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Abstract

We develop a model of regular, infinite hypertrees, to mimic for
hypergraphs what infinite trees do for graphs. We then examine two
notions of spectra or “first eigenvalue” for the infinite tree, obtaining
a precise value for the first notion and obtaining some estimates for
the second. The results indicate agreement of the first eigenvalue
of the infinite hypertree with the “second eigenvalue” of a random
hypergraph of the same degree, to within logarithmic factors, at least
for the first notion of first eigenvalue.

1 Introduction

In this paper we attempt to further the theory of the “second eigenvalue” of
hypergraphs. The theory of the second eigenvalue of graphs is very rich, and
can be used to give explicit constructions of graphs with certain geomet-
ric properties. However, its applications to problems such as constructing

*This paper was written while the author was visiting ICSI. The author also wishes to
acknowledge the National Science Foundation for supporting this research in part under
a PYI grant, CCR-8858788.



dispersers seem rather limited. This construction method generalizes nat-
urally to hypergraphs, and, in fact, constructing hypergraphs with small
second eigenvalue can give much better dispersers (see [FW89]).

The problem with the notion of second eigenvalue for hypergraphs, as
in [FW89], is that much of the eigenvalue theory for graphs does not gen-
eralize. For example, the “second eigenvalue” is not really an eigenvalue
in any classical sense, and it is not clear that the known constructions of
graphs with small second eigenvalue generalize in a strong way (e.g. to
give better dispersers that can be given via graphs). In addition, there are
various ways one can try to study the second eigenvalue of hypergraphs by
relating them to the second eigenvalue of certain graphs!, but the ones with
which the author is familiar do not give, for example, better dispersers.

In graph theory, there is a strong connection between the second eigen-
value of a d-regular graph and the first eigenvalue of the infinite d-regular
tree, its universal cover. In this paper we define for a uniform and regu-
lar hypergraph an infinite hypertree, and we analyze the “first eigenvalue”
of the infinite hypertree. We do this for two notions of “first eigenvalue”
or spectrum, but only for the first do we determine the precise answer.
The analysis shows that, as with graphs, the second eigenvalue of random,
regular hypergraphs is roughly the same as the first eigenvalue of the corre-
sponding infinite hypertree; also, this value is roughly as small as one can
get with any hypergraph of the same regularity.

The first notion of spectrum is the direct generalization of the definition
in [FW89], but the second notion is new and perhaps has more structure
to it. In particular, for every value of A we define what it means to be
spectral or non-spectral. In the first notion there is only a notion of what
the “largest eigenvalue” would be, or “second largest” for a finite regular
hypergraph.

While the theorems proven here are fairly simple and don’t directly
imply facts about finite hypergraphs, the analysis does seem to show that
there may be more ways to study “eigenvalues” of hypergraphs. Namely,
there is a natural notion of universal cover for hypergraphs, and its spec-
trum is, at least for superficial reasons, related to the spectrum of the finite
hypergraphs it covers. In doing so, we introduce a new notion of spectrum,

!The author wishes to thank F. Bien and E. Shamir for useful conversations on this
point.



which may be worthy of study. The author hopes that the continued study
of the spectra of hypergraphs will eventually yield explicit constructions of
finite hypergraphs with small second eigenvalues.

In section 2 we discuss the relationship between the spectra of regular
graphs and the corresponding infinite trees. In section 3 we define hyper-
trees and study their spectra. In section 4 we make some remarks about
further directions of study.

The author wishes to thank Frederic Bien, Peter Sarnak, and Eli Shamir

for useful discussions.

2 The Spectrum of Graphs and Infinite Trees

In this section we summarize the connection between the spectrum of
graphs and infinite trees, and we state two definitions of spectrum which
can be generalized to hypergraphs, the one in [FW89] and one new one.
Let G = (V, E) be a finite, undirected, d-regular graph, i.e. with every
vertex having degree d, and let A be its adjacency matrix. Then A is an
nXn matrix, n = |V|, which is symmetric and therefore has real eigenvalues
A1 <A £--- < A, It is easy to see that A\; = d and that )\, > —d. There
are examples of graphs (see [LPS86], [LPS88], [Mar84], [Mar87], [Mar8§],
[Hal86], [Chu88], and [Fri89]), for certain values of d and n, for which

N€E[-2vVd—1,2vd—1] Vi>2, (2.1)

and it is easy to show that for fized d and n — oo the interval in the above
equation cannot be replaced by any smaller interval (independent of n; for
d varying with n one can do better, as in the last three references). It is
also known that, for fixed d, “most” d-regular graphs on n vertices satify
equation 2.1 if we enlarge the interval by an additive factor of 2logd + C
on each end, for some constant C, as n — oo (see [Fri88]).

