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Abstract

Correct timing is a critical issue in hardware design, especially in the case of bus interfaces.
In this paper we present the design and implementation of a timing verification tool, CLOVER.
CLOVER provides the designer of a digital circuit with an integrated environment where he
can describe his design, formally specify the timing constraints governing the implementation,
obtain the timing behavior of the implemented design and verify it against the stated timing
constraints.

Our timing constraints specification language, which is used to formally express timing
constraints, is a general language but has been designed particularly for the description of
asynchronous designs. The language is based on dependency graphs and vectors of signal values
over the time. We give specifications for well known timing interface problems to illustrate
the expressive power of our language. Finally, we specify and verify an implementation of the
multibus design frame.

1 Introduction

CLOVER is a computer-aided design (CAD) tool, which provides the designer of a digital circuit with
an integrated environment where he can describe his design, state the timing constraints governing
the design, obtain the timing behavior of the described design and verify it against the stated timing
constraints, being informed of possible violations. It is a system oriented towards the description
and timing analysis of medium size asynchronous systems, where the basic components can be as
simple as a logic gate or as complicated as a complex functional module. This does not mean
that synchronous designs cannot be analyzed. However, parts of the tool, for example the timing
constraints specification language, are designed to best suit the description of asynchronous designs.
Much more expressive power is needed to describe timing constraints for an asynchronous design
than for a synchronous one. Of particular interest are the description and analysis of interface
circuits ([18], [17]) where more complicated timing relations exist between signals.
The main contributions of this research are:

e A new specification model to express both simple and complicated timing constraints. The
model is particularly suited to the description of the temporal behavior of interface circuits.

e A verification methodology of timing constraints based on the concept of event graphs. Event
graphs are derived from an implemented design using event-driven time simulating techniques.



The basic component of CLOVER is the verifier. It compares the intended timing behavior of a
design against its implemented behavior, and identifies possible violations. The timing behavior is
described in our specification language ATCSL, which is based on dependency graphs and vectors of
signal values over time. It provides the expressive power needed to describe complex timing relations
between signals. We have built an event driven timing simulator based on an extended value system,
which takes as input the-netlist-of the implemented circuit and derives the timing behavior of the
implementation, in the form of an event graph. To derive the netlist of the circuit, the design
is described with PDL-e, a hardware description language made for ease of use and to support
hierarchical design. PDL-e is based on PDL [23]. a generator language developed at Princeton for
register transfer design.

The paper is organized as follows. In Section 2 a framework for characterizing a verification
system 1s presented and existing verification systems are discussed. In Section 3 we present our
formal specification model and the constraints language ATCSL, used to express timing constraints
within the model. Section 4 describes the event driven timing simulator and in Section 5 the verifier
is presented. In Section 6 we study an example, where we specify and verify an interface circuit
using the methodology introduced in Sections 3 through 5. Finally Section 7 presents conclusions
and thoughts for future research.

2 Circuit Verification and Verification Systems

Timing verification is viewed as a subcase of a more general problem, that of hardware design
verification. During verification both the functional and the temporal behavior of the hardware
design is verified. It is very possible for a temporal violation to cause a functional error; the inverse
is also true. Consequently the verification systems presented here perform timing and/or functional
verification.

2.1 A Framework for Characterizing a Verification System

We have been talking about verification and timing verification assuming that a well established
notion for these concepts exists. However our experience suggests the contrary. A common question
asked when someone is talking about verification is: what do you mean by verification? In this
section, we present a framework for the characterization of a verification system. This framework
will be used as a guide to reason about research work in hardware design verification.

Designs are built based on specifications which determine the designs’ intended behaviors. In-
formally we can define verification as follows:

Definition 2.1 Verification is the process of validating that an implemented design behaves ac-
cording o its specifications.

It follows from the definition that a verification system should provide a specification model to
specify the intended behavior of a design. The specification model is the heart of the verification
svstem. The way we specify the behavior of a design bounds the outcome of the verification system:
we cannot verify more than we specify. The specification model we use should be formally structured
and able to capture and express our whole understanding of the design’s behavior.

The specification of a design should be compared with the behavior of its implementation. That
brings us to the second major requirement of a verification system: to obtain the behavior of a
design’s implementation. The behavior of the implementation is dependent on the design’s inputs
and states. Assuming a discrete set of input values, a complete description of it should account for
every possible combination of input values and states. Accounting for all the possible combinations,
we say that a complete behavior of the implementation is obtained. Since both the space to store the
complete behavior of a large design and the time to verify it can be very large, it may be reasonable



for a verification system to characterize the behavior of a design’s implementation using a subset of
its complete behavior. We say then, that an incomplete behavior of the implementation is obtained.
Depending on the verification methodology, a complete or incomplete behavior of a design can be
used for the verification process. We define the concepts of complete and incomplete verification
methodologies as follows:

Definition 2.2 A complete verification method will verify a design’s specification against its com-
plete belhavior.

Definition 2.3 An wmcomplete verification method will verify a design’s specification against an
incomplete behavior of it.

The next issue we have to address is how we model the behavior of the components which constitute
the design and the interactions between them. These components can range in complexity from
individual sub-systems to simple gates or transistors. Every transaction of the design is at the very
end a physical process. How closely the behavioral model of the verification method matches the
physical behavioral characteristics of the design measures the accuracy of the method. For purpose
of efficiency, we often use behavioral models with less accuracy, e.g. digital models. A complete
verification method does not imply a certain accuracy nor does a given accuracy imply completeness.
Since we use approximations, the verifier may generate spurious errors.

Definition 2.4 A wverification system which permits the report of erroneous errors but never fails
to report existing violalions 1s called pessimistic.

Finally for a verification system to be really useful it should not only identify a violation but also
help the designer locate the possible causes of it.
Our framework for the characterization of a verification system. is summarized as follows:

Specification model: The model used by the verification system to specify the intended behavior
of a design.

Completeness of the Methodology: Characterizing the verification methodology of the system
as being complete or incomplete.

Accuracy of the Methodology: How accurate the behavioral model is.
Error report: How elaborate the error reporting is, for identifying and locating a violation.

In choosing a verification methodology there are certain trade-offs to consider. Most of them
have to do with completeness and accuracy of the method versus efficiency.

2.2 Verification Systems for Hardware Designs

We classify existing verification systems into five classes: simulators, timing analyzers, formal ver-
ifiers, design audit and incomplete verifiers (CLOVER is a member of this class). Among the five
classes there are systems which share a common characteristic: they are concerned only with the
verification of the temporal behavior of a design. We refer to such systems as timing verifiers.

Simulators ([32], [8]) are not verifiers in the real sense. The behavior of the implementation is
obtained using an incomplete methodology but there is no comparison with some specified hehavior.
There is no specification model. In order for a simulator to completely verify a set of timing
constraints, the circuit should be exhaustively tested, which usually means an exponential number
of circuit inputs.

Timing Analyzers like simulators, are not considered true verifiers since they do not support
a specification model. The verification methodology remains incomplete. The difference between



analyzers and simulators is that analyzers work on a circuit without relying on specific signal values
([16]). Constraints related to the critical path of a circuit and the optimum cycle time for syn-
chronous implementations can be satisfied without use of specific signal values or knowledge about
the functionality of the circuit. This absence of knowledge may lead in some cases to pessimistic or
incorrect answers (false-paths [26]).

Formal verificatten-is complete.- The behavior and the-constraints for each individual component
of a circuit are formally specified. Verification of the circuit is then accomplished by composing the
components’ specifications under formal rules, without relving on specific input values. Verification
proofs can be quite tedious, unless the design is small. On the other hand, they have the mathemat-
ical power to completely verify a design. VERIFY [3] and Silica Pithicus [40] are two well known
MOS formal functional verifiers.

