Distributed Processing
of Filtering Queries in
HyperFile

Chris Clifton
Hector Garcia-Molina

CS-TR-295-90

November 14, 1990

Abstract

Documents, pictures, and other such non-quantitative information pose interesting new
problems in the database world. We have developed a language for queries which serves
as an extension of the browsing model of hypertext systems. The query language and
data model fit naturally into a distributed environment. We discuss a simple and efficient
method for processing distributed queries in this language. Results of experiments run
on a distributed data server using this algorithm are presented.

Distributed Processing of Filtering Queries in HyperFileT

Chris Clifton*
Hector Garcia-Molina
Princeton University

1. Introduction

HyperFile is a back-end data storage and retrieval facility for document management applications.
The goal of HyperFile is not just to store traditional documents containing text. It also supports
multimedia documents containing images, graphics, or audio. In addition, it must support hyper-
text applications where documents are viewed as directed graphs and end-users can navigate
these graphs and display their nodes. Another goal is to provide a shared repository for multiple
and diverse applications. For example, it should be possible for a user running a particular docu-
ment management system to view a VLSI design stored in HyperFile. Similarly, a user running a
VLSI design tool should be able to refer to a document that describes the operation of a particular
circuit.

Given our requirements, it makes sense to implement HyperFile as a back-end service, as shown in
Figure 1. Although not essential, we do expect that in many cases applications and HyperFile will
run on separate computers. This is because: (1) HyperFile represents a shared resource so it is
important to off load as much work as possible, (2) the applications probably have different
hardware requirements (e.g., color graphics displays) than the service (e.g., large secondary
storage capacity, high performance 10 bus), and (3) it enhances the autonomy of the applications.

We stress that the HyperFile ‘“‘server’” will often be distributed over multiple computers. In some
cases, the source objects or documents will be inherently distributed over multiple nodes. For
example, old papers would be placed on an archival server, whereas it makes sense to keep work

application application application application

r A
1 I
1 ’ I
: HyperFile Server :
I

| server server server |
: node node node :
I |
I I
e s . T Wt s A R -

Figure 1: HyperFile as a back-end service.

" This research was supported by the Defense Advanced Research Projects Agency of the Department of Defense and by the Office of
Naval Research under Contracts Nos. N00014-85-C-0456 and N00014-85-K-0465, and by the National Science Foundation under
Cooperative Agreement No. DCR-8420948. The views and conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

#Work of this author supported in part by an IBM Graduate Fellowship.

in progress on the author’s workstation. As a more extreme example, two geographically distant
institutions may want to (transparently) share information; however neither wishes to provide
space for storing the other’s documents. In others cases, distribution is required to provide relia-
bility, high performance, large capacity, and/or modularity. As we will see throughout this paper,
this distribution requirement drives many of the design decisions made in HyperFile.

Given that we wish to provide a data server, the most important question is what interface to pro-
vide the applications. There is actually a spectrum of possibilities. At one end we have a file
interface. In this case, the server only understands named byte sequences. The server does not
understand the contents; it can only retrieve a file given its name or store a new file. From one
point of view, this is a good model: it makes the data server simple, off loading all of the interpre-
tation of the data to the application. One could even argue that it facilitates sharing because it
does not impose a particular data model that may be inappropriate for some applications. On the
other hand, a file interface increases the number of server-application interactions and/or the
amount of data that must be transmitted. For example, say we want to search for a book with
some given properties, e.g., published between May 1901 and February 1902. Since the server
does not understand publication dates, the application will be forced to retrieve many more books
than are actually required. Of course, the application could also build index structures for some
common queries, but then these indexes do not cover all cases, plus traversing the index struc-
tures also requires interactions with the server.

For the type of applications we are considering, we would like to have some more server search
functions, while still preserving the simplicity and flexibility of a file interface. This is precisely
the goal of HyperFile. The philosophy is that HyperFile will not understand the contents of objects,
except for some key properties (defined by the application) that will be used for retrieval. Exam-
ples of properties may be the title of a paper, the clock speed of a particular chip, the objects that
are referenced (hypertext links), or the previous version of a program (pointer to another object).
Searches based on these properties will be performed by HyperFile, usually with a single request
and retrieving only the data of interest. More complex searches (e.g., find all chips that have a
race condition) will involve additional processing by the application. The fundamental idea is
that HyperFile is powerful enough so that, for the applications of interest, most of the searching
can be done at the server, while at the same time being straightforward enough to have a simple
and efficient distributed implementation.

There are a number of distributed system issues that have driven the design of HyperFile. We out-
line a few of there here.

e Communication may be expensive. HyperFile servers may be widely separated. Therefore mes-
sages should be as small as possible, limited in number, and able to be sent using simple proto-
cols.

e HyperFile should scale well. The system may be large, and queries may only need objects from
a few nodes. Only those nodes should be involved in processing the query.

e Server nodes may be autonomous. They should not be subject to any more global control than
necessary, and lack of cooperation from one node must not shut down the entire service.

e Partial results are better than none at all. If Node A is down, one should still be able to pose a
query to Node B. This may not produce a complete answer to the query, but it may be ade-
quate.

In our server interface spectrum, there are of course other options in addition to files and Hyper-
File. We feel that they do not meet the goals we have for a data server. These will be surveyed in
Section 3, after we have given a more detailed overview of HyperFile. However, at this point we
do want to stress we are not ruling out other interfaces for different applications (or even for
document processing ones). As a matter of fact, other interfaces (such as an object-oriented data-
base or a file system) could be implemented at the server next to (or even on top of) HyperFile.
Our point is that HyperFile represents an interesting point in the interface spectrum, providing the

right mix of facilities and simplicity for many document management applications.

2. The Query Language

In HyperFile objects are modeled as sets of tuples. These tuples can contain text, pictorial data,
keywords, bibliographic information, references and pointers to other objects, or arbitrary bit
strings. A sample set, containing (for example) a module from a Software Engineering system, is:

{ (String, "Title", "Main Program for Sort routine")
(String, "Author", "Joe Programmer")
(Text, "Description", <Arbitrary text description.>)
(Text, "C Code", <Text of the Program>)
(Text, "Object Code", <Executable for module>)
(Pointer, "Called Routine", <Pointer to another object>)
(Pointer, "Library", <Pointer to a library used by this routine>) }

Note that tuples have three parts: A type, which identifies the data types of the remaining fields
to HyperFile; a key, which is used by the application to specify the purpose of the tuple; and data,
which can be a simple type such as a string or pointer, or complex (and not understood by Hyper-
File) such as a paragraph of text or the object code of a program. The possible entries in the type
field are not fixed; applications can define new types. For example, an application could define
Object_Code to be a type where the key would name the target machine. This would be a conven-
tion between applications; HyperFile would only understand Object_Code as a type of tuple hav-
ing a string as a key, and arbitrary bits as data. The data server does not understand (or restrict)
the concepts of *‘target machine’’ or ‘‘object code’’.

Tuples may contain pointers to other objects, as shown in the above example. From the viewpoint
of an application, such pointers simply identify other objects regardless of location. In other
words, distribution is transparent. The query processing algorithm must handle remote pointers
differently from local ones; this is discussed in Section 4. (The internal structure of pointers is
discussed in Section 5.2.)

It is possible for an application to use multiple HyperFile objects to store what the end user views
as a single ‘‘document”. For example, one text processing application may wish to store an entire
paper in a single object, while another one may store each paragraph in a separate object, linking
them together into sections and chapters with additional objects. This entirely up to the applica-
tion.