Next let T' = (W, F') be the undirected, infinite, d-regular tree. We view
its adjacency matrix as an operator B on L?*(W), and it is easy to see that
the spectrum of B is precisely the interval appearing in equation 2.1 (see
[Car72] and the many references in [DK88]). This is not a coincidnece,
in that there is a standard technical reason for the similarity in the two,
involving taking the trace of powers of A while viewing T as the universal
cover of G. For example, the additional eigenvalue d which occurs in A’s
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spectrum accounts for the fact at the m-th level of T, viewing T as rooted
with root r, for large m one expects roughly 1/n of the nodes to be the
same V node as r; the deviation from this behavior is precisely related to
the second eigenvalue of G (see, for example, [Fri88]).

Much of the theory used with graphs, such as forming matrices and con-
sidering their eigenvalues (via taking traces, etc.) seems to be difficult to
generalize in a way that gives good results for the second eigenvalue of hy-
pergraphs. We will give some definitions and propositions which generalize
more directly for the infinite tree.

We begin with the standard calculation of the spectrum of the tree. We
include the proof because it will be used in the hypergraph analysis.

Proposition 2.1 The spectrum of B as above is [-2/d — 1,2\/d — 1].

Proof Fix a vertex v of T. Consider the “radial” function f,:T — C
whose value at the m-th level of T, i.e. at all vertices of distance m to v,
is r™. We have that

dr — A fw=wv,
((B - AI)f,)(w) g { e ((d - 1r2—=Ar+ 1) if w lies on level m > 1.

Fix a A with [A| > 2y/d — 1. There exists a solution, r, to
(d=1)rP=xr+1=0 (2.2)

with |r| < (d — 1)7"/2, which makes the resulting f, lie in L2(W). For such
an r we have dr — A # 0, and therefore the equation in z,

(B~ AI)(2) =6, (2.3)

has an L*(W) solution z, where §, is 1 on v and 0 elsewhere. Writing an
arbitrary w € L*(W) as a (possibly infinite) linear combination of such §’s
and using linearity, we can solve the above equation in z with é, replaced
by any w, with ||z|| bounded by a constant times |w|. Therefore B — A\I
is invertible and A lies outside the spectrum of B.

On the other hand, we claim that for |A| < 2v/d — 1, equation 2.3 has no
solution z € L*(W). Indeed, if such an z existed, then its symmetrization,
T, whose value at each vertex on the m-th level is the average of the m-th



level value of z, would also be an L%(W) solution of equation 2.3. Then the
values Z; of ¥ at the i-th level satisfy

(d=-1)72, - AFin+3=0 Vi>0,

and so
ot m m
T, =01y +C27y

for some constants ¢; and with r; being the roots of equation 2.2. But for A
the roots ry,r; are both of absolute value (d — 1)!/2, contradicting the fact
that ¥ € L¥(W).

Also A = £2+/d — 1 is in the spectrum, either by modifying the equation
for Z,, in the above, or by noting that the spectrum is a closed set. Since
B is self-adjoint its spectrum is real, we have now determined its entire
spectrum.

]
Since B is self-adjoint, the above proposition implies the following.

Corollary 2.2 For any z,y € L} (W), |(Bz,y)| < 2vd - 1||z| ||ly]|, end
2+/d —1 is the best constant possible. Equivalently, the L*(W) norm of B
s 2v/d - 1.

We provide a simpler proof of this which immediately generalizes to hy-
pertrees. The upper bound is, in a sense, related to “integration by parts”
eigenvalue bounds suggested to the author by P. Sarnak.

