TESTING PARALLEL SIMULATORS FOR
TWO-DIMENSTONAL LATTICE-GAS AUTOMATA

Richard Squier
Kenneth Steiglitz

CS-TR-269-90

June 1990



Testing Parallel Simulators for Two-Dimensional Lattice-Gas
Automata

Richard Squier and Kenneth Steiglitz

Department of Computer Science, Princeton University,
Princeton, New Jersey 08544

ABSTRACT

We describe a test method for lattice-gas automata of the type intro-
duced by Frisch, Hasslacher, and Pomeau. The test method consists of
inserting test patterns into the initial state of the automaton and using a
graphics display to detect errors. The test patterns are carefully con-
structed limit cycles that are disrupted by errors occurring at any level of
the simulator system. The patterns can be run independently to test the
system for debugging purposes, or they can be run as sub-simulations
embedded in a larger lattice-gas simulation to detect faults at runtime. We
describe the use of this method on a prototype parallel machine for
lattice-gas simulations, and discuss the range of systems that can make use
of this type of test method. The test patterns detect all significant one-bit
errors. We include experimental results indicating that multiple bit errors
are unlikely to escape detection.

1. Introduction

Since Frisch, Hasslacher, and Pomeau [1, 2] introduced the use of lattice-gas auto-
mata to simulate hydrodynamics, their FHP models [3] and variants have been used in
many simulation studies. Some simulations have used commercial super-computers or
parallel processors (see references [4,5,6,7,8,9,10, 11, 12, 13], for example) and others
have used special purpose hardware [14, 15, 16]. Because it is not yet known how well
the lattice-gas automata model physical systems, there has been interest in comparing
lattice-gas simulations with theoretical and experimental results. The validity of such
comparisons depends on the correctness of the implementation. (The situation is illus-
trated in figure 1.) It is not usually possible to establish independently the correctness of
an implementation because of the complexity of the operations used in the implementa-
tion. For instance, the complexity of floating point arithmetic makes verifying the

This work was supported in part by NSF Grant MIP-8912100, and U.S. Ammy Research Office - Durham Contract
DAALO03-89-k-0074.



Model LSRR > Implementation = Reality
- : (a) ) : -
\‘-.\M___-______———__(c_) ________________ _,’/,,
figure 1.

The solid line (b) shows the comparison we really make when we compare a computer model of a system to
experimental results for that system. We would like to say that the comparison we are making is effectively
between the model and the physical experiment (dashed line (c)). The dotted line (a) suggests the missing
piece of information that would allow us to say this with conviction: the knowledge of the correctness of the
implementation.

correctness of an implementation of a finite-difference scheme for integrating the
Navier-Stokes equations impossible in practice. The state of affairs for lattice-gas simu-
lations is quite different: the data movement and logic operations are simple. It is there-
fore possible and practical for the correctness of an implementation of a lattice-gas auto-
maton to be tested exhaustively before runtime and monitored during runtime.

We became interested in verifying the functional correctness of a lattice-gas simula-
tor while running fluid flow simulations on a custom VLSI processor, LGM-1 [16], built
here as an experimental prototype. The particular simulation project we undertook
involved comparing our simulation results for a specific flow problem with the results
from other methods for the same problem. In making these comparisons we discovered
that it was impossible to determine whether the discrepancies we saw were caused by the
differences between the methods, or artifacts of incorrect implementation of our system.
Furthermore, interspersed with simulations we were also modifying both the hardware
and software of the system, requiring a concrete testing method for debugging purposes.
From this experience we realized that a complete system testing method was needed
which could be run independently of any simulations to verify functional correctness of
the simulator system.

Our experience with simulations on LGM-1 also convinced us that system func-
tional testing was not sufficient: we also needed runtime fault detection. We often ran
simulations continuously for 24, 36, and more hours, and discovered that, aside from the
errors caused by incorrect implementation of the algorithm, there were other sources of
error of a more transient nature. For instance, we found that during long runs the host
system or the network facility could cause errors, even though the system did not crash
and the simulation ran to completion. Similarly, temporary failure of custom chips, pin
connections, and so forth, could occur during a simulation, and not be detectable either
before the run or after its completion. Although we realized that detecting every tran-
sient error during simulation was probably not possible, we guessed that the most likely



. -

kind of transient error was not the random single bit error, but failures that would effect
large pieces of the simulation, large either in time or space. We therefore began to look
for ways of embedding runtime fault detection in the initial state of the simulated auto-
maton.

In this paper we describe a testing method for lattice-gas simulators. The method
can be categorized as specification-based system-level functional testing [17] because we
use the specification of the behavior of a lattice gas to derive input data that tests the
correct functional operation of a simulator system. This means we do not do any model-
ling of hardware faults although the test method is used to test custom VLSI chips of a
special-purpose hardware simulator. Our approach consists of using graphic display of
the lattice-gas state to detect errors in the evolution of cyclic sub-lattices. The collection
of sub-lattices exhaustively exercises the update logic of the simulator, and is built from
a small library of hand-coded test pattern templates. The test system consists of the tem-
plate library, a small function library for creating patterns in a lattice-gas state, and a
library of routines for image manipulation and display. In practice, we have used the test
method in a “‘prevention oriented’’ [18] manner in the construction of the testing facili-
ties themselves. That is, during construction of the template library, image manipulation,
display software, and a simulator for the special-purpose hardware, the test patterns were
used to prevent, detect, and debug implementation errors. Using a ‘‘destruction
oriented”” approach we have used the test method to test custom VLSI chips, custom cir-
cuit boards, and general control software of the special-purpose system. Finally, we have
used the testing facility to imbed test patterns in the input data of lattice-gas simulations
used in fluid flow experiments to indicate simulator system functional runtime errors.

The remainder of the paper is organized as follows. Section 2 briefly describes the
FHP-III and LGM-1 lattice-gas models. Section 3 introduces some terminology and
definitions. Section 4 gives a general description of the test ensemble and some descrip-
tion of the methods used in its construction. Section 5 gives a detailed description of a
single test pattern template. Section 6 describes the construction of specific collections
of test patterns that constitute the test ensemble. Section 7 discusses the error detection
and experimental results for multiple error coverage. Section 8 discusses the issue of
applying the test method to different architectures. Section 9 contains a summary of our
experiences using the test method, and our conclusions. The appendix contains a catalog
of all our test pattern templates and the devices employed in them.

2. Lattice-gas automata

Our version of a lattice gas is based on the FHP-III model. As described in [3] this
type of lattice-gas automaton consists of a two-dimensional lattice graph [19] and a set of
update rules for variables associated with each node in the lattice graph. The lattice is
the triangular lattice on the plane generated by the unit vectors e; = (1, 0) and
ey = (1, ©/3), in polar coordinates. The edges of the graph connect nearest neighbors



in the lattice (see figure 2).

c O O o o o
O O O O O O©

¢ O O O o0 o
O O O O O o

0O O O O o o

(a)

/[
€

figure 2.

(a) A finite lattice generated by the unit vectors e and e,. (b) The lattice-graph produced from (a) by
nearest neighbor connections.

In cellular-automata terms [20,21] each site together with its variables constitutes a cell
of the automaton; the edges define the cell’s neighborhood. Each cell has eight bits of
state information: seven one-bit dynamical variables and one bit defining the type of site.
In the lattice-gas view, at each site each incident edge has an associated variable
representing the presence or absence of a unit mass particle with unit velocity directed
toward the site’s neighbor along that edge (see figure 3).

figure 3.

The seven velocity vectors at a lattice site. The seventh is represented by a circle and has zero magnitude.

The seventh dynamical variable encodes the presence or absence of a unit mass particle
with zero velocity positioned at the lattice site (called a ‘‘rest-particle’”). The eighth bit
encodes the presence of a barrier at the lattice site. With this interpretation of the vari-
ables the update rule is designed so that, letting the edges have unit length, the lattice is
populated with particles traveling along graph edges and colliding at lattice sites (see
figure 4).



