This paper will appear in the
Proceedings of the REAL-TIME SYSTEMS SYMPOSIUM
December 5-7, 1990, Orlando, Florida

SCHEDULING I/0 REQUESTS WITH DEADLINES:
A PERFORMANCE EVALUATION

Robert K. Abbott
Hector-Garcia-Molina

CS-TR-287-90

October 1990

Scheduling I/O Requests with Deadlines: a Performance Evaluation

Robert K. Abbott

Digital Equipment Corp.
151 Taylor St. (TAY1)
Littleton, MA 01460

Abstract

A real-time computing system allocates resources to
tasks with the goal of meeting individual task dead-
lines. The CPU, main memory, 1/0 devices and access
to shared data all should be managed with the goal of
meeting task deadlines. This paper examines the 1/0
scheduling problem in detail. We present a detailed,
realistic model for studying this problem in the con-
text of a system which executes real-time transactions.
The model takes advantage of the fact that reading
from the disk occurs before a transaction commits
while writing to the disk usually occurs after the
transaction commits. We develop new algorithms that
exploit this fact in order to meet the deadlines of indi-
vidual requests. The algorithms are evaluated via de-
tailed simulation and their performance is compared
with traditional disk scheduling algorithms.

1 Introduction

Traditional real-time systems typically are designed to
meet all (hard) deadlines and to hold the data they
need in main memory. Our goal is to expand this view
to include other types of systems where there are real-
time constraints. In particular, we are interested in
systems where data must be consistent and persistent.
This means that the data must be stored on non-
volatile storage, usually disks. It also means that the
applications modify the data via transactions, i.e., col-
lections of actions that must be executed as an atomic
operation. In such systems it is very difficult to meet
all deadlines. One reason is that the disk introduces
unpredictable seek and rotational delays. A more im-
portant reason is that in many applications it is impos-
sible to predict the data and computational require-
ments of transactions, i.e., as a transaction executes
and reads data, it decides what to do next. Thus, our
view of such systems is that deadlines are soft. This
means the transaction management system must make
every effort to meet all deadlines, but it is understood
that in overload situations or when transactions have
tight deadlines, some will be missed.

We believe that there are many applications that can
utilize such persistent, real-time data management fa-
cilities. For example, a radar system may need to

Hector Garcia-Molina

Department of Computer Science
Princeton University
Princeton, NJ 08544

compare images of objects against a database of
known aircraft types. In a program trading applica-
tion, transactions must complete trades and record
them in a database by a given time. Even in conven-
tional applications such as banking, it will be possible
to use deadlines to give transactions different priori-
ties.

Designing a computing system that supports the exe-
cution of transactions with deadlines presents many
new problems. Chief among these problems is the
management and scheduling of system resources un-
der real-time performance metrics. For example, the
CPU, main memory, [/O devices and access to shared
data all should be managed with the goal of meeting
individual transaction deadlines. In previous work we
have examined in detail CPU scheduling and
concurrency control for real-time transactions(1,2]. In
[2] a simple model of an I/O system was used to study
the effect of using real-time priorities to schedule disk
accesses. Our results indicated that priority based disk
scheduling could be beneficial to overall performance.
However the interaction between reads and writes
needed to be carefully controlled. This paper exam-
ines in more detail the problem of scheduling I/O re-
quests with deadlines.

Consider a common method for modeling a transac-
tion in a centralized database system: a transaction is
an alternating sequence of data actions (reads and up-
dates) and compute actions. The sequence terminates
with a COMMIT action where log processing is done
and locks are released. Finally, the modified pages
produced by the transaction are written to the disk
resident database. If we make the assumption that
memory is large enough to hold all uncommitted up-
dates, then the following observations are true:

¢ Requests to read pages from the disk resident da-
tabase are always performed before the request-
ing transaction is committed.

e Requests to write modified pages back to the disk
are always performed gfter the transaction which
created the modified pages has committed.

These observations are particularly important in the
context of a system which executes real-time transac-

tions. It means that the 1/O system will service two
types of requests: reads and writes. Read requests are
issued by uncommitted real-time transactions. These
requests should receive service in accordance with the
time constraints of the tasks that issued them. In gen-
eral, this means that read requests issued by tasks with
immediate deadlines are serviced before read requests
issued by tasks with later deadlines. How the time
constraints of the issuing tasks can be inherited by the
read requests themselves is but one question. How
should we evaluate system performance in meeting
these time constraints is another.

Read requests have explicit time constraints which
they inherit from the tasks that issued them. Write re-
quests do not have explicit time constraints because
they are not issued by real-time tasks. For example, a
buffer manager writes modified pages to disk in order
to maintain a suitable amount of free memory. Typi-
cally, the performance of a buffer manager is not
measured with real-time metrics. A write request must
be serviced but when it should be serviced is not clear.
On the one hand, write requests should be serviced at
an average rate that is equal to their average arrival
rate. On the other hand, servicing write requests can
interfere with the timely servicing of read requests.
This interference should be minimized. How can we
service write requests and still meet the deadlines of
read requests? How can we ensure that write requests
are serviced "often enough"” even though they lack
real-time constraints?

It is conceivable that some write requests in a real-
time transaction system will have explicit hard dead-
lines. For example, a distributed real-time system may
implement a timed atomic commit protocol [12]. In
this multi-phase protocol, each phase must complete
before the next can begin. The completion of a phase
is recorded by writing a record to stable storage, i..,
the disk. However we believe that the above observa-
tions are true for most I/O requests. Therefore,
throughout this paper we will refer to I/O requests
with deadlines as Reads, and requests without dead-
lines as Writes. However our model and scheduling
algorithms can work for write requests with deadlines
as well.