Proof It suffices to consider the case ||z|| = ||y|| = 1. We have

(B:r:,y)= 2 Tiljs
(i.J)eEF

where we think of F as containing one copy of (i,7) and one of (j,1) for
every undirected edge {,7} in contains. For those terms z;y; in the above
sum with ¢ nearer to v than j, write

1
zy; < 5 (VA=T12} +4}/Vd-1);



for those with j nearer to v, reverse z; and y;. Remembering that every
vertex except v has one neighbor closer to v and d — 1 further from v (and
that v has d neighbors, all further away from v), we get

d
B < 2vd —1(z? +¢2
’( m’?j)l —_ WG‘VZ—{U} (mw + yw) + \/m

This provides an upper bound on the norm of the bilinear form asso-
ciated with B. For the lower bound, condiser for small € > 0 the radial
function, f,, with r = (d — 1)71/2(1 — €). We have

(22 +y?) < 2Vd -1.

07 =14 3 dld =1 (d= 177201 - )" = 755 5 + 000,

and, similarly, -
2 1
(Bfr:fr) = "ﬁ—z—e

so that taking € — 0 gives the desired lower bound.

+ 0(1),

O

The above argument also shows that the norm of B is never acheived by
any vector in L*(W). We now state the precise definitions which we intend
to carry over to hypergraphs in the next section. In what follows we take
L*(W) to be the space of complez-valued functions, although in a lot of
places it suffices to take real-valued functions.

Definition 2.3 The spectral radius of the infinite tree, T, with adjacency
matriz B is the L*(W) norm of the bilinear form (Bz,y).

Definition 2.4 For the infinite tree, T, with adjacency matriz B, a number
A € C 1s said to be non-spectral if

(i) Fundamental solutions ezist for B — M, i.e. there exists an z with

(B = M)z =6,
(ii) for every y € LA(W), (B — \)z =y has a solution = € L*(W),
(i11) the above x is uniquely determined,

(iv) the above x’s norm is bounded by a constant times y’s.
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If any of the above fail to hold, A 1s said to be spectral. Also, a A € R
18 said to be a spectral upper bound (respectively, lower bound), if it is
non-spectral and

(i) for every real-valued z,y pair with (B — M)z = y, we have (z,y) s
non-negative (respectively, non-positive).

Note that in the present circumstances, the first condition of non-spectrality
implies all the others.

3 The spectra of hypergraphs and infinite
hypertrees

For simplicity we will state all theorems in this section for 3-uniform hy-
pergraphs, though all the theorems here easily generalize to t-uniform hy-
pergraphs for any fixed t.

We review our terminology for hypergraphs; see [FW89] for details. A
3-uniform hypergraph is a collection G = (V, E) of a set V and a collection
of subsets of V, E, such that each subset ¢ € E has size three. Out of
this data we can form a trilinear form 7 analogous to the bilinear form
associated to the adjacency matrix of a graph, namely

r(z,y,2) = Z TiY;2kTijk
ij,kEV
for z,y,z € L*(V), where
{ 1 if {i,j,k} € E,
Tijk =

0 otherwise.

For our purposes it is simpler to think of a hypergraph as a trilinear form,
T, with 7, non-negative integers. In [FW89] the second eigenvalue of T is
defined to be

I~ 2ell, (31)

where £ is the trilinear form with all & = 1, n = |V|, d = Yy mie/n?,
and the norm is the norm as a trilinear form on L*(V), i.e.

lo(, y,2)|. (3.2)

lofl = max
leli=llvli=lizli=1
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It is shown there that for a “randomly chosen” 7 on n vertices with dn?
hyperedges, d > Clogn, the second eigenvalue of 7 is, with high probability,
roughly v/d, to within a factor of C(log n)%2. This can be compared with
its “first eigenvalue,” namely the norm of 7, which is roughly d/n. One
can give explicit examples of hypergraphs with second eigenvalue around
d'/?n/4 but this does not give improvements for the disperser construction.
However, any explicit construction of hypergraphs with smaller exponents
would yield improvements.