............... ............... ::ME: ........

i T ra o~
,@ E\ KoLy

-

(@ ()

(©) @

figure 4.

(a) The state of a laitice site and associated one-bit variables. r represents a rest-particle, b a barrier site.
(b) The input variables that affect the next state of the lattice site. (c) Shorthand notation for the state of a
lattice site. (d) Shorthand notation for the input to the next-state computation. The combination (d) — (c)
represents an update rule: (c) is the next state of the lattice site after an input of (c).

A lattice-gas automaton evolves by synchronously updating the state of every cell
of the automaton: the next state of a cell is determined by the states of its neighbors and
its own state, and the automaton’s update rule table. For the lattice gasses the automaton
update rule table is called a collision rule set , the initial configuration of states determin-
ing a cell’s new state is called a collision, the next state entry in the rule table is called
the result of the collision, and the combination of a collision and its result is called a col-
lision rule. A particular lattice gas is defined by specifying a collision rule set that gives
the results of every possible collision. These rules can be thought of as rules about the
action of particles (variables set to one) or equivalently as rules about the action of holes
(variables set to zero), as they collide at lattice sites. In an FHP gas, particle collisions
generally conserve momentum and mass, and are symmetric with respect to rotation by
integer multiples of m/3, and time reversal; and for the FHP-III gas, collisions are also
symmetric with respect to hole/particle duality (complementation of the dynamical



variables).

Collisions FHP-III LGM-1

co- e oo

c1. - @

3. .,.@ . = ( : @., dual only
C4s g..x.e \ /

Cs. g.., q\ /._> dual only
c7. e ‘&g ;g

Co. - %,

C12.

" b
C13. Y (_<
A N

cf-’. — |0 <@ =i N for all

figure 5.

The rule sets for the FHP-III and LGM-1 gasses. The first column shows all canonical collisions, cg
through c 13, and a single example of the barrier version, c®. The second column shows the results for the
FHP-IIT gas. The LGM-1 rules are shown only in the cases where they differ from the FHP-IIl gas. (1)
The canonical collisions ¢y and ¢y, are reflections of each other through a horizontal line. Shown is the
canonical rule for ¢ .



...

These symmetry properties and hole/particle duality make it possible to define a
collision rule set in a compact way: for each equivalence class of collisions induced by
equivalence under duality and rotation transformations, pick one example, called a
canonical collision, and show its next-state result; the combination of canonical collision
and result is called a canonical collision rule. There are 28 canonical collisions for the
eight bit FHP-IIT and LGM-1 lattice gasses, and figure 5 shows the fourteen ‘‘non-
barrier’” canonical collision rules for these two automata. Using the list of fourteen
canonical collisions, ¢ through c 3, all 256 possible collisions for the LGM or FHP-III
gasses can be generated by applying the symmetry transformations plus barrier presence
or absence. When the barriers implement the ‘‘non-slip boundary condition’’, the
remaining fourteen rules can be stated in a single sentence: all particles colliding at a bar-
rier site reverse their direction of travel, and the last row of figure 5 shows a generic
example.

The second column of figure 5 shows the results of the canonical collisions for the
FHP-III gas. Where there are two entries for a single canonical collision we mean that
the two possible results occur equally often determined by some explicit rule. LGM-1
implements this by using one rule on even rows and the other rule on odd rows.

The third column of figure 5 defines the LGM-1 gas. Only the results that differ
from FHP-IIT are shown. The c3 and cs results are different for the dual cases only,
while the cg, ¢ 19 , and ¢y results differ for both non-dual and dual cases. Because of
the lack of dual symmetry in the c3 and c5 collisions, we have been mildly deceptive in
figure 5: the c3 and c5 collision classes are not equivalence classes for the LGM-1 gas.
Nevertheless, we shall continue to speak of them as if they were, pointing out the differ-
ence when necessary.

There is one other difference in the LGM-1 rules: a rest-particle at a barrier site van-
ishes. This violates conservation of mass, but does not change the behavior of the lattice
gas. Because this last property of the LGM-1 gas creates some difficulties in testing, we
will have more to say about this when we discuss the construction of a complete test set
for LGM-1.

The canonical collisions can be used to specify a particular collision by providing
the rotation, duality, and barrier status. The collisions listed in figure 5 are presumed in
rotation 1, written ¢(q) for collision c;. Clockwise rotation by increments of ©t/3 are
WIILen € g(2), Ck(3)s - Ck(6)- The dual of a collision is written by c:, and the presence
of a barrier by c;lz. For example, figure 6 shows that canonical collision ¢, generates 24
distinct collisions: six rotations, their duals, six rotations with barriers, and their duals.

3. Some Definitions and Notation

Before beginning a discussion of the test mechanisms, we need to establish some
definitions and conventions. As we described above, a particular lattice-gas automaton
consists of a rule set, a lattice-graph, and the variables associated with the elements of the



C2(1) €2(2) €2(3) C2(4) C2(5) C2(6)
% o \ /
...._O - 4_D ....@ —
7 N\ AN
Ca(1y 03(1) ( 05(1))*
figure 6.

The actual collisions generated by canonical collision c,. There are 24 total: six rotations for each of c,,
c3, c5, and (c8)".

lattice-graph. Throughout the following we will assume the rule set and the form of the
lattice-graph are both fixed and correspond to the LGM-1 lattice gas unless otherwise
stated. Consequently, we may think of any such automaton as a system of individual par-
ticles that obey the collision rules and exist on a lattice-graph. An instance of a lattice-
graph together with a specification of the barrier sites we call a space, a combination of a
collection of particles and a space we call a system, and an arrangement of particles in the
space a state of the system. With each system there is an associated time ¢ defined by
assuming some specified initial arrangement of a system is assigned time ¢ = 0 and each
subsequent update of the automaton state increases ¢ by one. A sub-system may have a
local time £ ,,; With an origin different from the global time origin; we write local time
as a function of global time: #,,.,;(¢). The idea is that an initial state of a system is built
up from smaller systems whose states at global time zero are achieved by starting the
local systems in their initial states and running them forward or backward to #;,.4(0).
Thus, a local system can have its time origin shifted from the global clock’s. A system is
termed cyclic if in its evolution it ever repeats a state. A system is said to be closed if
boundaries are placed in such a way that particles outside the system can never enter.
When we wish to indicate the state of a system I" at time # we write ['(*). For the period
of I" we write 6.

A collision is said to occur at time t in system I' if the collision exists at some site in
', If a collision occurs at some positive ¢ in I" we say I" contains the collision. When
we discuss systems that detect evolution errors we will want to know not only if a colli-
sion is contained in the system, but also whether the system detects bit errors in the
result. We will say a system covers a bit error if the system detects the error. There are
eight possible one-bit errors in any collision result, which we denote
{e, ep, ey, ey e3 ey es eg), corresponding to the eight variables associated with a



.

lattice site. When we wish to specify a particular error in a particular collision we will
append the bit-error notation to the collision notation with a colon separating the two: for
instance, ¢(1):e, shows that the result of a ¢ collision at rotation 1 has the rest-particle
bit set to the complement of its value in the correct result.

4. Test Sets and Their Constituents

A particle system that tests a simulator for all one-bit errors in the evolution of a lat-
tice gas we call a complete test ensemble. A test ensemble consists of a collection of
cyclic sub-systems called test-cycles. Test-cycles are built from elementary generic sub-
systems called pattern templates. (A pattern is produced from a pattern template by set-
ting parameters related to the size of the pattern, its spatial orientation, the number of
particles contained, and so on. Any such pattern could serve as a template, and we shall
sometimes refer to templates and patterns interchangably as patterns.) A test-cycle con-
sists of a collection of sub-systems derived from a set of pattern templates by applying
symmetry operations and time translations to the patterns produced from the templates.
A test-cycle can constitute a portion of a complete ensemble, or it may be inserted into a
larger system simulating a fluid flow problem, to serve as a runtime error detector.