Finally, there is the problem of scheduling the disk
head itself, Traditional algorithms perform seek opti-
mization to meet non real-time performance goals.
Will these same algorithms perform well under real-
time metrics? What kinds of algorithms can be devel-
oped using deadline information? How well do they
perform? Should read requests be handled differently

from write requests? The questions and issues we
have raised here are addressed in the rest of the paper.

2 Model and Assumptions

The basic model that we use to study the problem of
scheduling 1/O requests with deadlines is shown in
Figure 2-1. Our model has two halves: memory,
which is depicted on the left and the I/O subsystem
which is shown on the right. The boundary between
the two serves as a deadline checkpoint, a place where
we evaluate if time constraints have been met.

Read and write requests are generated not by transac-
tions directly but by a buffer manager that lies be-
tween the running transactions and the disk handler.
This buffer manager receives read and write requests
from the transactions, and in turn generates read and
write requests for the disk handler.

Figure 2-1 Model for /O Requests with Deadlines

Scheduler

i k-buffer

afeeMemry 16Ve] el eqmmeController leve] memmmmm—-
If a transaction read request cannot be satisfied by a
page in the buffer, then the request is forwarded to the
disk handler. We model each read request by the pair
(p, d), where p is the required page, and d is the dead-
line. The deadline d is determined by the buffer man-
ager based on the deadline of the transaction that is-
sued the read. Each request also identifies the page in
the buffer that is to hold the newly read page. The
problem of determining the deadline 4 from the trans-
action deadline is not considered in this paper.

Thus read requests are issued by the buffer manager,
serviced by the disk handler, and processed by the
disk. The data becomes available to the requesting
transaction only when the page has been read into the
memory buffer. So the deadline for a read request sets
a time limit for the round trip from issuance, through
the controller level read queue and back to main mem-
ory. The path of read requests is shown in Figure 2-1.

Note that the deadline is checked at the border be-
tween memory and the I/O system (disk handler) on
the way back from the disk.

When the buffer manager needs to clear buffer space,
or needs to force writes to disk, it flushes dirty buffer
pages. This generates write requests for the disk han-
dler. We do not model the particular page replacement
or force policy used by the buffer manager itself.
Rather, we assume that write requests are generated at
an average rate lw. A write request (f, d) means the
buffer manager needs to free frame f by time d. The
contents of frame f is a modified data page p.

There are a several ways to model how a modified
page is written out to disk. For example, page p can
remain in memory while a write request is issued to
the 1/O system. The write request would eventually be
scheduled at the disk and the data page is pulled from
main memory and written on the disk. This model is
an analog of the read request model. The buffer frame
is not actually emptied until the write is performed at
the disk. The deadline is a time constraint on the
movement of data from the memory to this disk.

A serious flaw with this method is that a deadline is
associated with an individual write request from the
time it is issued until it is serviced at the disk. Unlike
read requests, there is no natural way to assign these
individual deadlines since write requests are not is-
sued by real-time transactions. The buffer manager is
concerned only with freeing buffer frames; it does not
care about when specific pages are written to disk.

A second way to model how a buffer page makes its
way to disk is shown in Figure 2-1. Under this model
the modified page p is first copied into a frame in a
fixed size buffer pool. We call this buffer the k-buffer
where k is the number of available frames. This buffer
is managed by the disk handler and is separate from
the buffer used by the buffer manager. The k-buffer
can be thought of as a buffer at the disk controller, or
as a buffer at a lower level of the operating system
than the buffer directly seen by transactions. (The lat-
ter is a common arrangement, where the database
management system manages its own buffer for trans-
actions, and the operating system undemeath manages
the k-buffer.)

Once a page is copied into the k-buffer, the frame f is
free. Thus, the deadline is satisfied if this copy is done
before time d. The copy can be done immediately so
long as there is an empty place in the k-buffer. If there
is not, then the page must wait in the frame f until a
place becomes available. Note that in this case the
deadline applies only to the buffer to buffer copy op-
eration, and not to the eventual disk write. Section 3
discusses how we create time constraints for emptying
the k-buffer so that copy operation deadlines are met.

The model we have presented is relatively simple; yet
we think it captures the essential aspects of the disk
handler and buffer manager interactions. A more com-
plete model could be postulated, one that included the
details of the buffer manager, CPU scheduling, and
the transactions themselves. Such a model would let
us study the performance of the overall system. How-
ever, since our model uncouples the disk handler from
the rest of the system and reduces the number of ir-
relevant parameters, we believe it is better suited to
studying the finer points of disk scheduling.

One last observation we make concerns the the use of
deadlines at the level of individual I/O requests.
Clearly, the top level transactions have deadlines. But
how are these deadlines translated into deadlines for
the individual read requests made by the buffer man-
ager? Would it be better to use fixed priorities for the
read requests, as suggested by [4]?

Regarding the first question, there are many ways to
translate deadlines. The simplest is to give the I/O re-
quest the same deadline as the issuing transaction. A
more sophisticated approach would account for future
requests to be issued by the transaction as well. For
example, if it is known that a transaction typically is-
sues 10 read requests, the first one would get a tenth
of the remaining time to the final deadline, and so on.
But if no access pattern information is available, the
simple approach is probably the best. That is, in this
case the I/O requests should be prioritized by the
deadline of the issuing transaction. Although the issue
of assigning deadlines is important, we do not discuss
it further in this paper.

Regarding the second question, a fixed priority
scheme is an alternative to deadlines. Fixed priorities
are natural in some applications, but in applications
where deadlines exist, we believe it is more natural to
work with deadlines and to carry them through to
lower level tasks like I/O requests. Furthermore, dead-
lines give us more flexibility: 1) we are not con-
strained to a fixed set of priorities, 2) we can tell when
a request is unfeasible and can be ignored, and 3) they
may be more useful in a distributed system where the
priorities of one computer may be different from those
of others.

