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Abstract

I have added concurrency to the functional language Standard ML. The model of concurrency
is derived from CSP, but processes do not communicate directly; they interact by communicating
over channels. Also, processes and channels can be created dynamically.

Three features of Standard ML—polymorphism, garbage collection, and modules—work
exceptionally well with concurrency. Polymorphic functions that combine the concurrent prim-
itives can be used in many programs. One can write processes that do not explicitly provide for
their own termination; the garbage collector reclaims them when they can no longer communi-
cate. Finally, one can use the Standard ML modules system to make small adjustments in the
meanings of the primitives.

The implementation takes only 220 lines of Standard ML. It uses call with current continua-
tion, callcc, to simulate concurrent execution on a sequential machine. callcc is implemented

efficiently by the Standard ML of New Jersey compiler, which uses no runtime stack.

Introduction

I have added concurrent primitives to the functional language Standard ML. My model of concur-
rency is derived from CSP [Hoa78], but processes do not communicate directly; they interact by
communicating over channels. Also, processes and channels can be created dynamically. Writing
concurrent programs in ML has three advantages. One can write polymorphic functions that com-
bine the concurrent primitives in generally useful ways; because the functions are polymorphic they
can be used in many programs. One can write processes that do not explicitly provide for their own
termination; the garbage collector reclaims them when they can no longer communicate. Finally,
one can use the Standard ML modules system to make small adjustments in the meanings of the
primitives.

The primitives are standard. begin creates a process; mkchan creates a channel. send sends a

value on a channel; receive receives a value on a channel. select offers a choice between several
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communications; these “potential communications” are first-class values and are created by the
SEND and RECEIVE functions. send has a side effect—communication—while SEND returns a value;
selecting the value returned by SEND has a side effect. All communication is synchronous.

These primitives are equivalent to those of the Pegasus Meta-Language [Rep88] (although de-
veloped independently); Below I show how to transform them into the Pegasus primitives. I have
implemented two new primitives, wait and WAIT, which wait for input from or output to files to
be possible. Using wait and WAIT, I have implemented functions that make it possible for users to
treat file I/O just like communication on channels.

Using these primitives, it is easy to structure concurrent programs as collections of simple pro-
cesses. Useful abstractions can be implemented as collections of channels managed by one or more
processes. Some of the most useful are “plumbing”—functions that operate on small groups of
processes and channels. Because the plumbing is polymorphic, it can be used in many programs.

Here is some of the plumbing I have found useful. source(c,value) supplies value endlessly
on channel c. sink c accepts values endlessly from channel ¢. copy(c1,c2) connects c1’s out-
put to ¢2’s input. buffered_copy(ci,c2) forms an asynchronous connection between c¢1 and c2.
broadcast [c1,c2,...] value sends value on each channel on the list [c1,c2,...]. collect
[c1,c2,....] receives a value from each channel on the list, then returns the list of values.
fanout(src, [c1,c2,...]) supplies every channel on the list [c1,c2,...] with src’s output. I
have implemented two versions of fanout, one in which all readers read at the same rate and one in
which they can read at different rates.

I have used plumbing in two applications: a simulation of sequential circuits and a multiuser
version of a “talk” program. I have also used it to duplicate an implementation of operations on
power series [McI90].

It is sometimes convenient to make small changes in the semantics of the primitives. For example,
one might want to restrict channels so that values could be sent in a single direction only; attempts
to send values in the opposite direction would cause type errors, which would be detected at compile
time. By using the Standard ML modules system, I can easily implement such changes without
changing the implementation of the primitives; I give several examples below.

My implementation of the primitives requires 220 lines of Standard ML. It uses call with cur-
rent continuation (callcc) to simulate concurrent execution on a sequential machine, essentially
as described in [Wan80]. callcc can be implemented efficiently because SML-NJ uses no runtime
stack [AJ89].

This paper shows the implementation of plumbing in terms of the concurrent primitives, and it
sketches applications in which I have used the plumbing. It also gives implementations of different
semantic changes to the primitives; the new semantics are derived from the old using the ML, modules

system. It gives brief descriptions of applications and implementation.

