REAL-TIME CONCURRENT COLLECTION IN USER MODE

Kai Li

CS-TR-291-90

October 1990

Real-Time Concurrent Collection in User Mode

Kai L1

Department of Computer Science
Princeton University
35 Olden Street
Princeton, NJ 08544

Abstract

We previously presented a real-time, concurrent
garbage-collection algorithm that uses the virtual mem-
ory page protection hardware to synchronize collector
threads and mutator threads. The algorithm requires
the mutator threads to access protected pages that pre-
vent collector threads from accessing. This paper inves-
tigates three other alternatives to achieve such a goal:
page-copying, multiple address mapping, and page shar-
ing in different address spaces. We will present our ex-
periment with the page-copying version and compare
it with the kernel-mode, simple stop-and-copy, and se-
quential real-time versions.

Previous Algorithm

We previously proposed a real-time, concurrent
garbage-collection algorithm for stock uniprocessors or
shared-memory multiprocessors [2]. The essential idea
in the algorithm is to use the hardware page fault mech-
anism in the virtual memory system to achieve medium-
grain synchronization between collector and mutator
threads [2]. The paging mechanism provides synchro-
nization that is coarse enough to be efficient and yet
fine enough to make the latency low. The algorithm is
based on the Baker’s sequential, real-time copying col-
lector algorithm [3].

A basic stop-and-copy collector [5] divides its mem-
ory heap into two contiguous regions, from-space and
to-space. At the beginning of a collection, all objects
are in from-space, and to-space is empty. Starting with
the registers and other global roots, the collector traces
out the graph of objects reachable from the roots. As
each object is visited, it is copied into to-space. When
there are no more objects to visit, all the reachable ob-
jects have been copied into to-space, and all the objects
remaining in from-space are garbage. At that point, the
roles of to-space and from-space are reversed (a flip),

<+— start
scanned
objects
-— gcanned
unscanned
objects
~— unscanned
unused
- ~— new
new objects
-— end

Figure 1: To-space

and the mutator resumes allocating from the new to-
space.

To-space is partitioned by three pointers (figure 1).
During a collection, objects are copied from from-
space to the end of the unscanned area (from scanned
to unscanned), which grows down. Starting at the
scanned pointer, the collector scans the objects in the
unscanned area, looking for pointers to from-space ob-
jects. When it finds such a pointer, it copies the object
to to-space (if it hasn’t already been copied), and up-
dates the pointer to point at the object’s new location.

When scanned meets up with unscanned, there are
no more reachable objects to be copied from from-space,
and the collection is finished. Everything remaining in
from-space is garbage. The mutator resumes and starts
allocating objects in the new area (from end to new),
which grows upward. When to-space fills up, the muta-
tor stops and initiates a new collection.

Baker’s sequential real-time collector [3] copies only
the root objects (for example, those referenced from the
registers) at a flip. It then resumes the mutator immedi-

ately. Reachable objects are copied incrementally from
from-space while the mutator executes. Every time the
mutator allocates a new object, it invokes the collector
to copy a few more objects from from-space. Baker’s
algorithm maintains the following invariants:

e The mutator sees only to-space pointers in its reg-
isters.

e Objects in the new area contain to-space pointers
only (because new objects are initialized from the
registers).

e Objects in the scanned area contain to-space point-
ers only.

e Objects in the unscanned area contain both from-
space and to-space pointers.

To satisfy the invariant that the mutator sees only to-
space pointers in its registers, every pointer fetched from
an object must be checked to see if it points to from-
space. If it does, the from-space object is copied to to-
space and the pointer updated; only then is the pointer
returned to the mutator. This checking requires hard-
ware support to be implemented efficiently [7], since
otherwise a few extra instructions must be performed
on every fetch.

Instead of checking every pointer fetched from mem-
ory, the concurrent collector uses virtual-memory page
protections to detect from-space memory references and
to synchronize the collector and mutator threads. To
synchronize mutators and collectors, the algorithm sets
the virtual-memory protection of the unscanned area’s
pages to be “no access.” Whenever the mutator tries
to access an unscanned object, it will get a page-access
trap. The collector fields the trap and scans the objects
on that page, copying from-space objects and forward-
ing pointers as necessary. Then it unprotects the page
and resumes the mutator at the faulting instruction. To
the mutator, that page appears to have contained only
to-space pointers all along, and thus the mutator will
fetch only to-space pointers to its registers.

