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ABSTRACT

We devise a linear-time algorithm for finding an ambitus in an undirected graph. An ambitus
is a cycle in a graph containing two distinguished vertices such that certain different groups
of bridges (called BP-, B®- and BY 9-bridges) satisfy the property that a bridge in one
group does not interlace with any bridge in the other groups. Thus, an ambitus allows
the graph to be cut into pieces, where, in each piece, certain graph properties may be
investigated independently and recursively, and then the pieces can be pasted together to
yield information about these graph properties in the original graph. In order to achieve
a good time-complexity for such an algorithm employing the divide-and-conquer paradigm,
it is necessary to find an ambitus quickly. We also show that, using ambitus, linear-time
algorithms can be devised for abiding-path-finding and nonseparating-induced-cycle-finding
problems.
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Section 1 FINDING THE AMBITUS 1

1 Introduction

The concept of an ambitus was first introduced in [5] and [6], in the process of devising an
efficient divide-and-conquer algorithm for the all-bidirectional-edges problem. An ambitus is
a cycle in a graph containing two distinguished vertices such that certain different groups of
bridges (called BP-, B?- and BP @-bridges) satisfy the property that a bridge in one group
avoids (i.e., does not interlace with) every bridge in the other groups. (See section 2, for a more
formal definition of ambitus.) Thus, an ambitus allows the graph to be cut into pieces, where,
in each piece, certain graph properties may be investigated independently and recursively, and
then the pieces can be pasted together to yield information about these graph properties in the
original graph. In order to achieve a good time complexity for such an algorithm employing the
divide-and-conquer paradigm, it is necessary to find an ambitus quickly, i.e., in O(|E| + |V])
time. Such an algorithm first appears in [6] and yields a time complexity of O(|E|- |V]|) for the
algorithm to find all bidirectional edges of an undirected graph.

In many respects, this algorithm is a generalization of the planarity testing algorithm, due to
Hopcroft and Tarjan [3]. Like their planarity testing algorithm, the ambitus-finding algorithm
needs to decompose the graph into a set of internally vertex disjoint subpaths, although the
decomposition needed for our purpose has to be somewhat different. Unlike their planarity
testing algorithm, the ambitus finding algorithm cannot traverse the subpaths in an order,
known a priori; rather the order, in which the subpaths are traversed, has to be determined
dynamically. For this purpose, we have developed a novel data structure that maintains a set of
(integral) intervals and supports a fast FIND-AND-UPDATE operation that detects the interval
corresponding to a subpath to be visited next and updates the set of intervals, appropriately.
This data structure has a good amortized time complexity, and may be of independent interest.

Subsequently, many other researchers have developed new algorithms either for ambitus-
finding in special classes of graphs or for certain other closely related concepts in general graphs.
Two such related concepts are abiding paths and nonseparating induced cycles. In section 8,
we present linear-time algorithms for abiding paths in nonseparable graphs and nonseparating
induced cycles in 3-connected graphs. The abiding paths have to be found in a ‘divide’ step for an
algorithm, due to Ohtsuki [7], for the two-vertex-disjoint-paths problem. Although Ohtsuki first
claimed to have a linear-time algorithm for abiding-path-finding problem, without the relevant
implementation details, it is unclear if the algorithm he sketched can achieve the claimed time
complexity. Nonseparating induced cycles need to be found repeatedly (at most |V| times) in
an algorithm, due to Cheriyan and Maheswari [1], that finds three independent spanning trees
rooted at a distinguished vertex, in a 3-connected graph.

In [4], Krishnan, Pandu Rangan and Sheshadri have developed a simple linear-time algorithm
to find an ambitus in a planar graph. Although their algorithm is simple and elegant, the tech-
niques employed do not generalize to other classes of graphs. In [10], R. Sundar has developed
an O(|E| + |V|log|V]) time algorithm to find an abiding path in a nonseparable graph. This
algorithm can be used for the ambitus-finding problem, if the graph is suitably modified. How-
ever, such an algorithm has a linear-time behavior, only if the graph is dense. In [1], Cheriyan
and Maheswari have developed a linear-time algorithm to find a nonseparating induced cycle
in a 3-connected graph. With suitable modifications to certain basic steps in the algorithm, a
different linear-time algorithm for the ambitus-finding problem can be devised.
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The paper is organized as follows: In section 2, we define some graph theoretic terminology
and introduce other key concepts required in the paper. In section 3, we demonstrate that
an ambitus always exists in a nonseparable graph, and an ambitus can be found by a naive
algorithm of complexity, O(|E|-|V]). In section 4, we provide a sketch of the main algorithm,
and in the subsequent two sections, we provide the implementation details, in order to guarantee
a linear-time behavior. In the last section, we give two simple applications of the ambitus-finding
algorithm.

2 Preliminaries

In this section, we define some graph theoretic terminology and introduce other key concepts
required in the paper. Most important among these are the terms: bridge, residual path, cross-
cut and ambitus. The definitions are similar to those used in the context of Tutte’s Theorem
on Hamiltonian circuits in 4-connected planar graphs given in Tutte [13], those in the planarity-
testing algorithm of Hopcroft and Tarjan [3] or those in connection with the four-color problem
as presented in Ore [8].

2.1 Graph Theoretic Terminology

A graph G = (V, E) is a finite set V of vertices and a set E of pairs of vertices, called edges.
Either the edges are ordered pairs (u, v) of distinct vertices (the graph is directed) or the edges
are unordered pairs [u, v] of distinct vertices (the graph is undirected). If [u,v] is an undirected
edge, u and v are adjacent. If (u,v) is a directed edge, u is a predecessor of v (respectively, v is
a successor of u), sometimes denoted by, u — v (respectively, v «— u). We call u and v, the ends
of the edge.

A graph Gy = (W4, Ey) is a subgraph of G, if V; C V(G), E; C E(G), and each edge of G,
has the same ends in Gy as in G. If G, is a subgraph of G, other than G itself, then Gy is a
proper subgraph of G. If V; = V(G) then Gy is said to be a spanning subgraph of G. A vertez
of attachment of Gy in G.is a vertex of Gy that is incident in G with some edge not belonging
to Gl.

If By C E(G), let V(E;) be the set of all vertices v of G such that v is incident with a
member of Fy, i.e.,

V(E)={veV(G): (Que V(G)) [u,v] € Ey }.

Then the subgraph (E,) = (V(E,), Ey) is the reduction of G to E,. Similarly, if Vi C V(G), let
E(V1) be the set of all edges of G' having both ends in Vi,i.e.,

E(WVy) = {[u, v]€ E(G):u,ve Vl}.

Then the subgraph (Vi) = (V4, E(V;)) is the subgraph of G' induced by V4.

An undirected graph is connected if there is a path connecting every pair of vertices and
disconnected otherwise. The maximal connected subgraphs of G are its connected components
or simply, components.
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A path of length k from u to v in G is a sequence of vertices (u =) ug, 1, ..., ux (= v) such
that (u;,ui41) € E for 0 < i < k. (Sometimes denoted by u —— v.) The path contains the
edges (u;,u;i41) for 0 < i < k as well as vertices u; for 0 < i < k. The vertices u and v are called
the ends of the path P. All other vertices of the path (i.e., u;’s for 0 < i < k) are the internal
vertices of the path.

If 0 < ¢ < j <k, then the sequence of vertices, Uiy Uip1, ..., U; 18 a subpath of the path
from u to v. If P is a path from u to v, u = ug,uy,..., ux = v,and 0 < ¢ < j € k then
the subpath from u; to u;, including both u; and u; is represented by P[u;; u;]; the subpath
excluding u; but including u;, by Plu;;u;]; the subpath including u; but excluding u;, by
Plug;uj[ and the subpath excluding both u; and %j, by Plugu;[. I P = ug,us,...,%_y, ir

is a path from wup to ug, then the reversal of the path P is PR = Uky U1y o o o U, Ug. I
Py = ug,uy,...,u; and P = u;, ui4q,...,u; are two paths then the concatenation of P; and P,
is P]_ * Pz S Uy ULy e ooy Ugy Uip1ye ooy Uk

The path is simple if u, ..., u; are distinct (except possibly ug = ux) and the path is a
cycle if ug = ug. By convention there is a path of no edges from every vertex to itself (null
path), but a cycle must contain at least two edges. Two simple paths P; and P, are said to be
vertex disjoint, if the vertices of P; and P, are mutually distinct; internally vertex disjoint, if
the internal vertices of P; and P, are mutually distinct.

A connected graph is said to have a separation vertez v (also called an articulation point) if
there exist vertices a and b, @ # v and b # v, such that all the paths connecting a and b pass
through v. A graph which has a separation vertex is called separable, and one which has none
is called nonseparable (also called biconnected). The maximal nonseparable subgraphs of G are
its nonseparable components (also called biconnected components).