As stated in the introduction, our goal is to retain (as much as possible) the simplicity and flexibil-
ity of a file system. This is why our objects have such an elementary model. There is no rigid,
predefined schema, and there are no object classes. Our model is similar to that of a file system
with self-describing data records[Wied87a]. In such a system, records of a file contain tags stating
what information is contained in the record.

HyperFile queries are based on the browsing techniques of hypertext[Conk87a]. The problem with
browsing is that it is labor-intensive; selection is done by manually navigating through the data.
We expand this with a query language based on document sets and filtering. Items returned by a
query are determined both by the scope which would be browsed, and specifications as to the
contents of the desired objects. These queries consist of three parts:

e A starting set of objects in the graph-structured document repository (corresponding to the
“‘current document’’ in a browsing interface.)

e A setof filtering criteria (keywords, size, etc.)

e A description of where to look: What types of links to follow (and how far) to find prospective
objects.

HyperFile provides for sets of objects. These sets are used as the starting point for queries. A set of
objects is created using a basic object, with tuples containing pointers to the objects in the set.
The set of objects {A, B, C} is simply an object containing three tuples, one of which points to each
of A, B, and C. Figure 2 shows a set S containing three objects: M (from the previous example), N,
and the library L. Note that M, the program object shown above, can be used as a set containing
the library L and the called routine C.

Queries select objects which contain tuples matching certain patterns in the key field, and in
some cases in the data field. In addition, queries can follow pointers in order to select new
objects. There are a variety of query types: Set operations (union, intersection, etc.), basic selec-
tion operations (choosing tuples from within an object), and filter queries which choose objects
from a document set (including link traversals.) Itis the last type which is most interesting in dis-
tributed processing of HyperFile queries, as set and basic selection operations only operate on one
or two objects.

2.1. Filter Queries

Filtering queries start with a set of objects, and produce a new set which may contain some of the
items in the original as well as items which are reachable from those in the original set. There are
two types of operations which happen in a query:

e An object may be tested to see if any of its tuples match particular criteria (example, does the
item contain object code?)
e A pointer may be followed; the item pointed to will become one of those being processed.

A sample query, to find all objects in the set S (as shown in Figure 2) which were written by Joe
Programmer, is:

S | (String, "Author", "Joe Programmer") — T

This takes the objects pointed to by S (L, M, and N); checks to see if they have a tuple of type
String with the key Author and data Joe Programmer; and puts the resulting items (only Min the
example) into the set T. We can also write a query to find the programs in S and in the routines they
call which are written by Joe:

S | (Pointer, "Called Routine", ?X) | TTX | (String, "Author", "Joe Programmer") — T

In this case we again start with the items pointed to by S. Tuples which contain the key Called
Routine are selected, and the value of the pointer (for example, the pointer to C) is placed in the
variable X (using the ?X operator.) Note that X is a set-valued variable, and thus can contain
many references. In the next part of the query, the values placed in each X are dereferenced

L
S / M String : Title : - stdio
String @ Author : Joe... : e :
Pointer : element :) g : : Pointer : printf : .
: - : Pointer : Library : S—
Pointer : element : :

Pointer : Called ...: —-_> o

Pointer : element : 5 :
String . Title

String : Author : Joe...
Text :Object..: <binary>

N

Figure 2: Set of routines from a Software Engineering Application.

using the operator TTX.! This adds C to the set of “‘possible results’’ (which becomes {M, N, L} U
{C}.) The last part of the query checks for the presence of the author Joe Programmer in the
items. The objects which meet this criterion (M and C) are placed in the result set T, which can be
used in further queries just like the set S. Note that the key Called Routine is used to select a par-
ticular category of pointer; we could use a wild card (?) in place of the key Called Routine if we
wished to follow all pointers (such as the Library pointer.)

Set variables, such as X in the above example, take on a different set of values for each object.
This allows comparison of tuple values within a document, for example choosing programs which
are being maintained by their author:

S | (String, "Author", ?X) | (String, "Maintained By", X) = T

In the portion of the query "Author", ?X; X becomes a set of all of the Authors of the object, and
later these are compared against the values of Maintained By tuples. If any of these matches a
value in X the expression evaluates true and the program ‘‘passes’” the query.

Comparisons between objects are not part of queries, but are done by applications with the results
of queries. An example would be gathering multiple papers on the same subject (without a partic-
ular subject in mind), the obvious solution of choosing objects with the same keywords cannot be
done as part of a single HyperFile query. We expect that the desire for such queries will be rare in
applications supported by HyperFile. Providing for such queries would increase the complexity of
query processing considerably. Applications can answer such questions using a few queries,
along with some local processing by the application. This will prove useful for distributed query
processing.

Iteration is also provided, in case we wish to traverse the graph created by the pointers. The
iteration can occur a fixed number of times, or can continue indefinitely (to find a transitive clo-
sure of the reference graph.) Expanding the ‘called routine’’ query to check the transitive clo-
sure of the called routines in S would be done as follows:

S| (Pointer, "Called Routine", ?X) | TTX 1" | (String, "Author", "Joe Programmer") — T

Replacing the | with]3 would cause the iteration to terminate after three levels of pointers have

been traversed. The meaning of [<query ;z:aarb]k is to repeat <query part>k times, as if the loop were
unrolled and executed straight through.

This last query illustrates the main goal of our query language. In a conventional hypertext sys-
tem, the above query would require repeated user actions (manual navigation.) A conventional
file system would also require repeated interactions. HyperFile performs the full query with a sin-
glerequest to the server.

Like our language, G*[Cruz87a] provides for graph based transitive-closure queries. However,

computing some G* queries can be NP-hard[Mend89a]. We have tried to keep our language sim-
ple, so that all queries will be computationally feasible. Our filter queries provide for the com-
mon queries we expect to see in document applications. As a matter of fact, we interviewed a
number of potential users to learn what requirements they had for a back-end *‘document’’ server.
These users included hardware designers, programmers, hypertext users, and users of other docu-
ment retrieval systems[Clif88a]. From our discussions we learned that chained queries (our |
operator), pointer dereferencing (T and TT) and, of course, selection were very common. We
believe that the vast majority of searches in such applications can be easily and succinctly
expressed in our language.

! The TTX operator keeps the pointing object as well as the item referenced. There is also an operator TX which keeps only the
referenced object.

The preceding queries do not illustrate how results are actually provided to the application.
Values of fields in a tuple must be retrieved explicitly using the — operator. The HyperFile query
language is used as an embedded language; viewing actual tuple values is done by placing the
values in variables in the application programming language. For example, the application pro-
gram could contain

T | (Text, "Description”, —descr)
{ show_description (descr) }

to display individually all of the descriptions of the programs in the set T using the procedure
show_description written in the host language.

The above variable descr can be of any type in the applications programming language. HyperFile
sees this data only as a string of bits.

Note that the above retrieval must be done explicitly; queries which simply search for objects of
interest will not cause any data to be returned. The majority of queries will be used to construct a
set of interesting items. These queries need not send large amounts of data (text, bitmaps, etc.)
When the set of items of interest is small enough that the user actually wants to see them a query
is issued to retrieve just the desired fields. In addition, we take advantage of large memories
(such as in the Massive Memory Machine project at Princeton[Garc84a]) to cache all of the
pointers, keywords, and other such search information so that disk access is only required to
obtain large items.