The concurrent primitives

The creation and communication primitives are most basic. With their ML types, the creation

primitives are



val begin : (’a -> ’b) -> ’a -> unit

val mkchan : unit -> ’1a chan

begin f al starts a process that applies £ to a; mkchan() returns a fresh channel.? There is no
need for destruction primitives because the vanilla garbage collector reclaims unreachable processes

and channels. The communication primitives are

val send : ’a chan -> ’a -> unit

val receive : ’a chan -> ’a

send c x sends value x on channel ¢; receive c receives a value on channel ¢ and returns it.
Communication is synchronous: a send cannot take place until another process executes a matching
receive, and vice versa.

The alternative function, select, is similar to that of CSP, but the alternatives are values,
not language constructs. I have defined the type ’a communication, the potential communication,
to represent an alternative whose choice results in a value of type ’a. The two basic potential

communications are

val SEND : ’a chan -> ’a -> unit communication

val RECEIVE : ’a chan -> ’a communication

Evaluating SEND c¢ x has no side effects by itself; values are not actually communicated until a
potential communication is “actualized.” This can take place when the value returned by SEND ¢ x

appears in a list of alternatives presented to the selection function:
val select : ’a communication list -> ’a

select examines a list of potential communications, waits until at least one of the potential com-
munications can be actualized (which happens when some other process attempts a matching com-
munication), then picks one such and actualizes it.

One can specify that additional computation should follow the actualization of a potential com-
munication by using the -=> operator. If P is a potential communication of type ’a communication
and £ is a function of type ’a -> ’b, then P --> £ is a potential communication of type ’b
communication. P --> f is actualized by first actualizing P, then applying £ to the result. (One
can think of £ as a continuation, or one can think of P as “guarding” the execution of £.) The type

of ——> is
val --> : ’a communication * (’a->’b) -> ’'b communication

wait and WAIT interact with the I/O facilities provided by the operating system. Processes use
wait or WAIT to guarantee that they can attempt I/O without blocking. If a process issued a system

call that blocked, it could block all processes. A process can wait on one of three alternatives:

wait (On_Read d) waits for input to become ready on file descriptor d.

1The curried forms for begin, send, and SEND seem more convenient than the uncurried forms.
2The ’1a indicates that the type of the channel must be a monotype; a similar restriction applies to reference

types. Without such restrictions, one could use channels (or references) to subvert the type system.



wait (OnWrite d)  waits for it to be possible to write on file descriptor d.

wait (On-Exn d) waits until there is an exceptional condition pending on file descrip-

tor d.

The relevant types are:

datatype wait = On_Read of int | On_Write of int | On_Exn of int
val wait : wait -> unit

val WAIT : wait -> unit communication

The best examples of the use of wait are in the routines that create channels that are connected
to file descriptors. Here is a simplified version of a function that makes reading from a file look
like receiving from a string channel. dinchannel d returns a channel; a process receiving from that

channel will get the bytes read from file descriptor d.

fun dinchannel d =
let val ¢ = mkchan()
val buffer = ByteArray.array(1024,0) (* buffer for read(2) *)
fun din(d,c) =
let val rval
val data

(wait (On_Read d); read(d,buf,bufsize))

(* extract only meaningful bytes *)
if rval<0 then raise IO0_error
else substring(buf,0,rval)
in send c data;
if rval > O then din(d,c) else () (*EOF%)
end
in begin din (d,c);
[+

end
The key fragment is
val rval = (wait (On_Read d); read(d,buf,bufsize))

which guarantees that read, a Unix system call, will not block.

Plumbing

When processes are connected by channels to form large graphs, source and sink can fix or ignore

values at boundaries:

fun source (c,value) = (send ¢ value; source (c,value))

fun sink ¢ = (receive ¢; sink c)



source (c,value) supplies value endlessly on channel ¢. sink c accepts values endlessly from
channel c. Because of garbage collection, these processes need not include code that provides
for termination. Most processes can loop forever provided they communicate infinitely often; since
communication is synchronous, such processes can become blocked when trying to communicate, and
the garbage collector reclaims blocked processes when it reclaims the channels on which they are
blocked. A channel is reclaimed when no unblocked process can reach it. In Occam 2, programmers
must exercise considerable ingenuity to get groups of processes to terminate gracefully [Bur88]; in
ML, programmers can just let processes block.