Kernel-Mode vs. User-Mode

The implementation of the algorithm we previously pre-
sented was not as trivial as it sounds because the col-
lector threads executes concurrently with the mutator
threads, scanning pages in the unscanned area and un-
protecting them as each is scanned. The difficulty lies
in how the collector threads could copy objects into a
protected page or scan its contents; if the mutator can’t
read the page without trapping, how can the trap and
scanner threads? The collector thread can’t unprotect

the page before scanning it because then the mutator,
running concurrently, would be able to reference un-
scanned objects.

Our previous solution was to use the property that
pages have two protections, one for kernel mode and one
for user mode. By running the trap and scanner threads
in kernel mode and the mutator in user mode, and by
changing only the user-mode protections of pages, the
collector threads can read and write pages not accessible
to the mutator. We added two new kernel calls to the
Firefly’s operating system that implemented the trap
and scanning loops. At program startup, the collector
forks two threads which then make the kernel calls and
which never return until the program halts.

The advantage of the kernel-mode method is that it
simply uses the same page table entry for getting differ-
ent protections on the same virtual page. Thus, there is
no additional memory requirement for page mapping.

The kernel-mode method has a number of drawbacks.
First, it requires a safe, and flexible system interface.
Using special system calls for a particular garbage col-
lector can be difficult because different langauges would
have different object representations and thus use dif-
ferent collectors. If the collector has a bug, it may alter
kernel memory data structure and probably crash the
system. This approach is also lack of portability. Most
existing operating systems do not have an interface that
fits the kernel-mode requirement. Many language de-
signers would like to port their compilers without cre-
ating new system calls.

User-mode approaches

In addition to running collector threads in kernel-mode,
there are several ways to achieve user-mode access to
protected pages and each requires certain kind of system
services [1].

e Page copying

A system call could be provided to copy memory to
and from a protected area. The collector threads
use this call to copy protected pages into a buffered,
unprotected area for scanning. This method re-
quires only a few pages for buffering, depending
on the number of collector threads. The collector
threads need to make two additional copies for each
page: copying to the scan buffers before scanning
and copying the scan buffers back to the protected
area after scanning. In addition to copying, the
collector threads need to calculate forwarding ad-
dresses by using the offset of the buffers from the
protected pages.

The advantage of this approach is its simplicity. It
requires operating systems to provide a very simple
system call which is as secure as system calls for
protecting memory pages. The main disadvantage
is the overhead of data copying.

Multiple page mapping

The virtual memory provides a call that allows mul-
tiple mapping of the same page at different ad-
dresses with different protections in the same ad-
dress space. The garbage collector has access to
pages in to-space at a “nonstandard” address, while
the mutators see to-space as protected. Like the
page copying method, the collector threads need to
do address calculation, but they do not need to use
any buffer space.

With a virtually-addressed cache, the multiple vir-
tual address mapping approach has a potential for
cache inconsistency since updates at one mapping
may reside in the cache while the other mapping
contains stale data. However, the problem can be
solved for the garbage collection algorithm. While
the collector threads are scanning the page, the
mutators have no access to the page; and there-
fore at the mutators’ address for that page, none
of the cache lines will be filled. After the collector
threads have scanned the page, they should flush
their cache lines for that page (presumably using a
cache-flush system call). Thereafter, the collector
threads will never reference that page, so there is
never any danger of inconsistency.

The main disadvantage of this approach is that it
requires additional memory space for page table en-
tries. When mapping two virtual addresses onto
one physical page, it requires two page table entries
for the same page. In order to reduce the memory
resource requirement, one can also provide map-
ping for only the scanned pages. This approach
reserves a few pages in the virtual address space
for scanning and maps them onto the scanned, pro-
tected pages. Similar to the page-copying method,
the collector threads view these reserved pages as
scanning buffers except the page contents are never
copied.

For some virtual memory systems that have mem-
ory object abstractions [8], such a mapping may re-
quire other additional resources and may decrease
the performance of other virtual memory primitives
such as protect and unprotect pages.

¢ Page sharing

In an operating system that permits shared pages
between processes, the collector can run in a differ-
ent heavyweight process from the mutator, with a
different page table.

