SYSTEM M: A TRANSACTION PROCESSING SYSTEM
FOR MEMORY RESIDENT DATA

Hector Garcia-Molina
Kenneth Salem

CS-TR-195-88

December 1988

System M: A Transaction Processing System
for Memory Resident Data

Hector Garcia-Molina

Department of Computer Science
Princeton University
Princeton, N.J. 08544

Kenneth Salem

Department of Computer Science
University of Maryland
College Park, MD 20742

ABSTRACT

System M is an experimental transaction processing system that runs
on top of the Mach operating system. Its database is stored in primary
memory. This paper describes the structure and algorithms used in Sys-
tem M. The checkpointer is the component that periodically sweeps
memory and propagates updates to a backup database copy on disk.
Several different checkpointing (and logging) algorithms were imple-

mented, and their performance was experimentally evaluated.

Systemn M: A Transaction Processing System
for Memory Resident Data

Hector Garcita-Molina

Department of Computer Science
Princeton University
Princeton, N.J. 08544

Kenneth Salem

Department of Computer Science
University of Maryland
College Park, MD 20742

1. Introduction

System M is an experimental transaction processing system with a memory-resident
database. It has been implemented at Princeton as part of the Massive Memory Machine

Project. System M was built with three goals in mind:

(1) To evaluate the potential gains of memory resident databases. Year by year, semicon-
ductor memory is becoming cheaper and memory chip densities are increasing. It is now
feasible to store in main memory realistically large databases. The improvements in per-
formance can be great: I/O is substantially reduced, transaction context switches (and
associated CPU cache flushes) are cut, lock contention is decreased, more efficient
memory search structures [Lehm85a] and query processing [Bitt87a,Lehm86a] can be

used, and so on.

(2) To ezplore the architecture and algorithms best suited for memory-resident databases.
A memory-resident transaction processing system (MTPS) could be implemented simply
as a disk-based system (DTPS) with a buffer that happens to be large enough to hold the
entire database. This approach fails to capitalize on many of the potential advantages
that memory-residence offers. System M, on the other hand, has been implemented from
scratch with memory-residence in mind. As we will see in this paper, this leads to a

novel internal process architecture and recovery strategies.

(3) To provide an ezperimental testbed for comparing algorithms. In particular, System
M implements several checkpointing and logging strategies. (The checkpointer is the

component that periodically sweeps memory, propagating changes to the backup

database on disk.) These have been experimentally compared and the results are given in
this paper.

The logging and checkpointing components are probably the most critical com-
ponents of a MTPS. Unlike the rest of the system, they still have to execute expensive
I/O operations. Thus, it is essential to decouple these components as much as possible
from the rest of the system, so that transaction processing rarely has to wait for logging
and checkpointing. How well the various checkpointing and logging strategies achieve
this goal will be illustrated by our performance results. MTPS checkpointing has other
interesting features as well. For example, the checkpointer’s updates of the backup can
follow a sweep pattern and are not random, i.e., disk access patterns are not driven
directly by the data requirements of transactions. This reduces disk seek times and hence

the time required to update the backup.

A far as we know, there is only one other running, documented MTPS designed
explicitly for memory-resident data: IMS/VS Fastpath [Gawl85a]. The commercial suc-
cess of Fastpath attests to the advantages of memory-resident data. However, public
information on the internals and performance of Fastpath is limited, and as far as we
know, its algorithms have not been compared to alternatives. Thus we feel that System

M can contribute to our knowledge of MTPSs.

System M (like Fastpath) runs on conventional hardware; it does not rely on the
existence of special purpose or functionally segregated processors, or on non-volatile pri-
mary memory. Additional performance improvements may be obtainable via such
hardware aids |[Eich87a,Lehm87a,Ston88a]. The cost effectiveness of such hardware is
discussed in [Garc87a]. System M assumes that the entire database is memory resident.
This does not rule out the existence of slow archival storage. One can think of a system
as having two databases (as in Fastpath): one memory-resident that accounts for the

vast majority of accesses, and a second on archival storage [Ston87a).

We begin by describing the major components of System M. In Section 3 we
present the checkpointing and logging strategies studied, while Section 4 contains the

experimental results.

2. System M

In this section we describe the overall design and implementation of System M. The

system is implemented in C [Kern78a] on a VAX 11/785 with a 128 Mbyte main memory

and running the Mach [Acce86a] operating system. All I/O (to the log and the backup

database copies) is done through Mach’s raw device interface (avoiding the file system

overhead). The system contains very little machine-specific code.