To connect a reader and a writer one can use copy:
fun copy (in’,out) = (send out (receive in’); copy(in’,out))

(in’ is used instead of in because in is a reserved word.) Because copy buffers one value, it creates
one unit of delay in a pipeline. “Demand channels,” which avoid delays, are explained below.
Imagine connecting one producer to many consumers. Assuming broadcast broadcasts a value

to a list of channels, here is a fanout process:

fun fanout (in’,outlist) =
(broadcast outlist (receive in’);

fanout (in’,outlist))

fanout is like copy except that broadcast replaces send and outlist is a list of channels instead
of a single channel.

One can write functions that, given either the input or output end of fanout, create the opposite
end. My strategy, which I have found generally useful, is to create a data structure composed of
channels, start a process to manage the channels, then return the data structure. replicas makes

n copies of the output from channel ¢, returning a list of channels:

fun replicas n ¢ = (* given ¢, create 1 #)
let fun mkchans 0 = [J
| mkchans n = mkchan(): :mkchans(n-1)
val chans = mkchans n (* create a list of n channels *)

in begin fanout (c,chans);
chans

end

Given a list 1 of channels to which one wants to send identical streams of input, one can send a

single stream to a “driver” channel c, returned by:

fun driver 1 = (* given 1, create c *)
let val ¢ = mkchan()
in begin fanout (c,1);
c

end



To broadcast a value to a list of channels, one can send the value to one of the channels, then
broadcast it to all the others. But one should avoid insisting that any particular channel receive
the first message. By using select and SEND, broadcast can send the first message to any of the
channels. n potential communications are needed to broadcast to n channels. Each is a function
of a pair of the form (one channel, all the others). The function openlist produces such pairs. For

example, openlist applied to a list of integers yields

openlist [1,2,3,...,n] =
L (1, [2,3,4,....0] ),
(2, [1,3,4,...,n]1 ),
{n, [1;2.8,...,n-1]1 )
]

openlist is polymorphic (type ’a list -> (’a * ’a list) list). openlist’s im-

Given openlist, here is broadcast: plementation

could be given
fun broadcast [] msg = () in an appendiz.
| broadcast channels msg = select
(map (fn(one,others)=>
SEND one msg-->
fn()=>broadcast others msg)

(openlist channels))

Broadcasting to an empty list of channels does nothing. To broadcast to a nonempty list, open the

list with openlist, then use map to apply the function
fn(one,others)=> SEND one msg--> fn()=>broadcast others msg

to each of the resulting pairs. map returns a list of potential communications; each one, if actualized,
would first send msg to the channel one, then apply fn()=>broadcast others msg to the result,
broadcasting msg to all the others. select chooses a potential communication and actualizes it,
which causes broadcast to be called recursively.® Because only one of the n lists computed by
openlist is actually used, it is possible to write a slightly different version of broadcast that does
not compute all the lists in advance, costing O(n?) instead of O(n®). broadcast can be implemented
in O(n) time by creating a tree of n — 1 processes.

broadcast distributes values to neighbors; a similar function provides the inverse operation,

collecting values from neighbors:

fun collectu [] = []
| collectu inputs = select

(map (fn(one,others)=>

3The recursive call to broadcast is placed inside a lambda-abstraction (£n.()=>. . .) so that the program won’t make
the recursive call until some potential communication is actualized. In ML, the standard way to defer the evaluation

of an expression e is to write “fn()=>e”. Evaluation of e is deferred until the resulting function is applied to ().