3 Managing the k-Buffer

Our model contains two types of I/O requests: those
with deadlines and those without. The normal mode of
operation is to give a higher priority to servicing the
requests with deadlines. The requests without dead-
lines are serviced either when there are no read re-
quests or when the buffer is in danger of overflowing.

This section discusses two heuristic techniques that
can be used to trigger service for write requests. These
policies provide a way to decide if the next /O re-
quest to service will be a read or a write. They do not
choose which particular request to service. This deci-
sion is left to the scheduling policies in Section 4.

3.1 Space Threshold
The motivation of the Space Threshold policy is to
maintain a minimum amount of free space in the write
buffer at all times, so that each arriving write request
will find an open slot in the buffer. The amount of free
space that is maintained is a parameter that can be
tuned to accommodate the expected "burstiness” of
the write arrival pattern. A space threshold heuristic is
applied as follows:

IF Free Space < Threshold OR

there are no read requests

THEN Service write requests.

ELSE Service read requests
Preferential service is granted to read requests so long
as the space threshold has not been exceeded. Other-
wise, write requests are serviced. Write requests are
also serviced when there are no read requests in the
system.

3.2 Time Threshold
The motivation of the Time Threshold technique is to
create an artificial deadline for a write event. We use
the term "write event" to denote the action of writing
the contents of a buffer slot to disk. Note that a write
event, and hence the write event deadline, is not asso-
ciated with a particular write request. The closeness of
the write event deadline reflects the urgency of empty-
ing a buffer slot. If the buffer is relatively empty then
the deadline would be far off. If the buffer is nearly
full then the deadline would be much sooner. Let D
be the deadline for the write event. The Time Thresh-
old approach is applied as follows:

IF Dy < The earliest read deadline OR

there are no read requests

THEN Service a write request

ELSE Service read requests
Again, the method for choosing which read or write
request to service is decided by one of the algorithms
in Section 4.

In contrast to the Space Threshold approach, Time
Threshold always gives consideration to the timing re-
quirements of read requests, regardless of how full the
write buffer is. However, when the buffer is almost
full, it is unlikely that any read request will have an
earlier deadline than D ;. The problem now is to as-
sign appropriate deadlines for write events. We chose

to adopt a simple linear function which uses the state
of the write buffer (amount of free space) and an esti-
mate of write arrival patterns in order to create write
event deadlines.

3.2.1 Linear Function for Setting D

Using this approach, the closeness of me deadline var-
ies linearly with the amount of free space in the write
buffer. The average inter-arrival time of write requests
is the slope. Thus Dy, =1 +(1/7L) * (free space +
1). Ay is the average amval rate of wntc requests and
tis the current time. Thus if a write request arrives
and fills the last slot in the buffer, i.e., free space = 0,
then Dy;, is set to (1 / A W) seconds from the current
time. Iln; buffer can be empued before the next write
arrival is expected then the buffer will not overflow.

Note that other, more complex functions to set Dy, are
possible. However, these functions seem unnecessary
given that the Space Threshold and a simple linear
function for the Time Threshold worked well in prac-
tice (See Section 6, 7).

4 Disk Scheduling

This section presents a number of algorithms for
scheduling I/O requests. The first three are traditional
disk scheduling algorithms that have been studied be-
fore, although not in the context of real-time perform-
ance metrics. This group of scheduling policies does
not use deadline information to make scheduling deci-
sions. Seek optimization, if done at all, is done with
the use of track information. The algorithms that we
have chosen are generally acknowledged to perform
well under one or more of the traditional non real-time
performance metrics: average response time, through-
put, fairness to requests. Thus their performance can
be used as a reference against which the real-time
scheduling algorithms can be compared. The second
group of three are new algorithms that are specifically
designed for the real-time environment. These algo-
rithms do make use of deadline information.

In the following subsections we explain each schedul-
ing policy and illustrate how it can be combined with
the policies for managing the k-buffer (Section 3) in
order to create a complete algorithm. The set of re-
quests which the algorithm is trying to schedule is
composed of the read requests, each a pair (p,), and
the writes, each simply (p). We use p to denote the
track number where the page is located on disk, and d
is the deadline for read requests. If the Space Thresh-
old technique is used for managing the k-buffer then F
denotes the free space threshold. If the Time Thresh-
old technique is employed, then D_, denotes the write
event deadline.

4.1 Three Traditional Algorithms

We chose to study three traditional disk scheduling al-
gorithms under real-time performance metrics. They
are First-Come-First-Served (FCFS), Shortest-Seek-
Time-First (SSTF), and the elevator algorithm SCAN
The FCFS algorithm orders requests by arrival time.
The SSTF algorithm chooses the requests that is clos-
est to the current head position. In the SCAN algo-
rithm, the head sweeps back and forth across the disk
surface servicing all requests that lie ahead of it.
When the head reaches an edge of the disk surface,
the direction is reversed. The performance of these al-
gorithms under non real-time metrics has been studied
extensively [5,6,7,10,11].

The traditional algorithms schedule from a single pool
of requests. There is no distinction between read and
write requests. Also these scheduling models do not
use a buffer pool to buffer write requests. Applied as
is to our model, the algorithms do not use a special
policy for managing the k-buffer.

Although these algorithms do not require the use of a
buffer management technique they can be modified to
make better use of the k-buffer by combining them
with the Space Threshold technique. For example,
combining FCFS with Space Threshold produces the
following algorithm:
IF Buffer free space <F OR
there are no read requests
THEN Service the closest write request.
ELSE Service the read request with
the earliest arrival time.

The FCFS scheduling policy is applied only to read
requests. The SSTF policy is used to service writes so
that the £-buffer can be emptied as quickly as possi-
ble. Notice that write requests are only serviced when
the free space threshold has been exceeded or when
there are no read requests to service. The correspond-
ing algorithms for SSTF and SCAN are formed simi-
larly.

