VISIBILITY WITH A MOVING POINT OF VIEW

Marshall Bern
David Dobkin
David Eppstein
Robert Grossman

CS-TR-235-89

November 1989

Visibility with a Moving Point of View

Marshall Bern * David Dobkin !

Abstract

We investigate 3-d visibility problems in which the
viewing position moves along a straight flightpath.
Specifically we focus on two problems: determining
the points along the flightpath at which the topol-
ogy of the viewed scene changes, and answering ray-
shooting queries for rays with origin on the flightpath.
Three progressively more specialized problems are con-
sidered: general scenes, terrains, and terrains with ver-
tical flightpaths.

1. Introduction

In recent years computer-generated images have grown
commonplace, but computer-generated animations— se-
quences of images— are still prohibitively expensive for
all but a few uses. For the most part, this disparity is in-
herent: high-quality animation uses at least 12 distinct
images per second. On the other hand, this disparity is
partially due to a lack of algorithms. Successive images
are typically treated independently, even though they
may differ only slightly.

In this paper we investigate a very simple type of an-
imation: a fixed three-dimensional scene is viewed from
a sequence of different points of view. More specifically,
successive images correspond to (perspective or ortho-
graphic) views of a polygonal scene from sample points
along a straight trajectory, or flightpath. Though this
problem is quite basic, it is also widely applicable in
flight simulation and data visualization.

We assume that scenes are to be computed in object-
space, that is, output is given as device-independent 2-
d coordinates, rather than pixel-by-pixel [SSS]. While
there already exist satisfying image-space solutions
both in theory (binary space partitions [FKN, PY])
and practice (hardware z-buffers), these solutions suffer

*Xerox PARC, 3333 Coyote Hill Rd., Palo Alto, CA 94304.

tDept. of Computer Science, Princeton University, Princeton,
NJ 08544, Supported in part by NSF Grant CCR87-00917 and a
Guggenheim Fellowship, work done while visiting Xerox PARC

tDept. of Mathematics, U. of Dlinois - Chicago, Chicago, IL
60680, work done while visiting Xerox PARC

David Eppstein *

Robert Grossman ?

from aliasing. Object-space solutions as proposed here
would produce higher quality images.

In a sequence of views of a static scene, transi-
tions between viewpoints will typically be smooth— and
rapidly computable- transformations. However, at cer-
tain points along the flightpath topology changes occur-
for example, when an object first peeks around the edge
of a closer object— and the visible scene is not so eas-
ily computed. We develop algorithms for discovering
topology changes (critical flightpath points as well as
the corresponding changes to the visible scene). We
also describe data structures that answer ray-shooting
queries, that is, given a ray r with origin on the flight-
path and arbitrary direction, return the first polygon
struck by ». This type of query is fundamental to the
technique of ray-tracing.

The running times of our algorithms depend on three
parameters: n, the total number of edges in all objects;
P, the number of transparent topology changes (that is,
the number of different scene topologies visible along
the flightpath, assuming that all objects are transpar-
ent); and k, the number of opaque topology changes.
A major open problem in this area is to replace depen-
dence on p by dependence on k, which is typically much
smaller. In general, 0 < k < p < n®/3. We obtain the
following results for finding topology changes. In the
first case we find all transparent- including opaque—
topology changes; in the other two we discover only
opaque topology changes.

e For general polygonal scenes, a simple algorithm
with running time O((n?+ p) log n) and more com-
plicated algorithms with times O(n?logn +p) (us-
ing randomization) and O(n? + plogn).

o For terrains, an algorithm with time O((n +
k)Asz(n)logn). (A terrain is a polyhedral surface
intersected at most once by any line parallel to the

z-axis. The functions A;(n) are slightly superlinear
for each i [HS].)

e For terrains with vertical flightpaths, an algorithm
with time O(nAs(n)logn), matching an earlier re-
sult that uses a different technique [CS].

Techniques used in our algorithms include geometric
sweeps and transforms similar to skewed projection
[JK]. There are relationships between finding topol-
ogy changes and two planar problems: the well-studied
problem of line segment intersection and the problem
of finding the external contour of a union of polygons.

The ray-shooting problem is, in a sense, a special case
of point location in a 3-d subdivision (the visible scene
cross time). For this problem we obtain the following
results. In the first case, space improvement is possible
if queries are ordered by time.

e For the general problem, a data structure of size
O(n? + k) with query time O(log? n).

e For terrains with vertical flightpaths, a data struc-
ture of size O(nA4(n)) with query time O(logn),
improving upon a known O(log? n) [CS].

There has been surprisingly little work on these two
problems directly, though there has been a fair amount
of related work. Cole and Sharir solve a number of vis-
ibility problems on terrains, including finding topology
changes and ray-shooting for the special case of vertical
flightpaths [CS]. Hubschman and Zucker treat convex
objects [HZ]. Swart considers the problem of viewing
independently and linearly moving objects with trajec-
tories that can be dynamically changed [S]. His run-
ning times, however, depend on events such as changes
in the z-coordinate order of vertices in a projection of
the scene. Plantinga and others give algorithms that
compute “aspect graphs” and “aspect representations”
for orthographic views of an object [PD, PDS]. These
data structures have vertices or regions for each of the
O(n*) topologically distinct views of an object. Trans-
lating our results into their terminology, we show that
to determine all views along a given flightpath, only
a small portion of the aspect representation need be
computed.