While one might consider trying to compile a pattern template set that has as few
members as possible, each one covering as many collisions as possible, we found that a
simple greedy algorithm lead to a set of templates that allowed us to construct a complete
test ensemble that was small enough to be practical. To be more specific we proceeded
as follows:

(1) Select a canonical collision
(2) Design a pattern template that contains that collision.

(3) Simulate every one-bit error for that collision and check to see that the error is
detected by that pattern. If a single-bit error is not detected, return to (2) for a new
test pattern template. Record which canonical collisions are covered.

(4) Repeat (1)-(3) until all collisions are covered.

Note that it is only necessary to simulate bit errors (Step (3)) for an update of the canoni-
cal collision. If an error is detected in the canonical configuration, every bit error in its
equivalence class will also be detected by an appropriately transformed version of the
pattern. (See the appendix for a catalog of our complete set of templates.)

After we had a complete set of pattern templates we could proceed with the con-
struction of a complete test ensemble. Starting with an empty ensemble and using the
test pattern collision coverage table, we proceeded as follows:

(1) Select a canonical collision/one-bit error combination not yet covered by our
ensemble of test-cycles.

(2) Select a pattern covering that error.



==

(3) Build a test-cycle from the pattern by applying all the symmetry transformations to
the pattern so that all actual collisions generated by the canonical collision are con-
tained in the test-cycle.

(4) Complete the test-cycle started in (3) by making time delayed versions® of the sys-
tem constructed in (3).

(5) Continue in this way, checking off the covered collisions , until all one-bit errors are
covered by our ensemble of test-cycles.

Our complete set of test pattern templates contains 51 templates. Each pattern is
enclosed in a square 30 x 30 box of barriers. If we naively build the test-cycles for the
LGM-1 lattice gas, we need, for each pattern, six rotations of the pattern and its dual, and
about three different time delayed versions of each of these. In addition, a complete
ensemble for the LGM-1 architecture requires every collision on both even and odd rows.
Altogether the complete ensemble built this way requires close to thirty-five hundred
copies of the patterns. On the host machine for LGM-1, a SUN 3/160C* workstation, we
can display about one-thousand patterns per screen, and thus we can see the entire
ensemble in four screens of bit-mapped graphics. In practice, we reduce this consider-
ably in two ways. First, we skip step (4) above: no time delayed versions are required if
we make the pipeline length relatively prime to the least common multiple of pattern
cycle times. The length of our pipeline has been set to a prime number of stages.
Second, we are slightly more careful in constructing the ensemble: not every pattern
requires all twelve combinations of rotations and duals. The ensemble we use for a com-
plete system test contains 786 patterns and its display occupies about three-quarters of
the host’s screen. We will return to the topic of display when we discuss error detection,
but now we want to describe patterns and test-cycles in detail.

5. A Test Pattern

Patterns are generic, self-contained sub-systems designed to contain one or more
canonical collisions. Our collection of pattern templates is divided into groups of similar
type designated by roman letters A through K. There may be more than one version of a
particular type; for instance, type K has twenty-eight versions K; through K,g (see the
appendix for a catalog of the complete template library).

The patterns are built using a small library of particle/barrier devices which act as
control mechanisms for collections of moving particles and individual moving particles.
Groups of moving particles are called chains. A chain is simply a collection of particles
laid out uniformly in a line, all following an identical path. The control mechanisms for
chains consist of devices to deflect a chain, called rurns. There are also mechanisms

T We will explain this in detail later. The reason for time-delayed versions is to ensure that
every processor in a pipeline will “‘see’’ the collision.
1 SUN is a trademark of Sun Micro Systems, Incorporated.



-11 -

called gates that reflect single particles at only one phase of a cycle, while letting parti-
cles pass at all other phases, and detectors that detect the incorrect presence or absence of
a particle involved in some cyclic collision. We will discuss a few of the components in
detail below as we describe the construction of pattern A; descriptions of the other com-
ponents can be found in the appendix.

Pattern A was designed to test the c¢3 and c 5 collisions, and consists of three chains
traveling around a roughly triangular circuit (see figure 7).

R

2

o
T,Qy - I,

figure 7.

Pattern A schematic. (a), (b), (c) are chains of particles with velocities v, v4, and v, respectively. The
deflectors at the corners are type T, turns.

The chains are of the ‘‘paired’’ type: they consist of pairs of particles such that the
members of a pair are separated by an empty site. The turns in A are designated type T
turns, and are designed to handle paired chains (see figure 8). The collisions contained in
A occur, for the most part, in the turns, which we now describe in detail.

The T'; turns used in A consist of a rest-particle in the path of the oncoming stream,
and a barrier at an adjacent lattice site. The location of the rest-particle is called the ori-
gin of the turn: the incoming stream will experience a /3 deflection from its path at the
origin. Let us follow a pair of particles, p; and p,, through a counterclockwise T'; turn
(see figure 9). The lead particle of the two-particle stream, p;, collides with the rest-
particle, ry, in a c¢3 collision at ¢+ = 0. The resulting state of the origin has two particles
leaving the site: one at w/3 counterclockwise from the p’s initial direction and one at
1t/3 clockwise, which we take to be p; and r, respectively. The barrier is located one
site away from the origin, and at ¢ = 1 particle r, experiences a ¢ collision with the
barrier sending r, back to the origin. At ¢t = 2 particles r; and p, collide in a c5
configuration at the origin, leaving r; in its original location at rest and sending p, out
the same edge that p; used to exit the turn. The pair of particles have thus turned a
corner, and any stream consisting of similar pairs can likewise be turned.



-12-

figure 8

Pattern A detail. Particles p, and p, constitute a one-pair chain with velocity vo. Two type T4 turns are
shown in detail at the top of the figure: rest-particle r and barrier site b, constitute one turn, r and b,
constitute the other.

In this section we have shown the details of a single test pattern. The next task is
that of constructing a test-cycle from such a pattern, and we take that up in the next sec-
tion. To do that we will need to know the error coverage of our patterns. By simulating
the patterns as closed systems with a simulator that has its rule set altered by the
corresponding error, we can test error coverage of the patterns. Table 1 shows the
confirmed error coverage for all errors. From that table we can see that pattern A covers
all one-bit errors for the non-dual c¢3 and non-dual c 5 collisions. Another piece of infor-
mation we will need is the collision timing table for our patterns. Table 2 shows the local
time of each of the collisions c¢3 and c5 in pattern A.

6. Constructing a Test-Cycle

Here we will show the construction of a test-cycle from several copies of the pattern
discussed in the previous section, pattern A. We have two goals in building test-cycles:
(1) to build a system that contains the complete collision class for one or more canonical



=13 =

. . B pl- B
. . o i TK
.Q\Pl ¢ B @
W . . \Pz_
N\ P2
(a) (b)

(©) @

figure 9.

Four consecutive time steps of a pair of particles being deflected by a T, turn. (a) p, and the rest-particle
collide in a c5 collision. (b) p, is deflected by 1t/3, ry collides with a barrier in a ¢} collision. (c) p, and
ry collide in a cs collision. (d) p, is deflected by ©t/3, ry is again at rest.

collisions, and (2) to build a system that can present every processor in a multi-processor
machine with collisions. The second goal can be achieved for our parallel machine,
LGM-1, by including in the test ensemble patterns with shifted time origins, and we will
return to this below. The first goal can be achieved by looking at the collisions contained
in a pattern and adding enough symmetry transformed copies of the pattern to form a sys-
tem that contains all the collisions of a particular class.