The translation from string of bits to a data structure in the application is analogous to that which
occurs when reading and writing files in a file system. This can be used to modify applications for
use with HyperFile with a minimum of effort. Instead of storing data in a file it is stored in a Hyper-
File tuple. The data structures and organization of the application need not be changed. The
application can then add tuples with properties to be used in queries, even though this may dupli-

cate information already contained in the “file” tuple.? For example a TEX document could be
placed as the data field of a single tuple (text, "TeX", <TeX source>). Applications would treat this
data field much like a file for use by the TEX processor. Properties such as the author and title of
the document would be placed in other tuples in the same object to be used for queries.

We have not discussed queries which update the database. Due to the nature of the data, most
updates will involve a single object. Examples would be editing a document, or running an
enhancement program on a picture. We expect that updates which affect a number of objects at
once to be rare. Therefore HyperFile provides for modification, addition, and deletion of single
objects. Wider ranging updates may be built as applications. For example, installation of a new
compiler may require all object code for a machine to be recompiled. An application would issue
a query to construct a set of all objects containing object code for that machine. Each object
would then be retrieved, the code recompiled, and the object code tuple replaced.

Due to space limitations we have not described all the facilities of HyperFile. A more complete
description of the data model and query language is given in[Clif88a]. In addition to the distri-
buted server, we have developed facilities for indexing[Clif90a]. These support conventional
indexes (say for keywords in documents), as well as indexes based on the reachability of an
object (to speed up queries such as “‘Find all documents referenced directly or indirectly by this
document that in addition have a given keyword”’).

Finally, note that the query language we have described is not intended for end users. Instead,
application-specific interfaces will be used, and the application will compose the HyperFile query.

* An alternative would be to provide a function to extract the property from the “file”” tuple automatically. This has two problems: It
increases query time, and requires running application code at the server. The problem of keeping the duplicated information con-
sistent becomes a problem of keeping the extracting function current. Security is also a concern; the function must not be allowed to
affect the server or database.

For example, in a programming environment the user may first choose what to search for (vari-
able name, author), and then be provided with three main choices: look in the current module, in
all called modules, or in the entire program containing the current module. The application
would then use these choices to generate a HyperFile query. We are currently developing a
graphical/menu driven interface as one type of HyperFile application.

The following section discusses where we stand in relation to existing systems. Section 4 shows
how filter queries are processed. Other issues in a distributed environment are discussed in Sec-
tion 5. Finally, in Section 6 we will discuss some results from tests done in a system using servers
implementing this algorithm.

3. Comparison With Other Systems

In this section we briefly compare HyperFile to some other data storage systems. While many of
these could be used instead of HyperFile as back-end storage facilities, we will argue that for
document processing they do not strike the right balance between off loading application-
dependent data processing to the front-end and performing the purely data search functions at
the back-end.

3.1. File Systems

HyperFile is probably most similar to a file system, particularly one with self-describing data
records[Wied87a]. In these systems records of a file contain tags stating what information is con-
tained in the record, as opposed to either a heavily structured file (where each record contains the
same type of information) or totally unstructured files.

Most electronic documents are currently stored in file systems, rather than databases. This is
because of the flexibility allowed in the contents of a file. This freedom is necessary for docu-
ments, due to the combination of text, drawings, and other media. Many other applications
require this as well; databases for software engineering systems, CAD tools, and other such appli-
cations are often custom-designed or built on file systems. In addition, most documents, although
structured, are not rigidly structured; variations are acceptable when necessary.

File systems allow this flexibility, but provide little structure in places where it is desired. Items
can be grouped in directories, and often hierarchical structure of the directories is allowed, but
references and other pointers which are a part of many objects are not recognized by file systems.
As discussed in the Introduction, file systems are inefficient for search and retrieval. In a large
distributed system, this problem is magnified. HyperFile can be viewed as a powerful file server:
It provides for storage of unstructured data, but allows much more powerful queries based on the
properties of files (objects) and their relation to other objects.

3.2. CODASYL Systems

HyperFile is similar to CODASYL[DBTG74a] in that they both provide objects and pointers. Work
has been done on creating a distributed CODASYL[Germ81a]; this requires extensions to the
CODASYL standard. However, a major difference between HyperFile and CODASYL is that
CODASYL pointers must be used in a very structured way, as parts of predefined sets. The data-
base schema determines where pointers are allowed and what they may point to. All items in a
set are of the same type. HyperFile does not place such restrictions on the structure of data.
Pointers may be used freely, wherever the user or application desires. Although there are
difficulties in providing this flexibility (for example, indexing becomes a much more difficult
problem)[Clif90a], we feel that the tradeoff is worthwhile for our applications.

Another difference is the query language. The CODASYL query language only allows searches
over a fixed set; the scope of a search can be determined from the database schema. We allow

queries which arbitrarily follow pointers. This allows for fewer server-application interactions.
For a query which covers the transitive closure of a portion of the graph of pointers, CODASYL
may require many such interactions, where HyperFile would require only one.

3.3. Information Retrieval Systems

HyperFile is also similar to conventional information retrieval systems[Salt83a] such as those for
library applications. These systems allow filter queries similar to ours (e.g., find books with a
given title), and indeed, our language was inspired by them. However, conventional information
retrieval systems do not understand pointers. The ability to follow pointers within a query is
essential to us, especially to support hypertext applications. Also, information retrieval systems
typically do not support non-text data.

We view information retrieval systems as likely candidates for HyperFile applications. Ideas from
these systems, combined with hypertext methods, can be used to form a general interface to a
HyperFile database. Information retrieval research into automatic indexing[Salt88a] and natural
language[Crof87a] can also be used to generate properties for textual objects.

3.4. Relational Systems

Relational systems provide a regular structure for data. HyperFile supports data which does not fit
into a regular structure. Although work has been done on placing text items in a relational
database[Ston83a, Smit86a], creating a relational database which can support a variety of hetero-
geneous types of data is difficult. Conventional relational systems do not support pointers and
this is a serious shortcoming for us. Steps have been taken to address some of these problems in
“‘advanced’’ relational systems (pointers, flexible data types, etc.), but we address these below.

3.5. Advanced Database Systems

Advanced database systems (object oriented[Maie86a, Woel86a, Wein88a], extended
relational[Ston86a, Schw86a, Dada86a]) provide many of the facilities of HyperFile (objects,
pointers, queries), but also provide a lot more (like a full programming language or an inferencing
engine). We feel that these systems may provide too much for a back-end document data server.

In particular, an advanced database system could open the door for doing much of the application
processing at the back-end. We feel that this can create unreasonable processing loads at the
shared server. Of course, one can restrict the general interface to allow only certain queries and
a simple model for objects. But if this is the case, there is no need to have a full and complex
ob]ect oriented schema and programming interface at the back-end! Restricting the interface, as
in HyperFile, makes it much easier to perform efficiently the queries that are allowed, and much
easier to distribute the back-end service.

3.6. G*

G* is a graph query language developed at the University of Toronto[Cruz87a]. It has common
goals with HyperFile. Their language, although more general, poses computational complexity
problems (as mentioned in Section 2.1.) This defeats our goal of providing a simple and efficient
back-end data storage service.