4.2 Three Real-Time Scheduling Algorithms

4.2.1 Earliest Deadline First (ED)

The Earliest Deadline algorithm is an analog of FCFS.
Read requests are ordered according to deadline and
the request with the earliest deadline is serviced first.
Since no positional information is used to make
scheduling decisions, ED will have the same expected
seek time profile as FCFS. Unlike the first three algo-
rithms, it is necessary to use ED with one of the k-
buffer management techniques. This is because ED
uses only deadline information to make scheduling
decisions. Since write requests do not have deadlines,

one of the k-buffer management techniques must be
emploved to guarantee that the k-buffer is emptied.

Combining ED with the Space Threshold technique
for managing the k-buffer produces the following al-
gorithm:
IF Buffer free space <F OR
there are no read requests
THEN Service the closest write request
ELSE Service the read request with
the earliest deadline.
Combining ED with a Time Threshold technique for
managing the k-buffer produces the following algo-
rithm: (Recall that Dy, denotes the write event dead-
line.)
IF Dy, < the earliest read deadline OR
there are no read requests
THEN Service the closest write request
ELSE Service the read request with
the earliest deadline

4.2.2 Earliest Deadline SCAN (D-SCAN)

This algorithm is a modification of the traditional
SCAN algorithm. In D-SCAN the track location of the
read request with the earliest deadline is used to deter-
mine the scan direction. The head seeks in the direc-
tion of the read request with the earliest deadline serv-
icing all read requests along the way (these will be for
requests with later deadlines) until it reaches the target
track. After the target request is serviced, the scan di-
rection is updated towards the direction of the read re-
quest with the next earliest deadline. We have chosen
to use earliest deadline to select the scan direction,
however any real-time priority scheme could be used,
e.g., least slack.

Unlike the traditional SCAN algorithm the new scan
direction may be the same as the previous scan direc-
tion. Also, the scan direction can change before the
target track is reached. This will happen if a request
with an earlier deadline than the target request, and a
track location behind the current head position arrives
after the scan direction is chosen. Also D-SCAN does
not scan to the last request in a particular direction. If
the requests with the earliest deadlines are grouped
within a small region, then D-SCAN will scan only in
that region. However as time progresses, the deadlines
of requests at other portions of the disk will be the
earliest and the head will scan over those portions of
the disk.

Like ED, D-SCAN must be combined with one of the
k-buffer management techniques to ensure that write
requests are serviced. Using the Time Threshold tech-
nique produces the following algorithm:

IF Dy, <the earliest read deadline OR
there are no read requests
THEN Service the closest write request
ELSE Service the closest read request
in the scan direction.

4.2.3 Feasible Deadline Scan (FD-SCAN)

The FD-SCAN algorithm is similar to D-SCAN ex-
cept that only read requests with feasible deadlines are
chosen as targets that determine the scanning direc-
tion. A deadline is feasible if we estimate that it can
be met. More specifically, a request that is n tracks
away from the current head position has a feasible
deadline d if d > t+ Access(n) where t is the current
time and Access(n) is a function that yields the ex-
pected time needed to service a request n tracks away.

Each time that a scheduling decision is made, the read
requests are examined to determine which have feasi-
ble deadlines given the current head position. The re-
quest with the earliest feasible deadline is the target
and determines the scanning direction. The head scans
toward the target servicing read requests along the
way. These requests either have deadlines later than
the target request or have unfeasible deadlines, ones
that cannot be met. If there is no read request with a
feasible deadline, then FD-SCAN simply services the
closest read request. Since all request deadlines have
been (or will be) missed, the order of service is no
longer important for meeting deadlines and SSTF is
used to efficiently service the outstanding requests as
quickly as possible.

Like ED, and D-SCAN, FD-SCAN must be combined
with a buffer management policy to ensure that write
requests are serviced. Combining FD-SCAN with the
Time Threshold technique produces an algorithm
similar to that produced by D-SCAN.

5 Simulation Model

To test the algorithms, we built a program to model
real-time I/O requests in a system with a single data
disk. We make the realistic assumption that log writes
are directed toward a separate device. Our program
was built using CSIM, a process-oriented simulation
language [8].

5.1 Device Model.

The program models a single-head disk device at the
track level; we do not model sectors within tracks.
This is reasonable since none of the algorithms under
study performs rotational optimization. The names
and meaning of the four parameters that control the
1/O system configuration are shown in Table 5-1.

Table 5-1 Device Parameters

Parameter Meaning Base Value
Tracks # of tracks on disk 1000
BufferSize # of pages in k-buffer 10
SeekFactor Seek time scaling factor 0.6 ms

DiskConstant Rotational latency + transfer 15.0 ms

The access time for an I/O request n tracks away from
the current head position is expressed by the equation:

Access(n)=Seek(n)+Rotational latency+Transfer time.

In our model, rotational latency and transfer time are
grouped together in the single parameter DiskCon-
stant. In today’s disk technology, seek times are non-
linear with seek distance[3, 9]. Accordingly, we use
the following function for the access time:

Access(n) = DiskFactorX /f + DiskConstant

Using the values from Table 5-1 and assuming an av-
erage seck distance of 333 tracks, the average access
time for our modeled device is 26 ms. The average ac-
cess time will be used in the construction of individual
request deadlines.