From the collision containment of pattern A listed in table 2, one can see that a sin-
gle instance of A contains collisions cg, ¢, €2, cg, c3, and ¢s. The dual of A, A",
would contain the duals of the collisions just mentioned. In pattern A, the canonical colli-
sion ¢3 occurs in every rotation, ¢3(1) — €3(6), as do all the collisions in table 1 except
¢, which appears only in even rotations. Consequently, if we want a test-cycle that cov-
ers all ¢, collisions we must combine A with a copy of A rotated by w/3. Let us call this
combination test-cycle Q5.

The test-cycle Q}\ covers every rotation of the collisions listed in table 2. If we

build a new test-cycle Q,zl by combining a copy of QJ and a dual copy (Q }1)*, we will
have a test-cycle containing the complete collision classes for every collision contained



-14 -

Confirmed One-Bit Error Coverage
collision error collision error
1-6 r b 1-6 T b
¢o E, Ey | Ky ch E, Koy
El | Ky | Ej E; E;
- E, Ky | Es ct E, Ko
E; Ky | E3 E, E;
¢, B, B, | B, 2 B, B,
B} Ky | Bi Bj Bj
. A A | A & G, Gi
H Ky | Hy G G,
ci C1 KS C]_ CE Gl G]_
Ci K¢ | C} G, Gi
cs A A A Cg Gg G
B; Kis | B3 Gs G
- Fi K, | Fj ct G; G,
F3 K, | F3 G; Gs
e Cy Ky | Cy ¢k G, G
Cs Ky | C3 G, Gi
cs B, B, | By 2 Ge Gs
B} Ky | B] Ge Ge
Co Fl K3 Fl C‘,b’ Gg G3
F} K, | F} G; G3
Eio B, Ky | By et D (cl) D (cl)
B, K3 | By Dy (cl) D;(cl)
o B]_ K12 Bl C?l DI(CCI) DI(CCI)
B} K3 | B D3 (ccl) D3 (ccl)
055 Fy Ky | Fa cb Ga G4
Fy Ky | Fa Gy Gy
€1a Di(cl) | Kia | Kns et Gs Koy
Di(cl) | K15 | Kn Gs K
table 1.

For each collision each one-bit error was simulated in both dual and non-dual forms. The upper rows in

each collision category are the non-dual cases, the lower rows are the duals.



-15 -

Pattern A Collision Containment

period 8, = 6

phase 0 1 2 4 p

Co Cco Co Co Co o

c

vollidoa C2(2, 4, 6) Cg(z, 4, 6) Cg(z, 4,6) | €2(2,4,6) C2(2,4,6) 2(2, 4, 6)

C1 €2(1,3,5) €22, 4, 6) 1 1 C1

€3(1,3,5) | €3(2,4,6) | €5(1.3,5) | €5(2,4,6)
table 2.

The period of pattern A is adjustable by lengthening its chains; shown here is the containment for A with
minimum period. Where more than one rotation of a collision occurs in a phase we have written the rota-
tions in a list: for instance, {2y, C2(ay, Co(6)) becomes ca 4 6).

in pattern A. Unfortunately, 9,2, does not achieve our goal for the collision class c3. As
we mentioned earlier, the ¢3 and c5 classes are each split into two because of dual asym-
metry. As a consequence, pattern A does not cover any of the dual cases for c3, but pat-
terns H, and K ;7 together do, as can be seen in table 1. Consequently, a test-cycle com-
bining Q) with test-cycles built from these two additional patterns is required.
Nevertheless, for the sake of simplicity in the following, we will assume that Qi covers
the ¢3 and c 5 classes.

The second goal in test-cycle construction involves collision containment for
multi-processor implementations of the lattice-gas simulator. If the machine doing the
lattice-gas simulation is a uniprocessor machine, we would be satisfied with this Qi
test-cycle. Simulating this test-cycle would cause the machine to repeatedly update the
test-cycle and every site would be processed by the same processor. Then, in a single
period of the test-cycle, the processor would ‘‘see’’ every collision in the collision
classes contained in Qi. If, however, we are interested in testing a multi-processor
machine, we need to insure that every processor sees every collision. We have been
interested primarily in testing the LGM-1 machine, which is a linear pipeline in which
each stage of the pipeline executes one update of the entire lattice-gas. In each stage
there are two processors: one updates odd rows of the lattice, the other updates even
rows. We next discuss the construction of a test-cycle specifically targeted for the
LGM-1 architecture (see figure 10).

For the moment we will assume each stage of LGM-1 has only one processor. If we
look at the second stage of the pipeline, P?), we see that it updates the automaton at glo-
bal update steps £, = 1 (mod N), where N is the number of stages in the pipeline. Con-
sequently, in order for P(?) to see collision c ;) we must build our test-cycle so that at



-16 -

sites out

sites in

array of lattice sites

figure 10.

The LGM-1 architecture. The lattice sites are stored in an array and fed in raster scan order to a pipeline
of processors. Each processor advances the lattice gas system one evolution step and sends the data out in
the same raster scan order.

some 7, = 1 (mod N) we have c ;) occurring somewhere in the cycle.

Because all the copies of pattern A in test-cycle Q}, have the same phase,
t10ca1(0) = 0, individual collisions are contained in some phases of Qﬁ and not others.
For instance, from table 2 we see that the period of pattern A, 84, is six global update
steps and that collision c3 occurs in even rotations at local time t = 0 ( mod 84), and
odd rotations at # = 1 ( mod 8,). Therefore, a copy of Q3 with its local time set to
Zero, Q,Z; (0)', has a period of six and contains all rotations of cyatt =0 (mod dy),
andatz = 1 ( mod 8,). Nevertheless, unless the period is relatively prime to N or N/3,
every stage of the pipeline will not see ¢3. One way to overcome this is to build a test-
cycle that contains every collision on every phase of its cycle. As table 2 shows, we can
cover the missing cycle steps by reproducing Q3 three times with local time origins 0, 2,
and 4; the result we will call Q3. The complete test-cycle Qi containing six copies of
pattern A has a cycle time of six and contains c¢3 in every rotation at every phase of the
cycle.

As we mentioned above, LGM-1 uses two processors within each stage; one proces-
sor handles the odd numbered rows and the other processor, the even ones. To handle
this we must check that our test-cycle also contains every collision on both even and odd
numbered rows. The simplest way around this problem is to make two copies of the
test-cycle, installing them so that their row positions differ by one. Alternately, one can

T System § with local time origin shifted so that #(0) = x will be written S(x). That is, the
state of S(x) at global time 0 is §™®.



-17 -

ensure that every collision is represented for both row parities by adding more turns to
pattern A to make a new pattern.

7. Error Detection and Experimental Results.

Our method of testing a simulator consists of simulating a complete test ensemble
for many generations, and after the simulation, graphically displaying the ensemble sys-
tem to detect errors in its evolution. For our machine, LGM-1, the state of a lattice-gas
system is stored as a two-dimensional array of bytes in raster scan order, each byte con-
taining the state of a single lattice site. Because we want to be confident that we are actu-
ally seeing the state of the system, we want the process of displaying it to minimize the
amount of transformation done to the original data. We therefore treat the array as a bit-
map graphics file, and display it with a color map that color codes each byte.

100 101
110 001
010 011
figure 11.

Color coding of unit vectors. Each direction vector is associated with an rgb (red, green, blue) color cod-
ing, and the zero vector is coded 111 (white). We imagine that the colors change continuously and linearly
with the angle of rotation. For instance, v, is associated with the triple 110, and v, is associated with the
triple 100. Any vector between v, and v, will have a triple of the form {1, x, 0}, where 0 < x < 1.
Given a collection of velocity vectors at a lattice site, adding the corresponding rgb triples and normalizing
gives an rgh triple that codes a color that matches the resultant vector sum’s direction. The number of par-
ticles present determines the brightness of the color. Thus vi + v, — 210, and normalizing gives
{1, 0.5, 0} as the sum’s color with a relative brightness of 2.