We are particularly interested in a subclass of formal verifiers, the formal timing verifiers. Formal
timing verifiers, like the ones presented in [4], [13] and [33], use the concept of the stale graph as
the foundation upon which designs are formally verified. A state graph covers transitions between
states, for all the possible combinations of input values. No assumptions about initial inputs have to
be made. As designs increase in size, their state graphs increase exponentially. A formal verification
framework is presented in [14]. The framework defines an axiomatic theory that describes relevant
properties of arithmetic, time, waveforms and structures. The use of hierarchy greatly facilitates
the verification of complex systems. A bottom-up hierarchical formal verifier is presented in [29].
The timing properties of complex circuit modules are established by formally composing the timing
properties of their constituent parts.

Design audil is an attempt to make circuit designers follow some standard design guidelines in
order to minimize the chances of making a design error. These guidelines are expressed in some form
of constraints. The idea can be applied not only to timing constraints but to functional and physical
constraints as well. What differentiates design audit systems from other verifiers is the effort to
design systems according to predetermined rules rather than verifving the rules after the systems
have been built ([37], [22]). These rules are either user specified or are collected by the system as
experienced knowledge after a verification process. Some design audit systems, starting from a set of
well accepted design rules, derive a set of constraints under which a given circuit follows these rules
([21]). The verification methodology employed by design audit systems can be either complete ([21])
or incomplete ([22]). As a result of the structured, hierarchical way the design and the specifications
are expressed, the error reporting of design audit systems is elaborate and sophisticated.

Incomplete verifiers are characterized by two main properties:

1. They provide a specification model (formal or not), and the specified intended behavior of a
design i1s compared against its implemented behavior. This distinguishes them from simulators
and timing analyzers. The ability to specify the intended behavior of a design results in error
reporting that is more sophisticated than that provided by simulators or timing analyzers.

2. The verification methodology is incomplete.

Incomplete verifiers are differentiated according to their specification model. In Section 3 we discuss
the importance of the specification model and the expressive power necessary to specify complex
temporal behaviors for certain designs. At the end of Section 3 the specification model of CLOVER
18 compared with the specification models of different formal and incomplete verifiers.

The system by Bryant in [9] is an incomplete verifier. The user is able to specify relations between
state transitions in the circuit. Simulating techniques are then used to prove the correctness of the
specification. Incomplete verifiers like SCALD [27], TDS [20], HDTV [24] and CLOVER share the
common property that they are timing verifiers. The verification techniques of SCALD are based
on timing simulation while TDS incorporates expert system heuristics. In HDTV, verification is ac-
complished by composing incomplete behaviors of the design’s components. CLOVER incorporates
time simulation techniques to derive the behavior of the implementation under some given set of



input signals supplied to the implemented circuit. An incomplete behavior is derived in the form of
what we call an event graph of the implementation. The event graph is used by the verifier.

Why would one use an incomplete verification methodology to verify a design, especially when it
is tempting to verify that the temporal behavior of the design perfectly matches its specified behavior,
under all operating conditions? Most of the formal timing verification methods use a state graph to
capture the behavior-ofthe implemented -design.-A state graph contains information about signals’
timing and transitions for every possible combination of input signals. The main disadvantage of
this method is that the size of the state graph is exponential in the size of the design and thus the
verification process tends to be time consuming. That limits the applicability of the approach to the
verification of small size circuits. On the other hand, theorem-proving verification methodologies, like
the one in [14], are quite tedious even for small size circuits. Furthermore the extended value system
used by our simulator can represent several behavioral cases by one value. CLOVER is intended
to support, like formal verification systems, hierarchical verification. Verified components can be
substituted by their verified timing behavior. As a result our verification methodology although
incomplete provides a much more efficient way to verify a circuit.

3 A Timing Constraints Specification System

This section is organized in three main subsections. In section one, we present the semantics of our
syvstem, and we define the concepts upon which it is built. In section two, ATCSL, our specification -
language, is presented along with specification examples. Finally in section three, related work in
the timing constraints specification area is presented and compared with our specification system.

3.1 The Semantics of the Specification System
3.1.1 What constitutes a Good Specification System?

One of the motivations for this research was the lack of a good way to express timing constraints;
this is especially important for designs where accurate timing is critical for the operation of the
entire system (for example interface circuits). Part of the reason for this absence is that the models
used in the past (like temporal logic) although formal and concise, have failed to capture all the
necessary ingredients of the specification problem (see discussion in Section 3.3). As a result, the
specification process was incomplete. We believe that in order to design a good specification system,
we should look at what happens in the “real word”. We should study how the designers receive and
express their information about the timing constraints of the system they design. We should find
which are the concepts upon which they build their information. Having done these, we can design
a formal model for the specification system, based on our gained knowledge and experience. This is
the way we started thinking about designing our specification system.

Timing diagrams and specification manuals are the ways designers and engineers think of and
specify their designs. To get an insight on the kind of timing constraints assumed between bus
interface signals, we present in Figure 1 the timing diagram specifying the timing relations between
signals during the Multibus Read cycle [18]. The diagram presents the waveforms of the signals,
annotated with timing information and directed arcs between them. We distinguish two kinds of
timing constraints specified in this diagram. First, we have constraints which determine the relative
timing between events of the same or different signals. For example, after MRDC# signal goes from
high to low, XACK = signal should make the transition from high to low no later than 8us (tzack)
and no sooner than Ous. Second, dependencies between signals are described with the use of directed
arcs. We refer to this kind of constraints as dependency constraints. For example, a transition for
XACK # from high to low will cause some time later a transition from low to high for the signal
MRDCx. Keep in mind that signals that appear only on special occasions, like bus error signals,
may have separate timing diagrams describing their relations and behaviors.
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Figure 1: Multibus Read Cycle

Our specification system has been designed around the concepts and the relations obtained from
a timing diagram or a specification manual. They are informally summarized as follows:

A key concept is the concept of a signal which at some point in time undergoes a transition
to a different value.

Timing bounds exist which specify the relative timing between these transitions.

Dependency information may be specified between transitions and determines a certain se-
quencing between them (directed arcs in Figure 1).

The timing diagrams, being a two-dimensional interface, can describe the sequences of all
signal transitions over the time. As a consequence the constraint relations can refer to present
transitions as well as to past ones. We refer to such a sequence of transitions over time as a
transition history.

The idea of having constraints which apply under certain conditions introduces the necessity
of conditional specification.

Next, a formal description of the semantics of our specification system 1is presented.

3.1.2 Defining the Model

In the following discussion, we assume a discrete time model with a time unit being the smallest
quantum of time. There is the implicit concept of the time a circuit starts to operate. We refer to
it as the starting time. All time variables, defined next, assume values relative to this time. Each
magnitude or constant of dimension time is expressed in terms of a number of time units. The
concepts of an eveni and a signal are the main concepts defined by our model.



Definition 3.1 A functional module s a hardware system with certain impuls and oulputs. The
behavior of the module is a funclion of its inpuis and inlernal state. Iis hardware complexity can
range from that of a stmple gate to that of a complex hardware system.

We consider functional modules to be the basic building blocks of a circuit.

Definition 3.2 A-circuit is a seil of functional modules-and wires which interconnect the mput and
output ports of the functional modules.

Definition 3.3 A value system is a finite sel of discrele values.

Definition 3.4 Given a value system and a circuit, an event E is defined as the occurrence of a
new value assumed by a port al some poini in time during the operation of the circuil, and it is
characterized by a 5-tuple < P,V I, T, W =, where:

P: The port of the module which assumed the new value.