Table 5-2 Workload Parameters

Parameter Meaning Base Value
Read Rate Read arrival rate

Write_Rate Write arrival rate

Min_Slack Min slack for reads 10 ms
Max_Slack Max slack for reads 100 ms
5.2 Workload Model

The names and meanings of the parameters that con-
trol the workload characteristics are shown in Table 5-
2. Requests for I/O service arrive from an open source
with exponentially distributed inter-arrival times with
mean arrival rates denoted by Read Rate and
Write_Rate for read and write requests respectively.
Each request needs to access a single track which is
chosen uniformly from the range [1, Tracks). If the
request is a write, then the request is placed in the .-
buffer. The recording of write missed deadlines
(buffer overflows) and the setting of the write event
deadline are done as explained in Sections 2 and 3. If
the request is a read, then it is placed in a queue and
its deadline is chosen as follows. A slack time is cho-
sen uniformly from the range [Min Slack,
Max_Slack]. The equation for computing the deadline
is:

Deadline = Arrival time + Average access + Slacktime

In reality, deadlines can be unreasonable, or impossi-

ble to meet. In our experiments we want to avoid sce-
narios where deadlines are either, (1) so slack that any
scheduling algorithm will meet them, or (2) so tight
that no algorithm could meet them. Thus we tried to
choose deadlines that leave some room for "intelli-
gent" scheduling. Our experiments will then show
which algorithms have this "intelligence."

The base values are not meant to represent a particular
workload but were selected as reasonable values
within a range. Also our experiments vary the values
of the parameters to learn how the algorithms perform
under different workload characteristics.

5.3 Data Generation and Metrics

In the following sections we discuss some of the re-
sults from the experiments that we performed. Due to
space considerations we cannot present all of our re-
sults but have selected the graphs which best illustrate
the differences and performance of the algorithms. For
each experiment we ran the simulation using 40 dif-
ferent random number seeds. Each run continued un-
til 3000 I/O requests were processed. Numerous per-
formance statistics were collected and averaged over
the 40 runs.

The primary metric that we use to measure perform-
ance is percentage of missed deadlines. Recall that our
goal is to schedule 1/O requests so that they meet their
individual response time goals, or deadlines. Measur-
ing the percentage of requests that miss their deadlines
is a good performance metric for this goal. Since our
model contains two types of deadlines, we measure
the performance of each separately using the follow-
ing equations:

X . _ _Missed Read deadlines
%Missed Read Deadlines = yMissed Read deadlines 19

%Missed Write Deadlines = yiosea Ve deadlaes 100
6 Results for Read Requests Only

In this set of experiments we studied performance be-
havior under a workload that contained only I/O re-
quests with deadlines, thus no k-buffer was used.
Deadlines were chosen according to the method de-
scribed in Section 5.

6.1 Experiment 1: Min_Slack =50, Max_Slack =50

In the first experiment, the Min_Slack and Max_Slack
parameters were both set to 50 ms. Thus each request
had a deadline that was approximately 76 ms from its
arrival time (average access plus 50 ms). This also
guarantees that arriving requests have later deadlines
than requests already in the queue. The parameter
Read Rate was varied from 22 requests per second to

40 requests per seconds in increments of 2. Figure 6-1
graphs %Missed Read Deadlines for all six scheduling
algorithms. Because of the way that deadlines are as-
signed, FCFS and ED have exactly the same behavior.
The data for these two algorithms is omitted for arri-
val rates greater than 36 since these two algorithms
are unable to meet the throughput demands due to in-
efficient use of the disk.

These parameter settings describe a very difficult
workload where many deadlines are missed. One
could argue that such a scenario is unrealistic. How-
ever, we believe that for designing real-time schedul-
ers, once must look at precisely these high-load situ-
ations. Even though they may arise infrequently, one
would like to have a system that misses as few dead-
lines as possible when these peaks occur.

The results show that FD-SCAN consistently has the
best performance across all load settings. At the high-
est setting, FD-SCAN misses approximately 6.5%
fewer deadlines that SSTF, the second best algorithm.
This represents a performance improvement of about
15%. The SCAN and D-SCAN algorithms are the
next best with SCAN being slightly better.

The SSTF and SCAN algorithms work well because
they move the disk head efficiently and thus use the
disk resource efficiently. The mean seck distance, and
thus mean response time, is significantly lower for
these two algorithms, Figure 6-2. Importantly, the
mean seek distance decreases significantly as the load
increases. This is not surprising since it is exactly how
these algorithms were designed to work. The SSTF
and SCAN algorithms are excellent baseline algo-
rithms to try to beat precisely because they use the
disk resource efficiently. However, they schedule the
requests randomly with respect to deadlines. Our goal
is to learn which algorithms can beat SSTF and SCAN
by doing intelligent deadline scheduling, and yet still
use the disk efficiently

In contrast to SSTF and SCAN, FCFS and ED move
the disk arm very inefficiently, performing a random
seek for every request. As the load increases, these
two algorithms are unable to maintain throughput.

The two real-time algorithms D-SCAN and FD-SCAN
try to do intelligent deadline scheduling and move the
disk arm efficiently. In this experiment, Figure 6-1,
we see that D-SCAN performs similarly to SCAN.
Because of the way deadlines are assigned, D-SCAN
scans the disk in much the same way as SCAN. First,
recall that ordering requests by deadline is equivalent
to ordering by arrival time (this is only for the case
where Min Slack = Max _Slack). Consider the disk

head at some point during a scan. The requests behind
the head (in the wake of the scan) will be recent arri-
vals. The requests lying in front of the head will con-
tain some recent arrivals but more older requests as
well. The scan direction will not change until these
older requests are serviced. Once they are, the oldest
requests are now at the other end of the disk and the
scan reverses direction. Because a newly arrived re-
quest cannot change the direction of scan, D-SCAN
operates much like SCAN.

The FD-SCAN algorithm has the best performance
because it gives high priority to requests with feasible
deadlines. Thus FD-SCAN may change direction to
service a recent arrival if it determines that the older
requests lying before it have unfeasible deadlines.
When all requests have unfeasible deadlines, FD-
SCAN defaults to SSTF which is an efficient way 1o
service the requests and empty the queue as rapidly as
possible.