First we form a notion of the infinite hypertree. Before doing so, notice
that the first and second “eigenvalues” of a random 7 (as above) are not
powers of each other. We can remedy this by working with the L3(V') norm.
Indeed, as remarked in [FW89], all the theorems generalize to L? for any
p (using equaiton 3.1, but taking || - || on z,y,z to be the LP(W) norm in
equation 3.2), and choosing p = 3 gives first eigenvalue (i.e. norm of 7) to
be roughly dn and second eigenvalue to be roughly (dn)'/3. While the L3
norm may seem strange, it has other advantages. For one thing, defining
eigenvalues in terms of bilinear forms involves picking a fixed inner product
on the space in question. A natural analogous trilinear product is

I(.’L‘, Y, Z) = Z TiYizi,
ieV
and when using 7 it seems natural to work with the L3 norm. Also, use
of the L? norm suggests that we work with k = dn as the “degree” of our
hypergraph, and this notion of degree gives a good model of a universal
cover.

To define our hypertree, fix a value of k. Start by taking one triangle,
and to each of its vertices glue k — 1 triangles, all disjoint except that they
meet in the one vertex. For each newly created vertex create k — 1 new
triangles. The resulting infinite hypergraph, T = (W, F) is depicted in the
figure 1. On T we have a notion of distance, defining two vertices to be
neighbors (i.e. distance 1) if they both lie in some triangle. Thus, if the
top vertex of the figure 1 is v, then all the vertices of distance one to v lie
in the row of vertices directly below v, those of distance two in the next
row, etc.

We call the above hypergraph, T, the k-regular hypertree. Why do se use
this model? Aside from the fact that the first and second L3 eigenvalues
of a random hypergraph are roughly powers of k, this hypertree is, in
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Figure 1: The Infinite Hypertree




a natural way, the universal cover of any hypertree of degree k, i.e. in
which each vertex is incident on exactly k (hyper)edges. More precisely,
taking a morphism of hypergraphs to be a map of vertices which maps
edges to edges, and a cover to be a locally invertible morphism, our k-
regular tree is precisely a (the) universal cover. In particular, any finite
hypergraph of degree k is isomorphic to a quotient of our hypertree modulo
some equivalence relation on the vertices We could have constructed the
hypertree by growing triangles off of edges, requiring that each edge meet
d trianlges; this would be closer to the definition of regularity appearing in
[FW89], but seems to be harder to work with.

The infinite hypertree, T, has a trilinear form 7 associated to it via
the above proceedure, in which each triangle gives rise to six 1’s in 7. We
expect, in analogy with the infinite tree, that the range of the L® “spec-
trum” of 7, appropriately defined, should be roughly k!/3, i.e. what the
second eigenvalue is for a random hypergraph. Similar to the “eigenvalue”
definitions in [FW89] we make the following definition.

Definition 3.1 The spectral radius of a trilinear form is its L® norm.

Proposition 3.2 The spectral radius of 7, i.e. 1ts L3(W) norm, is 3(2k —
2)1/3,

Proof Fix a vertex, v, in T. Each triangle is of the form, {i, 7,1}, with
¢ a vertex of distance m to v, and j,! of distance m + 1 to v for some m.
To estimate 7(z,y, z) for vectors z,y, z of norm 1, we can estimate for any
positive v

1/ _
izl < 3 (7Pl + 4"yl + 4 f)

and similarly for the other five terms arising from {¢, j,[}. Then summing
as before yields

(2,9, 2)] < max (242 + 2(k — 1)y, 2ky2%),

the first term in the max accounting for the contribution of vertices in

W —{v}, the second for v’s (i.e. the components of z, y, z at these vertices).
Taking v = (2k — 2)'/® yields the desired upper bound on ||7|.
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On the other hand, let f. be the function on W whose value at each

vertex of distance m to v is r™. Then for small € > 0 and r = (2k —
2)~1/3(1 — €) we have

E 1

£ (w) = ==+ 0(1),
w%:,v ) k—13e
and s
T(frs fn fr) - 6k(2(k e 1)) i + 0(1),
so that
I7llzeqwy = 6+ 27 23(k — 1)/2 = 3(2k — 2)'/2.
O
Next we consider the analog of definition 2.4. The equation (B—AI)z =
y can be written as
B(z,w) — Mz,w) = (y,w) VYw e L} (W), (3.3)

where B(z,w) = (Bz,w) is the bilinear form associated with B. To gen-
eralize this to hypergraphs, note that we have a natural trilinear form 7
to replace B, and the question becomes what to use for the standard in-
ner product, (-, -). For the latter we suggest using the above defined Z.
The trilinear form 7 seems the most natural to use, although it does have
all the nice properties of the standard bilinear inner product, for example
I(u,u,u) is not generally = ||u||®. However using 7 does seem related to
our previous notion of spectral radius.