V: The value assumed by the port, which is @ member of the value sysiem.

I: The index of the event. This 1is the I + 1th time (we count indices starting from
zero), during the operation of the circuit where the port P assumed the value V.

T: The starting tzme of the event, called also initial time of the event.

W: The time during which the event refains the value assumed ai time T, called also
width of the event. We say that the event holds during that time.

The particular value system used by CLOVER 1is presented in Section 4.

Observation 3.1 For {wo evenis E; =< P, V,I,T;, W; > and E; =< P,V,J, T;,W; = with the
same P, V and such that I < J, it is true that: T; + W; < Tj.

The use of indexing in the characterization of an event E provides us with the capability to
refer to the past and present instances of events with the same value 1V and appearing at the
same port P. We say that by indexing we gain access to the history of the events characterized by
<PV, i, T;, W; =,

Definition 3.5 We define a V-signal SV on a port P having the velue V, as the set of evenis
E; over time, which appear al port P and assume the value V. Gen that n evenis with value V
appear at port P, then V-signal SV is the union over i of the E;: U:;E < PV, i, T;,W; = and 1s
characterized by the J-tuple < P,V,n, T, W >, where:

P: The port of the module which assumes the value V.

V: The value assumed by the port.

n: The number of events with value V appeared on port P.

T: The initial time of the V-signal SV which is the vector: < Ty, T1,..., T, =
W: The width of the V-signal SV which s the vector: < Wy, Wy,..., W, =

The number of events n is also called the size of the V-signal SV. A signal 8 on a port P is the set
of V-signals SV; which appear on port P and have distinct values V.

We can see from definition 3.5 that a signal S on a port P is constituted from all the events
occurring on port P. If we sort all these event instances in ascending order over their initial time, we
will obtain the continuous history over time of transitions that occur on port P and that constitute
the signal S. This is the equivalent of the waeveform of signal S as would appear in a timing diagram
describing S.

Our model of timing constraints consists of two relation classes: timing relations and dependency
relations. The timing relations refer to the timing characteristics of an event, that is the initial time
and the width. Dependency relations refer to another characteristic of an event: its value. With a
dependency relation we want to specify the cause for the creation of a new event.

b |



Definition 3.6 A timing arithmetic expression over a sel of events {E;} is any arithmelic
expression constituted from the initial times T; or the widths W; of the evenis E;. Il returns as a
resull @ number which is the arithmetic resull of the expression over the T; and W; of the events E;.
It is uncompuied if any event is missing.

Definition 3.7 A_timing arithmetic expression over a sel of events {E;} and V-signals {SV;}
is any arithmetic expression constituted fmm the initial times T; or the widths W; of the events E;
and the wnitial fames TJ or the widths ij of the V-signals SV;. It returns as a resull a veclor with
size equal to that of the smallest sized V-signal SV, such ﬂmt:

kth element of arith-expression(=< P;, Vi, 1;, Ty, W; =, < P}, *vjnj.’f; Vrj =) =
aritherpression(< Py, Vi, L, T;, Wi =, < Py, Vi, k, T;[k]. W;[k] =

Where T;[k] denoles the k + 1st element of vector T; (k> 0). If any signal or event is missing the
result 1s uncomputed.

For example ﬂlven a V-signal SV} with size 3 and a V-signal SV, with size 2 then the arithmetic
expression: T; + T5 is equal to a vector 7 where: 7 =< T1[0]+ T5[0], T3[1] + T3[1] >.

Definition 3.8 A timing relative relation is any relative order relalion over two {iming arith-
metic expressions.

According to definitions 3.6 and 3.7, a timing arithmetic expression can be a number or a vector
respectively. When the arithmetic expressions are two numbers the meaning of the relative relation
is obvious. When the expressions are two vectors v; and v5 with sizes n and m respectively, then
the relative relation is applied to each one of the n pair of numbers: (vy[i], vo[i]), where 0 < i < n
(assuming n < m). Finally when the expressions are a vector ¥ with size n and a number &, then
the relative relation is applied to each one of the n pair of numbers: (v[i].b), where 0 <1 < n.

Definition 3.9 A timing relation can be any timing relative relation or any boolean combinaiion
of timing relations. Any universal or existential guantification of a timing relation over the indices
of the evenis which appear in the relation is alse a timing relation.

A timing relation can be conditionally evaluated and the conditional predicate can be any timing
or dependency (to be defined) relation. As an example of universal and existential quantification
consider a V-gignal SV =< P,V n, T W >, and the timing relation R : T[{] > 100. The relation R
is universally quantified over ¢ as: Vi,0 < i < n,T[i] > 100. An existential quantification for R is
expressed as: 37, where 0 < ¢ < n such that T'[7] > 100.

With definition 3.9 the formal description of a timing relation is complete. Next, the concept of
a dependency relation is formally defined.

Definition 3.10 (Causality and weak dependency definition) Consider an operating circuit
at a timing insiance t and a funciional module of it F with N inputs and M outputs. We assume that
at ttme 1 all value {ransitions of the evenis ail the inpul and output poris of F have been stabilized
and that a set of N evenis I; (0 < i < N) appear al the mput porils of F and another set of M events
O; (0 < j < M) appear al the outpul ports of F. Lelst be the time when one or more new events
I,'r (0 <k < N) appear at the input ports of F. After a time d, equal 1o the delay through module
F, F compules a sel of oulpul events according lo ils functional specification. If some of the events
on the output poris are different than the old evenis appeared on the same ports, then new evenis
O; (0 <1< M) are created on these output ports. We say that an input event causes ¢ new outpul
event O;. if it is one of the new input events I;c. We also say that all evenis O; (0 <i< M) are
weakly dependent on all the inputl evenis which appear or hold af time t'. Furthermore the causality
and weak dependency relations are transitive.
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Figure 2: Dependency Relations

(E; causes Ej) N(E; causes Ey) = E; causes Ey
(E; weakly depends on E;) \(E; weakly depends on Ey) = E; weakly depends on E}

In other words, from all the input events of F, the ones which cause the new output events are the
ones which happen temporally last. Using the causality relation we can specify the sequencing of
events through the circuit during its operation.

Definition 3.11 We call a sequence of signals (or events) Sy, Sa, ..., S, a causality sequence

if:

Sy causes So, So causes Ss, ..., Sn_1 causes Sy.

Definition 3.12 (Strong dependency definition) Given a functional module F and an outpui
event of #t O, we say that O is strongly dependent on an event I, if I is either an event on an input
port of F to which O is weakly dependent, or if I causes an input event I of module F, and O is
weakly dependent on I .

Observation 3.2 Two events which are causally relaied are strongly and weakly related as well
Similarly two events which are strongly related are also weakly related.

Next we define the three dependency relations as they are applied to signals.

Definition 3.13 Given two V-signals, S; =< Py, Vi,ny, T, W, = and S5 =< Py, Vo, n5. To, Wa, >
(assume ny < na), we say that S; causes Sy if:

V.'O S 1< ny, =< PlVl.le[z}, I/Vl['t] > causes < Pg,‘fc,i.TQ[ﬂ,W@[l‘.} -

Similarly we can define strong and weak dependencies between signals, substituting the word
“causes” in the previous definition by “strongly” depends on and “weakly” depends on respectively.

A causality relation is not a functional relation. An event I may cause an event O, but the
creation of the event O may depend on the presence of other events in some input ports of the
circuit modules. With the strong and weak dependency relations we provide our model with the
capability to express dependency relations, not necessarily causal, between events.