4. Query Processing

The filtering queries of HyperFile are simple to process in a distributed system. Pointer traversal
is handled by sending the query along the pointer; the only data which must be sent across the
network are the results of the query. We will first present the processing algorithm ignoring

remote pointers, and then show the details of handling remote pointers.
First let us introduce a notation for representing queries. Leta query Q be:
Q:S,' FiFy -+ F, > 8

where §; is the initial set of objects, Sg is the result set of objects, and each F; is a filter operation
of the form:

F; : (type, pattern, pattern) ;; Selection of tuples
matching _variable ;; Dereference
TTmarching_variable ;; Dereference retaining referencing object
I}‘ ;; [terator starting at F i ending at F';,

;; and repeating k times.

The pattern in the tuple selection filter operation varies depending on the type of the value. It
may be a string, a range of numbers, or a matching variable.

Let us look at a sample query: Take all of the items in the set S and choose those which contain
the keyword Distributed. In addition, follow reference pointers for three levels searching for
objects which meet these criteria.

S| (pointer, "Reference”, ?X) | T1X 13 | (keyword, "Distributed"”, ?) — T

In the above query, F| = (pointer, Reference, 7X), a selection operation which sets the matching
variable X. F, = TTX, a dereference of the matching variable. Fj is the iterator / 3, which starts
at F; and causes pointers to be followed for up to three levels. The last filter
F4 = (keyword, Distributed, 7) does simple pattern matching: Any object containing a tuple with
type keyword, key Distributed, and any value for the data field will pass this section. The initial set
S;1s S, and the resultset Sgis T.

Certain temporary information will be associated with each object O which is processed by a
query. These are:

0.id The unique Object id (used to retrieve the object.)

O.next The index of the next filter F; to process the object.

O.start The first filter to process the object.
For objects in the initial set S; this is 1.
Objects reached as a result of a dereference will have their .start
set to the filter following the dereference.

O.iter# The current iteration of an iterator; this corresponds to the length
of the pointer chain used to reach O from the initial set.

O.mvars Atable of bindings of matching variables for the object.
This is a function O.mvars(X) — {values for X}.

4.1. Local Processing

The basic means for processing queries is to create a working set W containing objects in the ori-

ginal set S.> An object is taken from the set and passed through the query from left to right. At
each stage it can pass or fail to pass a filter, and may add new objects to the working set. Ateach
stage the object is processed using the function E:

E(Fh O) => {Ox, ..'}a [O]

* The choice of data structure for the working set will determine the search order for the algorithm, for exémple a queue will give a
breadth-first search. Work by Sarantos Kapidakis shows that a node-based search (such as a breadth-first search) will give the best
results in the average case[Kapi90a].

E takes a filter and an object; and returns a (possibly empty) set of objects obtained through dere-
ferencing, and either the initial object (if it passed the filter) or null. The actions of E are deter-
mined by the type of the filter F;:

e If F'; is a selection (pattern matching) operation, such as F in the example query, the return
set of dereferenced objects is empty. Each tuple of O is processed as follows: If the type field
of the tuple matches the type field of the filter, the key and data fields are checked. If these
fields match, the object passes the filter. The pattern can be a variety of things, ‘‘Matching”’
depends on what the pattern is:

The pattern may be a simple comparison (such as a regular expression for
strings, or a range of values for a number). In this case matching involves
equivalence of the pattern and the field in the tuple. The meaning of
equivalence depends on the type of the field. '

The pattern may be a ?, such as in F4. This matches anything.

The pattern may set a matching variable. An example of this is F;. The ?X
adds the value of the field of the tuple to the bindings for X (if the other fields
match.) More formally, O.mvars(X)=0.mvars(X) \U {field_value}. The
field matches regardless of the field value, as with ?.

A matching variable may be used (as described in the example on Page 5.) In
this case, the field matches if any of the values of the matching variable match
the field value, that is field valuee O.mvars(X).

To be more precise we will give pseudocode for the E function in the case of a selection filter.
The details of pattern matching have been left out, as formalizing them requires a discussion
of data types and other concerns which are beyond the scope of this paper.

E((type_pattern, key pattern, data_pattern), O):
for each tuple re O
if t.type =type pattern and
t.key matches key _pattern and
t.data matches data_pattern then
match = true
;s Note that O.mvars may have been modified if key partern or
;s data_pattern sets a matching variable.
if match then
O.next=0.next +1
return {}, O
else
return {}, null

e F; can be a dereference (T or TT). An example of this is F, in the above query (TTX). In this
case Ereturns a set of all of the pointer values of X. With T%\, O is also returned.

E(TX, 0):
Result _set={}
for each xe O.mvars(X)
if x is an object id then

create an object P for processing
;s The following line initializes P.
P.id=x, P.start =0.next +1, P.next =0.next + 1, P.iter#=0.iter#+1, P.mvars ={}
Result_set =Result_set_) {P}

if the filterisa TT then

10

O.next=0.next +1

return Result _set, O
else

return Result _set, null

Some of the initialization of P in the above needs explanation. P.next is set to the filter after
the dereference. P.mvars starts empty; the set contains no bindings. The use of P.start and
P.iter# will be explained in the next paragraph.

e If F; is an iterator I}‘, one of two things can happen. If the object has already passed through
the entire body of the iterator, or if it is the result of a k length pointer chain, it continues pro-
cessing with F;, ;. Otherwise processing continues at the beginning of the iterator (F). Note
that iterators do not actually cause objects to be processed repeatedly. Operations in the
query language are idempotent; passing an object through the same filter many times will not
change the result. Iterators instead control how often pointers are followed.

O.start is used to determine if an object has passed through the entire iterator. If O.start is
greater than j, the beginning of the iterator, then O must return to the beginning of the itera-
tor. O.iter# stores the length of the pointer chain used to reach O. For example, if an object P
is reached by dereferencing O, P.iter#=0.iter#+1. This is done as part of the dereferencing
operation shown in the previous section of pseuadocode for E. If O.iter#=>k, O is the result of a

pointer chain of length at least k and is not run back through the iteration.*

E(I%, 0):
if O.start<j or O.iter#=k then
O.next=0.next +1
else
O.start =j ;; So that O will pass the iterator next time.
O.next=j
return {}, O

Actual processing occurs by creating a working set and filling it with the objects in S;. The .next
and .start indexes for each of these objects is initialized to 1 (the first filter.) Iteration numbers
are also set to 1, and the .mvars bindings are initially empty. Each object is then taken from the
set, and pushed through the filters (using the E function) until they either reach the end or fail to
pass part of the filter. Dereferencing operations may add objects to the set. The query terminates
when the set is empty.

To give a short example, let us assume that we have a set S containing an object A. A has a refer-
ence pointer to B, B has a pointer to C, and C has a pointer to D (see Figure 3.) We will run the
following query (described at the beginning of this section) on the set S:

S| (pointer, "Reference”, ?X) | TTX | | (keyword, "Distributed”, ?) — T

The object A (the only thing in S) is processed. A.iter# is initialized to 1. In Fl'the matching vari-
able X is set to the pointer (object id) B. F, dereferences this, setting B.start and B.next to 3, and

S A B C
pointer: Reference : —,ah:ointer} Reference : —Hpointerf Reference : —Hpointerf Reference : —I> D

Figure 3: Chain of References.