2.2 Bridge and Ambitus

In this section we introduces the notion of bridges for cycles in general graphs. The term
‘bridge’ is taken from Tutte [13], which also contains a rather complete survey of bridge theory
in both general and planar graphs. The equivalent terms for bridge, in some older literature,
are ‘component mod J’, ‘J-component’ [12] and ‘Gespinst’ [9].

Definition 2.1 BRIDGES.[Tutte]

Let J be a fixed subgraph of G. A subgraph G, of G is said to be J-detached in G, if all its
vertices of attachment are in J. We define a bridge of J in G as any subgraph B that satisfies
the following three conditions:

1. B is not a subgraph of J.
2. B is J-detached in G.
3. No proper subgraph of B satisfies both (1) and (2).

The set of vertices of attachment of a bridge B of a subgraph J in G is denoted by W(G, B) =
{vo,v1,...,vk—1}. O

®Gespinst is the German word for ‘cobweb’.
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Figure 1: Bridges of J.

Definition 2.2 DEGENERATE AND PROPER BRIDGES. NUCLEUS OF A BRIDGE.

An edge e = [u,v] of G not belonging to J but having both ends in J is referred to as a
degenerate bridge.

Let G~ be the graph derived from G by deleting the vertices of J and all their incident edges.
Let C be any component of G~. Let B be the subgraph of G' obtained from C by adjoining to
it each edge of G’ having one end in C' and one in J, and adjoining also the ends in J of all such
edges. The subgraph B satisfies the conditions to be a bridge. Such a bridge is called proper.
The component C of G~ is the nucleusof B. [

Remark 2.3 By a Theorem due to Tutte, if B is any bridge of a subgraph J of G then B is
either degenerate or proper. Hence using the above definition of a bridge and the theorem, we
can give a linear-time algorithm to find all bridges of a subgraph J of G. [

Example 2.4 In the Figure 1, we give an example of bridges of a cycle J. In this example,
bridges By, By, B3 and Bg are proper bridges, and By and Bs are degenerate bridges.
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Definition 2.5 RESIDUAL PATHS.

Let the vertices of attachment of a bridge B of a cycle J in G, be W(G,B) = {vo,v1,-.., %1}
and let v, vy, ..., vg—1 be their enumeration in their cyclic order on J. The vertices of attachment
dissect J into k subpaths Lo, Ly, ..., Ly_q such that L; = J[v5; Vj41(modr)]- These subpaths are
called the residual paths of Bin J. O

Definition 2.6 RELATIONS BETWEEN BRIDGES.
Let B, and B; be two distinct bridges of a cycle J of G.
® We say B, avoids B; if and only if one of the following two conditions is satisfied:

1. |w(G, By)| <1 or |w(G, By)| < 1.

2. All the vertices of attachment of By are contained in a single residual path L of Bs.

e If B, and B; do not avoid one another we say that they overlap.

o If there exist two vertices of attachment z; and z5 of By and two vertices of attachment y,
and y; of By, all four distinct, such that z; and z, separate 1 and y, in the cycle J, then we
say that they interlace. [

Example 2.7 In the Figure 1, the bridges B; and B, interlace, where as, the bridge B; avoids
By4. Also notice that the bridge B3 avoids every other bridge.

Definition 2.8 CRross-cuTs.
Let J be a cycle of the graph G. A path N in G avoiding J but having its two ends 2 and
y in J is called a cross-cut of J between z and y. [

Definition 2.9 PaTus P AND Q.

Let G be an undirected graph with two distinguished vertices s and ¢ and let J be a cycle of
the graph containing the vertices, s and ¢. Let the vertices of J be ordered in a clockwise cyclic
order starting with the vertex s. A subpath Jla;b] = (a =)ug, uy, .. .,ur_1, ux(= b) denotes the
unique subpath of J in which u;_; precedes u; in the clockwise cyclic order (for 1 < i < k).

The vertices, s and ¢ dissect the cycle J into two internally vertex disjoint paths: Pls; 1],
where P = J[s;?] and its complementary subpath in J, Q[s; 1], where QR = J[t;s]. Clearly P
and @ are internally vertex disjoint.

The vertices of P are ordered according to the cyclic order, and vertices of Q, according to
the reverse cyclic order. A vertex u of P is said to be to the left of a vertex v of P, if u precedes
v in the cyclic order of J; and u is strictly to the left of v, if, in addition, u and v are distinct.
On the other hand, a vertex u of Q is said to be to the left of a vertex v of @, if v precedes u in
the cyclic order of J; and u is strictly to the left of v, if, in addition, u and v are distinct. The
relation ‘fo the right of’ is the inverse of the relation ‘to the left of;” and the relation ‘strictly to
the right of is the relation ‘to the right of’ with additional irreflexivity property. [

Definition 2.10 BRIDGES WITH RESPECT TO THE PATHS.

Let G be an undirected graph with two distinguished vertices s and ¢ with two internally
vertex disjoint paths P[s;t] and Q[s; ], which meet each other only in their end vertices, s and
t. We consider three different classes of bridges of interest to us:
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Figure 2: BPQ. BP_ and B@-bridges of P and Q.

o BPQ-BRIDGES: The set of bridges with at least one vertex of attachment on Pls;t[ and at
least one vertex of attachment on Q]s;1[.

e BP.BRIDGES: The set of bridges with at least one vertex of attachment on P]s; t[ and no
vertex of attachment on Q]s;1[.

o B9-BRIDGEs: The set of bridges with no vertex of attachment on P]s;t[ and at least one
vertex of attachment on Q]s;[.

If a bridge B of J = PUQ in G is not a BP9-, BP- or B?-bridge then it has only s or t as
vertices of attachment. [J

Example 2.11 In the figure 2, we show BFP?. BFP. and B@- bridges of the paths P and Q.
Bridges B;, By and B are BFQ-bridges; By is a BF -bridge and Bj, a BY9-bridge.

Definition 2.12 AMBITUS.
Let J, P and @ be as in the previous definition. Then J is called an ambitus if every BF-
or B%-bridge avoids every BP@-bridge. [

Problem 2.1 AMBITUS-FINDING PROBLEM.
Assume that G = (V, E) is a nonseparable graph containing two distinguished vertices s and

t. Find two internally vertex disjoint paths P[s;] and @[s;1] in G such that the cycle J = PUQ
is an ambitus. [
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Without loss of generality, we assume that initially the graph G is presented to us with two
internally vertex disjoint paths connecting s and ¢, and that the bridges of the cycle composed
of these paths in G are BF-, B?- or BP @_bridges. That is, we assume that the cycle does not
have a bridge with all its vertices of attachment only at s or ¢; such bridges, if they occur, may
simply be eliminated without any effect on the solution.

Notation 2.13 Let G, s, t, P[s;t], Q[s;t] and J be as before. If B is a bridge of the cycle J
with at least one vertex of attachment on P]s;[, then the left- and the right-most vertices of
attachment of B on P[s;1] are referred to by sp(B) and tp(B). Similarly, if B is a bridge of
the cycle J with at least one vertex of attachment on Q]s; t[, then the left- and the right-most
vertices of attachment of B on Q[s;] are referred to by sg(B) and to(B). O

3 Existence of an Ambitus
First, we need few definitions.

Definition 3.1 CARRIER OF A BP- or A B?-BRIDGE.

Let B be a BP-bridge of J = PUQ in G. Let sp(B) and tp(B) be its left- and right-
most vertices of attachment on P. Then we say P[sp(B);tp(B)] is the P-carrier (or simply its
carrier, when B is understood to be a BF-bridge, from the context). A Q-carrier of a B9-bridge
is defined in an identical manner. [J

Definition 3.2 THE COVERING RELATION.
A BF-bridge B, covers another BP -bridge B, if following two conditions are satisfied:

1. The P-carrier of B, Psp(B;);tp(B2)], is a subpath of the P-carrier of By,
Plsp(By); tp(By)].

2. By has a vertex of attachment on Plsp(By);tp(By)].

A BP-bridge B; covers a vertex v, if v € V(P]sp(B1);tp(B1)[) and mazimally covers, if, in
addition, no BF -bridge B; covers By. A similar set of definitions holds for BQ—bridges and the
vertices of Q]s;¢[. [

Definition 3.3 AN OrFrFENSIVE BP-BRIDGE.
Let v € V(P]s;1[) be a vertex of attachment of a BP?-bridge, B, of J = P U QinG. Ifa
BP_bridge covers v then it is said to be offensive to B. [

Now, we are ready to prove the existence of an ambitus; the proof is constructive and readily
provides an O(|E| - |V|) time algorithm.
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Theorem 3.1 Let G be an undirected graph with two distinguished vertices s and t such that
it has two internally verter disjoint paths Py[s;t] and Qo[s;t]. Then G also has two internally
vertex disjoint paths P[s;1] and Q[s;t] such that the cycle J = PUQ is an ambitus.
PROOF.
Let Jo = Py U Qo be the cycle in the graph G. We describe a sequence of cycles, Jy, Jq, ...,
Jn, where Jy, is an ambitus and n < |V|. If J; is not an ambitus then Jit+1 is obtained first,
by finding an offensive BF- or B?-bridge (say, a B -bridge B) of J;, and then by replacing the
carrier P[sp(B);tp(B)] of B by a cross-cut R[sp(B);tp(B)] of B.