In Figure 2 we have a sequence of three functional modules: an AND gate, an OR gate, and
another AND gate in series. The waveforms of the input and output signals are represented at the
input and output ports of the gates. We assume event R» to hold forever at value one and event Jo
to hold at value zero. At time tg, 1, {2, 13 and t4 the Io, I;, J;, K1 and O events appear respectively.
Assuming a common delay d for all three gates, we have the relations: {4 = t3 + d, {5 = {5 + d and
ts = 11 + d. The following dependency relations hold:

1. I causes Jy, Jy causes Ky, K1 causes O.
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. From the transitive property of the causality relation it is also true that: [y causes Ky, I
causes O and Jy causes O.

3. O is strongly dependent on RNs, K is strengly dependent on J» and J; is strongly dependent
on I».

4. Finally O is weakly dependent on Jo, O is weakly dependent on Is and Ry is weakly dependent
on Ia.

Note that if 1 = ¢y, then both events I; and I» cause event 0. As an example that dependency
relations are not strictly functional, note that event O is weakly dependent on event Jo even though
event Jo has the value zero and has no effect in the creation of the output event Ky with value one,
at the output port of the OR gate.

Observation 3.3 Strong dependency is not a transitive relation.

For example, in Figure 2 event O is caused by event Ky, and therefore also strongly dependent on
K. Event K is strongly dependent on event Jo. But event O is only weakly dependent on Js.

Definition 3.14 A dependency relation is any causality, strong dependency or weak dependency
relalion, or any boolean combinaiion of dependency relations. Any universal or existential quan-
tefication of a dependency relation over the indices of the events which appear in the relation 1s also
a dependency relation.

A dependency relation can be conditionally evaluated and the conditional predicate can be any
timing or dependency relation. In our specification system the dependency relations are represented
by a dependency graph with nodes representing events and labeled edges between related nodes. The
labels characterize the kind of dependency relation (causal, strong or weak) which exists between
events.

Definition 3.15 A timing constraint is any set of {tming or dependency relations, as well as any
conditional evaluation of each of them, with the conditional predicate being any timing or dependency
relalion.

In the next section we present ATCSL, the language we developed to represent our specification
model, along with some specification examples which will show the expressive power of the model.

3.2 ATCSL: A Timing Constraints Specification Language

ATCSL is a specification language developed for the representation of the specification model intro-
duced in the previous section. In ATCSL timing and dependency relations are specified separately.
An informal presentation of the basic ATCSL constructs is given next:

A signal characterized by the 5-tuple < P,V n, T W = is represented as P.V (in ATCSL a port
is described by its name and it can be any alphanumeric character string). For example, to refer
to a V-signal on a port S with value rising(r), we say: S.r. For simplicity we will usually refer to
a signal P.V rather than a V-signal. Any event appearing on S with value r will be one of the n»
events which comprise signal S.r. We will refer 1o them as: S.7[i] where 0 < i < n. The initial times
of signals and events are represented by appending a circumflex (~) in front of the signals’ or events’
representations. For example, the initial time of event S.7/i] is represented as: ~S.rfi]. Similarly to
represent their widths an underscore () 1s appended in front of their representations. For example,
the width of signal S.r is represented as: .S.r. Finally, the number n of events S.7/i] which comprise
signal S.r is denoted by #S.r.

The standard arithmetice, relative and logical operators of ATCSL are the same as the corre-
sponding operators of the ' language. Using the FOR iterative construct of ATCSL and ranging
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-MRDC*.0 > 100:
MRDC*.0 — [0 8000) XACLK*.0;
MRDC*.1 — [0 65] XACK*.1;
_MRDCx.1 — [0 65] Data.c;
~Address.s + 50 < ~MRDC*.0;
“MRDC*.1 + 50 < = Address.c;
“NACE*.0 + 20 < “MRDC*.r;
“Data.s < " XACE*.0;

Table 1: Timing Relations for the Read Cycle of Multibus

MRDC*.0 = Daia.s; .
MRDC*.0 = XACK* . = MRDCx*.r;
MRDC*.r = Address.c;
MRDC*.r = XACRK*.1;
MRDC*.r = Dala.c;

Table 2: Dependency Relations for the Read Cycle of Multibus

the index over a set of events, references to event instances of signals can be made. Any subrange of
indices can be specified. To conditionally evaluate an expression the IF' operator is used. ATCSL
provides four operators, WHILE, OVERL, BEFORE and SYNC which are shorthand for common
relations between durations of events. The WHILE operator is used to express that an event appears
and holds while another event holds. The operator OVERL (for overlap) specifies that an event that
starts earlier than another ceases to hold while the other one is still holding its value. To state
the relation that an event should start and cease before the appearance of some other event we use
the operator BEFORE. The SYNC operator is used to specify that a signal appears in synchrony
with another signal. We existentially quantify an expression with the THERIS construct by also
specifying a list of indices and their range over which the expression is quantified. Finally we express
the causality relation that signal A.7 causes signal B.f by: A.] = B.1.

Tables 1, 2 and 3 give examples of the use of ATCSL. Tables 1 and 2 present the complete set
of the timing and dependency relation specifications, respectively, of the Multibus read cycle [18].
Both sets of relations are as given in Figure 1, where the dependency relations are denoted by dashed
directed arcs. Table 3 is a timing specification for reading and writing RAM from an expansion card
in Macintosh SE [17] (Figure 3). The rule being represented is:

Rule: AS falling must occur not later than 20ns into S3. If AS has not fallen by that time, AS
must not fall until after the first 20ns of S; (data will be read or written in the next RAM access).

The specification in Table 3 is an exact interpretation of the rule. The increment step in the
FOR loop is equal to the number of states (eight) specified in Figure 3.

In the next section we compare our model with previous and present approaches by other re-
searchers.

3.3 Related Work in Timing Constraints Specification

Logic formalism enriched with the concept of time has been used for the specification of timing
constraints. Temporal logic ([7]) is one representative of logic formalism. The motivation for the
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Figure 3: Part of RAM timing in a Macintosh SE

FOR (i: 0; #C.1; 8) {
IF (AS.0[i) OVERL C.1[i + 3] {
"AS.0[]) < "C.1[i + 3] + 20
}

ELSE { ~AS.0[] > "C.1[i + 4] + 20 }
}

Table 3: Accessing a RAM in Macintosh SE

temporal logic formalism was to specify temporal behavior with a precise, mathematical semantics
and verify the behavior by proving or disproving the specified constraints [4]. However proving the
correctness of designs with reasonable size using the logic formalism turns out to be impractical.
Furthermore the specification model is inadequate to express complicated timing relations. One can
state relations about the relative ordering of events but not about their absolute timing. One can
specify as a constraint that a signal should make a certain transition at some point in time, but
not when. There have been extensions to handle specific timing (ITL [31] for example) but they
share the following disadvantages: First, they retain the logic formalism but cannot use the proof
methods for verification; second, they are not capable of specifying the information contained in a
timing diagram or a specification manual. The latter is true because none of the existing temporal
logic models supports reference to transitions’ history (indexing) or conditional evaluation. As a
result, it would be difficult for a designer to make good use of them. (See also the discussion in
Section 3.1.1 on what constitutes a good specification system.)

Higher-order predicate logic has also been used for the specification and verification of digital
systems [15]. By describing the input and output signals as functions of time, using the notion of
a signal’s waveform, timing relations can be specified between signals. The functional and timing
behavior of separate modules of a circuit can be described as waveform relations. No way is provided
to reference specific time instances of the waveforms (done with indexing in ATCSL). None of the
logic formalisms provides a way for conditional evaluation.