2. Preliminaries

Assume we have a set S of polygons, nonintersecting ex-
cept along boundaries, and a line segment f, the flight-
path, in 3-space. Let f be parametrized by “time” %,
running from 0 to 1. The point on f with parameter
value ¢ will be denoted p(t).

For perspective views of S, we imagine projecting all
polygons in S from a given point p(t) on f onto a sphere
centered at p(t) that is large enough to contain §. (Of
course, all our results also apply to the case in which
we view only polygons within a viewing pyramid. In
this case, we would project S onto a rectangular back-
plane.) One can view this projection as an embedding
of a planar graph G, which has vertex set containing

s

A Opaque
t ///f/////M ////// ’ Transparent

l %’/’/// on sp.(S)

Figure 1. Skewed projection of a polygonal scene.

all intersection points of edges and the obvious edge
set. Similarly, the projection of § from p(t) with hid-
den lines removed defines a subgraph of G called H,. A
transparent (opaque) topology change occurs at 1 if the
graph G; (respectively, H;) changes, that is for each
€ > 0, G;_, and G,, . are nonisomorphic graphs. The
following lemma is immediate.

Lemma 1. A transparent topology change occurs at
time t if and only if there are three edges e;, e3, and
ez of (not necessarily distinct) polygons in § such that
there is a line that intersects p(t), e, e, and e3. An
opaque topology change occurs at time t if in addition
there is a line segment with one endpoint at p(t) that
intersects e, e», and ez and passes through no polygon
interiors. [

If more than three edges are colinear as viewed from
a point p(t), then we consider p(t) to be the site of a
number of topology changes. An example is the case of
a vertex of a polyhedron coming into view from behind
a closer object.

Now let e be a line segment (not lying on the same
line as fixed flightpath f), parametrized by u running
between 0 and 1. Let T be the interior of the tetra-
hedron defined by all line segments with one endpoint
on e and one on f. We define a mapping sp, : T —
[0,1] x [0,1] as follows: a point p € T maps to (u,t),
where p(u) and p(t) are the points on e and f with pa-
rameter values u and ¢, and are the endpoints of the
(unique) line segment ! passing through p with end-
points on e and f. If e; is a line segment in T then
spe(ey) is either a line segment or a connected piece of
a hyperbola in [0,1] x [0, 1].

If e and f were complete lines rather than segments,
sp. could be extended to a map from R® to R? U {oc}.
This extension is essentially the same as the skewed
projection introduced by Jaromczyk and Kowaluk [JK].

It is not hard to see that a transparent topology
change involving edge e corresponds exactly to the
intersection of two curves sp.(e;) and sp.(e2) in the

P(u)\"

Figure 2. Orthographic skewed projection or..

skewed projection of S N T. The next lemma relates
opaque topology changes to the external contour of the
union of skewed projections of polygons in S. See Fig-
ure 1.

Lemma 2. An opaque topology change occurs at time
t iff there exists an edge e of § and u € [0,1) such that
(u,t) is a vertex of the boundary of sp.(S).

Proof: If (u,t) is a vertex of the boundary of sp.(S),
then the line segment with endpoints p(f) on f and
p(u) on e intersects 3 edges and the flightpath, but no
polygon interior. Conversely, if there is a line segment
that intersects the points p(t) and p(u) and two edges
in T, then (u,t) must be the intersection of two curves
in the skewed projection. If in addition this segment
intersects no polygon interiors, then (u,t) must be a
boundary vertex. [

For orthographic views of S, flightpath f is a piece of
a “circle at infinity”; f can be given by a plane P and a
range of angles. Lines of sight are parallel to each other
and to P. As time ¢ varies from 0 to 1, the lines of sight
vary linearly through t':e given range of angles. Angle
is measured by translating the projection of a line of
sight to an arbitrary origin on P.

We define a mapping or, : R* — [0,1] x [0,1] as fol-
lows: a point p maps to (u,t), where u is the parameter
value of the endpoint on e and £ corresponds to the an-
gle on P of the (unique) ray r with endpoint on e that
passes through p and is parallel to P. See Figure 2.

A version of Lemma 2 holds for or. as well. In the
following sections we concentrate on perspective views,
but all results hold for orthographic views as well. The
case of a terrain with a vertical flightpath becomes the
case of a terrain with a flightpath that is part of a “ver-
tical circle at infinity”, that is, one contained in a verti-
cal plane. Further details for orthographic projections
will be given in the full paper.

3. General Scenes

We first give a simple, practical algorithm and then
two asymptotically faster algorithms, neither of which
dominates the other.

Theorem 1. All topology changes for a general scene
with a line segment flightpath can be computed in time
O((n? + p)logn) and space O(n), where n is the total
number of edges in all polygons and p is the number of
transparent topology changes.

Proof: For each edge e of a polygon in 8, we perform
a rotational sweep around e, similar to Bentley and
Ottmann’s line segment intersection algorithm [BO].
Let T; be the triangle with base equal to flightpath
e and apex at point p(t) on f. A pierce point of T} is
the intersection of 7; and an edge of a polygon in S.