The color coding is done so that if there is only a single particle present at the site,
the presence of the particle is indicated by a color corresponding to its velocity (see
figure 11); if there are several particles present, their colors will add in such a way that
the resultant color corresponds to the vector sum of the velocities. Higher intensity
corresponds to greater number of particles present. So, for instance, if all six non-zero
velocities are present the site will appear bright white (white represents zero velocity), if
no particles are present it will appear dim white, and if only a rest-particle is present it
will appear a noticeably brighter white than when no particle is present.

Different color maps can be used to bring out different features: for instance, in the
color map described above, barrier sites are coded without color so that they appear black
unless other particles are present at the site. If seeing the location of the barriers is



-18 -

important, the barriers can be coded with some distinctive color.

We want the presence of an error to result in a state of the system that is visually
easily distinguishable from any of its correct states. Our patterns have the general pro-
perty that an error will disrupt the cycle and result in one or more particles straying
beyond the sites occupied by the pattern. In most of our patterns we put a rest-particle in
any lattice site which is not part of the pattern but inside the containing box of barriers.
A stray particle passing into the space occupied by rest-particles usually results in the
rest-particles erupting in a chain reaction that floods the box with moving particles. This
chaotic state is visually unmistakable.

(©) (@

figure 12.

A test-cycle containing six copies of pattern A simulated with the c4:e, error at every step. (a) The cycle
in its initial state, t = 0. (b)t = 10. (c)t = 20. (d) t = 100. The second row of patterns in each picture
above contains two patterns: one is ‘‘wrapped around’’ the left and right edges of the lattice.



-19-

Shown in figure 12 is a small, example test-cycle evolving in the presence of a one-
bit error: the lattice-gas rules in a software simulator have been altered to contain the
one-bit error ¢3(1y:e;. The test-cycle consists of six copies of pattern A and is designed
for periodic boundaries so that one of the patterns wraps around the sides. The pictures
in the figure are the color-coded bitmaps of the states converted to gray scale: each pixel
represents a lattice site, and the color scheme described above has been mapped to a gray
scale.

In (a) the initial state of the test-cycle is shown, and each succeeding image shows
the system ten time steps older. As is easily seen even in gray scale, the chaotic result is
clearly distinguishable from the initial state. Because any legal state of the test-cycle
looks very similar to the initial state, we have no problem in distinguishing the error indi-
cation from the system’s correct states.

Besides having extension in evolution time, these test sub-systems also have exten-
sion in the space of the lattice-gas, allowing them to detect errors such as those caused by
incorrect data addressing by the lattice-gas simulator. For detecting these types of errors,
the patterns that are ‘‘loops,’’ such as pattern A, are useful. For instance, in LGM-1 a
lattice-gas system is ‘‘cut’ into strips that are fed to the pipeline one at a time and
“‘sewn’’ together as they exit the pipeline. Placing a loop pattern across such strip boun-
daries makes it easy to see if there are any addressing errors made in the cutting and sew-
ing operations. Likewise, if the lattice-gas’s boundaries are periodic, the loops can be
placed across the boundaries. In LGM-1 the boundaries can be either periodic or not, and
we test both cases with different test ensembles.

2

7.1. Detection Difficulties

Our ensemble detects all significant one-bit errors, but not all are detected by
chaotic conditions. One reason for this is the lack of dual symmetry for the collision of a
single particle with a rest particle in the LGM-1 gas: we cannot have ‘‘explosions’” in a
dual world. We have two methods of getting around this.

One method is to build a pattern with many particles moving in an orderly fashion.
Disruption of the pattern results in many stray particles and, while not giving the magni-
tude of chaos in an explosion, it is easy to see when the system fails to evolve correctly.

Another method is to enclose the dual pattern in a box with a device that functions
as a gate for dual particles (holes). The dual particle is transformed to a real particle and
the real particle can cause an explosion outside the dual box.

For some of our patterns, instead of employing either of these two methods, we
have relied on being able to see one or two stray particles or a global change that is not
chaotic. While this is not the most desirable method of detecting errors, employing it
allowed us to complete the set of patterns without spending time attempting to produce
explosions for every error. Indeed, the attempt might be futile: it is an open question
whether or not it is possible to find a collection of patterns that results in chaotic



=20 -

conditions for every one-bit error.

Another problem in detection is a consequence of the mismatch in scales caused by
detection without chaos and the large number of patterns in our test ensemble. As we
mentioned in section 4, our ensemble contains close to one-thousand patterns. A chaotic
change in any of one-thousand 30 x 30 pixel boxs displayed at one time is easy to see at
a glance. But, because the size of the ensemble is much larger than the area of a single
pixel (which may show the presence of a stray particle), the patterns that do not become
chaotic require closer inspection. We have handled this by scanning a display of the test
ensemble using a mouse driven ‘‘magnifier’’ that allows us to see the patterns individu-
ally. While this works, it is not entirely satisfactory.

One way to-approach this, besides trying to make all patterns detect by chaotic
results, is to reduce the size of the ensemble. If the ensemble were small enough, a single
particle would occupy a sufficient portion of the display so that, again, a glance would
suffice. We have made no attempt to minimize our set. Rather, we have been interested
in ensuring its completeness, and we have, for the most part, used each pattern as a test of
a single canonical collision. As the description of test pattern A showed, a single pattern
contains several collisions, and for this reason we estimate that our complete set is con-
siderably larger than necessary.

For instance, the pattern that was specifically designed to test the ¢ (quiescent lat-
tice site) collision is simply an empty box. If any particles or barriers appear in the box
the error is detected, but the result will not necessarily be chaotic. It seems likely that the
co test pattern is superfluous, and other patterns will detect any error that it can.
Confirming this could be done by simulating the eight possible one-bit errors for the
canonical collision ¢ on the entire ensemble and checking to see that the errors were
detected by some other pattern in every case.

There is one type of one-bit error which we make no claim of detecting. Because
these errors do not effect the lattice gas behavior in a way that changes its modeling
capability we consider these types of errors insignificant. As table 1 shows, these errors
are all rest-particle errors in collisions in which a rest particle and a barrier exist at the
same site. As we mentioned when we described the LGM-1 rule set, in the LGM-1 gas
the rest-particle disappears in these configurations. Consequently, any test pattern for
this type of collision can only be used as a one-shot test, and this test must occur at
t=0.

The patterns we have devised for these collisions do detect all one-bit errors, but the
one-shot nature of this testing forces us to deny fully covering these collisions for two
reasons: one is that the errors cannot be detected in any processor other than the first one
in an LGM-1 type pipeline machine, and the other is that the patterns must be inspected
very closely to detect the error of a rest-particle remaining at the site after # = 0. In gen-
eral, this is a difficult type of change to detect because the rest-particle at a barrier lattice
site has no interaction with other particles. Altogether, twenty-eight of our test patterns



i

K, through K g, were created especially to deal with these rest-particle problems.

7.2. Experimental Results

In this section we describe the results of experiments with simulated multi-bit
errors. The experiments we have done for the c3 collision show it is unlikely the ensem-
ble will fail to detect multi-bit errors. Using a software simulator for the LGM-1 gas, we
ran simulations of the test-cycle in figure 12. For each simulation run we altered the rule
set to include an error in the result of the ¢3(1) collision. A total of 117 simulations were
run, each for 20 update steps: all 8 possible one-bit errors, all 28 possible two-bit errors,
all 56 possible three-bit errors, and 25 selected four-bit errors. The four-bit errors were
all those of the form e3 s, , y and es, , x, , because these were the types of errors that
resulted in detection difficulties in the two-bit and three-bit cases. After each simulation
the state of the test-cycle was observed using the technique described in section 7.1. As
table 3 shows, there was only one error that failed the test completely: the c3(1):es, ,
erTor.