Trace Theory [34] is another representative of a behavioral specification. A trace at some port
of a circuit module can be viewed as a series of signal transitions occurring at this port during the
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operation of the circuit. It is analogous to what we called transitions’ history. Relations between
input and output sequences can be expressed, but no specific time or timing relation can be specified
between them. Work in [12] deals with the problem of defining a formal framework where time can
be specified in trace theory specifications. The approach is based on a continuous model of time
{times are real numbers, not integers). The complete behavior of the implementation in the form
of a state-graph is-temporally verified by assoeiating with each state of the graph a convex linear
region, describing the states of individual timers, which keep track of the possible times at which
events can occur. Sequences that violate the timing assumptions are identified by this automaton.

Petri nets have been used for the specification of timing constraints [30]. Petri nets are much like
dependency graphs, in the sense that they provide the same dependency information between signals
as dependency graphs do, but they cannot handle the specification of the timing relations. Petri
nets are better suited to describe self-timed circuits [36]. There are two extensions to Petri Nets that
try to address the time issue. Timed Pelri Neis [28] specify explicit time intervals, (with the use of
min’s and max’s) during which a transition may fire. These are very similar to dependency graphs.
We can use timed petri nets to express the class of timing relations covered by ATCSL. This can be
done by using the petri net structure to specify all the possible transitions(with timing information)
between events, obtaining the equivalent of a state graph. However these representations ean be huge
and the specification becomes awkward and impractical. Temporal Petri Neis are a combination of
temporal logic operators and the petri net structure [38]. Timed and temporal Petri Nets do not
cover the same class of specifications (this is proved by a counter example in [38]).

Problems similar to that of timing specifications in digital circuits have been addressed for
the specification of systems such as communication protocols, parallel machines and distributed
systems. The IC* [10] model of computation provides an environment where temporal and structural
constraints of a design can be specified and verified. The system operation is described as a sequence
of states over time and the constraints are invariants that should hold during each state of the system.
Causal expressions determine the state transitions and the invariants can also be conditional.

In parallel with and independently from our work, the CPA framework has been developed by
Michael McFarland [25]. The concept of an event is defined very much like we do in our model.
There is however a difference in how an event is indexed. In our model, events occurring on a
particular port are characterized by different set of indices according to their value. Given a V-
signal, the combination of its port and its value determines its set of indices (its set of events). In
CPA, events occurring on a particular port are characterized by one set of indices. Given an event,
the combination of its port and its index determines its value. As a result, it is not obvious how
to express in CPA specifications referring to different event instances of the same V-signal. On the
other hand, CPA can express sequences of values on a port over time and therefore provides a better
way to express the transformations of a data sequence between an input and output port.

Gaetano Borriello [6] has developed a specification method based on what he calls formalized
timing diagrams, and has applied it to transducer synthesis. His idea is that the most natural way to
describe a timing diagram is a timing diagram, but problems arise when trying to express complex
constructs like conditionals and loops. Formalized timing diagrams provide just a timing diagram,
and it is hard to extend their expressive power. A different specification approach is presented by
the same researcher in [1]. The specification exhibits a symmetry between structure and temporal
behavior and can be used for synthesis and simulation tools. An event, much like in our model, is
characterized by its value, port, start time (initial time) and completion time (initial time + width).
Indexing is not provided. Instead the concept of an event’s ancestry is introduced. An ancestor
of an event is any previous occurring event that led to the generation of its descendant. Certain
relations between events are determined over some (if it exists) common ancestor of them.

The timing verifiers HDTV [24], SCALD [27] and TDS [20] incorporate specification models which
are consistent but rather ad hoc and restricted. Interestingly, the HDTV specification system has
some similarities with the specification model of CLOVER. This is because HDTV, like CLOVER,
aims towards the specification and verification of interface circuits. In SCALD, the designer can only
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specify set-up and hold times between signal transitions as well as constraints on the pulse width of
certain signals (the system was designed to verify clocked designs). The TDS system is an expert
svstem approach to automate the timing design of interfaces between VLSI chips in microcomputer
systems. Constraints are expressed as minimum and maximum time between two events.

The roots of our representation can be found in the work described above. However, unlike the
logie formalisms, it-provides a formal framework whese concepts are much closer to and based upon
the way people design and specify systems. The combination of our timing and dependency relations
make our framework general and powerful for describing timing constraints of system components.

4 An Event Driven Timing Simulator

Our constraints specification language is based on events and signals. In order to verify the con-
straints we need to obtain information about the signals and the dependencies between events from
the implemented design. The information is derived in the form of an ewvent graph. Every event
corresponds to a node of the event graph. The dependency relations between events are represented
by the arcs of the event graph. An arc representing a causal relation is labeled as a one-edge, other
edges are labeled as zero-edges. We call a path of the event graph consisting of one-edges a one-path.
We have built an event driven timing simulator which takes as input the description of the
implemented design in the form of a netlist (derived from the PDL-e description of the design) and
the input signals, and produces as output an event graph, where the dependency relations of the -
events are represented, and with a detailed description of all the circuit signals. We use an extended
value system (similar to the one used by McWilliams in SCALD [27]), to permit the analysis of a
circuit without referring to specific values. The table below defines the values and their meaning.

VALUE MEANING
0 Value stable at zero
1 Value stable at one
r Signal monotonically increasing from zero, called rising
f Signal monotonically decreasing from one, called falling
@ Signal is echanging, any transitions acceptable
s Signal is stable either at zero or one
u Same as changing, but it is used only for initialization, called undefined

The use of the rising and falling values will become apparent in the subsection where our delay
model is discussed. The stable value provides an abstraction over the more specific zero and one
values, and it is used for the analysis of circuits where exhaustive case analysis on the input signal
values is not necessary. The same abstraction provides the changing value over all possible values of
our system. To understand how useful the abstraction of stable and changing values can be, consider
the arbiter problem [11]. In order to avoid metastability. certain signals should remain stable while
others are changing. We really do not care if signals remain stable at zero or one, nor do we care
how signals change. The model provided by stable and changing is exactly what we need in this case
to specify the intended behavior of the arbiter. Finally, undefined is the initial value for every signal
in the circuit. It provides us with the same amount of information as the changing value does, but
it is used only for initialization purposes. Depending on the input values, the performance of our
event driven timing simulator ranges from a traditional simulator to a static timing analyzer, where
case analysis for only certain mputs lies in between.

The timing simulator works like a standard event driven simulator. Initial values of primary
inputs are given by the user and can be periodic (to facilitate specifying clocks). Events come from
a priority queue (implemented as a heap), in increasing chronological order. If the values for the
output signals are different from their old ones, the output events are inserted as new events into
the queue. The simulator can be reinitialized to test the design for more than one input vector (case
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Figure 4: Signal Propagation

analysis). Case analysis may be necessary in order to obtain more accurate results and to avoid
problems like false-paths. The user can code in € the behavioral description for any component of
the design. For standard components like gates, latches, multiplexers etc, a built-in library may also
be used.

Knowing the set of input events on which an output event depends and knowing their timing
gives us a straightforward way to construct the event graph for the implemented circuit. Since
the timing of the events is known, we can identify the events which cause the output to occur,
according to the definition of causality in Section 3.2. At the same time events are processed. the
signals are calculated. After the simulator stops running, it outputs the constructed event graph;
when case analysis is done an event graph is output for each case. For a more complete and accurate
description of the behavior of the circuit components, there are built-in functions which give the user
the capability to obtain information about the event graph during the simulation. Thus information
about the initial time and the width of events as well as the dependency relation between events can
be obtained. This information can be used as conditional qualification in the behavioral description
of the circuit.