The sweep proceeds from ¢t = 0 to ¢ = 1 as shown
in Figure 3. During the sweep, a balanced binary tree
maintains the pierce points of T; sorted by angle around
p(t). A priority queue maintains future events by in-
creasing t. The events to be handled are: (1) An end-
point of a edge is reached, (2) a polygon edge intersects
an edge of T}, thereby entering or leaving the sweep te-
trahedron, and (3) two adjacent pierce points exchange
position in the angular order. There are at most 2n
events of types (1) and (2); scheduling these events is
straightforward. The lines passing through e, f, and
any other segment define a quadratic surface S (see
[JK]). A fourth segment can intersect S in at most two
points; thus the number of events of type (3) for a fixed
edge e is at most n(n — 1). Scheduling an event of type
(3) amounts to finding the minimum future ¢ at which
e, f, and two other given segments are colinear. This
computation— a bit of analytic geometry that we omit-
takes time O(1). After an event of any of the three
types, at most two future events of type (3)- the up-
coming colinearities of the newly adjacent pairs— must
be scheduled and inserted into the priority queue. Af-
ter events of types (1) or (2), at most two future events
that have already been scheduled must be deleted.

A priority queue with O(log n) update times results
in O((n + pe)logn) time for a sweep around edge e,
where p, is the number of transparent topology changes
discovered. The sum of all p, values is p. O

Theorem 2. All topology changes for a general scene
with a line segment flightpath can be computed in time
O(n? + plogn) and space O(n?) or, alternatively, in
expected time O(n?logn + p) and space O(n?).

Proof: The first algorithm performs a rotational sweep
around f. The configuration of pierce points of seg-
ments of § can be represented by its dual arrangement
of lines, a data structure of size O(n?). Events are (1)

t=0

Figure 3. Sweep-plane algorithm for general scenes.

the appearance or disappearance of a line (correspond-
ing to reaching a vertex of §), or (2) three lines becom-
ing coincident (corresponding to transparent topology
changes).

One possible representation of the arrangment is a
graph with a node for each border segment of a face and
edges between borders that share an endpoint. Each in-
tersection of lines in the arrangement is the meeting of
8 border segments; the edges between their correspond-
ing nodes are augmented with directional information
so that faces may be traced either clockwise or counter-
clockwise. We also provide pointers so that the border
segments incident to an intersection can be found in
O(1) time given the identifiers of the two intersecting
lines. Events of type (1) necessitate O(n) work in up-
dating this data structure, corresponding to the total
complexity of all faces bordering the line that is in-
serted or deleted [EOS]. Events of type (2) necessitate
O(1) work as only O(1) border incidences are changed.

A priority queue (implemented as a heap) holds a
schedule of possible future events, including the times
at which each triangular cell in the arrangement degen-
erates to a point. Notice that the initial O(n?) possible
events can be formed into a heap in O(n?) time. As
triangles “invert”, future events must be inserted or
deleted, resulting in the O(plogn) part of the running
time.

In the second algorithm, we perform the following
steps for each polygon edge e. Compute the projection
sp.(Q) of each polygon @ intersecting tetrahedron T.
Each sp.(Q) will be a “curved polygon”, one with sides
that are portions of hyperbolas. Next use an adapta-
tion of Mulmuley’s randomized line segment intersec-
tion algorithm to compute all intersections in sp.(S)
in expected time O(nlogn + p.), where p, is the num-
ber of intersections [Mul]. The expectation is over the
randomization used in the algorithm, not over a distri-
bution of inputs. The sum of all p, is p. O

The second algorithm above explicitly computes the

points of intersection of a set of curved polygons. By
Lemma 2, the computation of all opaque topology
changes can be reduced to n computations of the exter-
nal contour of a union of curved polygons. We expect
that an improved algorithm to compute the external
contour of a union of ordinary polygons should have
implications for the case of curved polygons.

4. Terrains

A terrain is a polyhedral surface that is intersected at
most once by any line parallel to the z-axis [CS, RS].
Thus the projection of a terrain onto the zy-plane is a
planar subdivision. In this section S denotes a terrain
with n edges. The advantage of a terrain is given by the
following lemma, in which a forward ray with origin on
flightpath f is one that has positive dotproduct with f
oriented in the direction of increasing t.

Lemma 4. In time O(nlogn), the edges of S can be
ordered ey, €3, ...e,, such that if there is a forward ray
from a point on f that intersects first e; and next e;,
then i < j.

Proof: Let §* (respectively f*) be the projection of
S (f) onto the zy-plane. As in Lee and Preparata’s
point location algorithm [LP, PS], the edges of §* can
be assigned to polygonal chains, monotone with respect
to lines perpendicular to f*. (A polygonal chain is a
path of line segments connected only at successive end-
points; it is monotone with respect to a line ! if its
intersection with any line perpendicular to [is at most
one point. See [PS] for more on these fundamental no-
tions.) Chains can be ordered front to back with re-
spect to f*, where front is the direction of decreasing
t. Within chains edges may be ordered arbitrarily. It
is easy to confirm that this ordering has the desired
property. [0

We define the i-th silhouette S,(i) to be the “horizon
line” at flightpath point t, considering only the first i

Type (1)

Figure 4. Events in the view of a terrain

edges. That is, S;(7) is an ordered set of segments, each
of which is a piece of an edge of index at most 7, such
that no line of sight through a segment of S;(i) passes
below an edge e;, j < i. S;(%)is monotone with respect
to a horizontal line in the viewed scene. For each ¢ and
i the silhouette S;(7) has at most A3(i) vertices [CS].
The function Az(n) is known to be ©(na(n)) [HS].