* O.iter#zkis not tested if k=" . * may be thought of as e,

11

B.iter# to A.iter#+1, or 2. The initialized B is then added to the set W. Next A continues process-
ing with 4, which checks for a keyword distributed and adds A to T if the keyword is found. Then
B is then removed from the set, and starts processing at the iterator F3=1; (as B.next=3.) Since
B.start > 1 and B.iter# <3 we realize B is new to the iterator and the result of a short chain of
pointers, so B goes to F'; (with B.start =1.) Here Xis setto C. In F, X is dereferenced; C is initial-
ized with C.start =C.next =3 and C.iter#=B.iter#+1=3 then placed in W. Next B reaches F 1, but
this time B.start<1 so it continues processing with F, When C begins processing (at F3)
C.iter#23 and C exits the iteration (continuing with F4.) Thus the query terminates before exa-
mining D (which is 4 levels deep.)

So far we have assumed that iterators are not nested. We do not expect nesting to be common,
but it is handled with a slight extension to the above algorithms. The iteration number associated
with an object O (O.iter#) is actually a mapping from an iterator to an iteration number. Where
O.iter#is used in the above algorithms, we actually use the iteration number corresponding to the
iterator being processed. When a dereference occurs, only the innermost iteration number (the
pair with the lowest iterator index > O.next) is incremented.

Queries which cover the transitive closure of a graph of pointers (queries which contain an itera-
*

tor [<query part>] pose a potential problem: cycles in the graph of pointers could cause cycles in
the processing, preventing termination. This is handled by marking objects as they are processed
(actually, noting the object id in a table of used items); if a marked object is found in the working
setitisignored.

However, there is one important subtlety. Consider a query Q = S; F | F,F3F, Sy. Say a partic-
ular object O is in the initial set S;, but fails to make it through filter F;. Some other object con-
taining a reference to O makes it through F, and in F, (a dereferencing filter) the pointer to O is
dereferenced. Now we must realize that even though O was seen earlier (at F;), it still needs to
be processed starting at F'3. Thus, our mark table will record not only the identifiers of objects
seen by a query, but also where in the query they were seen. In particular, mark_table(object id)
will store a set of filter numbers. In our example, after processing O at F, mark_table(0) = {1}.
After O is processed at F'3, mark_table(0) = {1, 3}. Figure 4 gives the complete query process-
ing algorithm.

Note that there is no global state to be maintained between processing of each object in the set

For each object_id xe §; do ;; Initialize W with objects in §;.
create an object O for processing.
O.id=x, O.start=1, O.next =1, O.iter#=1, O.mvars ={}
append O to W.

While not empty(W) do
O =head(W) ;;remove O from the set
If O.startémark table(0O.id) then
While not null(Q) and O.next<n do
mark_table(O.id)=mark_table(0.id) _j { O.next}
S, O = E(F 0. pexs» 0)

W=Wws ;; add all dereferences to the set.
If not null(O) then
Se=Se\ U {0} ;;add O to the result set

Figure 4: Query Processing Algorithm

12

other than that in the work set W and the mark_table. In fact, the matching variable table O.mvar
and “‘next filter’” O.next are only needed while the object is being processed; O.mvar always starts
as {} and in all cases O.next is initially equal to O.start. The only state which must be maintained
in W are the object id, iteration number and starting point in the query. This eases the task of
parallel processing; to process an object in the set all that must be known is the original query Q,
the information in the object O and the mark_table. We will see that the mark_table can be main-
tained locally by each site, thus requiring very little distributed information.

4.2. Processing Remote Pointers

The basic idea behind processing a reference to a remote site as part of a query is to send the
query, not the data. The remote machine processes the query, and returns any results to the ori-
ginating site of the query. We expect objects in our system to be long relative to the size of a
query, so sending the query results in a considerable savings in communication cost over sending
the unprocessed objects to the originating site. In addition, processing can continue at the ori-
ginating site, taking advantage of the parallelism inherent in a distributed system.

Each site keeps a local context for queries it is processing. This context is a set of queries
{Q1, Q2 -} where foreach Q; we have:

Q.id An identifier for the query (assigned by the originating site.)
Combined with Q.originator, this forms a globally unique identifier
for the query.

Q.originator The site at which the query was issued.
Q.body The body (F,, F,, . F,)ofthequery.
Q.size The length n (number of F;) of the query.

Q.mark_table The set of objects already processed (the mark_table described in
the previous section.)

o.w The working set for this query.

Q.result The set of results of the query.

A query is processed as follows:

e The originating site sets up a context Q for the query.
® The algorithm of Figure 4 is run, with the context Q used for the working set W, filters F;,
mark_table, and result set Sg.

When the E function returns a set s containing a reference to an object O at a remote site R, that
object is not added to the working set Q.W. Instead the query and reference are sent to the site R.
Specifically the message includes Q.id, Q.originator, Q.body, and Q.size from the query context,
and O.id, O.start, and O.iter# from the object being dereferenced.

When site R receives the message, it tests if Q.id@Q.originator is already in its set of query con-
texts. If not, Q is added to the local query context, with Q.result, Q.mark_table, and Q.W set to {}.
Then O is added to Q.W, with O.next set to O.start and O.mvars set to {}. If the algorithm of Figure
4 is not already running (that is, O is the only object in Q.W) it is started. Upon termination of the
algorithm, Q.result is sent to Q.originator, and Q.result is reset to {}.

Note that after a site has emptied Q.W and sent results to Q.originator, another dereference mes-
sage for O may arrive. Since the context Q is still in place, the “‘setup cost’’ associated with the
query is only required once at each involved site. The context Q is discarded only on global ter-
mination of the query (to be discussed in Section 5.1.)

Note that all sites run an identical algorithm. The message setup time for a remote dereference is
minimal: Q.id, Q.originator, Q.body, and Q.size are fixed for each query; and O.id, O.start, and

13

O.iter# must be determined for both local and remote dereferences. Thus the cost of processing a
distributed reference (at the ‘‘pointing’” site) is just the cost of sending a message.

The originating site will also receive result messages. Since results are sent directly to
Q.originator, no intermediate site need be involved in handling the results. Result messages are
tagged with Q.id so that the originating site can place them in the proper result set. There are
two types of results:

e Object identifiers for objects that have passed all of the filters. These are put into the result
set Sg (Q.resulr) at the originating site. Further queries may use this set as a starting point (ini-
tial set §;.)

e Tuple values returned using the — operator (such as the example on Page 6.) These are sent to
the originating site with a tag noting which — they belong to, so they can be bound to the
proper variable in the application (descrin the example.)

Cycle detection and marking are handled locally at each site. The information kept in
Q.mark_table at each site refers only to objects processed at that site. If a site R has already pro-
cessed an object O, and later another pointer to O is dereferenced, a message will be sent to R
requesting that O be processed. Object O will be placed in the set W at R, but when it is removed
from the set the “‘already processed’’ mark will be found in Q.mark_table and O will be ignored.

This method does allow messages requesting that already processed objects be processed. Elim-
inating the extra messages (the second and later ones asking that O be processed) would require a
global mark table. We believe the cost in communications and complexity of such a global table
would outweigh the cost of the extra messages generated by the algorithm we use. Following are
pseudo-code descriptions of the query processing operations.