Standard modules like flip-flops and latches have specific set-up and hold time constraints de-
termined by their specification sheets. The simulator reports in a report file any violation of these
constraints. The same standard constraints can be expressed in ATCSL and verified by the verifier;
however, it would be inconvenient for the user to specify the constraints for each latch or flip-flop
of a design’s implementation. The user can specify his or her own set-up or hold time constraints
using ATCSL.

Our event-driven timing simulator supports both the inertial and transport timing models (see
discussion in [2]). These models characterize how devices will respond to rapid input changes (rapid
in comparison with the devices’ delays). There is a mechanism to detect oscillation, based on
predetermined time-out periods. The time-out time can be either user specified or specified by the
simulator. In two-level logic (low and high), an oscillation is defined as an indefinite back and forth
transition of a signal between values in different logic levels. For our value system, we can say that
the one and rising values belong to the high logic level and that the zero and falling values belong
to the low level. Since an oscillation is most likely to appear in a feedback loop, we calculate the
strongly connected components of the circuit graph and topologically sort them. After the time-out
period, we examine each signal coming out of the queue and we check if it has made a transition
back and forth between the two logic levels. If that is the case and in addition the event is an
output from a module which is a member of a strongly connected component with more than one
members, then an oscillation is suspected. The highest topologically numbered component (which
is the suspected feedback loop) is then printed with the suspected signal in a report file.

4.1 Delay Model

The delay of a device is not a constant parameter. It is rather a random variable which depends on the
device’s physical parameters: the temperature, the power supply, the inputs’ slopes and the outputs’
load. To capture the delay uncertainty we adopt the minimum-maximum delay model, where the
switching time of a device 1s bounded below by a minimum time and above by a maximum time. This
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Figure 5: Two buffers connected in series

is the way most of the parts’ books define the timing characteristics of their components. In [39],
Wallace and Sequin compare the min-max model with the slope model and a probabilistic model
where the delay i1s modeled as a random variable following some distribution. For the slope model
to work, load information should be available and the delay calculations become more complicated.
Probabilistic analysis may give more optimistic results than the min-max model does. However it is
difficult to propagate the delay information through the circuit, unless certain assumptions are made
(e.g., distributions, correlations etc). In addition it is preferable to know that an implementation is
definitely error free, than to know that there is a 99% probability assuring this.

In Figure 4, we present an example of how the min-max delay model can be used in conjunction
with our value system, to propagate information through a functional module. The module is a
buffer with minimum delay time 5ns and maximum delay time 10ns. Given as input the waveform
7in”, the output waveform is a combination of the rising, one and falling values. Our knowledge
about when the output is one has been diminished compared with that of the input, instead during
the rising and falling intervals, the output may be or may not be one (stable). This is a disadvantage
of the min-max model since it leads to pessimistic results.

The min-max model is a good compromise between accuracy and efficiency. It may lead to
pessimistic results but it will never derive a behavior which will be verified as correct when it is not.

5 The Verifier

In Section 3 we introduced the specification model of CLOVER, used to formally describe the
temporal behavior of a design. In Section 4 we discussed the derivation of an event graph to capture
the behavior of a design’s implementation. Here we will focus on the verification process. During
verification, the tool matches the intended temporal behavior of the design against the event graph
of its implementation.

5.1 The Verification Process

A very simple circuit of two buffers connected is series will be used as an example to clarify our
verification procedure (Figure 5). The minimum and maximum propagation delays for the two
buffers are 5 and 10ns respectively. The initial input signal (its waveform appears on the input
port of the first buffer) consists of two one-pulses. The intended temporal behavior of the design is
specified with the following timing and dependency relations:

Timing Relation 01210
Dependency Relation 11 = 0.]

Parsing these ATCSL expressions, we produce their corresponding parse graphs. The parse graphs
of the ATCSL expressions and the event graph derived from the circuit’s analysis are the two inputs
of the verifier. When case analysis is incorporated, more than one event graphs are fed to the verifier
and they are verified under the same set of specifications.
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Figure 6: Event Graph

5.1.1 Verification of Timing Relations

The algorithm for the verification of timing relations is straightforward. The timing relations are
expressions with variables that are the timing characteristics (initial time or width) of events or
V-signals. In the event graph we have recorded for every signal the exact timing information (initial
time and width) for all the events which constitute the signal. For each variable in a timing relation,
we substitute the corresponding timing information for the event or V-signal. To verify the timing
relations we simply have to evaluate them using the parse graphs. It is possible for a V-signal or
event specified in a timing relation to be absent from the event graph. The reason could be some
anomalous behavior of the circuit. In that case we cannot evaluate the timing relation and we report
the signal or event which is missing.

Let’s apply the verification procedure to our example. The output signal 0.1 consists of two
events: O.1[0] and O.1[1]. The specified timing relation is a relative timing relation over a signal
0.1 (-0.1 > 10). Being a relation over the width of a V-signal, it has to be evaluated for all the
events which constitute signal O.7. Evaluating the expression, we find out that the event 0.1/1] of
signal 0.1 with width 5ns violates the specified timing relation.

5.1.2 Verification of Dependency Relations

To verify a timing relation we use the timing information contained in the event graph. In order
to verify a dependency relation we use the structural information (nodes and edges) of the graph.
Given an event graph G, we say that an event A is reachable from another event B in G if there is
a path of G which starts from event B and passes through event A. If A is reachable from B then
B 1s not reachable from A because graph G is acyclic. The verification of a dependency relation is
a reachability test between the events which constitute the relation. The labeled edges of the path
will help determine if the dependency relation is causal, strong or weak.

An algorithm similar to the one computing the transitive closure of a graph, but modified to char-
acterize the dependency relations between every pair of the graph’s nodes, will provide the answer
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to the reachability question. For a graph G with V nodes and F edges, Warshall’s algorithm [35]
finds the transitive closure of G in O(V E + V'?) steps. For a large event graph the overhead of the
algorithm will be large. Furthermore, since the majority of the signals appearing in the event graph
are not part of a dependency relation, the algorithm will generate a lot of useless information. In
order to improve the algorithm’s efficiency we apply the following modification.

Initially we traverse the parse graph of the dependency relations and we identifv the events and
signals which constitute the relations. Then we traverse (using depth first search) the event graph
and for every dependency relation we find its match. The match of a dependency relation is a
collapsed version of the event graph. The nodes of the match are the events of the relation which
appear in the event graph, and the edges are determined by the dependencies between these events in
the event graph. The edges of the match are labeled according to the dependency relations existing
between the interconnected nodes, using the dependency rules.

To verify a relation, we find the transitive closure of its match. A path of one-edges vields a one-
edge between its source and destination. Any other path yields a zero-edge. Since the size of a match
is comparable with the size of its corresponding dependency relation, the saving in computational
time with this approach is usually considerable.

For the two buffer example, the match of the dependency relation consists of the nodes of the
event graph (Figure 6) with signals I.7 and 0.1 (Figure 7). It is easy to check by inspection that
the dependency relation between the two signals is verified for both of the signals’ event instances.