The reason the es, , error escaped detection is that in this test-cycle this error par-
tially erases its own mistake in such a way that the cycle continues on undisturbed. Of
course, a careful inspection of the individual pixels would reveal the error, but from our
viewpoint this is not an acceptable method of error detection. Rather, we want the error
to expose itself in such a way that a glance at a monitor screen would suffice to deter-
mine its existence. One remedy for this particular detection problem is to make a copy of
pattern A with the particle chains traveling around the loop in the opposite direction. The
new pattern would detect the c3(1):es, , error, but would fail for the c3(4):eg, , error,
which one would expect since the two patterns are mirror images of each other as are the
two errors just mentioned.

8. Architectures and Applicability of the Test Method

The testing method we have described was conceived with the LGM-1 pipeline
architecture in mind. Coincidently, the method also works well for testing software
implementations. The element that makes the method applicable to LGM-1 is the scan-
ning style of data flow through the update processors. Because of this data scanning, the
entire lattice is passed through every processor, every collision contained in the lattice-
gas system is processed by every processor, and thus all the update logic is tested.

Contrasted to this scanning data flow is the parallel implementation of a lattice-gas
automaton that assigns a single processor to each lattice site. Here, the test method
described in this paper implies building a lattice-gas system that has every collision
occurring at every lattice site. This is probably impractical for two reasons, one of which
is that the test ensemble would be excessively large. For instance, one would need a
separate lattice-gas system for every possible collision, which amounts to
28 x 6 x 2 = 336 lattice-gas systems the size of the entire automaton. Which brings us



-39 .

Experimental Results for Simulated Errors
number of incorrect bits ¥ 2 3 4

stray parti- 0 €3 5 €34, 5 0
non-chaotic cles
detection lack of par- | 0 0 .5+ | €345 7
results ticles

undetected O [éx 0 0

table 3.

The results of experiments simulating multi-bit errors in the evolution of the test-cycle shown in figure 12.
All errors simulated resulted in a chaotic system except those listed above. For instance, the two-bit error
e, s resulted in “‘stray particles’’ occuring in the test-cycle. Stray particles are defined as particles in the
test-cycle which are moving beyond the limits of the particle paths in the correctly functioning cycle. A
“lack of particles’’ result means that all the moving particles have dissappeard from the cycle. An “‘un-
detected’’ result means that the cycle is visually indistinguishable from a correctly evolving test-cycle.
This last result could be detected by a program directly comparing two cycles.

to the second reason this is a bad idea: even if the set of test patterns was much smaller,
the detection would have to be done without the aid of chaotic ‘‘explosions’” contrasting
with an ordered system. While it is true that an entire lattice initialized to contain the
same collision at every lattice site may appear organized to start with, detecting the
failure of a small percentage of randomly located processors would probably require
looking closely at every lattice site because the lattice-gas system would likely appear
randomized after a few updates.

Between the the architecture mentioned above using one processor per lattice site,
and the architectures that scan the entire lattice, such as uni-processors and linear pipe-
lines like LGM-1, lies a continuum of architectures we dub ‘‘frame-oriented architec-
tures.”” A frame-oriented architecture processes a lattice by assigning the update of some
fixed region, or frame, of the lattice to each processor and exchanges information about
the frame boundaries between appropriate processors. Our test method is directly appli-
cable when the number of frames is small because we can duplicate the test ensemble for
each frame and proceed as usual, treating each frame as if it were handled by a separate
machine. The LGM-1 machine is a two-frame architecture because the lattice sites in
even and odd rows are processed by what amounts to two separate pipelines of proces-
sors. As we said earlier, we handle this by duplicating the test ensemble and translating
it by one row in the lattice. In general, this approach is only worthwhile when the
number of frames is small, and consequently this presents a trade-off in the design of



-73.

architectures for lattice-gas simulations. That is, one must trade testability, at least by
our method, against the number of frames the architecture employs.

9. Summary and Conclusions

We have shown how to test lattice-gas simulators with reasonable resources. Easily
discernible changes in cyclic “‘particle’” patterns signal an evolution error in the lattice
gas, and a brief visual scan of bitmapped graphics suffices to determine whether or not an
error has occurred. More precisely, our test ensembles are built from a library of 51 pat-
tern templates, each pattern occupying roughly 50 lattice sites contained in a ‘‘box’’ of
barrier sites 30 lattice spacings on a side. A naively constructed ensemble to test a
software simulator of an LGM-1 gas requires 612 patterns: two duals and six rotations of
all 51 pattern templates. The ensemble we have used for this purpose consists of 393 pat-
terns. An ensemble for the two-frame architecture of the LGM-1 requires twice that
many, or 786 patterns. The display of this 786 pattern ensemble occupies about 77% of
the host’s display screen. For the purposes of testing every processor in an LGM-1 type
architecture containing an arbitrary number of stages, time shifted copies of the patterns
are required resulting in an ensemble about three times larger, that is, containing about
2400 patterns displayed on two and one-half screens of bitmapped graphics. In practice,
we have always set the number of pipeline stages so that the number of stages is rela-
tively prime to the cycle times of the patterns, and consequently only 786 patterns are
needed for our complete ensemble. Because of the hole/particle symmetry of the FHP-IIT
gas, a complete ensemble for it requires only about two-thirds the number of patterns as
the LGM-1 gas.

These ensembles detect all significant one-bit errors in the evolution of a simulated
lattice-gas system, and our experiments suggest that multiple errors are unlikely to
escape detection. Simulating the complete ensemble tests the correctness of the imple-
mentation of the update rules, the data addressing logic, and data transmission and gen-
eral system functions to the extent that they effect the lattice-gas system’s evolution.
Because the patterns are cyclic, testing continues for as long as the lattice-gas system
containing them is evolved. This allows the ensembles to test every processor in a pipe-
lined architecture such as LGM-1, and it also allows them to act as runtime error detec-
tors by incorporating them into real fluid flow lattice-gas systems. Also, these imbedded
tests allow some detection of transient failures in the simulating system during simulation
runs.

The technique described in this paper can used in any software implementation. For
hardware implementations the technique’s applicability depends on the way the lattice
sites are assigned to the processors. If the lattice is split into non-overlapping pieces, or
frames, that are updated by disjoint sets of processors, the ensemble must be duplicated
for each such frame. As the number of frames increases the technique soon becomes
impractical, and there is consequently a tradeoff between testability by this method and



.

figure 13.

Test patterns imbedded in an 800 x 800 site lattice-gas fluid flow experiment. The state of the lattice is
represented by a gray scaled version of the color scheme mentiond in section 7. The light gray border on
three sides contains 76 test patterns. The stippled center section contains the lattice-gas flow, seen here
after 10,000 update generations. Although it cannot be seen, there is a forced flow across the top edge of
the image. The test patterns are incorporated into the boundaries defining the shape of the flow “‘well.”’

the architectural parameter associated with the number of frames.

Of course, as with any testing facility, the issue of the correctness of the thing being
tested becomes the issue of the correctness of the test. For our test method, the issue
becomes one of verifying the correct implementation of the test patterns, and the ques-
tion then becomes one of establishing the correctness of the software, amounting to
several thousand lines of code, that constructs and manipulates the test ensemble. While
confirming the software is free of bugs by traditional software testing and verification
methods is difficult, we have been able to refer to the resulting patterns themselves for
confirmation. The reason is that the patterns are simple and easy to understand visually,
even when displaying them amounts to no more than color coding an octal dump of the
data. Thus, we have been able to use the patterns themselves to debug the software that
creates them.