Since each such modification adds at least one vertex (a vertex of attachment of a BP?-
bridge) to the nuclei of the BP?-bridges, the sequence of modifications must terminate in 7 <|V|

steps. Since each modification step involves O(|E|) amount of work, the proof suggests an
O(|E|-|V]) time algorithm. [

4 Sketch of the Algorithm

For the sake of exposition, we sketch the algorithm FIND-AMBITUS without the implementation
details. The algorithm, implemented in a straightforward manner, does not produce a linear-
time algorithm. The implementation details, required to achieve the linear time complexity, are
discussed in the two subsequent sections.

The ambitus-finding algorithm, we devise, is loosely based on the ideas sketched in the proof
of Theorem 3.1. First, we observe that the algorithm may proceed in two phases: In one phase,
we deal only with the offensive BF-bridges and modify the path P until the final modified path
has no BP.bridge left; in the next phase, we deal only with the offensive B@-bridges, in an
identical manner. As modification of one path does not interfere with the structure of bridges
with respect to the other path, in principle, the original algorithm remains unchanged. Thus,
we may simply concentrate on the modifications carried out on either of the paths, say P.
Let V¥ denote the vertices of attachment of the BP Q_bridges on Pls;t[. In order to modify
the path P, the algorithm needs to select an offensive BP -bridge. For this purpose, we select
a BP-bridge (say, B), mazimally covering some vertex in VF. The last idea is a judicious
selection of a cross-cut R[sp(B);tp(B)] of B, which is achieved in the following manner: Let
P' = P[sp(B);tp(B)] be the carrier of B, and let Gg = (E(B) U E(P')), i.e. the subgraph
induced by the edges of the bridge and the edges of its carrier. If the cycle J' = PPU Q' is an
ambitus of Gp (which can be computed by a recursive application of the algorithm) then we
choose @’ as the required cross-cut R. The algorithm then modifies the path P by replacing
the carrier P[sp(B);tp(B)] by the cross-cut R[sp(B);tp(B)]. Note that, in this process, we
have not changed the logical structure of the original algorithm. Of course, some of the original
BP -bridges (i.e. the ones interlacing with or covered by B) will merge with some of the original
BPQ_bridges; the algorithm marks these BF-bridges, as they need not be considered any further,
and adds new vertices of attachment of BP @_bridges, thus created, to the set VF. This operation
is called a FIND-AND-UPDATE operation. (See Figure 3.)
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The advantage of selecting a maximally-covering BF-bridge and its cross-cut, as explained,
is that the modified path has a simple structure, with respect to its set of BF -bridges. In par-
ticular, each of its B”-bridges has all its vertices of attachment only on P[s;tp(B)], only on
R[sp(B);tp(B)] or only on P[sp(B);t], and further, no BP-bridge with its vertices of attach-
ment on R[sp(B);tp(B)] could be offensive. This allows one to simplify the data structure,
supporting the FIND-AND-UPDATE operation, as well as to eliminate the recursion. The efficient
implementation of these basic steps are based on the following two ideas:

1. PATH-FINDING: The first idea involves a modification to the depth first search and helps
us to quickly find the required paths in a BF-bridge.

2. AUXILIARY DATA STRUCTURE: The second idea involves an auxiliary data structure with
the operation FIND-AND-UPDATE, which, in effect, determines the order in which BP-
bridges are to be examined.

4.1 The Algorithm

A high-level description of the algorithm can be presented in terms of three mutually recursive
algorithms: FIND-AMBITUS, ANALYZE-BRIDGES and ANALYZE-BRIDGE. The correctness of the
algorithm is proven in the next subsection.

Algorithm FIND-AMBITUS(G, s,1):
begin

Let BF be the set of BP-bridges of J in G,and Ve,
the set of vertices of attachment of the
BFPQ-bridges of J in G, on P]s; ];

P'[s;t] :== ANALYZE-BRIDGES(P[s;t], B, VP);

Let J' be P'UQ;

Let B9 be the set of B9-bridges of J’ in G, and V9,
the set of vertices of attachment of the
BPQ_bridges of J' in G, on Q]s; t[;

Q'[s;t]:= ANALYZE-BRIDGES(Q[s; ], B9, V9);

return J” = P'UQ";
end{FIND-AMBITUS} []
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Algorithm ANALYZE-BRIDGES(L[s; ], BE, VE):
begin

L'[s;t] := L[s; t];

Vi:=VyEL;

Unmark bridges of BE;

MainLoop:
until V' = 0 loop

Find-and-Update:
Pair := (v, B)
(* v€ V' and B = an unmarked bridge, maximally covering v,

* if such a bridge exists; B =1, otherwise. #)
Vi=V'\ {v};

if B#L then
Let B’ C BL be the set of bridges, whose carriers intersect
with the subpath L]sg(B);t.(B)[;
for every B’ € B’ loop
(* Let W(B') = vertices of attachment of B’. )
if B’ is unmarked then
if B’ # B cand
B’ has a vertex of attachment on L]sr(B); ¢ (B)]

then
V=V uwW(B');
end{if }
Mark B';
end{if };
end{loop };
end{if };

end{Find-and-Update};

if B#L1 then
Let L" = L[sp(B);t(B)] be the carrier of B;
Let Gp = (E(B)U E(L"));
R[sp(B);tL(B)] := ANALYZE-BRIDGE(Gg, sz(B),t.(B), L");
L'[s;t] := L'[s;5L(B)] * R[s1(B); tL(B)] * L'[t (B);];
end{if };
end{MainLoop};

return L'[s;1];
end{ANALYZE-BRIDGES} [
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Algorithm ANALYZE-BRIDGE(Gp, s,t, Q[s; t]):
begin
(¥ Gp is composed of the bridge, B, and its carrier, Qls;t] *)

Find a path P[s;t] from s to ¢ in B;
(* P[s;t] and Q[s;1] are two internally vertex disjoint paths
* inGp and J = PUQ is a cycle in Gp. *)

Let B be the set of BP-bridges of J in Gp, and VP,
the set of vertices of attachment of the BP@-bridges of J
in Gg, on Pls;t;

R[s;t] := ANALYZE-BRIDGES(P[s;t], BP, VP);

return R[s;t];
end{ ANALYZE-BRIDGE} []

4.2 The Correctness of the Algorithm Find-Ambitus
For the proof of correctness of the algorithms, we need to define the following notations:

* A sequence of paths: Py[s;t], Pi[s;t], ..., P;[s;1], ..., where Py[s;t] = P[s;t] and Pi[s;1]
is the modified path obtained at the end of the ith iteration of the MaiNLoor of the
algorithm ANALYZE-BRIDGES.

* A sequence of sets of vertices: Vo, Vy, ..., Vi, ..., where Vo = V¥ and V; is the modified
V' at the end of the i*" iteration of the MAINLOOP of the algorithm ANALYZE-BRIDGES.

Definition 4.1 A path P;[s;?] is well defined with respect to the cycle J = P U Q, if
1. It is simple and internally vertex disjoint with Qls;1].

2. There is a sequence of vertices: vy, v}, vs, Vi« oy Up, v, on P]s; [ arranged in a left-to-right
order such that P;[s;t] can be written as the concatenation of a sequence of alternating
common-sections and cross-cuts as follows:

Pls;n] * R[vi;vi] %+ % Rlvp; vp] * Plv};¢]. O
Let

Wi =V(P)NV(ER) =V(P[s;m])UV(P[v};0]) U+ UV (P} 1]),
and

Wi =V(P)\V(R) = V(Plo; o) UV (Plog o) U+ U V(P]oy; o).

Let P; be well defined, with the sequence of vertices V1, V], Vg, V), ..., Up, vy, dissecting it into
internally vertex disjoint subpaths as in the Definition 4.1. Thus J; = P;UQ; is a cycle in G.
Let B;, N; and A; stand, respectively, for the set of BF Q_bridges of J; in G, the vertices of
their nuclei and their vertices of attachment on P;]s;t[. Also, we say that the BY -bridges of J;
are partitioned, if every BF-bridge of J; in G has all its vertices of attachment on one of the
subpaths P;[s;v], P;[vr; vl], Pi[v};vs], ..., F;[vp; vp] or P;[v;1].
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Lemma 4.1 (Main Technical Lemma)
For all 1 > 0,

1. Pi[s;t] is well defined with respect to J.
2. (a) W; CN;.
(b)) VinW,; C A,.
3. (a) The BF-bridges of J; in G are partitioned.

(b) If there is an offensive B -bridge B’ of J; in G, then B’ is also a BP -bridge of J.
Furthermore, B’ is unmarked and covers a vertex w € V; N W; of J.

PROOF.