Auxiliary Data Structures (at each site) :
Table of Queries: Query — Marked Documents, Working Queue

Send Message (Query, Point in Query, Reference) :
send(to Reference.machine, Query, Reference, Point in Query)

Receive Message :
If message.Query not in Table of Queries:
Create Working Queue
Add Table of Queries.message.Query := { }, Working Queue
add reference, point in query to Working Queue.
if Process Queries not active, run Process Queries

Process Queries :
While Working Queue not empty do
mark document
if document passes filters, send_result(document_id)
if any references result, either add to queue or send_message

Send results (document) :
If query asks for results other than the object id (selection
query, or query contains the — operator) then
send(Query.originator, requested portion of document)
else
send(Query.originator, document.id)

14

5. Other Issues

We have described the basic distributed query processing mechanism. Some details have been
left out; these are described individually in this section.

5.1. Query Termination

With only a single site, a query terminates when its working set becomes empty. With multiple
sites, however, all of the working sets must be empty. Determining when this has happened is an
instance of the Distributed Termination Problem[Fran80a], which has been the subject of consider-
able research.

The problem of distributed termination is to determine when a distributed computation has
finished. The computation starts at some originating site, and parts of the computation may be sent
to remote sites. The computation is complete when no sites have any processing left to do. Note
that it is difficult for a site to determine on its own when it is done. Even though it may have
nothing left to process locally, another site may later send it a message which will cause it to
resume processing.

A number of algorithms to solve this problem have been developed. One that is particularly
appropriate to HyperFile is the weighted messages algorithm[Huan89a,Roku88a]. This algorithm
works as follows:

e The original site starts with some positive weight W. ,

e Any message (query) sent to another site must include some positive weight w, which is sub-
tracted from the weight of the sending site and added to the weight of the receiving site.

e When a site (other than the original) is done, it sends a message with its remaining weight
back to the originating site.

e When the originating site is done, and its weight is back to W, the computation (query) is com-
plete.

Note that the only increase in message traffic is due to the “I'm finished’’ messages. In many
cases, these can be piggy-backed on the sending of results.

One problem with this method is that it does not very robust. In particular, if a site fails while it
still has some weight w, that weight will never be returned to the originating site. Thus the query
will never terminate. HyperFile times out if the query seems stalled, and reports partial results to
the application. This allows the application (or user) to decide if the missing part of the query is
important; in some cases the information found at the available machines may be satisfactory.

More robust distributed termination protocols exist[Lai86a], but they are also more complex and
expensive. These could be used in HyperFile in a distributed system where the timeout method is
inadequate.

5.2. Naming issues

Pointers form an important part of the database. Each object (set of tuples) has a unique object id,
which can be used as a pointer to the object. Distributing the data requires a naming scheme so
that these pointers can cross machine boundaries. There are two parts to this; ensuring that
object identifiers remain unique, and translating pointers (object ids) into the site containing the
object. For the latter we need some function F(Pointer) — Location. There are a variety of
ways to do this, such as global name servers[Birr82a] or including the name of the host site as
part of the pointer. There are a number of tradeoffs in the choice of a naming strategy:

e Storage cost of pointers.

e Execution time and message cost to follow a pointer.

e Costs associated with moving an object. This can be broken down into two types of moves:
changing the site at which the “‘pointed to” object is stored, and moving an object containing a

15

pointer.

Name servers can add to the cost of dereferencing a pointer, particularly if the name server is at a
remote site. The obvious alternative of including the host site as part of the pointer seriously
increases the cost of moving an object, as all pointers to the object must be updated if it changes

sites. We use a variant of the method of R*[Lind81a] which includes the birth site of an object in
the name.

A HyperFile object id consists of the birth site of the object, and a unique identifier (we use a
sequence number) assigned by that site. This solves the problem of maintaining system-wide
unique object ids. Each site has a cache which maps this object id into a presumed site. This
allows most pointer references to proceed directly to the site of the object. If the referenced
object has been moved, the message will be forwarded to the birth site. The birth site must
always know where any item it has created is located, but no other site must be notified if an
object is moved. Cached pointers which are out of date are updated when they are used. The
cache at a site A does not have to have presumed sites for all pointers from objects at A; ‘‘missing”’
pointers can be directed to the birth site just like misdirected messages. This simplifies moving
an object; only the birth site need be notified. Costs to update pointers from moving either a
referencing or referenced object are delayed until the pointers are used.

A slight extension of this can be used to increase reliability and availability through replication.
The cached current location of a replicated object would never be the birth site; if this cached
location is unavailable the reference would be sent to the birth site. The birth site would be
responsible for knowing all copies of the object. Different sites could cache a different current
location for an object, any duplicate results are filtered out by the originating site.

6. Experiments

We have implemented this algorithm in a prototype HyperFile server, distributed over a network
of IBM PC/RTs connected by an ethernet. The RT’s run Berkeley 4.3 UNIX; UDP and TCP/IP are
used for inter-process communication. Each machine has a single server. This is a main memory
database (as described in Section 2.1); although large objects are stored on disk none of our test
queries required disk access. The implementation is not particularly efficient; it is built using an
object-oriented programming system (Eiffel) and we have concentrated on extensibility rather
than speed. An optimized system would significantly decrease the times we present. Our experi-
mental client was a simple application that read a query from a script, submitted it to HyperFile,
received the result, and then went on to the next query in the script. The client ran at a separate
machine from any of the servers.

We ran some performance tests on this system. The goal of our experiments was to understand
the tradeoffs involved in handling remote pointers:

e Overhead: Extra work is involved in sending messages and processing results from remote
sites. Do queries involving remote pointers give unacceptable response time?

e Potential parallelism: Response time may improve when remote processing is started while
local processing continues.

e Problems with delays: If the last object to be processed locally contains a remote pointer, the
entire system may be idle while that message is in transit.

Note that we do not yet have a reasonable ‘‘competitor’” algorithm or system to compare our per-
formance with. Performing similar queries in a distributed file system would require searching
entire files; this in effect results in sending all data to a central site. Hypertext systems require
manually “‘browsing’” through the data, and are not commonly distributed. Neither would be an
interesting comparison.

16

We constructed synthetic data to use in our experiments. This allowed us to ‘‘parameterize’’ our
tests, so we could load the system in various ways and study the results. In particular, each
object searched as part of our test queries contained the following:

e Five search key tuples; one guaranteed to be unique to that object, one found in all objects, and
three which were chosen from a space of 10, 100, and 1000 possible values respectively.
Changing the tuple and value searched for allowed us to vary the number of items found by a
query. For example, searching for a given key in the unique tuple would return at most one
object.

e One chain pointer, which gave a linked list of all the items. In tests with more than a single
machine, these pointers were always to a remote machine. This gives the maximum delay time;
all servers are idle while each message is in transit.

e Fourteen random pointers. These each pointed to a randomly chosen object. They were
divided into 7 types, with two pointers of each type. The probability of a pointer being to a
local object varied from .05 to .95 depending on the type. For example, the two pointers of the
Rand.0S type were almost always to a remote object. A query following the Rand.05 pointers
would have high message cost. However, since there were two such pointers in each object
(very likely to different machines) the query would ‘‘branch out”, yielding some parallelism
and reduced delays.

e Tree pointers which formed a spanning tree of the objects, such that the root of the tree had a
single remote pointer to all other machines, and each of these was the root of a local spanning
tree. This gives high parallelism with low message cost.

We ran tests with these items divided evenly among three machines and among nine machines.
The pointers were constructed such that the desired properties (likelihood of a pointer being
remote, etc.) were the same in both cases; i.e., the graph formed by the pointers in these objects
was identical regardless of the number of machines. We also ran the tests with all items on a sin-
gle machine. This gave a base case with which to compare the cost of handling remote pointers.