-25-

The use of this test method in practice has shown it to be an efficient aid in the con-
struction, verification, and operation of lattice-gas simulators. In the construction of the
machines we have used it to to screen for faulty custom chips that contain the processors
of the LGM-1 lattice-gas simulator, and to detect hardware design errors in the custom
boards. For these purposes we have used a subset of the complete set of patterns and
found that screening a single chip requires about three minutes of real time. Most of this
time is spent inserting the chip in the test socket, setting up the simulation, and display-
ing the result. We have used the test method during construction of software controlling
the simulation. We found that writing simulation software was speeded up considerably
by the availability of a concurrent test facility: the code could be quickly written,
modified, or redesigned because a simple five minute test would detect errors as they
were introduced into the system and allow them to be corrected immediately. In fact, the
test template library routines, the software simulator, and the image handling library
were developed in parallel: the simple graphical nature of the test patterns allowed
debugging of each concurrently, even though none of these systems was complete. For
verification of the system before and after simulation runs, the entire system test required
about five minutes of real time. We have also conducted fluid flow experiments on
LGM-1 using an 800 x 800 lattice containing imbedded test patterns to detect runtime
errors (see figure 13). These imbedded test patterns added about 10% to the simulation
time, and the complexity of specifying the initial state of the lattice was increased by
approximately a factor of two.

Acknowledgement

We would like to thank David P. Dobkin and Eleftherios Koutsofios for their
encouragement, advice, and assistance in the graphic display of the test patterns and
ensembles. The displays were done on SUN 3/160C and IRIS 4D 220GTX work-stations
" using the Cheyenne [22] graphics library.

References

1. U. Frisch, B. Hasslacher, and Y. Pomeau, ‘‘Lattice-gas Automata for the Navier-
Stokes Equation,’” Phys. Rev. Lett., vol. 56, pp. 1505-1508, 1986.

2. D. d’Humiéres, P. Lallemand, and U. Frisch, ‘‘Lattice Gas Models for 3D Hydro-
dynamics,’’ Europhysics Letters, vol. 4, no. 2, 15 August 1986.

3. U. Frisch, D. d’'Humiéres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J. P. Rivet,
“‘Lattice Gas Hydrodynamics in Two and Three Dimensions,”” Complex Systems,
vol. 1, pp. 649-707, 1987.

t SUN is a trademark of Sun Micro Systems, Incorporated. IRIS is a trademark of Silicon
Graphics, Incorporated.



10.

11.

12.

13.

14.

13

16.

17.

18.

19.

-26 -

D. d’Humiéres, P. Lallemand, and T. Shimomura, ‘‘Lattice Gas Cellular Automata,
A New Experimental Tool For Hydrodynamics,”’ Preprint LA-UR-85-4051, Los
Alamos National Laboratory, Los Alamos, New Mexico, 1985.

S. Salem, J. Salem, and S. Wolfram, ‘‘Thermodynamics and Hydrodynamics with
Cellular Automata,”” in Theory and Applications of Cellular Automata, vol. 1,
World Scientific, Singapore, 1987.

F. Hayot, M. Mandal, and P. Sadayappan, ‘‘Implementation and Performance of a
Binary Lattice Gas Algorithm on Parallel Processor Systems,”” J. Comp. Phys.,
1987.

T. Shimomura, G. D. Doolen, B. Hasslacher, and C. Fu, ‘‘Calculations Using Lat-
tice Gas Techniques,’” Los Alamos Science, vol. 15, pp. 201-210, 1987.

D. d’Humiéres and P. Lallemand, ‘‘Numerical Simulations of Hydrodynamics with
Lattice Gas Automata in Two Dimensions,”” Complex Systems, vol. 1, pp. 599-632,
1987.

L. Kadanoff, G. McNamara, and G. Zanetti, ‘‘A Poiseuille Viscometer for Lattice
Gas Automata,’” Complex Systems, vol. 1, pp. 791-803, 1987.

H. Lim, ‘“‘Lattice Gas Automata of Fluid Dynamics for Unsteady Flow,”’ Complex
Systems, vol. 2, pp. 45-58, 1988.

H. Chen, S. Chen, G. Doolen, and Y. C. Lee, ‘‘Simple Lattice Gas Models for
Waves,”” Complex Systems, vol. 2, pp. 259-267, 1988.

R. Benzi and S. Succi, ‘‘Bifurcations of a Lattice Gas Flow under External Forc-
ing,”” J. Stat. Phys., vol. 56, no. 1/2, 1989.

P. Binder, ‘‘Abnormal Diffusion in Wind-tree Lattice Gasses,”” Complex Systems,
vol. 3, pp. 1-7, 1989.

A. Clouqueur and D. d’Humiéres, ‘‘RAP1, a Cellular Automata Machine for Fluid
Dynamics,”” Complex Systems, vol. 1, pp. 585-597, 1987.

N. Margolus and T. Toffoli, ‘‘Cellular Automata Machines,”” Complex Systems, vol.
1, pp. 967-993, 1987.

S. D. Kugelmass and K. Steiglitz, ‘A Scalable Architecture for Lattice-Gas Simula-
tions,”” J. Comp. Phys., vol. 84, pp. 311-325, 1989.

Thomas J. Ostrand and Marc J. Balcer, ‘“The Category-Partition Method for Speci-
fying and Generating Functional Tests,”” Communications of the ACM, vol. 31, no.
6, pp. 676-686, June 1988.

David Gelperin and Bill Hetzel, ‘“The Growth of Software Testing,”” Communica-
tions of the ACM, vol. 31, no. 6, June 1988.

P. W. Kasteleyn, ‘“Graph Theory and Crystal Physics,”” in Graph Theory and
Theoretical Physics, ed. F. Harary, Academic Press, New York, 1967.



20.

21.

22.

-27 -

Kendall Preston, Jr. and Michael J. B. Duff, Modern Cellular Automata: Theory and
Applications, Plenum Press, New York, 1984.

T. Toffoli and N. Margolus, Cellular Automata Machines: A New Environment for
Modeling, MIT Press, Cambridge, Massachusetts, 1987.

David P. Dobkin and Eleftherios Koutsofios, ‘“The Cheyenne Graphics Library,”
unpublished internal documentation, Computer Science Department, Princeton
University.



Appendix

This catalog contains the descriptions of 51 test patterns for the LGM-1 lattice-gas simu-
lator. Some of the patterns depend on a function of the row number of the lattice site
designated as the origin for the pattern. This function is written site_rotation( x ), and
pertains to the result of the ¢4 and ¢+ collisions at the lattice site x. As shown in figure 5,
there are two possible results for these collisions, and in the LGM-1 machine the choice
is determined by the row number of the lattice site at which the collision occurs. The
rotation of a lattice site is defined to be the direction of the smallest rotation that
transforms an input vector into an output vector for the ¢4 collision. Site_rotation( x )
returns the symbolic value clockwise if the head-to-head c 4 collision results in a clock-
wise rotation at lattice site x, and counterclockwise otherwise.

Some of the patterns have a rotation parameter. This is not to be confused with the
parameter of the same name used to describe the “‘turn’’ devices. For patterns, the rota-
tion indicates the handedness of the layout of the pattern. Reversing the handedness
amounts to reflecting the pattern through a horizontal line.

To save space, many patterns have devices symbolized by a small square labeled
with the device name and its parameters. Barriers are also indicated by squares, but they
are larger.