The main advantage of this approach is its simplic-
ity. It does not require collector threads to do any
address calculation since two address spaces can
map to the same set of physical pages. It does not
cause any cache inconsistency. In fact, many op-
erating systems support shared memory mapping
between two address spaces. This approach may
not have any requirement to operating systems.

The main disadvantage of this approach is its
overhead. Similar to the multiple page mapping
method in the same address space, there are two
page table entries for each page. In addition, it re-
quires two expensive heavyweight context switches
on each garbage-collection page-trap. On shared-
memory multiprocessors where there is enough pro-
cessor resource, one can apply spinning or efficient
user-level RPC mechanism to reduce the overhead
of heavyweight context switches.

We advocate that for computer architectures with
physically addressed caches, the multiple virtual ad-
dress mapping in the same address space is the cleanest
and most efficient solution. It does not require heavy-
weight context switches, data structure copies, nor run-
ning things in the kernel.

Experiments

For investigating alternatives of running collector
threads in user mode, we have implemented the page
copying method described in the previous section for an
early version of ML statically type-checked polymorphic
language [4], The implementation runs on the Firefly
using SRC’s Taos operating system [9], which extends
DEC Ultrix (Berkeley Unix 4.2) with multiple threads,
cheap synchronization, and virtual-memory primitives.

We compare our experiments with our previous re-
sults from three other versions of the collector: simple
stop-and-copy, sequential real-time, and kernel-mode
concurrent. All for collectors used the same object rep-
resentations and the same copying and forwarding prim-
itives. The object representations were somewhat com-
plex and not well tuned for a copying collector, and al-
location was implemented by a procedure call, not com-
piled inline.

All three versions used a page size of 1K bytes and a
heap with 3 megabytes per space. The sequential ver-
sion scanned from 1 to 4K bytes for every 1K bytes al-

Stop-and-Copy Sequential

Concurrent (kernel) Concurrent (user)

Total elapsed time 252 sec 281 (1.11) 207 (.82) 220 (.87)
Mutator time 180 180 180 180
Mutator overhead 29% 36% 13% 18%
Total CPU time 247 957 (1.04) 266 (1.08) 299 (1.21)
Collector time 67 77 (1.15) 86 (1.28) 119 (1.78)

Table 1: Execution times

Stop-and-Copy Sequential

Concurrent (kernel) Concurrent (user)

Bytes allocated 12.2M 12.2M 12.2M 12.2M
Number of flips 7 7 8 7
Time per flip 9.5 secs 164 120 291
Traps per second — 1.7 3.3 33
Time per trap — 43 msecs 38 50
Time per allocation 127 usecs 166 (1.31) 83 (.65) 96 (.76)
allocation 56 67 (1.20) 56 (1.00) 56 (1.02)
collection 71 99 (1.39) 27 (.38) 40 (.56)

Table 2: Latency

located. The concurrent version used an Allocate chunk
size of 65K.

We picked the Boyer benchmark from Gabriel [6]. It is
a small rule rewriter designed to test the performance of
Lisp systems executing theorem provers. It allocates a
large amount of non-trivial, fine-grained data structures
and then accesses those structures repeatedly. Accord-
ing to Gabriel, the Boyer program does 226,000 list-
cell allocations and 1,250,000 fetches of pointers from
the list cells. In addition to the allocations by the pro-
gram itself, the ML implementation allocates procedure-
argument records in the heap, adding to the load on the
collector.

Table 1 shows the execution times of the Boyer bench-
mark of the four versions. The numbers in parentheses
express table entries as ratios with the corresponding
entries for the stop-and-copy version.

Total elapsed time shows that the sequential real-
time version is 11% slower than the more efficient stop-
and-copy, while the kernel concurrent version is 18%
faster and the page-copying concurrent version is 13%
faster.

Mutator time is the time spent executing the mu-
tator, including calls to the allocator but excluding all
other collection-related time: page traps, all scanning,
and flips.

Mutator overhead is the percent of total elapsed
time that wasn’t spent executing the mutator. For
the stop-and-copy and sequential versions, overhead is
about 1/3 of total time, typical for Lisp-like systems.
The overhead for the kernel concurrent version is less
than half of that, only 13% and for the page-copying
concurrent version is 18%.

Total CPU time is the total CPU time used by all
the threads in the benchmark (as measured by the op-
erating system). The sequential version takes 4% more
than stop-and-copy, the kernel concurrent version takes
8% more, and the page-copying concurrent version takes
21% more.