RECEIVE one——>
fn x=>x::collectu others)

(openlist inputs))

collectu just like broadcast except for the difference in the potential communications. First a
value is received from some channel, then values are collected from all the other channels, finally
the first value received is put at the head of the list of collected values. In this version, the order
of the collected values need not correspond to the order of channels in the list; order-preserving
implementations can sort the values after receipt. Both broadcast and collectu have especially
simple implementations because potential communications are not static constructs but are values
that can be put in lists and manipulated.

broadcast and fanout both insist that the reader and writers all communicate at exactly the
same rate. It is often useful to decouple processes so that communication can proceed at different
rates in different processes. A producer can run arbitrarily far ahead of a consumer if the two are
connected with a buffering process. This implementation maintains the buffer in a list, with the
oldest value at the head. (A more efficient implementation would use a different data structure for
the buffer.)

fun buffered_copy (in’,out) =
let fun holding [] = holding [receive in’]
| holding (buffer as h::t) =
select [
SEND out h --> fn()=>holding t,
RECEIVE in’ --> fn new=>holding (buffer@[new])
]
in holding []

end

Using buffered_copy, here is a function that returns a pair of channels over which communication

is asynchronous:

fun buffered_pair() =
let val pair = (mkchan(),mkchan())
in begin buffered_copy pair;
pair

end

It is useful to have a fanout process in which the readers are buffered. Such a process can connect
a producer to many consumers while allowing the consumers to read at different rates. The producer
may write as fast as the fastest consumer reads.

This implementation divides consumers into two groups. The consumers in the fast group are
waiting for the next item from the producer. The consumers in the slow group have not yet read old
items previously produced; a queue of such items is kept for each slow consumer. All the consumers

in the fast group move to the slow group whenever a new value is received from the producer.



Consumers in the slow group move to the fast group when they have read all the items in their
queues. A value can be received from the producer if and only if there is at least one fast consumer

waiting to read it.

local
fun holding(writer, fast, slow) = (* assumes fast@slow <> nil *)
let val slowreads = map (fn((rdr,h::t),others)=>
SEND rdr h ——> fn()=> case t of
nil => holding(writer,rdr::fast,others)
| _ => holding(writer,fast,(rdr,t)::others))
(openlist slow)
in case fast of
nil => select slowreads
| _ => select (
(RECEIVE writer --> fn x=>
holding(writer,nil,
map (fn ¢ =>(c,[x])) fast @
map (fn (¢,1) => (c,1le[x])) slow))
::slowreads)
end
in
fun ufanout (writer,nil) = sink writer
| ufanout (writer,readers) = holding(writer,readers,nil)

end

Applications

Sequential circuits

It is easy to use channels and processes to simulate sequential circuits. I represent wires as channels
and circuitry as processes. Latches and combinational logic are the two basic circuit elements. A

latch holds a value, and has an input, an output, and a clock line:

fun latch (contents,input,output,clock) =
(receive clock; send output contents;

latch(receive input,input,output,clock)

A circuit simulation will block if a user creates a feedback loop that is not broken by any latch.

Combinational logic has many inputs and one output; it computes some Boolean function f.

fun combine (inputs,output,f) =
(send output (f (collect inputs));

combine(inputs,output,f))



As an example, here is the combinational logic for an adder. The inputs are duplicated because I

must define a separate process for each output bit:

fun adder(a,b,carryin,sum,carryout) =
let val duplicate = replicas 2

val [a1, a2]

val [b1, b2]

val [carryl, carry2] = duplicate carryin

duplicate a

duplicate b

fun xor (x, y) = if x then not y else y
in begin combine([al,bl,carryl],sum,
fn[a,b,c]=>xor(a,xor(b,c)));
combine([a2,b2, carry2],carryout,
fnla,b,c]=>(a andalso b) orelse
(b andalso c) orelse (¢ andalso a))

end

I have used latch and combine to write, in about 70 lines, a simulation of a Configurable Logic
Block, the basic unit of the Xilinx programmable gate array [Xil88]. This simulation could be used

to test and debug a circuit configuration before downloading it to the gate array.

Conference talk

Two people can use the Unix talk program to converse using the computer. Each user’s screen is
divided into two regions; characters typed locally appear in the upper region, and characters typed
by the other user appear in the lower region. I have written a program that extends this facility to
more than two users.