The proof is by a double induction on i and the size of the graph. The basis step follows trivially,
since Py[s;t] = P[s;t], Wo = V(P[s;1]), Vo = A, and since every BP -bridge of J is initially
unmarked.

Induction Step: Let (v, B) be the Pair chosen in the i*® iteration of MAINLOOP. Hence
v € V;—1. The case, when B =1, is immediate, since P; = Py, Je=le gl

VinWw; = (Vi-l N Wi-1) \{v} EViein Wiy C Ay = A,
Hence, assume that

B € B is an unmarked bridge, maximally covering v. Since every bridge covering
w € W;_; is marked, v € W;_;.

The invariant (1) follows from the facts that P;_; is well defined (by inductive hypothesis)

and that the cross-cut

R[sp(B);tp(B)] = Pilsp(B);tp(B)]
is internally vertex disjoint with J;_; and the vertices s p(B) and tp(B) lie on a common-section,
Pi_1[vi; vig1] = Plvg; vpya].

The invariant (2) holds as a result of the followings: W; = W;_, \ V(P]sp(B);tp(B)]).
Since V(P]sp(B);tp(B)[) C N;, by the inductive hypothesis, W; C N;. Also, for all z € W;,
ifz € V;then 2 € A;. If z € V; N V;_; then by inductive hypothesis € A;. Otherwise,
z € V; \ Vi_1: then z is a vertex of attachment of a BF-bridge, B', of J in G, where B’ has a
vertex of attachment, y on P]sp(B);tp(B)[. But since y € Ni, z € A,

The invariant (3a) holds by virtue of the inductive hypothesis and the assumption that B is a
maximal B -bridge covering v, since if B is a BP-bridge of J; in G with a vertex of attachment
on P;]sp(B);tp(B)| then all its vertices of attachment lie on P;[sp(B);tp(B)].

The last invariant (3b) can be proven as follows: Let B’ be an offensive BF -bridge of J; in
G, with all its vertices of attachment on Fi[sp(B);tp(B)]. As a result of the recursive nature
of the algorithm, and by the inductive hypothesis, it follows that B’ has sp(B) and tp(B) as
only its vertices of attachment. But, this causes a violation of the assumption that B is a bridge
maximally covering v. Thus, we see that every offensive BP -bridge of J;, B’, has its vertices of
attachment on some common-section or cross-cut of P;[s;t] \ P;[sp(B);tp(B)]. But then B’ is
also an offensive BF-bridge of J;_;, and the rest follows from the inductive hypothesis. [
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Figure 3: The modifications performed by ANALYZE-BRIDGES with the Pair — (v, B).

The correctness of the algorithm follows as an immediate corollary of the preceding lemma.

Corollary 4.2 The paths P'[s;t] and Q'[s;t], returned by the algorithm FIND-AMBITUS, are
simple and internally vertez disjoint, and J” = P' U Q' is an ambitus.

PROOF.

It suffices to observe that if G is an undirected graph, with two internally vertex disjoint paths
P[s;t] and Q[s;], BY = the set of its BP-bridges and VP = the set of vertices of attach-
ment of its BP?-bridges on P]s;t[ then P'[s; 1], the path returned by the algorithm ANALYZE-
BRIDGES(P[s; {], BF, VF), satisfies the following conditions:

1. P'[s;t] is a simple path internally vertex disjoint with Q[s; t];
2. The number of offensive B”-bridges of the cycle P! U Q is 0;

3. The number of offensive B?-bridges of the cycle P’ U @) is equal to the number of offensive
BQ-bridges of the cycle P U Q. ]
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5 Implementation: Path-Finding

In this section, we present an algorithm to obtain a representation of the graph G that allows
efficient implementation of many of the basic steps of the algorithm. This section is essentially
Hopcroft and Tarjan’s Algorithm [2] for planarity-testing, with appropriate modifications. The
representation consists of a palm tree P of the graph G, with its tree edges and back edges
appropriately directed together with a partition of the edges of the graph into a set of internally
vertex disjoint simple paths.

5.1 Building the Palm Tree
Let G = (E,V) be a nonseparable graph, with two distinguished vertices s and t. Let

Pls;t] = vp(= 8),vp-1,...,1,v(=1),
and
Qlsit] = wo(=s),wy,...,we_1,w,(=t).

be two internally vertex disjoint paths in G’ that meet each other only in their end vertices.
Let @: E(G) — N x N be a function defined on the edges [u, v] of G as follows:

= (05 0)’ if [ua ’U] = [wO: wl];
& ([u,v]) = { (0,[V] +1), if [u,v] € E(J)\ {[wo, w1]};
(IVI+LIVI+1), if [u,v] € E(G)\ E(J).

Assume that the graph G is represented by adjacency lists A(v), ordered according to increasing
values of 5, under a lexicographic ordering. Since ;I;([u, v]), for each edge in G, can be calculated
in O(|E[) time, and the adjacency lists can be ordered in O(|E|) time, using a radix sort, such
a representation can be obtained in O(|E|) time.

Next, we systematically explore the graph G using a depth first search (DFs), starting at s.
The prs directs the edges of G, and partitions the directed edges into two classes: tree edges
and back edges, such that

1. The tree edges form a spanning tree T of G
2. Each back edge connects a vertex with one of its ancestors in T.

We call the resulting directed graph a palm tree P[11]. The DFs also numbers the vertices by
their DFs-number in the range (1.. [V|); henceforth, we identify the vertices by their DFs-number.

If v is a vertex, then let S, stand for the set of vertices reachable from a descendant of v by
a single back edge. Let

Lowl(v) = miN({v}US,),
and

Low2(v) = MIN({v} U (S, \ {rowl(v)})).

LowW1(v) is the (first) lowest vertex below v reachable from a descendant of v by a single back
edge, and LOW2(v) is the second lowest vertex below v reachable from a descendant of v by a
single back edge. By convention, Low values of v are equal to v, if they are not defined.
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Figure 4: The Graph G.

The Low values of a vertex v depend only on the Low values of children of v and on the
back edges leaving v; thus it is easy to calculate LOW values by appropriately modifying DF'S
algorithm. (see Path-finder algorithm in Hopcroft and Tarjan [2, 3]).

We make the following observations:

1. The ordering induced by & ensures that the DFs visits the vertices of P and @ before it
enters any of the bridges of J, and that the edge [vp—1,vp] is a back-edge and all other
edges of J are tree-edges.

2. After the prs each of the edges is directed; the tree edges are directed from a smaller
vertex to a larger vertex and the back edges from a larger vertex to a smaller vertex. Thus
each edge appears once in the adjacency lists of P. If 4 — v is an edge of P then by
convention, ®(u — v) = &([u, v]).

In the next step, we use a second depth first search, carried out in a special order, to divide
the graph into a set of simple paths which may be assembled in order to build the ambitus. To
generate paths, we sort the adjacency lists of P according to the LOW values. For this purpose,
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we define a function ®: E(G) — N x N, on the edges u — v of P as follows:

(v, u), if u — v is a back edge;
®'(u—v) =< (Lowl(v),u), if u — v is a tree edge and Low2(v) > u;
(Low1(v),Low2(v)), if u — v is a tree edge and LOW2(v) < w.
and

P(u — v) = MIN (@’(u — ), ®(u — v)) ;

where MIN is taken with respect to the lexicographic ordering.

We calculate ®(u — v) for each edge u — v of P and order the adjacency lists according
to increasing values of ® (under a lexicographic ordering), using a radix sort to achieve an
O(|E| + |V|) time bound.

Now we generate paths by applying depth first search to P, using the new adjacency lists.
Each time we traverse a tree edge we add it to the path being built. Each time we traverse a
back edge, the back edge becomes the last edge of the current path. The next stage starts a new
path. Thus each path consists of a sequence of tree edges followed by a back edge. Since each
path is completely built before the next stage with a new path is started, the order in which the
paths are generated induces a linear order among the paths. Furthermore, the edges E(G) of
the graph, G, are partitioned into a set of internally vertex disjoint simple paths; this partition
of E(G) is represented by associating with each edge u — v of P, PATH(u — v), the unique
path containing the edge. This algorithm, called PATH-FINDER, is just a depth first search with
a few additional operations to construct paths, and can be implemented in O(|V| + |E|) time.
Figure 5 shows the paths obtained by the PATH-FINDER algorithm when applied to the graph G
of Figure 4.

We mention a few interesting properties about the paths found by the PATH-FINDER algo-
rithm; the proofs can be readily obtained with simple modifications of the proofs in Hopcroft
and Tarjan [2].

Lemma 5.1
(A) Let L be the first path found by the algorithm PATH-FINDER. Then L =J = PUQ.

(B) Let L[f;1] be a path found by the algorithm PATH-FINDER. If L is not the initial path
then

1. L is a simple path.
2. L contains ezactly two vertices (f and ) in common with previously generated paths.

3. If we consider the back edges not yet used when the first edge of L is traversed, then | is
the lowest vertez reachable via such a back edge from any descendant of f.