6.2 Experiment 2: Min_Slack =10, Max_Slack=100
In a second experiment we set Min_Slack = 10 ms and
Max_Slack = 100 ms. This now allows a significant
range of deadlines. The load was varied as it was in
the first experiment. Figure 6-3 graphs %Missed Read
Deadlines for the six algorithms. This time we see that
ED misses the fewest deadlines when the arrival rate
is low. At this rate, all algorithms will have high mean
seek distances because mean queue length is small.
Therefore ED is not handicapped, relative to the other
algorithms, by its high mean seek time. However, as
the load exceeds 32 requests per second, performance
deteriorates swiftly due to inefficient use of the disk.

Another interesting observation is that D-SCAN per-
forms better than SSTF and SCAN when the load is
low and just as well when the load is high. The vari-
ability in deadlines allows D-SCAN to make intelli-
gent choices and still use use the disk efficiently. At
the higher load settings, FD-SCAN performs better
than all other algorithms.

In Figure 6-4 we graph the Mean Tardy Time for all
six algorithms. (Only requests that miss their dead-
lines contribute to this metric.) The performance of
ED is interesting since it has the lowest Mean Tardy
time when the load is low, but a very high Mean
Tardy time when the load is high. This is characteris-
tic for ED; it can meet most deadlines when the load
is low but it rapidly saturates and misses most dead-
lines, by a lot, when the load is high. Similar remarks
apply to FCFS, although it does not perform as well as
ED.

Algorithms SSTF, SCAN and D-SCAN have similar
mean tardy times because they do not miss many
deadlines and they tend to limit the maximum re-
sponse time experienced by a request. The sweeping
behavior of both SCAN and D-SCAN bounds rep-
sonse time, eve for requests at the edge of the disk.
Algorithm SSTF also bounds response time because
requests are uniformly distributed along the disk sur-
face, and hence the head does not get "stuck” in one
area of the disk.

Interestingly, FD-SCAN has the highest Mean Tardy
time, Figure 6-4. Although FD-SCAN misses the few-
est deadlines (see Figure 6-3), it misses them by a
greater amount. The Mean Tardy time is greater be-
cause requests with unfeasible deadlines can wait for a
long time before they are serviced. In fact, requests
with unfeasible deadlines are only serviced when they
lie between the disk head and the current scanning tar-
get, whenever a request with a feasible deadline ex-
ists. Thus a request, A could lie only one track from
the current head position but not be serviced because
there is no request B with a feasible deadline to "pull”
the head over request A. Contrast this to SSTF which
would service A because it is so close.

The preceding discussion suggests that we examine
how the algorithms perform for certain areas of the
disk. Figure 6-5 graphs the distribution of missed
deadlines for 10 disk areas at Read_Rate = 36 requests
per second. Disk area 1 contains tracks 1-100, area 2,
101-200, and so on. The FCFS and ED algorithms are
very fair, each area accounts for 10% of the total num-
ber of missed deadlines. The SCAN algorithm is also
relatively fair. The FD-SCAN algorithm is remarkably
unfair to requests in the two outermost disk areas. A
center area of the disk accounts for only 6% of the
missed deadlines while each outermost area accounts
for more than 16%.

Since requests on the outer tracks require longer
seeks, they are more likely to miss their deadlines.
The SSTF, SCAN, D-SCAN and FD-SCAN policies
all favor the center tracks. However, SCAN regularly
services the outer tracks. Requests that arrive while
the head is there will be serviced quickly and meet
their deadlines. The D-SCAN policy only services the
outer arecas when the earliest deadline request is lo-
cated there. The FD-SCAN policy discriminates
against the outermost areas severely, scanning them
only when a request with a feasible deadline is there.
However it is very bad only to the outermost areas.
The missed deadline distribution for the next to outer-
most areas is comparable to SSTF, SCAN and D-
SCAN.

7 Results for Read and Write Requests

In this set of experiments, we studied performance be-
havior under a workload that contained both read and
write I/O requests. We are interested in comparing the
performance of the algorithms that do not manage the
k-buffer to those that do manage the buffer. Also we
want to learn which algorithms are best overall.

7.1 Experiment 1: Vary Read_Rate

In the first experiment Write_Rate was set at 10 re-
quests per second while Read_Rate was varied from
12 to 30 requests per second in increments of 2. Note
that the cumulative arrival rate is the same as in the
first set of experiments. The slack parameters had the
base values shown in Table 5-2. Figure 7-1 graphs
%Missed Read Deadlines for both the traditional and
the buffer adapted versions of SSTF and SCAN. The
buffer adapted versions use the Space Threshold tech-
nique with the threshold set to 1. It is obvious that the
buffer adapted versions miss far fewer read deadlines
than the traditional versions. Figure 7-2 graphs
%Missed Write Deadlines for the same experiment.
Note that although the buffer adapted versions do miss
some write deadlines, it is less than 2.5% of the total
write arrivals. The traditional versions never let the
buffer overflow.

Figure 7-3 shows %Missed Read Deadlines for the
three real-time algorithms ED, D-SCAN and FD-
SCAN, and the three buffer adapted traditional algo-
rithms. The real-time algorithms use the Time Thresh-
old technique for buffer management. The others use
the Space Threshold technique. (We do not include
the Space Threshold versions of the real-time algo-
rithms because the resulting graph would be too
crowded. Also, we found that, for this experiment, the
Time Threshold version performed slightly better than
the Space Threshold version.) Although ED performs
well at lower load settings, its performance quickly
deteriorates once Read Rate exceeds 22 requests per
second. At the highest rate, ED is no better than
FCFS(B). The D-SCAN and SCAN(B) algorithms
have nearly identical performance. The second best
performer is SSTF(B) and the best is FD-SCAN. At
Read_Rate = 30, FD-SCAN misses approximately 3%
fewer read deadlines than SSTF(B). This represents an
improvement of 12%.