The implementation abstracts a terminal screen, or “tube,” as a channel to which one can
send certain kinds of messages: move cursor, print characters, and so on. [ have written three
implementations of this abstraction. The hardware tube is based on a file connected to a Unix tty;
the termcap database is used to determine cursor motion. The virtual tube is a repositionable,
resizable tube that occupies a window on the screen of another tube. The named tube is a virtual
tube with a title bar. The three together require 180 lines of Standard ML.

The conference talk program presents to each user a screen that is tiled with named tubes (the
title bars identify the participating users). The process that manages this screen keeps track of the
participants and communicates with a central server. When a user wants to quit, this process sends
“delete me” to the server. The server can notify this process that participants have been added or
deleted. Data (characters typed by users) travels to and from the server.

The server distributes incoming data to all the participants and notifies current participants
of add and delete requests. Add requests come from a “listener” process that spends most of its
time idle, waiting for a connection to a Unix socket (the BSD Unix interprocess communication
mechanism). When a connection is made, the server is notified, and the server spawns a new process

that interacts with the new user until the participant data structure can be created.



The server, listener, and screen manager processes form a single 200-line ML program that runs
as one Unix process. Each user types characters to a separate Unix process, running a 130-line
C program that establishes the socket connection, queries the termcap data base, and then copies
characters in both directions.

Writing the talk server in ML was easier than doing it in C using Unix interprocess communi-
cation (sockets). Sockets are asynchronous, not synchronous, and it is not easy to preserve both
message ordering and message boundaries. In ML one can represent different kinds of messages
using a disjoint union type; the compiler handles type checking and the details of the representation.
Using sockets one can send only sequences of bytes; a programmer would either have to devise a
representation of messages as byte sequences or pick some combination of struct and union to
represent disjoint unions. In the latter case, the number of bytes constituting a message would have
to be limited, since it is not meaningful to send a pointer (e.g. char *) over a socket.

The ML implementation is not perfect; its most annoying defect is that the program appears to

halt for a few seconds every time it performs a major garbage collection [App89].

Modifying the primitives

I have used ML functors to map the primitives described above onto slightly different sets of primi-
tives. I have restricted channels so that messages flow in one direction only; mkchan() then returns
a pair: the input and output sides of the channel. T have restricted channels so that it is impossible
to send a message until it is asked for; this is an abstraction of McIlroy’s demand channels [McI90].
I have mapped my primitives to the primitives used in the Pegasus Meta-Language [Rep88]. Fi-
nally, I have added Boolean guards to potential communications, so that select statements can
use combinations of Booleans and communications after the manner of CSP [HoaT78]. These four
modifications are orthogonal; their implementations, which range in size from 6 to 27 lines, are given
below. The brevity of these implementations suggests that the primitives shown above have wide

applicability.

Unidirectional channels

Making channels unidirectional requires only one change to the types of the primitives; mkchan must
be replaced with a function that returns a pair—the sending and receiving ends of a single channel.
The unidirectional channels have the signature (I have omitted the signatures of several unchanged

primitives):

signature UNICHAN = sig

type ’'a sourcechan (* receiving end of channel *)
type ’a sinkchan (* sending end of channel *)
val send : ’a sinkchan -> ’a -> unit (* send on a channel *)

val receive : ’a sourcechan -> ’a (* receive from a channel *)

val begin : (’a -> ’b) -> ’a -> unit

val mkchans : unit -> ’1a sinkchan * ’1a sourcechan

10



(* create fresh channel pair *)
type ’b communication
val SEND : ’a sinkchan -> ’a -> unit communication

val RECEIVE : ’a sourcechan -> ’a communication

end
The implementation is trivial; the only thing that needs changing is mkchan:

functor UniChan (C:CHAN) : UNICHAN = struct
open C
type ’a sourcechan = ’a chan
type ’a sinkchan = ’a chan
fun mkchans() = let val ¢ = mkchan() in (c,c) end

end

To hide the underlying representation (thereby preventing users from seeing that ’a sourcechan

and ’a sinkchan are the same type), I use abstraction:

abstraction UC: UNICHAN = UniChan(SomeChan)

Demand channels

In a process like copy, above, a value must be accepted from the producer (and buffered) before
it can be sent to the consumer. When many such processes are combined, it can be difficult to
understand the timing properties the resulting, because each process may introduce a unit of delay.
Important properties of an abstraction should be independent of the number of processes used to
implement the abstraction, but this may be impossible where timing is important.