Theorem 3. All k opaque topology changes for a ter-
rain with an arbitrary flightpath can be computed in
time O((n + k)As(n)logn) and space O(nAz(n)).

Proof: We show how to discover topology changes
that are visible along forward rays in order along
the flightpath as ¢ increases. Running the algorithm
twice, once with time reversed, computes all topology
changes.

The first step is to compute all silhouettes for p(0) us-
ing an O(n?logn)-time hidden surface algorithm. The
algorithm will maintain an unordered set E;(i) of all
polygon edges that contribute at least once to silhou-
ette S,(i) and an ordered list V(i) of all vertices of the
silhouette, implemented as a binary search tree. The
edges can be specified simply by index, while the ver-
tices are specified by ordered pairs of indices with the
order implying the segments of S;(i). As a practical
matter, these edges and lists can be maintained by a
similar lists or persistent data structure, though this is
not necessary for the bounds of the theorem.

As in the algorithm of Theorem 1, a priority queue
maintains future events. The priority queue contains
future events of two kinds sorted by increasing ¢: (1)
some future point p(t) on f, an endpoint of edge e;,
and a point on some edge in E;(i — 1) are colinear, and
(2) some future p(t) on f, some point on edge e;, and
a vertex in V;(i — 1) are colinear. See Figure 4. Given
a vertex (either an endpoint of an edge e; or a vertex
of Vi(i — 1)) and an edge, it is possible to determine
their next colinearity in O(1) time, since in the viewed
scene vertices have either linear or quadratic apparent
motion.

Notice that for each endpoint of edge e;, each colin-
earity (not just the one that occurs first) with an edge

of E¢(i — 1) is queued. Similarly, for each vertex of
Vi(i — 1) each colinearity is queued. Thus throughout
the algorithm, the priority queue contains O(nAz(n))
events.

An event of type (1) may not actually be an opaque
topology change, as the edge of E;(i — 1) involved in
the colinearity may not be part of S;(i — 1) at that
intersection point. An event of type (2) always will
be an opaque topology change, and all opaque topol-
ogy changes will be of one type or the other. (Events
of type (1) are each reported at least twice, once for
each of the edges of S sharing the endpoint. A minor
modification avoids this redundancy.) When an event
of type (1) occurs, it is tested to see whether it is an
opaque topology change. An event involving an end-
point of edge e; and edge e; € E;(i — 1) can be tested
in time O(logn) by searching within the list V;(i — 1)
and checking whether the endpoint of ; lies on S;(i—1)
at the current time t. There are at most O(n?) events
of type (1) that are not opaque topology changes, since
each vertex and edge combine to produce at most one.

In the case of an event involving e; that is also an
opaque topology change, we update each E,(j) and
Vi(4), 7 > i, along with the priority queue. For each
J, the list E,(j) (respectively V;(j)) is updated by in-
serting or deleting O(1) affected edges (vertices). The
priority queue is updated by deleting all events involv-
ing a vertex of V;(j) (respectively, edge of E,(j)) that
no longer exists and inserting all events involving a new
vertex of V;(j) (new edge of Ey(j)). In order to find the
events that must be deleted, a dictionary into the pri-
ority queue to look up events by vertex (edge) must be
provided.

The number of events of type (1) scheduled at ¢ =0
is bounded by 2n? since (in the absence of degenera-
cies) each endpoint and edge uniquely specifies a future
event time. The number of initial events of type (2)
is bounded by 2nAs(n) since each vertex in V(i — 1)
may combine with e; to produce at most two events.
Events that are also opaque topology changes incur ex-
tra work of time O(A3(n)logn) in inserting and deleting
O(A3(n)) events from the priority queue. [

It may be possible to improve Theorem 3 with a
sweep algorithm that, for each edge e;, queues only
its next event, rather than all future events with the
current silhouette S;(i — 1). A difficult data structure
problem arises in attempting such an improvement: a
query asks for the earliest intersection of a line segment,
each endpoint of which has linear motion, and a polyg-
onal chain, each vertex of which has quadratic motion.
The solution should be dynamic, allowing fairly rapid
updates of the polygonal chain.

Cole and Sharir give an example showing k may be
©(n®) for terrains with arbitrary flightpaths [CS). Thus

the algorithms of Section 3 are preferable in the case of
large k.

5. Terrains with Vertical Flightpaths

In this section & is a terrain and f is a flightpath par-
allel to the z-axis. Let e be a line segment, not lying
on the same line as f.

Lemma 5. Fach vertical (constant u) line in [0,1] x
[0, 1] intersects the boundary of sp.(S) at most once.

Proof: Assume two points (u,t;) and (u,t3) both lie
outside sp.(S), but some point (u,t;) with#; <13 <3
lies inside. Then the interior of the vertical triangle in
3-space with vertices at point u on e and points ¢; and
ta on f intersects S, but the lower edge of this triangle
does not intersect S. This contradicts the fact that S
is a terrain. [J

Theorem 4. All O(n)A4(n)) opaque topology changes
for a terrain with a vertical line segment flightpath
can be computed in time O(nls(n)logn) and space

O(A4(n)).