Each query traversed the transitive closure of the graph formed by a particular type of pointer,
and looked for a given search key within each item in the transitive closure. For example, the

query
Root [| (Pointer, "Tree", ?X) | TTX]*| (Rand10p,5,?) —» T

would traverse the free structured graph (splitting immediately to each machine, and then tracing
pointers locally on that machine.) Each object would be checked to see if it had a Rand10p tuple
with a key of 5 (Since each item had a single Rand10p tuple, with its key value randomly distri-
buted from 1 to 10, we would expect the result to contain about 10% of the items in the tree.)

From our experiments we deduced a few basic times. Local processing of a single object took
approximately 8 milliseconds, plus another 20 milliseconds to add the object to the result set (if
necessary.) The added time to process a remote pointer was roughly 50 milliseconds (including
constructing the message, system calls for sending and receiving, and transmission delay.) About
50 milliseconds was also required for each remote result message. Of course, remote pointers
may allow parallel processing of queries, so the extra time to process a remote pointer does not
necessarily translate into an equivalent increase in client response time.

Perhaps more interesting than the above numbers is the actual query response time. We tried a
number of cases, all based on the transitive closure query shown above. The graph structure was
varied with each test; we tried extreme cases (such as Chain, giving maximum delay; or Tree, giv-
‘ing high parallelism at low message cost) as well as the randomly created graphs with varying
locality of reference. We also tried varying the quantity of items returned (by changing the tuple
in the search key.) For each test we timed 100 queries which followed the same pointers and
looked for the same type of search key tuple, but randomly varied the key searched for (so the 100
queries were comparable, but not identical.) This time was the actual response time (wall clock)

17

at the client.

There were 270 objects involved in the queries for which we report results. (Note that the total
database was larger; however only 270 objects wore looked at by our test queries.) As the algo-
rithm is linear we expect using a different number of items in the query would result in a linear
change in the response time. We did construct a data set with half the number of items; this
didn’t quite cut the query time in half. This is as we would expect (since there is some constant
overhead associated with the query, regardless of size.) Presenting more experiments with varied
data set sizes would tell little of interest; our primary concern is how remote pointers affect per-
formance.

Running the query shown above (a transitive closure over 270 items, with approximately 27 in the
result set) took 2.7 seconds when all the objects were at a single site, when following either tree
or chain pointers.

When the worst case delay scenario (following chain pointers) was tried in the distributed case
(on either three or nine machines) the query took 15 seconds. The delay and message cost of such
a query is high, however pointers with such a structure can probably be avoided in practice.
When we instead followed tree pointers a query averaged 1.5 seconds using three machines, and 1
second using nine machines. We obviously gain from parallelism in this query; times are
significantly less than the for a single site.

The above two cases are extremes. To study ‘‘normal” situations we ran tests on the randomly
constructed pointers. Although still synthetic data, they are probably more representative of real
situations. The results of these tests are graphed in Figure 5. Each data point represents a test
using the graph formed by the pointers with the given probability (x axis) of being local (two such
pointers per object.) The cases at the far right of the graph generate fewer messages, however
they also are less likely to make full use of the available parallelism. The cases at the far left gen-
erate too much message traffic for our system; although parallelism is increased, much of the time
is spent receiving and sending messages rather than processing queries.

It would be reasonable to expect that the single-machine case would be constant. This is not the
case. The reason is that the pointers in these tests were created randomly (within the
local/remote guidelines), and the transitive closure of a given pointer type was not guaranteed to

6 °
) — Single Machine
5_ Fo N £ T e Three Machines
Fe 0 T Nine Machines
Time4]
(sec)
3
o J
1<

0 50 100

Probability of reference being local

Figure 5: Query time with varied probability of local references.

18

include 270 objects. The single machine case gives a measure of the number of items actually
covered, so it is perhaps more relevant to look at the difference between the dotted or dashed line
and the solid line, rather than the absolute times. Based on this we see that the system operates
best with around 80% local references. We can also see that with more machines we are more
capable of handling a higher percentage of remote references. This is good, as a more highly
fragmented database will probably have more remote references.

Another interesting result concerns the number of items returned by a query. Increasing the
number of items returned significantly increases the query processing time. Given two queries
that follow the same pointers, a highly selective query may be faster in the distributed case, while
a less selective query may run faster when the entire database is on a single server. For example,
the case in Figure 5 where 95% of the pointers are local takes an average 1.1 seconds when run on
three or nine machines, and 1.5 seconds when run at a single site. Note that this is returning an
average 10% of the items in the transitive closure. If we instead select all of the items (using a
key which is found in all of the objects) the single site time jumps to 5.1 seconds. For three and
nine sites we have 6.4 and 5.7 seconds. Sending results is expensive in our system; we would
have to make changes if queries with low selectivity are frequent. We expect this will not be the
case, as the goal of most queries is to find a few interesting objects.

There is a straightforward modification that would help this problem. In the case of queries
which only construct a new set (as opposed to returning specific fields from objects) the result
could be leftas a “‘distributed set’”’. Each server would send back the number of local result items,
rather than pointers to the items themselves. If this number is large, the user will probably want
to further restrict the results using a query rather than look at the returned items. The portion of
this set at each site would be used to initialize the working set at that site for the new query. This
method would probably be employed only when the size of the results exceeded some threshold.

Given that the goal of this system is efficient distributed query processing as opposed to parallel
processing, the results are reasonable. In all but extreme cases, remote pointers do not
significantly increase response time. The cost of processing messages and the transmission delay
are substantially offset by the gains in parallel processing. We see that the cost of distribution is
low (with respect to response time, normally the most important measure to the user of an interac-
tive system.)

7. Conclusions and Further Work

We have described HyperFile, a back-end data service for heterogeneous applications. It provides
a query language that permits searches based on properties of the stored objects, as well as by
following pointers contained in the objects. We believe that the query language is powerful
enough so that many common queries in applications such as document processing can be
answered with a single request to HyperFile. Yet, HyperFile is simple enough so that it can be
efficiently and easily implemented in a distributed environment.

This paper has focused on the algorithms for distributed filter queries. With the resulting algo-
rithms, a search on a distributed network of object causes the query and not the objects to move
along the links. We also discussed HyperFile’s naming strategy and query termination algorithm,
as well as experiences with a prototype.

Although we have covered the case of a distributed HyperFile server, it is important to note that
our algorithms are also applicable to a shared memory, multi-processor server. In this case all
available processors can share the same general query information, mark table, and working set.
Each processor must have space for local information, such as matching variables, while it is pro-
cessing a particular document. Given this, each processor independently runs the algorithm of
Section 4.1. Termination requires that the set be empty, and that no processors are still working

19

on the query. Note that this is similar to processing of the Linda language[Carr86a]. Also notice
that it is not necessary to have a strict locking mechanism to prevent two processors from work-
ing on the same document. Duplicate processing may create some duplicate answers but not
incorrect ones.

We are currently working on a simple driving application. This application is a simple hypertext
system. It allows conventional hypertext browsing operations. In addition, it lets the user pose
HyperFile style queries that will be forwarded to HyperFile for processing. We believe this may
address the “‘lost in hyperspace’’ problem that arises in large hypermedia databases. This prob-
lem refers to the inability of user to retrieve a document because they cannot manually construct
the right path to it. With HyperFile, the user is able to pose powerful queries to automate the
search for relevant documents.