5.2 Error Reporting

CLOVER uses three files to report the outcome of the verification. The first file is the error report
file. Each violated relation is reported to this file along with a description of the events which
constitute the violated relation. For the two-buffer example, CLOVER reports the following error
message:

**x*x _0.1 >= 10

18



Signal 0.1 index: 1 from: 80 to: 85
Violate(s) rel_operator: ’>=’ against the number: 10

To help the designer identify or better understand the reason for a violation, the verifier reports
a description for every specified signal of the design. The description includes the events which con-
stitute the signal, their timing characteristics and their dependency relations. Since the deseription
contains information about the dependency relations of the signals, the set of causality sequences
that caused the events appearing in the specification of the failed constraint can be identified. This
information may help the designer to locate the problem that caused the violation in some earlier
stage of the circuit. We call these signal descriptions {races and they are reported in the trace file.
Going back to our example, we list below the trace information for the output signal O.1:

Signal: 0.1

Index: 0 Initial time: 30 Width: 10
In-Dependencies: I.1[0] (cause)
Dut-Dependencies:

Index: 1 Initial time: 80 Width: 5
In-Dependencies: I.1[1] (cause)
Out-Dependencies:

An empty error file indicates that the design under test successfully verified its specifications.
However during the verification of a timing constraint we may violate part of a relation without
causing a constraint violation. Consider for example a timing relation R which is composed by the
logical OR of two timing relations Ry and Rs. Relation R is verified to be true in the case when
one of Ry or R, is violated. In a situation like this, CLOVER. outputs a warning violation message
for either Ry or R in a third file, the warning file.

We believe that the error reporting of CLOVER gives enough feedback to the designer to identify
the reason for a violation. An interesting but harder problem is the design of a more elaborate and
sophisticated error report. This is highly related to design audit (see Section 2): the tool tries to
give hints to the designer as to where in the circuit a problem may be found after a constraint is
violated.

5.3 Hierarchical Verification

The verification process for large systems can be sped up considerably by hierarchical analysis. Hi-
erarchy is used to describe large systems in a structured way. Our hardware description language
{PDL-e) supports hierarchical design. If we partition the given design into well-defined submodules
with timing constraints specified for each one of them, then after analyzing and verifying each sub-
module independently, the entire submodule description can be substituted by its verified behavior.
The functional and timing specifications of the submodules are used, and the parts of the given cir-
cuits that are evaluated are those that have not been verified. On the other hand, we can follow the
opposite direction and assume that a module follows its intended behavior, then use it to abstract
the module behavior and verify the rest of the circuit.

In our current prototype, the user has to code the verified behavior of a submodule in C for
use by the event driven timing simulator. Since the verification was done against the module
behavior described in ATCSL, it would also be nice to use the verified ATCSL specifications as a
behavioral specification of the module. Even though information can be lost doing this (ATCSL
is a timing specification language not a functional one), the system becomes self-contained, since
no user intervention is needed. Furthermore since the same specification language is used for the
specification of the constraints and the behavior, we do not need to transform from one specification
to another, something which would be prone to consistency errors.



Event though this feature is not yet implemented we will briefly present some of the issues here.
A description of a module within the framework of the event-driven time simulator should conform
to the following basic requirement: during the simulation process, for a given set of input events,
a set of output events should be returned within a specified time period. Dependency relations of
ATCSL can be used to represent the dependencies between input and output signals. For example,
assume a module M- with-the following behavioral specification: A.1 = B.I, where A.[ is an
input signal and B.1 is an output signal. Each time module M is evaluated, an output event B.1[i]
will be created as a response to an input event A.1/i]. The timing relations of ATCSL can be used
to determine the timing of the output signals specified with dependency relations. Timing relative
relations are the basic components of a timing relation. We view them as a set of inequalities over
the initial time and widths of signals. To determine the timing for the output events we have to solve
these inequalities over the initial time of the output events. Upper and lower bounds corresponding
to minimum and maximum delays can be determined this way.

Hierarchical verification can be used to support a partially complete verification methodology.
In a partially complete verification methodology we analyvze and verify some of the small sized
submodules of the design using a complete verification method (for example state graphs). Then we
substitute the submodule’s behavior by their verified behavior.

Hierarchical verification also supports incremental verification. In incremental verification, the
circuit is analyzed in stages, with more information about the operation of the circuit added in each
stage. Since the user has the ability to determine the behavior of modules, the user can question
the functionality of the implementation at different abstraction levels. '

5.4 Reasoning About the Verification Methodology

According to the discussion in Section 2, there are two criteria which characterize a verification
methodology: completeness and accuracy.

The accuracy of our verification methodology is directly related to the accuracy of the analysis
model, which produces the event graph. The shortcomings of the model (min-max delay model,
propagation of uncertainty regions, etc.) as well as alternative models have been discussed in Sec-
tion 4.1.

CLOVER, belonging to the class of incomplete verifiers, shares the shortcomings of an incomplete
verification methodology. We have incorporated into the system three alternative ways of improving
the completeness of our methodology:

Value System The extended value system incorporated provides an abstraction which permits
one to reason about signals without referring to specific signal values like zero or one. This
is the equivalent of reducing the number of states of the design’s state graph. For example,
substituting the zero and one values of a set S of signals by the value stable will cause the
states of the state graph constituted from signals belonged to 5 to collapse into one state. In
addition, we can still reason about the temporal behavior of the design where the behavior is
not dependent on the zero or one values of signals in S.

Case Analysis The timing simulator provides the user with the ability to create more than one
instances of event graphs, which will correspond to different input sequences.

Hierarchical Verification Hierarchical verification both speeds up the verification process and
facilitates an incremental verification of a design. We saw in the previous section how hierar-
chical verification is intended within CLOVER and how it is related to a partially complete
verification methodology.

In a number of cases, using a combination of abstract signal values and case analysis we can make
our specification methodology complete. Consider the example of a simple bus interface circuit. We
assume that the interface supports two transactions: read and write. They are initiated by a read
or write command signal respectively. The address of the data to be read or written is placed on
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the address lines of the interface. Data are placed on the data lines. The command, address and
data signals are the only external signals of the interface (through them the interface communicates
with the outside world). We can completely verify the interface by doing case analysis based on the
type of the transaction cycle (read or write) and abstracting the address and data signal values of
the interface using stable values (for data or address signals which are driven) and changing values
(for data or address signals which are undriven).

6 Case Study: The Multibus Design Frame

Design frames support a new methodology for VLSI system construction. Like operating systems,
they provide standard interfaces to system components. The Multibus Design Frame(MDF) [5]
connects a simple synchronous interface to the Intel Multibus.[18]. While the Multibus has an asyn-
chronous transaction protocel and a synchronous arbitration protocol. the MDF has a synchronous
interface to its internal circuit and support four basic operations: slave read. write and master read,
write. We have chosen this example because it is a good representative of the kind of designs we are
interested in verifying. It is an interface circuit of medium size (around 80 modules) with a number
of timing constraints characterizing its operation. Furthermore it is interfaced to a very well known
bus: the Multibus. We analvzed and verified the MDF for the operations of slave and master read.
The write operations are very similar. Due to space limitations, we will present here the specification
and verification results only for the master read operations. However the statistics at the end of this -
section characterize the results after verifying the whole read operation. A description of the MDF
operations can also be found in [6].

6.1 Implementation of the design

Figures 8 and 9 present a manually designed MDF interface[5] (showed in two parts for clarity of
presentation). The interface signals to the Multibus are headed towards the right side of the circuit,
and the interface signals to the MDF are coming from the left side. The only external input signals
are the signals: MRD, MWR, DATO, ADRO, BUSYIN and the clocks. All the other input signals
appearing in the two figures are internally created signals of the MDF. The data signals are 16-bit
wide and the address signals are 19-bit wide. Our analysis is not dependent on specific data and
address values. We assume the values for the data and address signals to be either stable, when
they are driven by the bus, or changing when they are not. We group the 16-bit wide data signals
and we represent them as a single data signal. Similarly for the address signals. The dotted boxes
in the figures represent user-defined modules.

To give you an idea of how PDL-e can be used to structurally describe a design, we present below
the PDL-e description of the sub-circuit of MDF with input signals MRD, MACK and output signal
MRDC* (Figure 8).