Proof: The algorithm goes as follows. For each edge
e of §, we repeat the following steps. We compute
the image sp.(g) of each edge g of §. By Lemmas
2 and 5 topology changes occur at exactly the ver-
tices of the pointwise maximum of the curved seg-
ments sp.(g). To compute the pointwise maximum we
use the divide-and-conquer method of Atallah: recur-
sively compute the pointwise maximum of two halves
of the set of curved segments and then merge these
maxima [A]. The pointwise maximum has complexity
O(A4(n)), and the divide-and-conquer algorithm takes
time O(A4(n)logn). O

Cole and Sharir give an example to show that the
number of opaque topology changes for terrains with
vertical flight paths may be Q(nA3(n)). It is unknown
whether the number of topology changes may be as high
as ©(nls(n)).

6. Ray-shooting for General Scenes

In this section we sketch a data structure to answer ray-
shooting queries for a general polygonal scene with an
arbitrary flightpath. In the next section, we specialize
to the case of terrains with vertical flightpaths. In the
first case, we use a direct approach, that is, we maintain
the visible scene as a subdivision of a 2-sphere and treat
ray-shooting queries as point location queries. In the
second case we use the dual approach of Cole and Sharir

(Cs).

An interesting feature of this problem is that the
subdivision is dynamic in two senses. At topology
changes edges must be inserted or deleted; between
topology changes the subdivision transforms continu-
ously. Preparata and Tamassia have recently consid-
ered the problem of monotone planar subdivisions dy-
namic in the first sense [PT]; we make use of their re-
sults.

Assume without loss of generality that line segment f
lies along the z-axis. Sphere S; will be centered at point
p(t) on f; each S, is the same size and large enough that
it contains all of §. Assume that S, is parametrized
by spherical coordinates ¢ (latitude) and € (longitude)
with f lying along its polar axis. Thus lines parallel to
the z-axis project to constant-6 lines (meridians).

The first step is to compute the projection of § onto
the initial sphere Sy. Next hidden lines are removed,
giving an initial view of the scene that may be consid-
ered as a planar graph Hj or as a polygonal subdivision
of Sy. The polygonal subdivision can be made mono-
tone with respect to latitude lines (that is, the intersec-
tion of any cell with a meridian is a single segment) by
adding some artificial edges that extend latitudinally
(along constant-¢ lines) from interior cusps, as shown
in Figure 5. We then compute Lee and Preparata’s
chain tree in order to answer point location queries in
this subdivision (see [PS] or [LP]). A chain tree stores
a monotone polygonal chain at each node. Each edge
of the subdivision is explicitly listed in only one chain,
though we may think of each chain as completely di-
viding the subdivision into higher-latitude and lower-
latitude parts. Because we have fixed the orientation of
the scene by choosing f to lie along the polar axis, some
“monotone” chains may include meridial segments; this
degeneracy does not cause any real difficulties. (We call
a line segment meridial if it lies along a meridian.)

Notice that there is a one-to-one correspondence be-
tween point location queries in the subdivision and ray-
shooting queries with origin at p(0). The following
lemma assures us that a chain that is monotone with
respect to latitude remains monotone as we vary t, so
long as its topology remains unchanged. Notice that
under a smooth transformation an edge must become
meridial before it “bends backwards”.

Lemma 6. If edge e projects to a meridial segment
from some point along f, then e projects to a meridial
segment from every point along f.

Proof: If edge e projects to a meridial segment from
some point p(t) along f, then e is contained in a plane
containing f. 0

Notice that the chain tree, unlike other planar point
location data structures, does not need to change as
the subdivision transforms smoothly while remaining

Artificial
Edge

Figure 5. Making a subdivision monotone.

monotone. That is, comparing a query ray (given by
time ¢ and spherical coordinates ¢ and f) against a
chain C still takes only O(log n) time, since the spherical
coordinates of a given vertex or edge of C at time ¢ can
be computed in O(1) time.

Each topology change necessitates the addition or
deletion of O(1) edges and vertices from the polygo-
nal subdivision. When an interior cusp first comes into
view an artificial edge must also be added. Each addi-
tion or deletion is an update that can be handled by the
methods of Preparata and Tamassia [PT]; in fact, our
updates are local, special cases. Thus we can update
the chain tree in time O(log’n). By using the per-
sistence methods of [DSST] to maintain “old versions”
of the chain tree, we can answer ray-shooting queries
with arbitrary origins on f. If ray-shooting queries are
ordered by time, then we may update the chain tree
nonpersistently instead.

In addition to handling topology changes, however,
we must also handle artificial topology changes, that is,
points along f at which graph H; changes because an
artificial edge a of H, intersects a vertex v not previ-
ously on a. At artificial topology changes we must add
a new vertex v’ to the subdivision (at first coincident
with v) and redefine the artificial edge to lie between v’
and the interior cusp. The next lemma shows that the
number of artificial topology changes is not excessive.

Lemma 7. There are O(n?) artificial topology changes
along f.