Acknowledgements

Some of the ideas described in this paper were initially developed at Xerox P.A.R.C. in discus-
sions with Robert Hagmann, Jack Kent, and Derek Oppen. We would like to acknowledge their
contribution. ’

References

DBTG74a.
Data Base Task Group, “CODASYL Data Description Language,”” NBS Handbook 113,

National Bureau of Standards, US Department of Commerce, Washington, DC (January
1974).

Birr82a.
Andrew D. Birrell, Roy Levin, Roger M. Needham, and Michael D. Schroeder, *‘Grapevine:
An Exercise in Distributed Computing,”” Communications 254(4) pp. 260-274 ACM, (April
1982).

Carr86a.
Nicholas Carriero and David Gelernter, ‘“The S/Net’s Linda Kernel,”’ Transactions on Com-
puter Systems 4(2) pp. 110-129 ACM, (May 1986).

Clif88a.
Chris Clifton, Hector Garcia-Molina, and Robert Hagmann, ‘“The Design of a Document

Database,”” pp. 125-134 in Proceedings of the Conference on Document Processing Systems,
ACM, Santa Fe, New Mexico (December 5-9, 1988).

Clif90a.
Chris Clifton and Hector Garcia-Molina, ‘‘Indexing in a Hypertext Database,”” pp. 36-49 in
Proceedings of the 1990 International Conference on Very Large Databases, VLDB, Brisbane,
Australia (August 13-16 1990).

Conk87a. ‘
Jeff Conklin, ‘‘Hypertext: An Introduction and Survey,”” Computer 20(9) pp. 17-41 IEEE, (Sep-
tember 1987).

Crof87a.
W. B. Croft and D. D. Lewis, “An Approach to Natural Language Processing for Document
Retrieval,”” pp. 26-32 in Proceedings of the 10th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, , New Orleans, LA (June 1987).

Cruz87a.
Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood, “A Graphical Query Language
Supporting Recursion,”” pp. 323-330 in Proceedings of SIGMOD ’87, ACM, San Francisco, CA
(May 27-29, 1987). Also SIGMOD Record Vol. 16 #3, December 1987.

20

Dada86a.
P. Dadam, K. Kuespert, F. Andersen, H. Blanken, R. Erbe, J. Guenauer, V. Lum, P. Pistor, and
G. Walch, “A DBMS Prototype to Support Extended NF* Relations: An Integrated View on
Flat Tables an Hierarchies,”” pp. 356-364 in Proceedings of the SIGMOD International Confer-
ence on Management of Data, ACM, Washington, DC (May 28-30, 1986).

Fran80a.
Nissim Francez, ‘‘Distributed Termination,”’ Transactions on Programming Languages and Sys-
tems 2(1) pp. 42-55 ACM, (January 1980).

Garc84a.
H. Garcia-Molina, R. J. Lipton, and J. Valdes, “A Massive Memory Machine,”’ Transactions on
Computers C-33(5) pp. 391-399 IEEE, (May 1984).

Germ81a.
Frank Germano, Jr., Automatic Transaction Decomposition in a Distributed CODASYL Prototype
System, UMI Research Press, Ann Arbor, Michigan(1981).

Huan89a.
Shing-Tsaan Huang, ‘‘Detecting Termination of Distributed Computations by External
Agents,”” pp. 79-84 in Proceedings of the 9th International Conference on Distributed Computing
Systems, IEEE, Newport Beach, CA (June 5-9, 1989).

Kapi90a.
Sarantos Kapidakis, ‘‘Average-Case Analysis of Graph-Searching Algorithms,”” Ph. D.
Thesis, Princeton University, Princeton, NJ (October 1990).

Lai86a.
Ten-Hwang Lai, ‘‘Termination Detection for Dynamically Distributed Systems with Non-
First-in-first-out Communication,’” Journal of Parallel and Distributed Computing 3(4) pp.
577-599 (December 1986).

Lind81a.
Bruce Lindsay, ““Object Naming and Catalog Management for a Distributed Database
Manager,”” pp. 31-40 in Proceedings of the 2nd International Conference on Distributed Comput-
ing Systems, IEEE, Paris (April 8-10, 1981).

Maie86a.
David Maier, Jacob Stein, Allen Otis, and Alan Purdy, ‘‘Development of an Object Oriented
DBMS,” pp. 472-482 in Object Oriented Programming Systems, Langauges, and Applications
Conference Proceedings, ACM, Portland, OR (September 9 - October 2, 1986). Also Sigplan
notices 21(11), November 1986.

Mend89a.
Alberto O. Mendelzon and Peter T. Wood, ‘‘Finding Regular Simple Paths in Graph Data-

bases,”” pp. 185-193 in Proceedings of the Fifteenth International Conference on Very Large Data
Bases, VLDB, Amsterdam (Aug. 22-25, 1989).

Roku88a.
Kazuaki Rokusawa, Nobuyuki Ichiyoshi, Takashi Chikayama, and Hiroshi Nakashima, “An
Efficient Termination Detection and Abortion Algorithm for Distributed Processing Sys-
tems,”” pp. 18-22 in Proceedings of the 1988 International Conference on Parallel Processing,
(August 15-19, 1988).

Salt83a.
Gerard Salton and Michael J. McGill, Introduction to Modern Information Retrieval, McGraw
Hill Book Company, New York(1983).

21

Salt88a.
Gerard Salton, ‘‘Automatic Text Indexing Using Complex Identifiers,”” pp. 135-144 in
Proceedings of the Conference on Document Processing Systems, ACM, Santa Fe, New Mexico
(December 5-9, 1988).

Schw86a.
P. Schwarz, W. Chang, J. Freytag, G. Lohman, J. McPherson, C. Mohan, and H. Pirahesh,
‘‘Extensibility in the Starburst Database System,’” Proceedings of the 1986 International
Workshop on Object Oriented Database Systems, pp. 85-92 (September 1986).

Smit86a.
Karen E. Smith and Stanley B. Zdonik, ‘‘Intermedia: A Case Study of the Differences
Between Relational and Object-Oriented Database Systems,”’ pp. 452-465 in Object Oriented
Programming Systems, Langauges, and Applications Conference Proceedings, ACM, Orlando,
Florida (October 4-8, 1986). Also Sigplan notices 22(12), December 1987.

Ston83a.
M. Stonebraker, A. Stettner, N. Lynn, J. Kalash, and N. Guttman, ‘‘Document Processing in a
Relational Database System,”’ Transactions on Office Information Systems 1(2) pp. 143-158
ACM, (April 1983).

Ston86a.
M. Stonebraker and L. Rowe, ‘“The Design of POSTGRES,”’ pp. 340-355 in Proceedings of the
SIGMOD International Conference on Management of Data, ACM, Washington, DC (May 1986).

Wein88a.
Dale Weinreb, Neal Feinberg, Dan Gerson, and Charles Lamb, “An Object-Oriented Data-
base System to support an Integrated Programming Environment,”” Data Engineering
11(2)IEEE, (June 1988).

Wied87a. :
Gio Wiederhold, File Organization for Database Design, McGraw-Hill, New York(1987), p.
107.

Woel86a.
D. Woelk, W. Kim, and W. Luther, “An Object-oriented approach to Multimedia Databases,”’
pp. 311-325 in Proceedings of SIGMOD ’86, ACM (May 1986).

22