The question now is how many fixed variables, such as z or y, to use in
an analog of equation 3.4, and how many test variables, such as w, to use
and where to place them. In this paper we investigate the equation

m(z,z,u) — M(z,z,u) =I(y,y,u)  Vu € L3(W). (3.4)

Arguably we should replace z and/or y by two variables, but we leave it in
this form for simplicity and recalling that if 7 is symmetric then to find its
norm it suffices to check 7(z,y,2) forz =y = 2.

We pause to make two remarks about Z. First of all, for any z,y,z €

LX(W),
1Z(z,y,2) <l llyll 1=l
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this follows from two applications of Holder’s inequality or estimating as
in the proof of proposition 3.2. Secondly, for any = € L3(W) we use the
notation z’ to denote the vector given by |z} | = |z,| and 7|22 = |z, >
Thus 2’ differs pointwise from z by numbers of absolute value 1, has the
same norm as z, and satisfies

I(z,z,2") = ||z|°.

Definition 3.3 For a trilinear form, 7, a number A\ € C is said to be
non-spectral if

(i) Fundamental solutions ezist for 1 — AT, i.e. there ezists a solution
for equation 8.4 with y = 6,

(1i) for every y € L3(W), equation 8.4 has a solution z € L3 (W),

(iii) any solution, z, for (i), has its norm bounded by a constant times
y’s,

If any of the above fail to hold, X is said to be spectral. Also, a A € R
is said to be a spectral upper bound (respectively, lower bound), if it is
non-spectral and

(i) for every pair z,y satisfying equation 3.4 and with z real and each
Yw etther real or purely imaginary, we have I(y,y, ') 1s non-negative
(respectively, non-positive).

We have omitted the condition that z is uniquely determined, since this
will never be the case (see below). As before, L® refers to complex valued
functions; it is not clear that real L® works as well here (for A real). In
the definition of spectral upper and lower bounds, we have allowed some
of y’s values to be purely imaginary to make sure that every real z has a
corresponding y (see equation 3.5 below).

We now state the main result of the paper, whose proof comprises the
rest of this section.

Theorem 3.4 Any A € C with absolute value bigger than the spectral ra-
dius 1s non-spectral. In particular, any such positive (respectively, negative)
A 18 a spectral upper (lower) bound.
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To begin the analysis, notice that equation 3.4 is equivalent to requiring
that for all w € W,

k
_Z T o(w,§) T B(w,j) — Az, = o, (3.5)
)=1
where each a( -,!) and each f(-,l) is a permutation of W.
We will first discuss in detail the situation for real ), and remark later
about complex A.
We claim that almost every real A has a complex-valued fundamental
solution. That is, letting f, be as before, we see from equation 3.5 that f,
will be a fundamental solution iff

(k=1)r*=Ar+1=0.
Proposition 3.5 The equation s® —as+1 =0 has

1. all roots of absolute value 1 if a« = 0,2;

2. one positive real root of absolute value < 1, two complez roots of
absolute value > 1 if a < 0;

3. one negative real root of absolute value < 1, two real roots of absolute
value > 1 if a > 2;

4. one real root of absolute value > 1, two complex roots of absolute value
<1if0<a<(27/4)'53

5. omne real root of absolute value > 1, two real roots of absolute value
< 1if (27/4)'° > a < 2 (the latter two roots being a double root
when equality holds).

Proof Follows easily from the fact that the above equation has discrimi-
nant 4o® — 27 and that g(s) = s®* —as+1 has g(—1) = a and ¢(1) = 2 — .

;From this proposition it follows that there is always a radial funda-
mental solution, f, € L3(W), except for r = 0,2(k — 1)'/3, The existence
of a solutions to equation 3.4 does not follow, because of the non-linearity.
However, assuming that A is larger than the spectral radius, one can solve
equation 3.4 for any finitely supported y (i.e. which is zero at all but a
finite number of vertices), and pass to the limit for general y. In proving
both steps we will use the estimate in the (direct) proof of corollary 2.2,
and we do not know what happens in general.
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Figure 2: A general solution z for m = 1.