4. If v € L) f;l then l is the lowest vertez reachable from any descendant of v via any back
edge. [J

Definition 5.1 SEGMENTS. Let J be the cycle in G. When J is removed, G falls into several
connected pieces, called segments of J in G. Each segment, S , consists either of a single back
edge e = u — v, or of a tree edge e = u — v plus a subtree with root at v plus all back edges
leading from the subtree; here, u € V/(.J). We say that the segment, S, is associated with the
edge e.
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Ls

Figure 5: The paths obtained from the palm tree of G.

Let 5" be a segment associated with an edge ¢’ = u' — v'. Let L = PATH(u' — v'). If
5’ consists of the single back edge e’ then the set of segments of L in S’ is empty. Otherwise,
S" consists of the tree edge e’ plus a subtree with root v’ plus all back edges leading from the
subtree. When L is removed, S’ falls into several connected pieces, called the segments of L in
5. Each segment, 5, consists either of a single back edgee =u — v,orofatreeedge e = 4 — v
plus a subtree with root at v plus all back edges leading from the subtree; here, u € V(L). We
say that the segment, S, is associated with the edge e.

Note that the definition of a segment is recursive, and is based on the structure of the palm
tree. [

5.2 Using the Palm Tree

Next we describe how the palm tree can be used to find paths and bridges of the graphs quickly,
in a recursive manner. Also, we classify BF-bridges into: (i) Normal BF -bridges and (i7) Special
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Figure 6: The paths found in the Basis Step.

BP -bridges, and use this classification in the recursive application of the algorithm, since the
bridges of different classes have to be treated somewhat differently.

(1) The Basis Step. (Figure 6.)
By Lemma 5.1 (A), the first path found by the PATH-FINDER is PATH(s — wy) = J, the cycle
consisting of the tree edges s — wy — .. — Wg—1 =t — v1 — -+ — v, and the back edge
Vp—1 — 8.

Notice that every bridge of J in G is a segment of J in G. Let u be a vertex on Pls;t[, and
e = u — v be an edge, not belonging to P. Let B be the bridge of J in G, equal to the segment
associated with e.

If e is a back edge and s < v < t then B is a degenerate BY?-bridge. If € is a tree edge and
8 <LOW1(v) < t,or s = LOW1(v) < LOW2(v) < { then Bis a proper BF? bridge. Otherwise, B
is a BP-bridge. If a BP -bridge B has a vertex of attachment at s then it is said to be a Special
BP -bridge; otherwise, a Normal BP -bridge.

If B is BP-bridge then we can also obtain some additional informations about the bridge
based on the Low values of ».

o Let e be a back edge. Then B is degenerate.

If v > ¢ then the left- and right-most vertices of attachment of B are u and v, respectively.
All the edges of the carrier of B are tree edges, and B is a Normal BF -bridge.

If v = s then the left- and right-most vertices of attachment of B are s and u, respectively.
All but the last edge of the carrier of B are tree edges, B is a Special BT -bridge.
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Figure 7: The paths found in the Induction Step: Normal BP-bridge.

o Let e be a tree edge. Then B is proper.

If Low1(v) > t then the left- and right-most vertices of attachment of B are u and Lowl(v),
respectively. All edges of the carrier of B are tree edges, and B is a Normal BF -bridge.

If Low1(v) = s then theleft- and right-most vertices of attachment of B are s and MIN(u, LoW2(v)),
respectively. All but the last edge of the carrier of B are tree edges, and B is a Special BT -bridge.

If Low2(v) > u then B has exactly two vertices of attachment; otherwise, B has three or
more vertices of attachment.

From the above observations, it is easy to see that the sets BF and VP can be computed in
linear time. In order to compute the V¥, we simply traverse the edges of the BF @_bridges.

(2a) The Induction Step: Normal BF-bridge. (Figure 7.)

Let B’ be a normal B-bridge, with its left- and right-most vertices of attachment at s’ and ¢/,
respectively. Let vertices of attachment of B’ be z)), z/, ..., z;, such that 24 < 2 < --- < 2/,
where n > 1.

The carrier of B’ can be written as Q'[zh; 2!, = 2h — w) — --- — wy_y — z7,, where all the

edges of Q' are tree edges, and z) < w} < --- < wy_y < 23, Let Gpr = (E(B')U E(Q")). In this
case, either s’ = af, and ' = 2], or &' = 2/, and ¢’ = z}).
o If B' is degenerate then B’ is a back edge 2} — 2. Let P'[z};2p] = PATH(2] — z}) = 2} — 2.
o If B’ is proper then B’ consists of the tree edge @, — v} plus a subtree with root »! plus
all back edges leading from the subtree. Low1(v]) = zo. Let P'[x);2] = PATH(2), — )
=&, = v] — --+ = v)_; — gz, where all but the last edge v,_, — z{, are tree edges, and
zp, < v <---<w,_;. By Lemma 5.1(B.4) Lowl(vy) = .-+ = Lowl(v)_,) = z}.

J'=Q'U P is a cycle in Gpy, consisting of the tree edges T — Wy = = Wy — al —
vy — -++— v/_; and a back edge v,_1 — %o. Hence the analysis of paths and bridges of Gp
can be done in a manner identical to the basis case.

(2b) The Induction Step: Special BF-bridge.
Let B’ be a special BF-bridge, with its left- and right-most vertices of attachment at s’ and ¢/,
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Figure 8: The paths found in the Induction Step: Special BP -bridge with two vertices of at-
tachment.

respectively.

Case 1:(Figure 8.)

First, assume that B’ has ezactly two vertices of attachment: zg and 2} such that z}) < 2.
The carrier of B’ can be written as Q'[z};2}] = 2} — wy — -+ — wp_; — zf, where

all but the last edge w)_, — =} are tree edges, and T < ) < w) < -+ < wy_y. Let

Gp = (E(B")U E(Q")).

o If B’ is degenerate then B’ is a back edge 2} — 2. Let P'[21; 0] = PATH(2) — z}) = 2} — ).

o If B’ is proper then B’ consists of the tree edges &} — v] plus a subtree with root v/ plus all back

edges leading from the subtree. Low1(v}) = z/. Let P'lz};2p] = paTH (2] — v]) = 2} — v} —

“+s = vp_y — T, where all but the last edge VUp_y — 2 are tree edges, and 2} < v} < -+ < Vp_y.

By Lemma 5.1(B.4) Lowl(v}) = ... = Lowl(v,_;) = ;.
J'=Q'UP is acycle in Gg, consisting of the tree edges z§ — w} — .- — wy_, and 2} —
v} = +-- — v)_,, and back edges wy_y — zp and v),_; — af. All the bridges of J’ in Gg are

BF-bridges. The analysis of paths and bridges of G/ can be done in a manner similar to the
basis case.

Case 2:(Figure 9.)

Next, assume that B’ has three or more vertices of attachment: zg, z!, ..., 2! such that
zy < &y < --- < zh,. Hence, B’ is a proper bridge, with its left- and right-most vertices of
attachment at s’ and #'.

The carrier of B’ can be written as Q'[z}; z}] = ¢} — wy — -+ — w!_; — z}, where all but
the last edge wj_; — zj are tree edges. Let G/ = (E(B')U E(Q')). Then, either s’ = zf, and
t' =z}, or s’ = 2 and ¢ = z}; without loss of generality, assume the former.

Hence B’ consists of a tree edge z/, — v/ plus a subtree with root at v} plus all back edges
leading from the subtree. Low1(v}) = z}, and Low2(vy) = z{. Let L; = PATH(z], — v}) =
zn(= v) = v] = -+ = vl _; — zi(= v!,), where all but the last edge v),_, — z{ are tree
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Figure 9: The paths found in the Induction Step: Special BF -bridge with three or more vertices
of attachment.

edges, and z;, < v} < -+- < v}, _;. Let
ii= MAX({v,f :1<i<m—1and Low2(v)) = :1:'1})

Forall 1< j<m—1,if v} <y then Low2(v}) = 1, and if v} > y then LOW2(v}) > 2.
Let S be the segment of Ly in B’; there are two possibilities:

o 5 consists of a back edge y — z}. Let Ly = PATH(y — 2}) = y(= u}) — 25 (=4}).

o § consists of a tree edge y — u} plus a subtree with root at uj plus all back edges
leading from the subtree, and Low1(u}) = z}. Let L, = PATH(y — u}) = y(= u}) —
uy = -+ — uj_; — @4(= uf), where all but the last edge u)_, — x} are tree edges, and
y<wu <---<wujy. Lowl(u))=-. = Lowl(u)_,) = 2.

Let P'[zg;21] = (L1[y; 2p])R * La[y;2]. J' = P'U Q' is a cycle in Ggr and R = L [z%; 9],
a cross-cut of J* between z;, (an internal vertex of Q') and y (an internal vertex of P’ .) Let
@' = J'U R’ be a subgraph of Gg.