-2- appendix

T;.
Ty ( origin, in_vector, rotation )

acts on: paired chains in_vector — 5 S j rotation

delaysmome. @000 ekl N s

deflection: /3 in rotation direction

collisions: ¢3, ¢3, €5

(+ = origin)
Tz.
T, ( origin, in_vector )
acts on: solid chains ( length = 0 (mod 2 ) in VRO . |
delay: 2 steps [ S O
deflection: ©t/3 in site_rotation( origin ) direction
collisions: c3, c3, ¢4, (c¢)
Ts.
T3 ( origin, in_vector, rotation ) /
rotation
rotation = site_rotation( origin ) In secioe '\
acts on: endless solid chains - i S
delay: 2 steps
deflection: 1t/3 in rotation direction
collisions: c%, C4
rotation # site_rotation( origin ) in_vector

acts on: endless solid chains smeibiniiin
delay: 4 steps
deflection: ©t/3 in rotation direction

collisions: ¢4, ¢10 (¢11)




-3- appendix

Ta:

T4( origin, in_vector, rotation )

; \ rotation
acts on: solid chains ( length = 0 (mod 4))

in_vector __5 =
deflection: ®/3 in rotation direction e _+_ ........... -

rotation # site_rotation( origin ):

delay: 4 steps

collisions: ¢, ¢5, c4, C6, €10 (C11)

rotation = site_rotation( origin ):
delay: 2 steps
collisions: see T,

Turn Symbols
outgoing chain \

T.,T4:

incoming chain /4

Ts: ....................

Ty: incoming chain
é X -

N\

|

outgoing chain

(outgoing chain)



-4- appendix

TS. T4 T

4

Ts( origin, in_vector) G) ............. Q
in_vector {I T, D -
AN 8 W, — e 4

acts on: solid chains with length < delay, and length = 0 (mod 4)
deflection: 2w
delay: 22 steps forin_vector = vy, v4; 26 steps otherwise

P b b b &
collisions: 5, ¢3, c4, %, cg, ¢4, c10, 3o, (c11), (ch1)

M return -

M yerrn ( Origin, axis_vector )

......... resssssssnsniessgesenaenense. . 0EIECIOT particle
axis_vector Ny
test pa}tiéte p
e Bl e . W * = Jocal OI'igil'l)
peroid: 8y, = 4 \

Missing Particle Return Detector:
The test particle is expected to return to origin at ¢ = 2 (mod 4) with reversed velocity.
If the test particle does not return, the two detector particles will
escape. If the test particle does return the system will return to
its original state at ¢ = 0 (mod 4).



-5 appendix
Mgate-
M g4, ( origin, axis_vector, 8, t)
."._ .‘_.' ~ . .
/ \\\ ........... . ...........
o —+— ------- Gend/2lengthpath 000 efl o
.'. ,". rd 14 o
\ L % »
"""""" g munmran » Fod RTS RTEESERIN
& ﬂ' ._-‘. "._ » V4 # ’I ¢
& rd % .‘. /," /I
- . test particle
detector particle
axis_vector

period: 8y, = &

The M g4, reflects a single test particle at the phase ¢ of its

period. At all other phases particles may pass through the origin in the

positive or negative axis_vector direction. When ¢t > 1 the detector

particles are stepped forward in their paths appropriately.



-6- appendix

Tgate-
T gase ( OFigin, axis_vector, 3, t)

reflection delay = 6.
total periond = & + reflection delay

detector particle
!

axis _vector '

Y

8/2 length path

Reflects a single test particle with velocity axis_vector at the origin.
The reflection occurs because of a ¢4 collision between the detector
particle and the test particle. If the phase ¢ is advanced the detector

particle is moved forward in its cycle and the reflection occurs at the

origin at global ime # gipper = —t.



-7- appendix

Patterns

A.

A( origin, axis_vector, n)

distance between turns = (n + 1) ./ paired chains with n/2 particles
M S ‘// \ - -
R - / N - =

N ~_ X ' % \ \,4
- = N,
ot N\

axis_vector

T @ distance = 1 D T4
"-‘é’ _-'.

B.

B( origin, axis_vector, n)

‘\\.‘ n-particle solid chains
N e
N
h,©
\-
\-
................ S ............._._._ —— T
T3 \§
\
N
)
Y
kY
3
axis_vector

B is identical to B | except the rest-particle is missing.



-8- appendix

E1

C1( origin, axis_vector, n)

\_\ n-particle solid chains
N -
N e
\
\.
\-
TP SN B SN
T4 \\
N\
N,
LY
\\
X
axis_vector

C, is the same, but has a rest-particle at the origin.

D.

D ( origin, axis _vector, rotation, n)

axis_vector
- ‘\ rotation
M return .'-‘_ M refurn
- T _i_ ............ sef] W™
Ds,.
axis_vector
———— 7
L @‘ rotation
M return




-9- appendix

E;

E;( origin, axis_vector )

i=4 _. .

The E patterns are unlike the rest of the patterns in that there are no

moving particles. The background is the same in most patterns: every site
not occupied by a pattern element contains a rest-particle. The pattern
elements here are layed out in a star shape. Any changes in the pattern
show up in the alteration of the star pattern or in gross changes throughout
the pattern. The test sites contain the following for each of the different

E versions:

E: empty lattice sites

E,: barriers

E 5: rest-particles

E 4: rest-particle / barrier (shown above)



-10- appendix

H,.

H, ( origin, axis_vector, n)

n=4 test particle

axis_vector

n is the number of test particles in the pattern. For H, the test
particles are rest-particle / single-particle combinations. H is
the same except the rest particles are missing.

Fi.

F( origin, axis_vector, n)

AN
\'
n-particle solid chain
‘7 ‘\\

\
\-

.
-

axis_vector

F3 is identical except the rest-particle is missing from the origin.



-11 -

Fy.

Fo( origin, axis_vector, n)

i \
f’ AN J’
/ \ /
/ \ /
/ AY /
/ \ /
; \ 7

,I hY Il
X ¥
A

\.
. . . \
n-particle solid chain
ey ; 5, '\\
\,

"\ '

=

axis_vector

Gl. |3_> .........

G ( origin, axis_vector )

axis_vector

M return

appendix

......... <] . (r—

..E MF’B!I{!‘H




Ko

K, (origin, axis_vector )

[ —

axis_vector

-12- appendix

Q‘ M eturn

M return

M return




-13- appendix

Mgarz( o = 4,-“319 = 4) B‘ E Mgate( o= 4,St€p = 2)

Mgy (0 = 4,5tep = 4)

E| Mo (O = 4,5tep = 2)

Mg (0 = 6,5tep = 6) E}.‘___;_,_ .............. E] Mo (8 = 6,5tep = 6)




-14 - appendix

B Mo (8 =4, step = 3)

a " Mgae(8 =4, step =

Mgae (0 =6, step = 6)

[ 4_@_, ............. ] Mgae(8 =6, step=6)

Mg (3 = 4, step = 3) /
-

E| <
Mgy (8 =4, step = 3) \




-15- appendix

\ Fl Mgae( O =4,step =4)

i R me—— SRR, .............. . £
Myue(8 =4, step =4) ; Moo (8 = 4, step = 4)

U £

Mo (8 =4, step = 4) Mo (8 =4, step = 4)

........................ RN | Mgate( 8=2, step = 2)




-16 - appendix
K]S .............. o R T PP P PP B
Mg (& =2, step = 2
\
K6 [ ERRTITTRRPOS a v NOUTOOPRRR '
d
&
Ky [Feeeeeeeeree e e .D
Mgae (0 = 4, step = 4) Mo (6 =4, step = 2)
\
K18 E. .................................. I:l

Mgae (0 = 4, step = 4)

/

d

Mgy (8 = 4, step = 2)



-17 - appendix

Mae (8 = 4, step = 4) Mgoe (0 = 4, step = 2)

Mg (0 =2, 5tep =2) Mgae (8 =2, step = 2)

Mgare (0 =2, step = 2) Mg (0 =2, s5tep =2)

Tgate( o =4, step = E

Tgate( o =4, Step = ﬂ




- 18 -

CJ

Tgare( 0 =4, step =3 )

2

appendix




-19-

appendix