Theorem 3.6 Let |A| > 3(2k — 2)'/3. Then for any finitely supported y
there exists a solution, z, to equation 9.4.

Proof As usual, fix a vertex v. Suppose y is supported on the set of vertices
of distance < m to v. Consider the class of vectors, z, whose values at the
vertices of distance < m is arbitrary, and whose values at each vertex of
distance > m 41 is given as r times the value of its neighbor which is closest
to v. Such z are “eventually radial;” we have depicted the case m = 1 in
figure 2. For any such z it is clear that equation 3.5 holds for any w of
distance > m + 1 from v. To satisfy this equation at the other w’s, we
get N quadratic equations in the N variables z,, where w ranges over the
vertices on levels < m. It follows that the system of equations has at least

14
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one solution in z over N-dimensional (complex) projective space?. But it is
easy to check that all solutions of these N equations lie in affine space. This
is because a solution in projective space is precisely a non-trival solution,
z, of the same system with the y;’s replaced by zeros. But this would imply

r(z,z,u) — MI(z,z,u) =0  Vu e L3(W).

In particular, choosing z' € L}(W) given by |z)| = |z,| and z}2? = |z, ®
we get

IA”|$”3 . |)‘I($?$=$’)| = |T($’m$$’)| < 3(2k = 2)1/3”3”3’

which contradicts the non-triviality of z. Hence all projective solutions of
the aforementioned system lie in affine space, and so there exists at least
one such solution.

O

We mention, as in the footnote, that the solvability of equation 3.4 for
arbitraty y is related, in a certain sense, to the non-existence of non-trivial
solutions for the special case y = 0. We will return to this point in the next
section.

Theorem 3.7 Let || ezceed the spectral radius. Then for any y € L3 (W),
there ezists a solution x € L3(W) to equation 3.4. Furthermore, for any
such solution z, we have ||z|| < C|ly||, where C depends only on |)|.

Proof A priori, for any solution z as above we have
m(z,z,2') — M(z,z,2") = I(y,y,2'),

so that
(I\ = 3(2k = 2)*) ||z|I° < |Z(y,y,2)| < |ly]*l|=]-

2see, for example, [Har77), 1.7.2. The reader who is unfamiliar with algebriac geometry
can recall that if an N x N linear system Az = 0 has no non-trivial solutions, z, then for
any b the system Az = b has a solution. This turns out to be true if the linear equations
are replaced by any homogeneous equations, assuming the underlying field is algebraically
closed. This is the point of making the calculation which follows.
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Hence sl
lall < Cllyl  for €= (IAI-3(2k —2)) .
Now fix y € L3*(W), and let y™ be a sequence of finite truncations of y
converging to y, i.e. y" are finitely supported, y* is either 0 or y,, for each
n and w, and ||y" —y|| — 0 as n — oo. For each n choose a solution z"
to equation 3.4 for y". Since ||y"| is bounded, so is ||z"||, and any weakly
converging subsequence of the z™’s gives us a solution, z, to equation 3.4.
In more detail, for each w, the sequence z? is bounded, and so we can
assume, by passing to a subsequence, that for each w € W we have 2" — z,,
for some z,, € C (since W is countable, using a “diagonal subsequence”).
A standard argument shows that the resulting vector z lies in L3(W): let
T be any truncation of z. Then 7 € L3(W), and

Iz, &, ") < [|&]1* ="

Taking any subsequence of n’s tending to infinity, the left-hand-side con-
verges to [|Z||?, and so
|Z|| < liminf ||z"|.

Since this holds for any truncation, Z of z, this holds for z itself. Finally,
for each w, equation 3.5 holds for z and y, since for all sufficiently large
n (depending on w) the equation holds for " and y, and this equation
involves only terms z} with v ranging over a finite set. Hence z is a solution
to equation 3.4, and it clearly satisfies the a priori bound given.