Following proposition is immediate from the definition of palm tree:

Proposition 5.2 Let B’ be a special bridge with three or more vertices of attachment and L,
Ly, J' and @', as defined earlier. Then
1. Ly and Ly are well defined.

2. If B is a bridge of ©' in G with a vertez of attachment on Pay; 24 then all its vertices
of attachment on P’ lie either on P'[z};y] or on P'ly;2!]. O

Thus, every bridge of @' in Gp is either a segment of L, in B’ , other than S, or a segment
of Ly in §. We classify the bridges of @ as follows:
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Definition 5.2 Let J = P[s;t] U Q[s; ] be a cycle in G. Let R[z;y] be cross-cut of J between
z, an internal vertex of @, and y, an internal vertex of P. The subgraph, @ = J U R, of G, is
called a ©-Graph in G. A bridge B of @ in G is a

1. BP-BRIDGE, if B has at least one vertex of attachment on P]s;t[, but none on Q]s;t[ or
R]z; yl.
2. BQ-BRIDGE and BE-BRIDGE are defined in a similar manner.

3. BPQR.BRrIDGE, if B has at least one vertex of attachment on each of the two or more out
of the three subpaths: P]s;t[, Q]s;¢[ and R]z;y[. O

Let u be a vertex on P'lag;zi[, and e = u — v be an edge, not belonging to P'. Let B
be the bridge of @' in G/, equal to the segment associated with e. If e is a back edge and
¢y < v < y then B is a degenerate BP9R.bridge. If ¢ is a tree edge and z] < Lowl(v) < v,
or zy < LOW2(v) < y then B is a proper BP?F.bridge. Otherwise, B is a BP-bridge. If a
BP-bridge B has a vertex of attachment at g or at 2} then it is said to be a Special BF -bridge;
otherwise, a Normal BF -bridge.

If B is a BP-bridge then we can obtain in linear time some additional information, such as
whether B is normal or special, and the extremal vertices of attachment of B using the Low
values of v. We omit the details.

6 Implementation: The Auxiliary Data Structure

In this section we present a data structure for the set BX and VL, generated at each recursive
call to the algorithm ANALYZE-BRIDGES. The main function of the data structure is to allow
fast implementation of the steps FIND-AND-UPDATE of the algorithm ANALYZE-BRIDGES.

6.1 The Data Structure

Assume that we are given the path L, the sets: B and VL, and for each bridge B of BL, its left-
and right-most vertices of attachment, and whether it has three or more vertices of attachment.
We describe a data structure that supports the following operation:

6.1.1 The ‘Find-and-Update’ Operation Supported by the Data Structure

Choose a Pair (v, B), where v € V' and B = an unmarked bridge, maximally covering

v, if such a bridge exists; B =1, otherwise. Remove v from V".

Let B’ C BL be the set of bridges, whose carriers intersect with the subpath L]sy(B); tL(B)[.
An unmarked bridge in B’ \ B has a vertex of attachment on L]s(B); tr(B)[; add

its vertices of attachment to . Mark all the unmarked bridges of 5.

Initially, the data structure contains the sets: L[s;t], VL and BT, with all the bridges of BL
unmarked. [

We define the one-dimensional closed (integral) interval from z to y,

ziyl=qte€N:2<i<y,, wherez,ye€ N andz <y,
Y
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as the set of all integers between the integer z and the integer y, including z and y. The half-open
intervals (]z;y] and [z;y[) and the open intervals (]z;y[) from z to y are defined in a similar
manner. An interval [z;;y;] is a subinterval of the interval [z;;y;], i.e., [z;;5] C feu], it
z; > zj and y; < y;, and a strict subinterval, i.e., [z;;y;] C [z;;y;], if either of the inequalities
is strict. The subinterval relation is extended to half-open or open intervals in a natural way.

Hence, any closed interval [z;y] C [1;k] can be visualized as a grid point (z,y)in a k X k
square, [1;k] X [1; k]. Because z < y, this representative point must lie on or above and to the
left of the diagonal line = y. A set of subintervals of [1; k] can thus be visualized as a set of
points in the upper left half triangular region, {(z,y) | 1 < = < y < k}, of the k x k square.

Let p; = (@i, y:) and p; = (z;, y;) be two distinct points in the upper left half region excluding
the diagonal line. Then

pi = p; (or p; < pi), if z; > zj, or 2; = z; and y; < Ui

The relation > defines a linear order. Let P = {p1 = (21,91), P2 = (T2,92)y -+ oy Pn = (wn,yn)}
be a sequence of n distinct points in the upper left half region excluding the diagonal line.

1. The point p; € P covers a point (u,u) on the diagonal line, if ; < w and y; > u; and p;
immediately covers (u,u), if, in addition, no p; € P such that p; = p;, covers (u,u).

2. The point p; € P covers a point p; € P, if z; < z; and y; > y;; and p; immediately covers
Pj, if, in addition, no p; € P such that p; > p;, covers Pj.

3. The point p; € P l-interlaces (i.e., interlaces from left) with the point p; € P, if 2; < z;
and z; < ¥; < y;j.

The immediate cover relation defines a forest structure among the points of P and the points
of the diagonal line and FATHER(g) = p in the trees, if p immediately covers ¢. (See Figure 10.)

6.1.2 The Schematic Representation of the Data Structure

Let v1(= 8), va, ..., vx(= t) be the sequence of vertices of the path L[vy; vg], ordered from left
to right. From now on, we assume that each vertex, v, is identified by its index u. Hence the
vertex u' is to the left of the vertex u”, if v’ < u”; and u', strictly to the left of u", if the
inequality is strict. Hence, the path L can be represented by the interval [1; k], and a subpath
Llz;y] (1 <2 <y < k) of L, by the interval [z; y].

e L[s;t]: Each vertex u of L has its representative point (u,u) on the diagonal line.

o BL: Let the set of bridges B” be partitioned into the classes, By, By, ..., B,, where each
class contains the bridges with same carrier on L. Fach such set of bridges B; C BL, with
the same carrier L[z;; ], (2; < y;), has its representative point p; = (z;,y;) above and
to the left of the diagonal line. We also say, z(p;) = z;, y(p:) = yi and B(p;) = B;. Let
P = {p1, p3, ..., pn} be the set of representative points of By, By, ..., By, ordered by the
>~ relation. With each point p;, there is a flag MARK, which is TRUE, if all the bridges
of B(p;) are marked; otherwise FALSE. Initially, all the flags have the truth value FALSE.
Since we know the left- and right-most vertices of attachment of every bridge B € BL, this
representation can be obtained in time linear in |L[s;#]| + ’BLI.
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Figure 10: A pictorial representation of the FOREST data structure.

1. The forest F' is the structure induced by the immediate cover relation over the points
on the diagonal line and the points of P.

2. Associated with each point p € P, there is a sequence, left(p) = [p1, P25 - -+, Pm] of
points, where

Pm = MAX, {p’ : p’ l-interlaces with p},

Pi = PATHER(P;i41), (1 < i < m) and FATHER(p;) = FATHER(p).

3. Associated with each point (u,u), there is a set, above((u,u)) = {p1, p2, ..., P} of
points, such that u = z(p;) = 2(p2) = - - - = z(pm)-

The sequences left and above are implemented by endogenous single linear lists, and hence
allow insertion in the front in O(1) time and scanning of the elements in order in 0(1)
time per element scanned. The representation given in (1), (2) and (3) can be built in

time linear in ([L[s;t]l + |P|) u O(|L[s;t]| + IBLD.

o V': The set of vertices in V' is represented by a stack S and a bag T such that SUT =),
SN7T = 0. Initially, the stack S is empty, and the bag 7 contains exactly the vertices
of initial V. For the bag we use an endogenous single linear list, which allows both
insertion and deletion in O(1) time. The time taken to obtain this representation is linear
in |vL| < |L[s;1]|-

Hence, the FOREST data structure can be built in time linear in O (|L| - |VL| + IBLD. O
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6.2 Building the Forest Structure

The following algorithm BuIiLD-FOREST builds the forest structure described in the last subsec-
tion and is based on the scan line paradigm.

Algorithm BUILD-FOREST(k, P):
begin
for u:=1to k loop FATHER((u,u)):= nil ;
for i:=1 to n loop
FATHER(p;) := nil ;
left(pi) :==[1];
end{loop };

Stack :=[];
for i:=1 to n loop
low :=2(p;) + 1;

while Stack # [ ] cand y(p;) > y(TOP(Stack)) loop
p:= TOP(Slack);
high :=z(p);
for u:= low to high loop FATHER((u,u)):=p;;
FATHER(p) := p;;

low :=y(p);
POP(Stack);
end{loop };

if Stack =[] cor y(pi) < z(ToP(Stack)) then
| high :=y(pi) - 1;
high :=z(TOP(Stack));
left(p) := [pi] & left(p);
end {if };

for u:= low to high loop FATHER((u,u)):=p;;
PUSH(p;, Stack);
end{loop };
end{BUILD-FOREST} [J

Lemma 6.1 The

o(|Ls; ]l +P)).
PROOF.
Let Stack® = [].

algorithm BUILD-FOREST correctly builds the forest structure in time

If StaCki_l - [Qm, ceo 541y G5y Q-1 - - o q1] then Stacki - [piy Qjs -« (11], where y(qm): .