Figure 7-4 shows %Missed Write Deadlines for the
same six algorithms. The buffer adapted algorithms
SSTFE(B) and SCAN(B) permit significantly buffer
overflows than D-SCAN or FD-SCAN at the two
highest load settings. This happens because D-SCAN
and FD-SCAN use the Time Threshold technique for
managing the k-buffer. (We are not saying that all

Time Threshold techniques would behave like this,
perhaps some would be better. However, the one that
we tested, namely the linear technique, exhibits this
performance.) When Read_Rate is high there is a
greater chance that a read request will have an earlier
deadline than D, the write event deadline. Thus
reads receive priority and more write deadlines are
missed. Recall that FD-SCAN missed the fewest read
deadlines, Figure 7-3. When the two measures
(missed reads and missed writes) are combined in a
weighted average, SSTF(B) and FD-SCAN have
nearly identical performance.

7.2 Experiment 2: Vary Write_Rate

In a second experiment, Read_Rate was fixed at 12 re-
quests per second. and Write_Rate was varied from 10
to 28 requests per second. The other parameters were
unchanged. Figure 7-5 graphs the weighted average of
%Missed Deadlines for both reads and writes. Note
that all the algorithms that make effective use of the
write buffer outperform the traditional versions of
SSTF and SCAN. One reason for the lack of differen-
tiation among the better performing algorithms is that
they all are missing very few deadlines anyway. It is
easy to meet deadlines because the request stream
consists mostly of write requests, and meeting write
deadlines (keeping the buffer from overflowing) is
much easier to do than meeting the individual read
deadlines. However, when Write Rate is large
enough, buffer overflows become more of a problem.
In this experiment, %Missed Write Deadlines in-
creases from less than 1% at 22 writes per second to
roughly 6% at 28 requests per second for the algo-
rithms that manage the k-buffer. This accounts for
most of the increase in %Missed Deadlines in Figure
7-5.

7.3 Experiment 3: Vary Buffer_Size

In a third experiment, Read Rate was fixed at 20 re-
quests per second, Write_Rate at 16, and Buffer Size
was varied from 5 to 14. %Missed Read Deadlines
versus Buffer Size is shown in Figure 7-6. First, note
that SSTF and SCAN do not change. These algo-
rithms do not manage the k-buffer, thus changing the
buffer size will not affect %Missed Read Deadlines.
Second, all of the algorithms that manage the k-buffer
perform much better than SSTF and SCAN. These al-
gorithms can delay servicing writes in order to meet
the deadlines for reads. The amount that they can de-
lay, and thus the effective advantage to read schedul-
ing, increases significantly as the buffer size in-
creases. Finally, we note that FD-SCAN performs the
best with SSTF(B) and D-SCAN tied for second.

Also, no algorithms missed any write deadlines for
any of the buffer size settings.

7.4 Experiment 4: Vary Space_Threshold

In a fourth experiment, Read_Rate was fixed at 16 re-
quests per second, Write Rate at 20, Buffer_Size at
10, and the Space Threshold parameter was varied
from 1 to 4. (Recall that Space_Threshold controls
when the emptying of the k-buffer is triggered for
those algorithms that use the Space Threshold tech-
nique for managing the k-buffer) Thus, when
Space Threshold = 1, the emptying of the k-buffer is
triggered only when the buffer is full (free space < 1).
When Space_Threshold = 4, the emptying of the k-
buffer is triggered when there are only three empty
spaces left.

- Figure 7-7 graphs %Missed Read Deadlines for the

three traditional algorithms which use
Space_Threshold. The FD-SCAN algorithm, which
uses Time_Threshold, is also shown. Note that the
graph for FD-SCAN is flat since it is not affected by
the Space_Threshold parameter. The other three algo-
rithms miss more read deadlines as the
Space_Threshold parameter increases. Although we
do not show the graph, these algorithms also miss
Sfewer write deadlines. However when
Space Threshold = 3, these three algorithms miss less
than 1 percent of write deadlines and increasing
Space_Threshold further does not improve write per-
formance any more. Moreover, the ability to make the
best use of all of the k-buffer is hampered. Similar be-
havior was observed for algorithms using
Time_Threshold when the function that sets the write
deadline was varied from being optimistic to pessi-
mistic.

8 Conclusions

In this paper we have presented a number of new al-
gorithms for scheduling I/O requests with deadlines.
The algorithms were evaluated via detailed simulation
and compared with traditional scheduling algorithms.
One new algorithm, FD-SCAN, had consistently the
best performance in a wide variety of experiments.

We also investigated a model for handling read re-
quests differently from write requests. This model
buffers write requests in a separate queue from read
requests. Two techniques for managing the buffer
were examined and both were found to be effective.
The overall approach of buffering writes was espe-
cially helpful for meeting read deadlines. We believe
that systems. e.g., real-time information systems, that
produce read requests with deadlines and write re-
quests without, can use this approach to great benefit.

References

[1] Abbott, Robert and Hector Garcia-Molina,
"Scheduling Real-Time Transactions: a Performance
Evaluation," Proceedings of the 14th VLDB Confer-
ence, pp. 1-12, 1988.

[2] Abbott, Robert and Hector Garcia-Molina,
"Scheduling Real-Time Transactions with Disk Resi-
dent Data," Proceedings of the 15th VLDB Confer-
ence, 1989.

[3] Bitton, D. and J. Gray., "Disk Shadowing,” Proc.
14th VLDB Conference., pp 331-338.

[4] Carey, Michael, R. Jauhari, and M. Livny, "Prior-
ity in DBMS Resource Scheduling," Computer Sci-

- ence Dept, Univ. of Wisconsin, TR-828, March 1989.

[5] Coffman, E.G., and M. Hofri, "On the Expected
Performance of Scanning Disks," SIAM Journal of
Computing, Vol. 11, No. 1, Feb. 1982, pp. 60-70.