O

To complete the proof of theorem 3.4, it is clear that in general any
real positive (respectively, negative) A which is spectral and which exceeds
the spectral radius must be a spectral upper (lower) bound. Finally, the
entire discussion of non-spectrality goes through for A € C of absolute
value exceeding the spectral radius, with minor modifications. We start by
observing that the equation

S —as+1=0
can only have all roots, s;, s3, s3 of absolute value < 1 if

la| = |8182 + 8183 + 8953| < 3;
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This implies that any complex A with [A| > 3(k — 1)}/® has a fundamental
solution. The rest of the analysis goes through virtually word for word, to
show that A\’s with |A| > 3(2k — 2)'/2 are non-spectral.

0O

We remark that we never have uniqueness in equation 3.4. One obvious
reason is that if x is a solution then so is —z. However, this is not the
only source of non-uniqueness. For example, if the support of z € L3(W)is
any set of minimum distance 3, i.e. the distance between any two distinct
vertices is at least 3, then there is a y € L3(W) which satisfies equation 3.4,
and any pattern of sign changes in z yields another solution. So, in general,
there can be an infinite number of solutions, z, for a given y.

4 Finite versus infinite hypergraphs

We finish with some remarks on the question of constructing finite hyper-
graphs with small second eigenvalues.

The basic question is to construct hypergraphs on n nodes with dn?
edges whose second eigenvalue, measured in L3, is roughly (dn)/3. For
the application to dispersers, it would be desirable that the hypergraph be
constructable in poly-logarithmic time in n and d. So, for example, in the
analogous construction problem for graphs, the graphs given in [LPS86]
and [Mar84] are not known to be constructable so quickly, but those of
[Hal86], [Chu88], [Fri89] are. Any construction yielding a hypergraph of
second L° eigenvalue < (dn)? for some f < 1/2 would improve the best
disperser construction known at present; for example, it could boost e-weak
sources for some € < 1/2.

Clearly any symmertric, regular hypergraph can be represented as the
quotient of an infinite tree whose vertices are identified in some way. The
question becomes, then, are there concise properties of the universal covers
which control the second eigenvalue of a finite hypergraph?

We can suggest the following question, which is even interesting for
graphs. Given a finite graph and an eigenvector, is there a direct way to
prove its eigenvalue is small by associating to it some vector, or perhaps
probability space of vectors, on its universal cover? This association should
work for all vectors perpendicular to e = (1,1,...,1) but not for e itself,
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and would have to involve some properties of the map from the universal
cover to the graph (since no good bound holds for all finite graphs). This
is a suitably vague question, but the intention is to develop methods that
could carry over to hypergraphs to yield better second eigenvalue bounds.

For finite hypergraphs, one may be able to define notions of spectrality
as in definition 3.3, but one would probably want to modify the definition.
For example, consider the following consequence of the standard variational
argument.

Proposition 4.1 Let 7 be a symmetric, trilinear form on L3(V'), where V
is a finite set, and let E be a linear subspace of L3(V). If |r(v,v,v)| over
unit vectors v € E 1s mazimized at v = z, then there 1s a X' such that

T(z,z,u) = NI(z,z,u) =0 Vue€ E.

Proof If I(z,z,u) = 0, it follows that 7(z,z,u) = 0 by considering
|7(v,v,v)| with v = z + eu and € small. So choosing A’ to make the above
equation hold for any particular u with I(z,z,u) # 0 will work.

O

The point is here is that for A’ to equal X it is necessary that |I(z, z,z)| =
[|z||®, which will not generally be the case. A solution to the above equation
is clearly related to the solvability of equation 3.4 for A = X (i.e. too many
solutions to the above prohibits a solution to equation 3.4), but we wouldn’t
expect A and )\’ to agree over, for example, the subspace, E, of u’s with
I(T,1,u) = 0, where T is the all 1’s vector. Hence, to study an analog
of definition 3.3 for the second eigenvalue of finite hypergraphs, we would
expect some modification.

We remark that all the theorems stated in section 3 generalize easily to
t-uniform hypergraphs, which are collections, G = (V, E) where each ¢ € E
is a subset of size . The resulting eigenvalue for the k-regular, t-uniform
hypertree is (k — 1)!/%!(t — 1)@=/t which for fixed k is within poly-log
factors in k of the right answer, i.e. of the lower bound and of the upper
bound for random hypergraphs.
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