System M consists of a collection of processes' operating on shared data structures,

including the database itself. Each process acts as a server, accepting work requests and

returning results. There are four types of servers that make up the system.

1)

3)

4)

The transaction server (TS) accepts transaction requests from the transaction
request queue and runs the requested transactions against the primary (main-

memory) database.

The log server (LS) accepts log requests and flushes the appropriate log buffers to
disk.

Message servers (MS) place transaction requests into the transaction request queue
and take responses from a transaction response queue. There can be any number of
message servers. All deposit requests into the same transaction request queue, but

each has its own response queue.

The checkpoint server (CS) is responsible for flushing modified portions of the pri-
mary database copy to the backup disks. The CS makes periodic sweeps though the

database to accomplish this.

Figure 2.1 shows the servers and their shared data structures. The "critical path"

of a transaction through the system is illustrated by the double lines. In the following

sections we describe each of the servers in more detail. Following that we describe the

organization of the disks and main memory.

In Mach, a process is implemented as a task (collection of resources) plus one or more threads of con-
trol.

o=

DB

Figure 2.1 — System M Servers and Queues

2.1 The Log Server

The system log is used to maintain a record of each transaction executed by the sys-
tem, so that the effects of transactions can be reconstructed in case of a failure. The log
itself consists of two parts, a memory-resident buffer and a disk-resident buffer. The
memory-resident buffer holds the log tail, the most recently created part of the log. The
principal job of the log server is to flush the log tail to disk, thereby freeing up space in

the memory-resident buffer.

The LS and TS interact through two shared data structures: the memory-resident
log buffer and the log request queue. The log buffer consists of a collection of log pages
which are filled with log data by the TS. In addition there is a list associated with each
log page. These lists are used at transaction commit time as follows. When the TS is

ready to commit a transaction, it does not send the response message directly to the

corresponding message server. Instead, the TS places the response message in the list
corresponding to the log page that holds the commit record for the transaction. The LS
will then forward the message to the MS after the commit record has been flushed to

disk.

At certain times, such as when a page is full, the TS determines that the log page
should be flushed to disk. To accomplish this it places a request in the log request queue,
indicating which page is to be flushed. The LS takes requests from the queue and flushes
the specified pages to disk. Normally, the I/O is done asynchronously with respect to the
TS, i.e., the TS does not wait for the LS to flush the pages it has requested. Once the
I/0 is complete, the LS examines the response list associated with the page that was just
flushed. Pending response messages are forwarded to the corresponding MS and the
buffer page is marked as clean so that it can be reused by the T'S. Note that this imple-
ments group commit [DeWi84a, Gawl85a|. (A group of transactions is committed by each

log page flush.)

The second task of the log server is the management of the disk-resident buffer. As
they have been described thus far, the actions of the LS cause the disk buffer to grow
monotonically as the system runs. The purpose of checkpointing is to limit the amount
of log that must be replayed at recovery time. By interacting with the CS, the LS can
determine which log pages are no longer needed for recovery and can free their space for

reuse.

Interaction between the CS and the LS takes two forms. The CS maintains a
record of its activity by placing entries in the log request queue. The CS makes a log
entry at the beginning and end of each checkpoint sweep. The LS uses this information
to determine which log pages are no longer needed. Typically, once a checkpoint com-
pletes, the LS can discard log pages created before that checkpoint began and can reclaim
their space. However, this is somewhat dependent on the checkpointing algorithm. The
LS maintains the disk-resident portion of the log as a circular buffer, with new pages
added in response to requests from the TS, and old pages discarded as checkpointing

progresses.

It is also possible for the CS to request "clearance" for a log page from the LS. The
LS provides clearance if the log page in question has been successfully flushed to the log

disks. If this is not the case, clearance is delayed (as is the checkpointer) until the log

page is disk-resident. Depending on the checkpoint strategy, the CS may make use of
the clearance facility to ensure that the log write-ahead protocol is not violated when a

dirty segment is propagated to the backup database.

2.2 Message Servers

In a real transaction processing system, the telecommunications monitor receives
requests to run transactions. These requests originate from users (e.g., travel agent,
teller) via a network. The requests do not contain code; instead they have the necessary

parameters (e.g., desired flight) to run a canned program (e.g., to reserve a flight).

In System M, message servers emulate the function of the telecommunications moni-
tor. They are responsible for feeding transaction requests to the TS and for handling the
response messages from those transactions. Two different types of message servers have
been implemented. Generative message servers (GMS) use random number generators to
continuously create requests, driving the performance experiments that we will describe
in Section 4. Interactive message servers (IMS) prompt a user for transaction requests.
Both types of servers have facilities for displaying response messages and other debugging

information.