Collector time is the total CPU time on all pro-
cessors used by the collector, including page traps and
scanning. The sequential takes 15% more CPU time
than stop-and-copy while the kernel concurrent version
and the page-copying take 28% and 78% more.

Table 2 shows the latency of the four versions, each
of which allocated 12.2 megabytes during execution.

A stop-and-copy flip takes 9.5 seconds, while the se-
quential and concurrent versions take .164 and .120 sec-
onds. A tenth of a second is almost good enough for
an interactive workstation; using incremental stack and
register scanning, the flip time should be well under
that. The sequential collector flips more slowly than

the concurrent one because it usually has to scan a few
remaining pages before flipping.

Traps per second and Time per trap show that
the disruption due to page traps is extremely small.

Time per allocation is the average elapsed time
needed by the mutator to allocate and collect a two-
pointer list cell. That time is broken into the time spent
in the Allocate procedure (excluding page scanning)
and the elapsed time the mutator is blocked waiting for
the collector (including page scanning). The sequen-
tial version is about 1/3 slower than stop-and-copy, the
kernel concurrent version is about 1/3 faster, and the
page-copy concurrent version is about 1/4 faster. The
time spent in Allocate could easily drop and the col-
lection time should drop quite a bit with better object
representations and tuning.

Conclusions

In this paper, we have discussed four approaches for the
collector threads to access protected pages for the con-
current copying garbage collection method that requires
using the page protection mechanism to synchronize col-
lector threads and mutator threads: kernel mode, page
copying, multiple address mapping in the same address
space, and multiple address mapping in different ad-
dress spaces. Each method has advantages and disad-
vantages.

The kernel-mode version is probably the most efficient
method. It requires less system resources, but it requires
a careful design for the interface to the virtual memory
to avoid security leaks. The portability is poor.

The page-copying method is less efficient, but it re-
quires less resource. Qur implementation shows that it
can obtain substantial efficiency over the stop-and-copy
version although it is less efficient than the kernel-mode
version.

The method of multiple address mapping in the same
address space should be as efficient as the kernel-mode
method, but it requires more system resources such as
additional memories for page tables.

The method of multiple address mapping in different
address spaces is expected to be less efficient than that
in the same address space because of the heavyweight
context switches. Its main advantage is its portability.

Although the user-mode approaches seem more ex-
pensive than the kernel-mode approach, our experi-
ments indicate that even the page-copying approach
provides quite reasonable performance for the Boyer
benchmark on a small scale shared-memory multipro-
CESSOr.

Acknowledgements

This research was supported in part by National Science
Foundation Grant CCR-8814265 and DEC External Re-
search Program and DEC Systems Research Center.

References

[1] Andrew Appel and Kai Li. Virtual Memory
Primitives for User Programs. Technical Report

CS-TR-276-90, Princeton University, July 1990.

[2] A.W. Appel, J.R. Ellis, and K. Li. Real-time
Concurrent Collection on Stock Multiprocessors. In
ACM SIGPLAN ’88 Conference on Programming
Language Design and Implementation, pages 11-20,
June 1988.

[3] Henry G. Baker. List processing in real time on a
serial computer. Communications of the ACM,
91(4):280-294, 1978.

[4] Luca Cardelli. Compiling a functional language. In
1984 ACM Symposium on LISP and Functional
Programmaing, pages 208-217, 1984.

[5] C. J. Cheney. A Nonrecursive List Compacting
Algorithm. Communications of the ACM,
13(11):677-678, 1970.

[6] Richard P. Gabriel. Performance and Evaluation of
Lisp Systems. MIT Press, 1985.

[7] David A. Moon. Garbage Collection in a large
LISP system. In ACM Symposium on LISP and
Functional Programming, pages 235-246, 1984.

[8] R.F. Rashid, A. Tevanian, M. Young, D. Golub,
R. Baron, D. Black, W. Bolosky, and J. Chew.
Machine-independent Virtual Memory
Management for Paged Uniprocessor and

Multiprocessor Architectures. IEEE Transactions
on Compulers, 37(8):896-908, August 1988.

[9] C.P. Thacker and L.C. Stewart. Firefly: a
Multiprocessor Workstation. In Proceedings of
Second International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 164-172, October 1987.