Another problem with ordinary channels occurs when it is expensive to compute a value to be sent
on a channel. When the ultimate consumer of information has finished receiving data, unnecessary
work has been done in computing the intermediate values that fill the pipeline.

One can solve these problems by refusing to accept a value from a producer until a consumer
has made a request for it. This has been implemented by making each channel a pair, half for
requests and half for data [McI90], but I have implemented it more abstractly by providing three
basic communication primitives instead of two. These are: “wait for a value to be requested,”
“satisfy a request,” and “get a value.” Requests can be satisfied at most once, and it’s impossible
to send a value before one is requested.

Here is the signature:

signature DCHAN = sig
type ’a dchan
type ’a request
type ’b communication
val mkchan : unit -> ’1a dchan

11



val get : ’la dchan -> ’la (* get data on demand channel *)
val dwait : ’a dchan -> ’a request (* wait for a request *)

val satisfy : ’a request -> ’a -> unit (* send val (after request recvd)*)
val put : ’a dchan -> ’a -> unit (* wait for request; send val*)

val DWAIT : ’a dchan -> ’a request communication

val SATISFY : ’a request -> ’a -> unit communication

val GET : ’1a dchan -> ’1a communication

val PUT : ’a dchan -> ’a -> unit communication
end
put, which complements get, is just a convenience; it is defined by

fun put dc x = (satisfy (dwait dc) x)

My implementation of demand channels is straightforward. Requests are channels, and demand

channels are channels of requests:

functor DemandChannels (C:CHAN) : DCHAN = struct
open C
type ’a request = ’a chan

type ’a dchan = ’a request chan

fun get dc =
let val ¢

mkchan ()
in send dc ¢; receive c¢
end
fun dwait dc = receive dc
val satisfy = send
fun put dc x = (satisfy (dwait dc) x)
fun DWAIT dc = RECEIVE dc
val SATISFY = SEND
fun GET dc =
let val ¢ = mkchan()
in SEND dc ¢ --> fn()=>receive ¢
end
fun PUT dc¢ x = DWAIT dc --> fn p=>satisfy p x

end

The implementation is slightly unsatisfying; an attempt to satisfy a request that has already
been satisfied should raise an exception of some kind, instead of blocking silently. I see no way to
do this without implementing these primitives directly.

Some changes have to be made to plumbing to make it work with demand channels, for example:

12



fun copy(in’,out) = (satisfy (dwait out) (get in’); copy(in’,out))

Because copying does not delay, it is possible to add to any channel a “noisy” copy that will announce

traffic without changing timing properties:

fun noisy_copy(shout,in’,out) =

let val request = dwait out
val x = get in’
in shout x; satisfy request x; noisy_copy(shout,in’,out)

end

where shout is assumed to announce the transmission of a value,

Synchronous events

In the Pegasus model, the communication primitives have no side effects; instead they create values

called “synchronous events”, which are similar to my potential communications. The sync primitive

is the only primitive with a side effect; sync e “synchronizes with” the event e (similar to actualizing

a potential communication) [Rep88]. I have used functors to transform my model of concurrency

into the Pegasus model.

Here is a signature for the Pegasus model:

signature EVENTCHAN = sig

end

type ’a chan

type ’a event

val SEND : ’a chan * ’a -> unit event

val RECEIVE : ’a chan -> ’a event

val BLOCK : ’a event

val UNIT : unit event

val choose : ’a event list -> ’a event
infix 2 -->

val =—=> : ’a event * (’a -> ’b) -> ’b event

val sync : ’a event -> ’a

BLOCK (in Pegasus, noevent) is an event which can never be chosen; sync (BLOCK) causes a process

to block forever. UNIT (in Pegasus, anyevent) is an event that can always be chosen, but does

nothing; sync(UNIT) is equivalent to ().