¥(gi+1) < y(pi) and y(g;) > y(pi).

By induction on 4, it is seen that the following invariants on Stack hold:

1. STAIR CASE PROPERTY:
z(pi) < 2(gj) < 2(gj-1) <---< z(@); and

2. pi = PATHER(¢y) = - - - = FATHER(gj41), and if p; l-interlaces with q; then p; € left(q;).

y(pi) < ¥(g;) < y(gjim1) < -+ < y(q).

w
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From the way the FATHER and left links are created in the algorithm, and by virtue of the
above invariants, it is immediate that BuiLD-FOREST correctly builds the forest structure. The
linearity of the algorithm follows from the observation that the total number of operations is
same as the number of FATHER fields in the forest and the sum of the length of all the left lists.
O

Let p € P be a point; with p, we associate a rectangular region, R(p) as follows:

_ [[#(@)i k] X [=(q); k], if ¢ = pATHER(p);
)= { [:]i g:] % [15 K], : therwise. g

Let a > z(p). The following algorithm LIST-LEFT(p, a) lists all the points of the set

L= {q’ € R(p) : ¢ l-interlaces with p and y(¢') > a}, ordered by the > relation. The structure
List in the algorithm is implemented by an endogenous single circular list and allows insertion
in the front and concatenation in O(1) time, since we allow concatenation to destroy its inputs.

Algorithm LIST-LEFT(p, a):
begin
List :=[];
P’ = FIRsT(left(p));
while p’ # undefined cand y(p') > a loop
TempList := LisT-LEFT(p,a);
TempList :=[p'] & TempList;
List := TempList & List;
p'i= NEXT(p/, left(p));
end{loop };
return list;
end{LIST-LEFT} []

Lemma 6.2 Let p be a point and let a > z(p). Then the algorithm LIST-LEFT (p,a) lists all the
points of the set

L= {9" € R(p) : ¢ l-interlaces with p and y(q) > a},

ordered by the > relation. The algorithm is linear in the number of points listed.
PROOF.

The linearity of the algorithm follows from the representation of the lists and the fact that the
total number of insertion and concatenation operations is proportional to the number of points
listed. The correctness can be shown by a simple inductive argument.  [J
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6.3 Using the Data Structure

Algorithm Find-and-Update:
begin
if S #[] then v:= ToP(S); PoP(S);
else Choose any element v from 7; 7 :=7 \ {v};
end{if };
p':= FATHER(v);
if p = nil cor p’ = marked then Pair := (v, 1);

else
p:=p'; p':= FATHER(p);
while p’ # nil cand p’ = unmarked loop
p:=p'; p':= FATHER(p);
end{loop };
Let B € B(p) be a bridge with exactly two vertices of attachment,
if such a bridge exists; otherwise, B € B(p), chosen arbitrarily;
Pair := (v, B);
end{if };
if p#£L then

TempList := LIST-LEFT(p, s(B));

p' := FIRST( TempList);

while p’ # undefined loop

if p’ is unmarked then
for every B' € B(p') loop

(* Let W(B') = vertices of attachment of B’. )
PUSH(sL(B'), S);
T:=TUW(B)\ {s2(B")});

end{loop };
Mark p';
end{if };
p' = NEXT(p');

end{loop };
for 2’ :=z(p) to y(p) — 1 loop
for every p’ € above((2',2')) loop
if p = p then
for every B’ € B(p') loop
(* Let W(B') = vertices of attachment of B’. )
if B' # B cand |[W(B')| >3 then 7:=T UW(B');
end{loop };
Mark p/;
elsif p’ is unmarked then
for every B’ € B(p') loop
(* Let W(B') = vertices of attachment of B’ )
T =TUW(B");
end{loop };
Mark p/;
end{if };
end{loop };
end{loop };
end{Find-and-Update} [
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Figure 11: The point ps maximally covers the point (v,v). All the points in the shaded region
are marked at the end of the FIND-AND-UPDATE operation.

At a first glance, the algorithm appears to be complicated in how it handles the bridges
interlacing from left as compared to the bridges interlacing from right. This asymmetry is a
result of the order imposed on the points associated with the bridges, and the manner in which
it is reflected in the immediate cover (i.e. FATHER) relation. ( Consider three points p;, p; and p3
with 2(p1) < 2(p2) < z(p3) and y(ps) < y(p1) < y(p2). Note that p; covers ps, but this relation
cannot be derived as a transitive closure of immediate cover. In this example, if p, l-interlaces
some other point and gets marked by a FIND-AND-UPDATE operation then z(p2) should be
handled prior to a v € Jz(p3); y(p3)[. ) Thus, we need to handle the bridges interlacing from
left in an ordered way, while the bridges interlacing from right can be handled in an arbitrary
order. The left structure, LIST-LEFT algorithm, in conjunction with the stack S in the algorithm
FIND-AND-UPDATE, provide efficient mechanisms to scan the l-interlacing bridges in the desired
order. Following lemma clarifies the intuition.

Lemma 6.3 The algorithm FIND-AND-UPDATE correctly implements the operation FIND-AND-
UPDATE on the data structure.

PROOF.

First we claim that the stack S and the points of the data structure satisfy the following two
invariants, respectively:

1. The elments of the stack S are in a nondecreasing order, the TOP element being a smallest.
2. (a) If r is a point marked then all points covering r are also marked.
(b) If, in addition, z(r) ¢ S then all points that l-interlace with r are marked.
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Clearly, the invariant is satisfied initially.

Case 1: The Pair = (v, L). Assume FATHER((v,v)) = ¢ # nil, since otherwise there is nothing
to prove. Hence ¢ must be marked. Since z(¢) < v, z(¢q) ¢ S. From the invariant on the data
structure, it follows that every p; < ¢ covering (v, v) must be marked. But since ¢ immediately
covers (v, v) no p; > ¢ covers (v,v). Hence there is no unmarked bridge covering v.

Next we show that, after this operation on the data structure, the invariants are satisfied.
The stack obviously satisfies the condition. Hence, assume that the second invariant does not
hold. Let = be a point violating the invariant; r is marked. Then it must be the case that

z(r) = v and v € 8§ just before the FIND-AND-UPDATE operation, and there is an unmarked
point l-interlacing with r. But since such a point also covers (v, ), this provides a contradiction.

Case 2: The Pair = (v,p), where p = (2,y). Assume FATHER(p) = ¢ # nil, since otherwise
there is nothing to prove. Hence ¢ must be marked. Since z(q) < v, z(q) ¢ S. From the
invariant on the data structure, it follows that every p; < ¢ covering p must be marked. But
since ¢ immediately covers p no p; > ¢ covers p. Hence there is no unmarked point covering p.
Since all the bridges of B(p) are unmarked, it is easy to see that the bridge B € B(p) chosen by
the algorithm is in fact the maximal unmarked bridge covering v.

Let us consider a bridge B’ € B’ whose carrier intersects with L]sg(B);tr(B)[, i.e., the
interval Jz; y[. Hence the representative point, p’ = (2’,4'), of B’ has an interval ['; 9] that
intersects with Jz;y[. If p’ ¢ R(p) then p’ either covers or l-interlaces with ¢ = FATHER(p).
Thus, p', and hence the bridges of B(p’) must be marked. This implies that we only need to
consider such p’ € R(p). Since p is not covered by any unmarked point, we may further exclude
from consideration the p's covering p. It is trivial to see that at the end of the operation all
such points (hence there bridges) are marked. The correctness of the operation follows from the
following observations.

1. 2’ < 2. Then if p’ is an unmarked point, it is in LIST-LEFT(p, z(p)), and p’ l-interlaces with
p. Hence, every B’ € B(p') is unmarked and has a vertex of attachment on L]sy,(B); tr(B)[.
Its vertices of attachment are added to V' = SU 7.

2. ¢/ =z

o p' = p. Hence every B’ € (B(p) \ B), with three or more vertices of attachment,
is unmarked and has a vertex of attachment on L]sy(B);tr(B)[. Its vertices of
attachment are added to V' = SU 7.

o ¢’ € (above((z,2))\ {p}). Then if p’ is unmarked, 3’ < y. Hence, every B’ € B P
¥
is unmarked and has a vertex of attachment on L]sz(B);tr(B)[. Its vertices of
attachment are added to V' = SUT.

3.2 <2’ <y. p' € above((a',2’)). If p' is unmarked, every B’ € B(p') is unmarked and
has a vertex of attachment on L]si(B);t5(B)[. Its vertices of attachment are added to
V=8UT.