Proof: Assume artificial edge a lies within a polygonal
face F in the embedding of H, and that a intersects a
vertex v of H; at time ¢ but not at any prior time after
the last topology change. Then v must be a vertex of
the boundary of F at which the interior angle is reflex;
hence v must be the projection of a vertex of a polygon
of §. Thus at time t, two vertices of S— the one that
induces artificial edge a and the one corresponding to
v— project to the same ¢-coordinate, and these vertices

do not project to the same ¢-coordinate at all times.
There are O(n?) such t. 0

Theorem 5. For general scenes with arbitrary flight-
paths, a data structure of space O(n? + k) that answers
ray-shooting queries in time O(log? n) can be built in
preprocessing time O((n?+k) log® n+plogn). If queries
are ordered by time, then the space can be reduced to
the maximum complexity of a visible scene along f.

Proof: We first run the algorithm of Theorem 1 and
remember all opaque topology changes. We also com-
pute all artificial topology changes in time O(n?) by
testing each pair of vertices of §. We then follow the
method given above: compute the initial scene with
hidden lines removed, build a chain tree, and persis-
tently update the chain tree through topology changes.
The preprocessing time follows from Theorem 1, the
query time from [LP] and [PT], and the space bound
for unordered queries from [DSST]. O

7. Ray-shooting for Terrains with Ver-
tical Flightpaths

Assume § is a terrain and f is a segment along the
z-axis. For simplicity, assume f is the entire z-axis.
Below we describe a data structure that answers ray-
shooting queries for rays with origin on f in time
O(logn). As above, a ray is given by a triple (t,6, ¢),
where t = zis a parameter running along the flightpath,
6 is longitude around sphere S;, and ¢ is latitude.

We briefly describe the method of Cole and Sharir
[CS]. Consider the intersection of S with the vertical
half-plane with boundary f and a fixed longitude 6.
The intersection is a polygonal chain C as shown in Fig-
ure 6(a). If points in the vertical half-plane are given
by cylindrical coordinates (r, z), then a ray with origin
p(t) on f and longitude 6, can be specified by an equa-
tion z =ar+1¢, » > 0. A duality mapping takes such a
ray to a point (—a,t). Each polygon P; in Figure 6(b)
consists of exactly those points that are dual to rays
that first strike a given segment of the chain in 6(a).
Polygons in 6(b) are unbounded, since one can see the
entire terrain from a sufficiently high viewpoint. (Think
of the horizontal axis as ¢, though ¢ varies nonlinearly
with horizontal distance.) Furthermore, each edge of
the polygonal subdivision D(6g) in 6(b) lies on a ray
r; formed by the union of edges of D(fy). (Rays r; are
the duals of viewing rays through a vertex of C.)

Point location on D(6) answers ray-shooting queries
with longitude §,. What happens to this polygonal
subdivision as # varies? Between two successive critical
longitudes, the topology of subdivision D(#) remains
constant. There are two types of critical longitudes:

Vi

Figure 6. (a) Cross-section of § at 6,. (b) Dual subdivision D(#,). (c) A topology change in D(8).

(C1) the longitudes of vertices of S, and (C2) longi-
tudes at which 3 vertices of C and flightpath f can be
connected by a straight segment that passes through no
interiors of edges of C. There are at most n critical lon-
gitudes of type (C1) and O(nl4(n)) of type (C2) [CS].
At a critical longitude of type (C2), two vertices v; of
D(6) pass through each other as shown in Figure 6(c).
Below we view such a topology change as a rotation in
a binary tree.

The crux of the ray-shooting problem is to give a
planar point location method that works for varying 6.
Cole and Sharir use chain trees. In the proof below we
describe a faster method that exploits the fact that for
each @ the edges of D(f) form a tree.

Theorem 6. For terrains with vertical flightpaths, a
data structure with space complexity O(nA4(n)) that
answers ray-shooting queries in time O(logn) can be
built in preprocessing time O(nAs(n)logn).

Proof: We first divide § into wedge-shaped sirips by
cutting outwards from f along a plane of constant 6
through each vertex of S. We shall build a separate
search structure for each strip. Building an initial
search structure for a strip can be accomplished in time
O(nlogn) and finding the strip for a given ray-shooting
query takes time O(logn), so we may treat strips sep-
arately. (A unified structure, however, would be an
improvement in practice.)

Now consider the polygonal subdivison D(6p) in the
dual space of rays for the minimum longitude 6, in a
strip as in Figure 6(b). D(8,) gives an (unbalanced)
binary search tree T, as shown in Figure 7(a). (Think
of hanging D(fy) upside-down.) At each node of Tj,,
an O(1)-time test determines whether a query point
(t,) lies above or below the line through the named
ray of D(fp). Notice that such a search tree remains
invariant as D(f) transforms smoothly.

We now show how to create a balanced search tree

using a technique familiar in the design of parallel al-
gorithms. Following Miller and Reif, we define an op-
eration Rake on rooted trees that merges each leaf with
its parent [MR]. Call a connected set of degree-2 nodes
in a tree a path; a node is called a path node if it lies
on a path. Define an operation Compress that merges
adjacent pairs of path nodes simultaneously all over the
tree. Any set of adjacent pairs may be chosen, so long
as any set of 4 successive vertices along a path contains
a pair that merge. This is a nondeterministic, general-
ized version of Compress; the ordinary version merges
successive pairs. The proof given in [MR] generalizes to
show that any m-node tree is reduced to a single node
after at most c - logn alternating applications of Rake
and Compress, where c is a constant.