2.3 Checkpoint Server

The checkpoint server is responsible for migrating changes in the primary database
copy to the backup, which resides on disk. The CS operates by periodically sweeping
through the database and copying dirty data to the disks. The minimum elapsed time
per database sweep, called the checkpoint interval floor, is a parameter supplied to the
CS. Should the actual sweep take less time than the interval floor the CS pauses for the

remainder of the interval before starting a new sweep.

The exact method used to update the backup, and the method of synchronizing
copying with database updates made by the TS, are determined by the checkpoint algo-
rithm selected for the CS (Section 3). However, all of the algorithms have a few points in
common. The CS transfers data to (and from) the backup in fixed-size blocks called seg-
ments. Except for modifications to dirty bits (see below), the checkpointer’s access to
database segments is read-only. Most of the checkpointing algorithms require that the

CS lock segments before accessing them. These locks can conflict with database accesses

by transactions running in the TS.

To keep track of what segments have been visited during a sweep, the checkpointer
keeps two dirly bits per segment. Two bits are needed because of our dual backup data-
base strategy. (See Section 2.5.) When a transaction modifies a segment, it sets both bits.
When the checkpointer flushes a modified segment to one of the backups, it resets one of
the bits. When it flushes it to the second copy, it resets the second bit. Thus, the check-

pointer will only ignore segments that have been flushed to both backup copies.

Some checkpointing algorithms require that database update activity be temporarily
quiesced before the CS begins each database sweep. The CS accomplishes this by raising
a flag which is monitored by the TS. The TS cooperates by quiescing its activity, and
raises a flag of its own once it has achieved a quiescent state. At this point the CS nor-
mally enters its begin—checkpoint marker into the log request queue and lowers its flag to

indicate that transaction processing activity can proceed.

2.4 Transaction Server

The transaction server task performs the "useful work" of the transaction process-
ing system. It executes transactions against the primary database in response to requests
taken from the transaction request queue. In effect, the purpose of the rest of the system
is to keep the TS as busy as possible while ensuring that transaction updates will not be

lost in the event of a failure.

Since the database is memory resident, in most cases it is possible to execute tran-
sactions sequentially (transactions never have to be suspended waiting for 1/O). How-
ever, in some hopefully rare cases (long lived transactions, conflicts with the check-
pointer) transactions do have to be suspended. Thus, the TS must have a transaction
multiprocessing capability, but it should only be used when it is impossible to run tran-
sactions serially. Serial execution will always be more efficient since it avoids context

switching and reduces lock contention.

To achieve this, the TS (a single Mach task) consists of a number of transaction
servers, each of which is capable of serial transaction execution. We will term each sub—
server a fransaction executor, or TE. Transaction executors are implemented as corou-
tines within the TS task. TEs are created in two flavors, priority and standby. Standby

TEs are normally inactive. In case all active TE’s are blocked, a single standby TE is

activated to process a transaction. The standby TE is deactivated once its transaction

has completed.

Normally, the TS consists of a single priority TE and one or more standby TEs.
Transactions are processed serially by the priority TE until a lock (in most cases, a lock

set by the CS) is encountered, at which point a standby is activated.

Currently, System M uses a modified version of the CThreads' [Coopa| coroutine
library to implement TEs. The library has been modified in several ways. In particular,
new primitives have been added to allow synchronization of coroutines with Mach tasks.
For example, if a TE (coroutine) attempts to lock a segment locked by the checkpoint

server (a task), only the locking TE is blocked, and not the whole TS task.

Once a TE has a transaction request to process, it simply calls the application—
defined transaction specified in the request. (Transactions are pre—defined, compiled,
linked, and loaded together with System M.) A transaction terminates voluntarily by
making a commit or abort request, or involuntarily if a conflict (e.g., a deadlock) arises
during its execution. The TE ensures that involuntarily aborted transactions will be
automatically restarted (though not necessarily by the same TE) by placing the

unfulfilled transaction request in a restart queue.

2.5 Backup Management

System M keeps two complete backup databases on disk and a ping-pong update
scheme is used. Only one of the two copies is updated during a single checkpoint, and
successive checkpoints alternate between copies. The CS uses its dirty segment bits to

keep track of what segments to flush.

