):

delay: 4 steps

collisions: ¢4, c"ﬁ, €4:Cgs C1o (C11)
rotation = site_rotation( origin ):
delay: 2 steps

collisions: see Ty

Turn Symbols
outgoing chain \

T1 ) T4 .
incoming chain / ‘
T;:
outgoing chain
T): incoming chain

&
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T Ty

Iy
T's5( origin, in_vector) @ ............. Q
. ...' T '_." -'._.' .
in_vector <@2 .............. s D o

acts on: solid chains with length < delay, and length = 0 (mod 4)
deflection: 27
delay: 22 steps for in_vector = v, vy4; 26 steps otherwise

—— b b b b b
collisions: ¢5, €3, €4, €3, Cg, €7, €19, Clo, (€11), (€11)

Mre!um'

M onirn ( OFigin, axis_vector )

axis_vector e
( * =local origin ) test pa'i'ticlé‘-._
peroid: 8 = 4 \

Missing Particle Return Detector:
The test particle is expected to return to origin at = 2 (mod 4).
If the test particle does not return, the two detector particles will
escape. If the test particle does return the system will return to

its original state at t = 0 (mod 4).
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M gate*

M g ( origin, axis_vector, 3, t )

t=0: el

2 test particle

detector particle

axis_vector

period: 8, =&

The M ,,,, reflects a single test particle at the phase ¢ of its
period. At all other phases particles may pass through the origin in the
positive or negative axis_vector direction. When ¢ > 1 the detector

particles are stepped forward in their paths appropriately.
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T,ga:c .

T gure ( origin, axis_vector, 8, t )

reflection delay = 6.

total periond = & + reflection delay

t=0:
deteFtor particle
!
axis_vector q
’.'
........................................ JT l \.
\
\
\
\
\
\
8/2 length path

Reflects a single test particle with velocity axis_vector at the origin.
The reflection occurs because of a ¢4 collision between the detector
particle and the test particle. If the phase ¢ is advanced the detector

particle is moved forward in its cycle and the reflection occurs at the
origin at global time  gjpy = —1.
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Patterns

A.

A( origin, axis_vector, n) paired chains with n/2 particles

axis_vector

T, @ distgncc =1 D T,

A-’

B.

B( origin, axis_vector, n)

n-particle solid chains

axis_vector

B, is identical to B except the rest-particle is missing.
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.

Cy(origin, axis_vector, n)

AN : e % g
AN n-particle solid chains
\.\. PR
\
\-
\.
................ > ) .........{—.-——.——.——......
hY
T, LY
N\
\.
\.
\\
X,
axis_vector

C, is the same, but has a rest-particle at the origin. -

D,.

D ( origin, axis_vector, rotation, n')

axis_vector
—_— .
9\ rotation
M return _ . M return
T -
[ ER— __|__ ............ o
D,.
axis_vector
————— .
= l% rotation

M return
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E.

i

E;( origin, axis_vector )

The E patterns are unlike the rest of the patterns in that there are no

moving particles. The background is the same in most patterns: every site
not occupied by a pattern element contains a rest-particle. The pattern
elements here are layed out in a star shape. Any changes in the pattern
show up in the alteration of the star pattern or in gross changes throughout
the pattern. The test sites contain the following for each of the different

E versions:

E,: empty lattice sites

E,: barriers

E 5: rest-particles

E 4 rest-particle / barrier (shown above)
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H,.

H,( origin, axis_vector, n)

n =4 test particle

axis_vector
n is the number of test particles in the pattern. For H, the test

particles are rest-particle / single-particle combinations. H is

the same except the rest particles are missing.

F..

Fy( origin, axis_vector, n)

n-particle solid chain |

axis_vector

F 3 is identical except the rest-particle is missing from the origin.
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P,

F,( origin, axis_vector, n)

'\ .
A A 4 L
4 Ay / AN
/ bY 4 5
/ N T N
’ \, 7 hS
4 b3 £ AN
s \\ /, \\
4 N f’ \,
AN A
\ /!
\- !'
n-particle solid chain /
5 7 \\ //
X A\ 7/
\n . ‘!
axis_vector
G. = = S— @ ......... <]
G ( origin, axis_vector ) My ptirn L% —
—_—
axis_vector

Gg. | @ """"" éEl M return

G4. @ ......... e.E Mremrn

M return
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G 3 I}\ M return

M return

M return

d \m M

i

K ( origin, axis_vector )

detector particle
7

P ~~

axis_vector
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Mgy (8 = 4,step = 4)

Mg (0 = 4d,step = 4)

Mgy (& = 4,step = 2)

Mgare( o = G»Step =6 ) \
TSR e - ._‘-. ‘
B .............. .f_‘:ﬁ:ﬁ. .............. D
M e (& = 6,step = 6) !
1
B, /)
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Mgate( o =4, step = 3)

Moue(0 =4, step = 3)

Mga:e( d = 6, step = 6)

S E] .............. .' .............. D

Mgare( =4, step =3) / Mgate( 8 =6, step=6)
a 7 :

(0]

My (8 =4, step=3) [ R

Mgare( d=4,step =4)
% !
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Mgare(a =4,step = 4)

Kis. B — e ............... R ]

Rige: s

My (8 =2, step = 2)
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Mg (8 =2, step = 2)

My (6 = 4, step = 4)

Mgy (8 = 4, step = 2)

Mg (0 = 4, step = 4)

Mgy (8 =4, step = 2)

Mgy (8 = 4, step = 4)

Mg (8 = 4, step = 2)
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\

Mgy (8 = 4, step = 4)

. Mgy (8 =4, step =2)

Mgy (8 =2, step = 2)

: Mgate(a =2,step =2)

6)\

Mgue(d =2, 5step = 2)

. Mg (8 =2, step = 2)

Toue(d =4, step = 3)

Kgg. sonfesiosiasnaes

Toure (8 = 4, step = 3)
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Toure (8 =4, step = 3)

My (8 =2, 5tep = 1)
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