We alternately apply Rake and Compress, starting
with Rake, to Tp, until we obtain a single supernode,
as shown in Figure 7(b). Here a dashed oval repre-
sents a merging due to Rake and a solid oval a merging
due to Compress; numbers indicate the order in which
supernodes merge. For simplicity, the Rake operation
numbered 1 is not shown; Compress operations 6 and
8 do nothing.

We can define a new search tree level-by-level by
considering each combined supernode as the parent of
the combining supernodes. Each internal node in the
new search tree Ry, results from the merger of two
supernodes along an edge of Ty, or from the merger
of two leaves and their parent. Thus at least one of
the child supernodes corresponds to a proper subtree
of Ty,. A proper subtree of Ty, corresponds, in turn,
with a roughly wedge-shaped unbounded polygon in
Dy,. This polygon has a lower boundary that is a ray
and an upper boundary that is a convex chain. For
example, the root of Ry, in Figure 7(c) corresponds
to merger 9 in Figure 7(b), which is along the edge be-
tween the nodes labeled »; and rg in Figure 7(a), which
in turn corresponds to the edge between v; and vg in

Figure 7. (a) Polygonal subdivision tree Tg,. (b) As merged by Rake and Compress. (c) Balanced search tree Rg,.

Figure 6(b). The associated wedge has vertex vg and
an upper boundary formed by rg and 7;;.

We angment each internal node of Ry, with the fol-
lowing information: (I1) the coordinates (¢,4) of the
leftmost vertex v; of the corresponding wedge-shaped
polygon in D(fy) (as named in Figure 7(c)), (I2) the
slope of the polygon’s lower boundary, and (I3) the
largest slope of a boundary segment of the wedge-
shaped polygon. (Notice that (I1), (I2), and (I3) will
vary predictably with § once longitude is unfixed.) This
information allows an O(1)-time “within-wedge” test to
determine whether a given point query (t,¢) lies in the
left or right subtree of a node in Rp,. Points in the
polygon P; immediately above the wedge-shaped poly-
gon may go either way in this test. For example, a
point just above the line segment between vg and vy
in Figure 6(b) may go either way when tested at the
node marked v3, depending on whether it falls to the
right or left of a line through vz with the same slope
as r7. Say this point tests inside v3’s and vs’s wedges,
outside v7’s wedge, and finally inside vq’s wedge; then
a single, final test determines whether the point lies
in Ps or Pg. These extra tests are indicated at the
leaves in Figure 7(c); thus the number of tests needed
for point location may be one more than the height of
Rg,. In Figure 7(c), i marks the direction to take if a
point tests in the wedge. Altogether point location for
queries at longitude fy can be accomplished using tree
Rg, in O(logn) time.

Search tree Ry, is actually valid for all # until the
next critical longitude. At a critical longitude, either
the strip ends or a rotation occurs in tree Ty. We now
show that by changing only O(logn) nodes and edges
of Ry at a rotation of Ty, we can maintain the invariant
that Ry is a tree that could have resulted from T, by an
alternating sequence of Rake and Compress operations.

A generic rotation is shown in Figure 8, with the Tj

Figure 8. Before and after a rotation in Tj.

trees shown before and after a critical longitude. (Of
course, before and after could be reversed.) After an
alternating sequence of Rake and Compress operations,
call a supernode in the left tree clean if it contains
neither y nor z and is not the parent of a supernode
containing y.

Assume inductively that each clean supernode on the
left (except at most one) has a counterpart on the right,
that is, a supernode containing exactly the same set of
original nodes of Ty. This condition certainly holds
before any Rake and Compress operations have been
performed. Now consider applying Rake to both the
left and right trees. The counterparts of each pair of
clean supernodes that merge on the left will merge on
the right, since the adjacencies of clean supernodes and
their counterparts are identical.

‘Now consider applying Compress to the left. We as-
sert that there exists a valid Compress for the right tree
that maintains counterparts for each clean supernode.
We join the counterparts of each merging pair of clean
supernodes in this Compress. The pairing of other su-
pernodes on the right is then dictated by this earlier
pairing. For example, if A and B are both single nodes
in Figure 8, then the first Compress on the left may

combine z and y but 2’ may have to remain unchanged
on the right. The next merger above and y, however,
can be mimicked on the right. As in this example,
the pairing on the right may leave “gaps”, that is, the
merging pairs may be nonsuccessive, but gaps of one
are legal in our nondeterministic version of Compress.

There is also the case that the Compress on the right
must merge the counterparts of a pair that did not
merge on the left. Thus a single clean supernode on
the left can lose its counterpart on the right. This loss
cannot be repeated, however, until it has been reversed
(i.e., until every clean supernode on the left has re-
gained a counterpart). Thus after any number of Rake
and Compress operations, there is a one-to-one map-
ping that takes all but one clean supernode on the left
to a counterpart on the right; except for O(1) nodes on
the right this mapping is onto.

Altogether we conclude that only O(1) supernodes in
each level of search tree Ry must change at a critical
longitude. Furthermore, information (I1), (12), and (13)
can be updated in time O(1) per changed supernode by
consulting the children of the changing supernode.