When a checkpoint completes, the current checkpoint copy is noted at a known
location on disk called home. The home block also contains a pointer to the begin—
checkpoint log entry made by this completing checkpoint. At recovery time, the home
block is read to determine the current backup database and the portion of the log that
must be analyzed.

t When the implementation of System M began, threads were not yet fully supported by the Mach
kernel.

System M keeps a mapping of main memory segments to their corresponding loca-
tion on the backup copies. Each time a segment is created or deleted, the mapping is
updated. The backup databases contain enough information to reconstruct this mapping

at recovery time.

A number of alternative backup strategies were considered before ping-pong was
implemented. Very briefly, ping-pong is easy to implement and makes recovery simple.
(The copy used for recovery reflects a completed checkpoint.) A drawback is that updates
must be propagated twice. (In a heavily loaded system segments are always dirtied
between checkpoints, so this drawback is not serious.) The tradeoffs between backup

strategies are discussed further in [Sale88al.

2.6 Memory Management

The System M memory resident database is organized as records and sets. A record
is a collection of fields, which may be of fixed or variable length. Each record has a type,
which determines the number of fields in the record and their lengths. A set is a collec-
tion of records, each of which has a unique identifier. All of the records in a set are of the

same type. Sets and records are defined by an application—specified catalogue.

Database access uses copy semantics, i.e., the caller receives a copy of the requested
data, rather than a pointer into the database itself. An alternative would be to pass to
the application code a pointer to the record in the database itself. While this would save
the expense of copying the requested data, it requires safeguards to ensure that the appli-
cation does not disturb data other than that it was granted access to. One possibility is
to build safeguards into the language in which the application is coded. These alterna-

tives are discussed further in [Garc87a).

Record updates are done using shadows to eliminate the need for UNDO logging. A
record that is to be updated is not overwritten. Instead, space is allocated for a new
copy. A pointer to the old copy is saved in a shadow table maintained for the set. The
shadow is not freed until the updating transaction places its commit record in the log

tail. In case of an abort, the new copy, rather than the shadow, is freed.

The memory manager attempts to keep the record and its shadow in the same seg-
ment, but this is not a requirement. Segments are kept partially empty so that there will

usually be room for both the shadow and the new version when an update occurs. The

10

fraction of empty space that the memory manager attempts to preserve on each segment

for this purpose is a system parameter.

Incidentally, note that System M does not log changes to the search structures (e.g.,
hash tables used to find records). The search structures are recreated from scratch at

recovery time as the records are loaded into memory.

System M provides a subroutine interface for the application programmer writing
transactions. Procedures are provided for retrieving, updating, inserting, and deleting
records. It also supports retrievals and updates of individual (fixed—length) record fields.
For example, to modify a field, the field—update procedure is called by the programmer.
This procedure gets the necessary locks for the update, takes the new value from the
application record buffer, stores it in the new record version in the database, and makes

the appropriate log entries.

2.7 Lock Management

The lock manager provides shared and exclusive lock modes (for records and seg-
ments), deadlock detection, and lock escalation (shared to exclusive). Locks can be
requested in non-blocking mode. This mode is used by the CS: if a segment it wants to
checkpoint is locked, it will attempt to checkpoint others in the meantime. Currently,
lock acquisition time is reduced by pre-allocating lock data structures (i.e., "lock table"

entries) for lockable objects.

3. Recovery Strategies

System M provides different types of checkpointing and logging strategies (select-
able when System M is compiled). The checkpointing strategies can produce fuzzy,
action—consistent (AC), and transaction—consistent (TC) backup databases. Logging can

be by value, by action, or by transaction.

Consider a transaction that updates records R, and R, with two update actions. A
TC backup will reflect transaction activities atomically, i.e., the backup will contain

either the old versions of R; and R, or their new versions, but not one old and one new.

An AC backup may contain the old version of R; and the new version of R, (or vice

versa). However, each action will be reflected atomically. That is, neither record will be

11

found in a partially updated state. Finally, a fuzzy backup makes no guarantees about

the atomicity of transactions or actions.

A value logging strategy records in the log the location and new value of any part of
the database modified by transactions. On the other hand, transaction logging records a
description of the transactions themselves, so that changes they made can be recon-
structed by re-executing the transactions. A variation of transaction logging is action
logging where the record level actions that make up a transaction (e.g., insert record) are

stored. Transaction and action logging are types of logical, or operation, logging.

For example, imagine a transaction that transfers money between accounts in a
banking system. A value log record for such a transaction would include the new bal-
ances of the two accounts involved in the transfer. A transaction log record might
include a code indicating the type of transaction (i.e., funds transfer) and any input
parameters needed to rerun it (i.e., two account numbers and the amount to transfer).
An action log record would include two modify-record actions with appropriate parame-

ters.