Next we show that, after this operation on the data structure, the invariants are satisfied.
Since LIST-LEFT lists the points such that they are ordered by the > relation, z(q.) > z(q_y) >
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¢ +++>z(q}), and thus the stack obviously satisfies the condition. Hence, assume that the second
invariant does not hold. Let r be a point violating the invariant; r is marked. We may assume
that r € R(p) and z(r) < y. If < r < y then every point covering  or l-interlacing with it
is marked at the end of the operation, (r) < # < v. Hence, using the invariant and the fact
that z(r) was not in the stack S before the operation, we see that such an r must have been
unmarked before the operation. Hence r € LIST-LEFT(p); but since at the end of the operation,
every point covering r is marked, and z(r) € S, this provides a contradiction. [

Lemma 6.4 Let L, V' and BL be as described in the beginning of this section. Let Oy, O, ...,
O be a sequence of FIND-AND-UPDATE operations applied to (L, VE, BLY such that at the end
of the m"™ operation the set V' = ().

Let Q" = (vi, B}), (v§, BS), ..., (v..., B.,) be the sequence of values of the Pair’s, where
(vi, B;) is the Pair returned by the operation ©;. Let Q = (v1, B1), (v2, Ba), ..., (Vm,By) be
the subsequence of Q' consisting of all Pair’s (v!, B!) such that B! #1. Let B = {By, B,, .
B}, and BY = BL\ BL.

Then the total time taken to build the initial structure plus the time taken by the operations
01, 02, .oy Om: is

.y

T(L,VE,BL) = O(|L|+ v+ 3 IE(B)|).
BeBY
PROOF.
First observe that if B; and B; are two distinct bridges selected by Q then their carriers are
internally vertex disjoint. Thus le'l < |L]. Also, |B.§| < EBGB%’ |E(B)|. Hence,

8] = O(|L| + ¥ |E(B)|).

BeBY
Now, from the earlier discussion, it follows that the time taken to build the data structure is
o(1zl+[vE| + [BE]) = O(lLI )+ 2 |E(B)|).
BeBY
Clearly, the total number of operations performed is bounded as follows:
m < VH+ ¥ wB) =0 (]vL[ + 3 |E(B)|).
BeBY BeBL

It remains to show that the total amount of time spent by the sequence of operations is ap-
propriately bounded: Let the Pair selected, in the i*® operation ©;, be < v, B! >. If B! =1 then
the amount of time spent by the FIND-AND-UPDATE operation is O(1). Otherwise, the amount
of time spent by the FIND-AND-UPDATE operation is bounded by the sum of the followings:

1. Total number of points in the region

(125 22.(B) x Ton(Bu)s K1) \ (115 s2(Bo)] x 1tz By); K]
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2. The time taken to compute the vertices of attachment of those unmarked bridges of B’\ B;
that have at least one vertex of attachment on L]sz(B;);t5(B;)[. If B is such a bridge
then W(B) can be computed in time O(|E(B)| + |V(B)[) = O(|E(B)|) time, using the
palm tree of the previous section.

Hence, a bound for the total time spent by the sequence of operations can be obtained by
deducing bound for the contributions due to (1) and (2). Since any point belongs to at most
two different regions of (1), the total contribution due to (1) is

o(|s) =O(|L|+ 3 iE(B)|).

BeBE

The total contribution due to (2) is bounded by O(EBeBL |E(B)|) Summing up, we obtain
2

the bound claimed:

T(L,VL,BL) =o(|L|+|vL’+ 3 [E(B)|). O
BeBY

7 The Timing Analysis of the Algorithm Find-Ambitus

Theorem 7.1 The algorithm FIND-AMBITUS requires O(|E| + |V|) time to find the ambitus in
a nonseparable graph, G = (E,V).

PROOF.

If L is a path then its subpath containing all the vertices of L except its end vertices, is denoted
by L]- -[. If v is a vertex then d(v) stands for the local degree of v.

Let P[s;t] and Q[s;t] be the paths in the graph. If Tp and Tgq bound, respectively, the time
required to modify P[s;t] and Q[s;t] such that G has no offensive BP- or B9-bridges then the
time complexity of the algorithm is bounded by O(|E|+ |V|) + Tp + Tq. It suffices to show that
Tp and Tg are each O(|E| + |V]).

Let P be the palm tree of the graph G. The first path in G is J. Let S be the segments
of J in P, and S¥ be the segments corresponding to BF-bridges. Let ST C SF be the set
of segments corresponding to the bridges in the sequence of Pairs, Q, found by a sequence of
FIND-AND-UPDATE operations, and S} = SF\ 87,

Hence, Tp is bounded by the sum of (i) the time taken to build the palm tree, (ii) the time
taken to find the path J, together with its segments, (iii) the time taken to build the data
structure plus that taken by the operations on the data structure, and (iv) the time spent in
each recursive call on the segments of ST.

Tp = Y T(5)+O(IE|+V])
seSy

+O(|J|+ Y dw)+ Y [E(S)[)+O(|P|+|VP|+ ¥ [E(S)|).

veV (P) ) 5eS\S? seS;
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Let Gp: = (E(B")U E(Q')) be composed of a bridge B’ and its carrier Q'; let s’ and ' be
the two distinguished vertices in Gg/. Let the segment S’ in P be the one corresponding to B’.

Case 1: If (i) B’ is a normal bridge, or (ii) B’ is a special bridge with exactly two vertices
of attachment then the first path L found in $’ is P'[s';#]. Let S be the segments of L in
§’, and 8%, the segments corresponding to BF'-bridges of P/ U Q'. Let St € ST be the set
of segments corresponding to the bridges in the sequence of Pairs, Q, found by a sequence of
FIND-AND-UPDATE operations, and 8% = $%\ 8. Then

(8" = ZT(S)+O(|L|+ Y Ao+ Y |E(S)|)

SeSy veV(L]--) seS\S*
+o(1L|+|vL|+ 3 IE(S)f).
5eS;

Case 2: If B’ is a special bridge with three or more vertices of attachment then the paths
found in S’ are Ly and L,, and the path I = P'[s';1'] is obtained from L; and L,. Notice
that |L| < |Li| + [L2|. Let & be the segments of L; and Ly in §’, and ST, the segments
corresponding to B -bridges of P’ U Q'. Let ST C ST be the set of segments corresponding to
the bridges in the sequence of Pairs, Q, found by a sequence of FIND-AND-UPDATE operations,
and 8% = ST\ 8. Then

(s = ) T(S)

SeSy
LO(ILltiLl+ 3 dw+ ¥ do+ X 1E))
veV(L1]--]) vEV(Lz]- ) SeS\S*
+o(|L|+|vL]+ ) |E(S)|).
SeS7

Solving the recurrence relations, we get
T(§) = 0 ([E(S)I ;¥ (|L| 5~ 57 d(v))).
LeL(S) veV (L] )
where £(5) is the set of internally vertex disjoint paths in the segment 5. Hence it follows that
Tp =0 (|E| i+ ¥ (im+ X d(v)))-
LeL(P) veV(L]- )
Since the paths of the palm tree P are internally vertex disjoint,
> (iE+ ¥ dw) <215+ X dw) <4018,
LeL(P) veV(L]- ) vev

and Tp = O(|E|+|V]). O
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8 Abiding Path and Nonseparating Induced Cycle

In this section, we study two graph theoretic notions, closely related to the concept of an ambitus.

Definition 8.1 ABIDING PATH.

Let G be a graph with two distinct vertices s and ¢, a path P[s;] and a set of distinguished
vertices W C V. A bridge B of P[s;t] is said to be a W+-bridge, if W N N(B) # 0; otherwise,
a W~ -bridge.

Let a (W, P)-projection be the set

n=(wnv(P)u |J W@,B),
B=w+t-bridge

i.e., the set of vertices on P[s;1], either in W or a vertex of attachment of some Wt-bridge.
A path P[s;1] is said to be an abiding path with respect to W, if no W~-bridge covers a
vertex of the (W, P)-projection, II. [

Let G be the graph obtained from G by including additional vertices {s', w’, #} and additional
edges

{Is" o) 16 0,1, w0, [, 1} U {[w, 0] 2 w € W)

Let J = P[s';¢'] * [t',w'] * [w', §'] be an ambitus of the graph G, containing s’ and ¢'. It is easily
seen that the subpath P[s;t] of P[s';#] is an abiding path in G with respect to W.

Definition 8.2 NONSEPARATING INDUCED CYCLE.

A cycle J in a graph G is said to be a nonseparating induced cycle of G, if there is at most
one proper bridge B of J in G. Given a 3-connected graph G, containing a distinguished vertex
u and a distinguished edge [s, t], of particular interest is a nonseparating induced cycle J of G,
containing [s,¢], but not . O

Let G be the (nonseparable) graph obtained from G by deleting the edge [s, %], and P[s;1],
an abiding path in G with respect to the set {u}. 1t is easily seen that J = P[s;t] % [t,s] is a
nonseparating induced cycle of G such that [s,#] € E(J) and u ¢ V(J).

It is trivial to see that both these problems can be solved in linear time, using the linear-time
ambitus-finding algorithm.
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