Finally we claim that the changes to Ry can be per-
formed persistently using the methods of [DSST]. Thus
we obtain an O(logn)-time search structure for each
strip of the scene. [

8. Conclusions

We have given algorithms for some natural computer
graphics problems that have not received sufficient at-
tention. There are numerous possibilities for improve-
ments to our algorithms. We list some specific open
questions that we find intriguing.

e Can all transparent topology changes for general
scenes be found in deterministic time O(n?logn +
p)? In (randomized or deterministic) time O(n? +

p)?

e Can the external contour of a union of triangles (or
“curved triangles”) be found in time faster than
the total number of intersections of sides? (It ap-
pears that Mulmuley’s randomized methods give
a positive answer to these questions, with run-
ning time proportional to a sum in which each in-
tersection contributes the reciprocal of one more
than the number of polygons strictly containing it
[Mu2]. This would improve the running time of
the O(n?log n + p) algorithm of Theorem 2.)

e Can all opaque topology changes for general scenes
be found in time sensitive to k? (The analogous
question for static viewpoints is the longstanding

10

open question of finding an output-sensitive hidden
line removal algorithm.)

e Can the “sensitivity”- i.e., the term involving k-
of our algorithm for terrains with arbitrary flight-
paths be improved?

o Can ray-shooting queries for general scenes be an-
swered in time O(logn)? Even in the special case
of no opaque topology changes along f7

e Can our results be generalized to linearly moving
objects?

References
[A] M. J. Atallah, Dynamic Computational Ge-
ometry, Proc. 24th IEEE Foundations of
Comp. Science, 1983, 92-99.

J. L. Bentley and T. A. Ottmann, Algorithms
for Reporting and Counting Geometric In-
tersections, IEEE Trans. on Computers 28
(1979), 643-647.

R. Cole and M. Sharir, Visibility Problems
for Polyhedral Terrains, J. Symbolic Compu-
tation 7 (1989), 11-30.

J. R. Driscoll, N. Sarnak, D. Sleator, and R.
E. Tarjan, Making Data Structures Persis-
tent, Proc. 18th ACM Symp. on Theory of
Computing, 1986, 109-121.

H. Edelsbrunner, J. O’Rourke, and R. Seidel,
Constructing Arrangements of Lines and Hy-
perplanes with Applications, SIAM J. Com-
puting 15 (1986), 341-363.

H. Fuchs, Z. M. Kedem, and B. F. Nay-
lor, On Visible Surface Generation by A Pri-
ori Tree Structures, Computer Graphics 14
(1980), 124-133.

S. Hart and M. Sharir, Nonlinearity of
Davenport-Schinzel Sequences and of Gener-
alized Path Compression Schemes, Combina-
torica 6 (1986), 151-177.

H. Hubschman and S. Zucker, Frame-to-
Frame Coherence and the Hidden Sur-
face Computation: Constraints for a Convex
World, Computer Graphics 15 (August 1981),
45-54.

J. W. Jaromczyk and M. Kowaluk, Skewed
Projections with an Application to Line Stab-
bing in R3, Proc. jth ACM Symp. on Comp.
Geometry, 1988, 362-370.

[BO]

[CS]

[DSST]

[EOS]

[FKN]

(HS]

K]

[LP]

[MR]

[PD]

[PDS]

[PS]

[PT]

(RS]

[SSS]

(8]

D. T. Lee and F. P. Preparata, Location of
a Point in a Planar Subdivision and its Ap-
plications, SIAM J. on Computing 6 (1977),
594-606.

G. L. Miller and J. H. Reif, Parallel Tree
Contraction and its Applications, Proc. 26th
IEEE Foundations of Comp. Science, 1985,
478-489.

K. Mulmuley, A Fast Planar Partition Al-
gorithm, I, Proc. 29th IEEE Foundations of
Comp. Science, 1988, 580-589.

K. Mulmuley, On Obstructions in Relation to
a Fixed Viewpoint, Proc. 30th IEEE Founda-
tions of Comp. Science, 1989.

M. Paterson and F. F. Yao, Binary Partitions
with Applications to Hidden Surface Removal
and Solid Modelling, Proc. 5th ACM Symp.
on Comp. Geometry, 1989, 23-32.

W. H. Plantinga and C. R. Dyer, An Al-
gorithm for Constructing the Aspect Graph,
Proc. 27th IEEE Foundations of Comp. Sci-
ence, 1986, 123-131.

W. H. Plantinga, C. R. Dyer, and B. Seales,
Real-time Hidden-Line Elimination for a Ro-
tating Polyhedral Scene Using the Aspect
Representation, manuscript, 1988.

F. P. Preparata and M. I. Shamos, Computa-
tional Geometry: An Introduction, Springer-
Verlag, 1985.

F. P. Preparata and R. Tamassia, Fully Dy-
namic Techniques for Point Location and
Transitive Closure in Planar Structures, Proc.
29th IEEE Foundations of Comp. Science,
1988, 558-567.

J. H. Reif and S. Sen, An Efficient Qutput-
Sensitive Hidden-Surface Removal Algorithm
and its Parallelization, Proc. {th ACM Symp.
on Comp. Geometry, 1988, 194-200.

1. E. Sutherland, R. F. Sproull, and R.
A. Schumacker, A Characterization of Ten
Hidden-Surface Algorithms, Computing Sur-
veys 6 (1974), 1-25.

G. R. Swart, A Schema for Real Time Hidden
Line Removal, Tech. Report, Dept. of Com-
puter Science, U. of Washington, 1984.

11