The log strategy is closely tied to the checkpointing strategy. As a general rule,
transaction logging requires TC checkpoints and action logging requires at least AC
checkpoints. This has important performance implications. For instance, as we will see,
fuzzy checkpoints are less costly to produce than say action consistent ones. However,
fuzzy checkpoints require value logging which in most cases produces more log bulk.
Thus, writing the log is more costly. At recovery time, reading the log will also be more

time consuming because of its larger size. We will return to these tradeoffs in Section 4.

In the rest of this section we will outline the three checkpointing strategies available
in System M. These strategies are based in varying degrees on ideas

in [DeWi84a, Hagm86a, Pu86a, Rose78a, Sale87a].

3.1 Fuzzy Checkpoints

We call the System M fuzzy checkpointing strategy FUZZY. (Fuzzy checkpoints are
suggested for recovery in main memory databases in [Hagm86a].). It begins a check-
point by entering its begin—checkpoint marker in the log. Once the marker is in place,
the checkpointer processes database segments. A segment is processed by carefully exa-

mining and clearing the appropriate dirty bit, and flushing the segment to secondary

12

storage 1if it was dirty. Locks and other transaction activity are ignored. Once all seg-
ments have been processed, the (in-memory) log tail is flushed to disk and the new

current backup is noted in the home block.

If one is not careful, fuzzy checkpointing may in general lead to viclations of the log
write-ahead protocol [Gray78al. (Such a violation occurs if a transaction’s updates are
reflected in a secondary database but not in the log.) However, because we are using two
ping-pong secondary databases, the problem does not arise. While a checkpoint is in
progress, a transaction’s updates may indeed appear in the current secondary database
before they do in the log. Nevertheless, since the checkpoint is incomplete, all such
updates will be ignored at recovery time. It is only when the checkpoint completes that

the updates in it become valid.

3.2 Black/White Checkpoints

One way to produce a consistent backup is to treat the checkpoint operation as a
(long-lived) transaction. The checkpointer acquires a lock on each segment before flush-
ing and holds the locks until the checkpoint is complete. Clearly, this method will result
in unacceptably frequent and long lock delays for other transactions. (At some point dur-
ing each checkpoint the checkpointer will have all of the dirty database segments locked
simultaneously.) An alternative, which produces consistent backup copies but requires
that locks be held on only one segment at a time, is presented in [Pu86al. (It can also be
viewed as a special case of the "altruistic" locking protocol described in [Sale87a].) The

strategies we will describe next are variants of the mechanism proposed in that paper.

The basic strategy described in [Pu86a proceeds as follows. There is a "paint bit"
for each segment which is used to indicate whether or not that segment has already been
included in the current checkpoint. Assuming that all segments are initially colored
white (i.e., paint bit = 0), checkpointing is accomplished by the strategy shown in Figure
3.1.

Once all of the segments have been processed, the log tail is flushed to disk and the
new current backup is noted in the home block. The strategy can be used to produce
either a TC or an AC backup. To ensure that the checkpointer produces a TC backup,
no transaction' is allowed to access both white and black segments. Any transaction

that attempts to do so i1s aborted and restarted. Similarly, an AC backup can be

13

WHILE there are white segments DO
lock any white segment
process the segment
paint the segment black (set paint bit = 1)
unlock the segment
END-WHILE

Figure 3.1 — Black/White Checkpoint

produced by ensuring that no action accesses both black and white segments. (Note that
a transaction may contain a mix of black-accessing and white-accessing actions.) A tran-

saction is aborted if any of its actions attempt to access both white and black segments.

A segment can be "processed" in one of two ways. One possibility is to flush the
segment immediately to secondary storage. An alternative is to spool the segment by
first copying it to a special buffer before flushing it. The advantage of spooling is that
the checkpointer’s lock can be released as soon as the segment is spooled. Without spool-
ing, the lock must be retained through an 1/O operation. Spooling and non-spooling

checkpointers will be compared in Section 4.2.

3.3 Copy-on-Update Checkpoints

Another way to obtain a consistent secondary database is to perform copy—on-—
update checkpoints. Copy-on—update checkpointing forces transactions to save a con-
sistent "snapshot" of the database, for use by the checkpointer, as they perform updates.
The advantage of copy-on—update (COU) checkpointing is that it does not cause transac-
tions to abort, as do the black/white strategies. On the other hand, primary storage is
required to hold the snapshot as it is being produced. Potentially, the snapshot could
grow to be as large as the database itself. The COU mechanisms we will describe are
inspired by the technique described in [DeWi84a], the "initial value" method

of [Rose78a/, and the "save-some" method of [Pu86a).