/* Defining modules NOT_buf, NOR and R_S with */

/* their specific input and output ports */

t#tdefine NOT_buf(il, i2) create_fun("%s %w %w %0", "not_buf", i1, i2, 1)[0]
#tdefine NOR(il, i2) create_fun("%s %w %w %0", "nor", i1, i2, 1)[0]
ttdefine R_S(s, r) create_fun("%s %w %w %0", "r_s", s, r, 2)

main ()
{

wire *mrd, *mack, *mrdco, *mrdc, *cmden;

/* Creating named signals MRD, MACK and CMDEN %/
mrd = name_wire("MRD");
mack = name_wire("MACK");
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Figure 8: MDF Interface Circuit (part one)

cmden = name_wire ("CMDEN");

/% Create signal MRDCo, the output of the module NOR, with inputs: */
/* signal MRD and the second output signal of the module R_S */
mrdco = change_name(NOR(mrd, R_S(mrd, mack)[1]), "MRDCo");

/* Create signal MRDC* as the output of the module NOT_buf #*/
/# with input the signal MRDCo, and the enable signal CMDEN */

mrdc = change_name (NOT_buf (mrdco, cmden), "MRDC*'");
}

6.1.1 Clock Specification

The MDF allows precise control of the duty-cycle and the amount of non-overlap of the system clock.
The two clock phases are generated from the input clock; phase one will occur on a rising transition
of the input clock and phase2 on a falling transition. Adjusting the frequency of the input clock, we
can regulate the amount of non-overlap between the two phases. For the analysis, we assume the

following timing for the two phases:
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Figure 9: MDF Interface Circuit (part two)

Phasel Clock period = 100ns. 1t 1s one from 0 to 20ns.
Phase2 Clock period = 100ns. It is one from 40 to 90ns.

The internal clock of the Multibus (signal BCLE*) has a period of 100ns and we assume that BCLK*

stays high (value one) between 0 and 50ns.

6.1.2 Master Read

The timing diagram in Figure 10 specifies the temporal behavior of the operation. The master
generates a pulse of at least one clock cycle wide (signal MED) to initiate a read transaction. The
interface circuit will transfer this request to the Multibus interface and will initiate a Multibus
arbitration and read transaction cycle. An acknowledge pulse (signal MACK ) exactly one cycle
wide and the data read (signal DATT) will be returned as a response.

specification of the operation in ATCSL, based on Figure 10, follows:

Timing Relations for a Master Read Operation of MDF

FOR (i; 0; #DATLs; 1) {
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Figure 10: Master Read Timing Diagram

DATIfi].s SYNC Phif.1;
DATIfi+1].c SYNC Phi.1;

}
_DATLs > 100;
FOR (i; 0; *MACK.1; 1) {
THERIS j [0 : #Phif.1]
(MACK.1i] SYNC Phi2.1[j] && MACK.0fi] SYNC Phi2.1[j+1])

Dependency Relations for a Master Read operation of MDF
MRD.f = MACK.1

6.1.3 Analysis and Verification

We should point out that the actual MDF design was implemented in VLSI [5]. The design we verify
here is a TTL-based implementation. As a result, the timing violations found during the verification
process do not necessarily apply to the actual implementation.

The input vector for the analysis of a read cycle consists of a read command signal and an
address:

MRD This signal initiates a read cycle. It is synchronous to the Phi2 clock and should be active
for at least one cycle of the clock.

ADRO Along with the read command an address should he provided for the value to be read. As
we said, the address lines are grouped into one signal and they assume the stable value as long
as the read signal MRD is active.

At the initiation of the read cycle, signals XACK* and MRDC* are in their inactive state (value
one). Data and address lines are undriven. Furthermore we assume that the requesting master
has the highest priority (during the arbitration).



The simulator runs for sixteen clock cycles before its event queue becomes empty. As we said in
Section 4, standard set-up and hold time constraints can be verified during the simulation process.
Four set-up time constraint violations were reported at the end of the simulator run. As an exam-
ple, we present below the report for the set-up constraint violation of the synchronizer (an ALR
technology flip-flop) -synco.

-s8ync0: SET_UP time Violation -- set_up_time = 10ns
The 0 instance of the input event assumes value: c at time: 1205
The clock signal assumes the value one(l) at time: 1240

The derived event graph is used for the verification process and the results are reported below,
starting with violations of the timing relations.

**%*x* Signal MACK.1 never appears

The MACK .1 signal is missing because of the set-up time violations on synchronizer SYNCO0 and
consequently on the flip-flop D-FF0.

#x** DATI.c[1] SYNC Phi2.1
Index: 1 for Signal DATI.c does not appear: from: 0 to: O

The violated relation shows that the data lines are not properly released at the end of the read
cycle. That happens because the latch with input signal DATO is not latched correctly when its
inputs are undriven.

The report for the dependency relations follows:

=x*x Signal MACK.1 never appears

Again MACK.] signal is missing as a result of the set-up time constraints we detected earlier.

In the clock specification section we mentioned that the widths of the clock phases are controllable
by the user. Using the case analysis feature of CLOVER, we were able to analyze and verify the MDF
design for various clock pulse widths. By doing case analysis the designer can bhetter understand
the temporal characteristics of his or her design. One of the interesting outcome of the case analysis
was the following: we modified the pulse width of the clock phase Phi2 from 50ns to 40ns: after
analyzing and verifying the design we came up with the same set of violations except in one case.
The following constraint of the master read operation was verified:

FOR (i; 0: #DATLs; 1) {
DATIfi+1].c SYNC Phi.1;

In this case, the circuit at the end of a read transaction cycle correctly releases the data lines. That
happens because the latch with input signal DATO properly latches its input signal.

The table below, presents verification statistics and execution time information for the different
phases of the analysis and verification of a complete slave and master read operation of MDF.

| MDF Interface |

Number of Modules 79

PDL-e Description to Netlist 4.1s + 3.1u CPU seconds
Simulator 1.62s + 1.02u CPU seconds
Size of Event Graph 1540 signals
ATCSL parsing 0.3s + 0.4u CPU seconds
Verifier 0.9s + 0.8u CPU seconds
Set-up Constraints Violations 4

Missing Signals Due to Set-up Violations 5

Timing Relation Violations 4
Dependency Relation Violations 1




7 Conclusions

A prototype for CLOVER has been built and it consists of about 11,000 lines of C code. It includes
all features except hierarchical verification. The specification language, written with yacc [19], is
easily extentable in case we decide that a new operator will be particularly useful. We believe that
CLOVER provides a powerful automated environment, which permits the designer to describe his
design in a well-structured way, hierarchically and at different abstraction levels. The specification
model provides the expressive power for the user to specify timing constraints at the event and signal
level and thus understand the design more deeply. The verification time is linearly dependent on the
event graph size (nodes and edges) times the number of the specified timing constraints. Of course,
if case analysis is done, the running time becomes proportional to the number of cases. A lot of
timing constraints can be verified using the more abstract values of our value system.

Right now to run the simulator we provide the initial events and their starting times at the circuit
inputs. An interesting problem is to give as inputs to the simulator only partially defined values: for
example, the signal A4 has the value one from time zero to time z, where z is a variable. Given the
timing constraints and the input events, the verifier should compute (if this is possible), a solution
for z. probably in the form of an inequality. A (possibly empty) set of solutions will determine
under which inputs the implementation meets the specification constraints. Another interesting but
even harder problem, is the design of a more elaborate and sophisticated error report. This is highly
related to design audit (see Section 2): the tool tries to give hints back to the designer as to where
in the circuit a problem may be found, after a constraint is violated.
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