I represent events as lists of potential communications (this corresponds to the canonical form

of events described in [Rep88]). SEND and RECEIVE map in the straightforward way:

functor EventChan(C:CHAN) = struct

type ’a chan = ’a C.chan

type ’a event = ’a C.communication list

13



fun SEND ¢ x = [C.SEND c x]
fun RECEIVE ¢ = [C.RECEIVE c]

end

sync is select, and choose corresponds to list flattening, which combines a list of lists into a

single list with the same elements:

fun flatten 1 =
let fun f (newtail,nil) = newtail | f (newtail,h::t) = f(h@newtail,t)
in f(nil,rev 1)
end

val choose = flatten

val sync = C.select

I implement BLOCK and UNIT by creating special channels that are, respectively, never ready to
communicate and always ready to communicate, To make BLOCK polymorphic (type ’a event), I

make its continuation raise an exception, which has type ’a.

local
val ¢ = C.mkchan()
exception Cant_Be_Raised
in
val BLOCK = C.RECEIVE c —-> fn () => raise Cant_Be_Raised

end

local

val ¢ = C.mkchan ()

fun source ¢ = (C.send ¢ (); source c)

val _ = C.begin’ "source for UNIT" source c
in

val UNIT = C.RECEIVE c

end
BLOCK and UNIT can be efficiently and elegantly added to the set of potential communications
implemented in the kernel, but it is pleasant to know that they are not necessary.

Guarded potential communications

CSP alternatives can be guarded with Boolean expressions, potential communications, or combi-
nations of both. Given BLOCK and UNIT, it is easy to extend potential communications, making it

possible to put Boolean guards on the left, e.g. with &&:

14



infix 3 &&

val &% : bool * ’a communication -> ’a communication
The implementation requires BLOCK:
fun && (guard, comm) = if guard then comm else BLOCK

The && operator can be used with UNIT if one wants to guard an alternative with only a Boolean

and not also a communication.

Implementing the primitives

Unlike the concurrent primitives in Pegasus and Newsqueak, which are implemented in C++ and
C respectively [Rep88,Pik89a], my concurrent primitives are implemented completely in ML. They
respect the ML type system and do not have access to the internal representations of data. The
simulation of concurrency is as in [Wan80].

Functions of type unit -> unit represent processes whose executions are suspended; applying
such a function to () resumes the process. Scheduling is non-preemptive; processes run until they
attempt to communicate or to spawn a new process, or until they finish. Ready processes are stored
in a priority queue, with pseudo-random priorities (thus simulating nondeterministic scheduling).
Unready processes may be waiting for I/0O, blocked trying to communicate on channels, or both.
resume_ready removes a ready process from the ready queue and starts it. It also periodically asks
the operating system (using the Unix select system call) whether I/O is ready, so that processes
waiting for I/O can be moved to the ready queue.

Channels are pairs of queues. One queue holds processes blocked trying to send; the other holds
processes blocked trying to receive. If one queue holds a blocked process, the other must be empty.
A process blocked trying to receive a value of type ’a can be represented by a continuation of type
’a cont. Processes blocked trying to send have type ’a * unit cont.

Processes can be waiting to communicate on more than one channel. When it becomes possible
for such a process to communicate on one of the channels, it must remove itself from the queues of
all the other channels. Implementing this procedure literally would be quite complicated, especially
doing so without violating the ML type system. Instead, I have added a dirty bit, type bool ref,
to the representation of a blocked process. Instances of a blocked process may appear on several
queues, but all the instances share one dirty bit. The dirty bit is set as soon as any of the instances
become unblocked. The primitives ignore (and discard) any instance of a blocked process whose
dirty bit is set.* The same dirty bits are used by processes that are waiting for I/0, which enables
one to mix SEND, RECEIVE, and WAIT in a single select.

receive c¢ works by first attempting to remove a clean process from the queue of processes
blocked trying to send on c. If that attempt fails, receive adds the current process to the queue of
processes blocked trying to receive. It gets the appropriate continuation using callcc and creates a

fresh dirty bit using ref false. send works analogously.