[6] Coffman, E.G., L. Klimko and B. Ryan, "Analysis
of Scanning Policies for Reducing Disk Seek Times,"
SIAM Journal of Computing, Sept. 1972, pp. 269-279.

[7] Geist, Robert and Stephen Daniel, "A Contimuum
of Disk Scheduling Algorithms," ACM Transactions
on Computer Systems, Vol. 5, No. 1, February 1987,
pp. 77-92.

[8] Schwetman, Herb, "CSIM Reference Manual,"
MCC.

[9] Seltzer, Margo, P. Chen and J. Ousterhout, "Disk
Scheduling Revisited," Proceedings of USENIX, Win-
ter '90, pp. 313-323.

[10] Teorey, Toby J. and Tad B. Pinkerton, "A Com-
parative Analysis of Disk Scheduling Policies," Com-
munications of the ACM, Vol 15, no. 3, pp. 177-184.

[11] Wilhelm, Neil C., "An Anomaly in Disk Schedul-
ing: A Comparison of FCFS and SSTF Seek Schedul-
ing Using an Empircial Model for Disk Accesses,”
Communications of the ACM, Vol 19, no. 1, pp 13-17.

[12] Davidson, S., I. Lee, and V. Wolfe, "A Protocol
for Timed Atomic Commitment," JEEE ICDCS 1989,
pp 199-206.

Acknowledgements

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and by the Office of
Naval Research under Contracts Nos. N00014-85-C-0456 and
N00014-85-K-0465, and by the National Science Foundation under
Cooperative Agreement No. DCR-8420948. The views and conclu-
sions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies,
either expressed or implied, of the Defense Advanced Research Pro-
jects Agency or the U.S. Govemnment.

Figure 6-1 Min_Slack=50, Max_Slack=50
00 s 4 s *% s

GO = %=X o-scan Aed

FD~SCAN

70
63
56

% Missed e

Read 4251
Deadlines 354

28+
214

144

Ll
22 24 26 28 30 32 34 36 38 40

Read_Rate (requestsisec)

Figure 6-2 Min_Slack=50, Max_Slack=50

00 = 4=+ sstr ¥ ¥ scan
[clop X=X D-scan o A rFo-scan
340
326+
3124 -
298 =g = -~

Mean Seek 2844
Distance 2704
256
242
228
2144

200

Read Rate (requestsisec)

Figure 6-3 Min_Slack=10, Max_Slack=100
@9 rcrs 4=+ sstF ¥ ¥ soan

GO o =¥ D-sCAN & A Fo-scan
25.0
22.54
20.0-
% Missed 175
Read 15.0
Deadlines ; , 5|
10.04

.5+

.01

o N owm -
o w

Read Rate (requestsi/sec)

Figure 6-4 Min_Slack=10, Max_Slack=100
9 s 4=+ ssr ¥ ¥ soan

M= Dp-scan

& A FD-scaN

Mean Tardy
Time (ms)

22 24 26 28 30 32 34 36 38 40

Read Rate (requesisisec)
Figure 6-5Min_Slack=10, Max_Slack=100

“ FCFS ++ SSTF

GO = XX p-scan
18.0
16.64 .
15.24
13.84

*¥%¥ soan

A so-scan

% Missed
Read

Deadlines 12-4
11.04 - - - -

.6
2=
.8

Y

Figure 7-1 Vary Read_Rate
@9 ssrr v 4+ scanis

* % sstr GO scan

40.0 4
16,5 = s == s 2 s 2 st e st s = r .*-

33,0~ r e s rr e n::..

% Missed
Read
Deadlines

. &
12 14 16 18 20 22 24 26 28 30

Read Rate (requests/sec)

Figure 7-2 Vary Read_Rate Figure 7-5 Vary Write_Rate
(Y 4 scanim @9 cesiv) 4+ ssteem ¥k seawe GO sste

¥ ¥ sstr G0 sean XX scan kA 0 ¢4 o-scan BFW ro-sca
14.0

12.8

% Missed 11+ €]
Deadlines 10.4
Reads & 9,7
Writes

% Missed
Write

Deadlines 8.0+
6.8
5.6 -
4.44 -

3.2 -

2.0

12 14 16 18 20 22 24 26 28 30 10 12 14 16 18 20 22 24 26 28

Read_Rate (requestsisec) Write_Rate (requests/sec)

Figure 7-3 Vary Read_Rate . 3 ;
i gumin 4 ssmee Figure 7-6 Vary Buffer_Size

@0 s 5 ++ scane) ¥ K sstr GO sew

¥ ¥ scanis) [CloF:
i S o — %X o A A D-scan @ 9 FD-scan
40 35.0
36 32. 5= e aces i s sasnnsasssansasssannnes
324 & Missed 2% G000~ 0-0:9-0~0.
ss
% Missed 287 Read FAREE BE ARt ARt aRE GRE JRE SRR EE EE AR N
Read 24 Deadlings 250 == === eesmnnnnsenanasaensesn
Deadlines 20 - 22,54 M creriasatitasasiiasnaasanan
16 20,04 -q4- W -cccscanancsacnananannan
12~ 17.5-4 - L R . e P e
84 - 15.04 - . B s upecsanasenas
a4 . TR T Vi
D S T e s S ot
12 14 16 18 20 22 24 26 28 30 5 6 7 8 9 10 11 12 13 14
Read_Rate (requests/sec) Buffer Size

Figure 7-4 Vary Read_Rate ;
- Figure 7-7 Vary Space_Threshold
69 rrs ttsemw = ! @@ rose 4+ sstrm kKK scanm

GO e =X p-scan & A ro-scan

14.
12,

11.

% Missed 2-
Write 8.
Deadlines 5

5

12 14 16 18 20 22 24 26 28 30

Space_Threshold
Read Rate (requestsisec)