4This technique was subsequently used in a re-implementation of the Pegasus concurrency primitives in ML [Rep89).
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Potential communications (such as are returned by SEND and RECEIVE) are values. When select
is applied to a list of such values, it must first determine whether any can be actualized. If so, it picks
one and actualizes it; otherwise, it blocks on all of them. A potential communication is represented
by a triple of functions: one to determine whether a communication can be actualized, one to
actualize it, and one to block on it. Checking whether a communication can be actualized attempts
to remove a process from a queue, just as send and receive do. Actualization is implemented by
calling send or receive. The blocking function adds an instances of the current process to a queue;
it takes as parameters a continuation and a dirty bit.

When select is applied to a list of potential communications, it first polls each one to see if
it can be actualized. If some communications can be actualized, select chooses one at random
and actualizes it. Otherwise, select blocks the current process on all the potential communications
simultaneously by creating a fresh dirty bit, and passing that bit (and a continuation) to the blocking
function of each potential communication. After blocking it calls resume_ready.

Extending the implementation to support preemptive scheduling would require extra support
from the runtime system. One would need to be able to define an ML interrupt handler (with
access to the continuation representing the process state at the time of the interrupt), and the data
structures in the scheduler and in channels would need to be protected with semaphores. The timer
interrupt handler could then cause a process switch. Extending such an implementation to parallel

hardware should be straightforward.

Performance

To measure the extra cost involved in using channels in ML, instead of, for example, ML functions,
I wrote a process that received integers and kept a running sum of all integers received. I compared
this to an “accumulator” function that kept a running sum in an assignable integer cell (int ref).

The accumulator process is

fun accumulator () =
let val ¢ = mkchan()
fun accum (n:int) = accum (n+receive c¢)
in Dbegin’ "accumulator" accum O;
c

end
The accumulator function is

fun faccumulator () =
let val a = ref O
fun accum (n:int) = a := !'a + n
in accum

end;

In the benchmarks, the functions send (accumulator()) and faccumulator() were called repeat-

edly with argument 1.
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I tested the communicating version with my standard implementation of the primitives and also
with implementations I modified for increased speed. The first modification uses restricted channels
whose queues hold at most one blocked process. Many programs work unchanged with such channels,
and these channels can be changed into general channels using one piece of plumbing. The second
modification replaces the nondeterministic scheduler with one that keeps ready processes on a stack;
it is unfair but fast (like the one in [Wan80]).

To find the cost of communication, I measured the amount of user time required to send 10,000
integers on a VAX 8650 running 4.3 BSD Unix, then repeated this measurement several times.
Similarly, I called the accumulator function 1,000,000 times. The times given here are for a single
communication or function call; CPU is user time spent outside the garbage collector, and GC is
time spent in the garbage collector. The VAX 8650 is rated at 5 MIPS.

Algorithm CPU GC Total  Rel. CPU Rel. Total
Standard 177 psec 34 (16%) 211 psec 1.00 1.00
No queues 151 35 (19%) 186 .85 87
Unfair sched | 142 30 (17%) 172 .80 .82
Unfair & NQ | 115 30 (21%) 145 .65 .69
Function call 5 0 5 .03 .02

The large garbage collection overhead comes from updating the reference list [App89]. It could
be reduced substantially by using virtual memory techniques [Sha87]. The factor of 35 disparity
between the costs of communication and function call is consistent with the observation that a
send/receive pair requires 27 function calls on average.

This implementation should help a programmer find a concise and elegant way to structure an
application as a set of communicating processes. The ML modules system can be used to make
small changes in the primitives until the most convenient expression is found. The implementation
is slow because it is general and it is written entirely in ML. If speed is important, the most useful
version of the primitives can be implemented in C (or assembler) and linked with the Standard ML

of New Jersey runtime system [App90].
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