To begin a COU checkpoint, the database must first brought into a state of the
desired consistency (either action—consistent or transaction-consistent). One way to
achieve a TC database state is to quiesce the system: currently executing transactions are

completed, while no new transactions are begun. To achieve an AC state, all update

t A read-only transaction is permitted to read both black and white records.

14

actions (e.g., install record) are completed while new actions are disallowed.

When the database is quiescent a begin—checkpoint record is written to the log.
The consistent database state that exists in primary memory is the "snapshot* that will
be flushed to secondary storage by the checkpointer. Once the begin—checkpoint entry is

in the log, transaction activity can resume.

The algorithm uses a paint bit per segment in much the same way as the
black /white strategies (the bit determines whether or not the segment has already been
included in the current checkpoint). In addition, each segment has a pointer which will

be used to point at the "snapshot" copy of the segment, if one exists.

Checkpointing is accomplished by the algorithm shown in Figure 3.2. (As before,
we assume that all segments are initially colored white.) As with the fuzzy and
black /white algorithms, the log tail is flushed and the new current backup is noted in the
home block once all segments have been processed.

WHILE there are white segments DO

lock any white segment (.5) ,
IF S has a pointer to a "snapshot" copy S THEN

paint S black

save pointer to S

erase pointer in S

unlock S

IF S is dirty THEN

flush S to the backup

free S
ELSE

process S

unlock S
END WHILE

Figure 3.2 - COU Checkpointing

The transactions are responsible for saving copies of segments when necessary so
that the consistency of the checkpointer’s snapshot is preserved. When a transaction
wishes to update a segment that the checkpointer has not reached (a white segment), it
first makes a copy of the old version of the segment if such a copy does not already exist.

The segment’s pointer is set to point at the newly—created copy.

When the checkpointer processes a segment which does not have a "snapshot" copy
it has the same two options as did the black/white and segment—consistent strategies. It
can flush the segment while retaining its lock, or spool the segment so that the lock need

not be held for the duration of the I/O operation. (Note that if segment S already has a

15

snapshot copy S, the lock on S can be released immediately without creating another
copy of S. The existing copy S' can be spooled instead.) Thus there are four variations
of the COU strategy, differing in the consistency of the checkpoint and the spooling deci-

sion.

4. Performance

In this section we present the results of several experiments designed to evaluate
System M and compare the performance of the various checkpointing and logging stra-
tegies. All of the experiments were performed on a a VAX-11/785 equipped with 128
Mbytes of memory and running Release 1 of the Mach operating system. The disk-
resident portion of the log and the backup database were kept (1 partition each) on a
pair of RA8I1 disk drives. The log and backup partitions were accessed using the "raw"

1/0O facilities provided by Mach, i.e., the file system is bypassed.

The application used to drive System M simulates a credit card data processing
environment. It is based loosely on an application used to drive a recent set of bench-
marks of IMS/VS FastPath [Vigu87a]. The credit card application defines four sets of

records and eight different transactions. The sets include:

e Account Set: one record per account. Record fields include account number, credit
limit, used credit, expiration date. 40,000 accounts; expected record size is 52

bytes.

o Customer Set: one record per customer. Records hold customer information such
as name, address, social security number, and account number; 40,000 customers,

expected record size is 200 bytes.

- Hot Card Sel: one record for each stolen card reported. Records hold the account
number, number of attempted uses of the stolen card, and the report date. Initially,

100 cards reported. Expected record size is 80 bytes.

e Store Set: one record for each point of sale (retail store). Record fields include store
name and number and counters for various types of credit card activity at the store;

5000 stores, expected record size is 80 bytes.

1 This and all record sizes include sixteen bytes of system header information.

16

The five most frequent transactions are

BAL (Balance Check): Returns information about an account, including customer

name and current balance (17% of submitted transactions).

* CCCK (Credit Card Check): Checks the validity of an account and increments a

counter at the store from which the transaction originated (20% of transactions).

* COLCK (Credit Limit Check). Checks that there is sufficient credit available for a
purchase. Also increments a counter in the originating store’s record (20% of tran-

sactions).

¥ DEBIT (Account Debit): Modify account information to reflect a purchase (20% of

transactions). Also increments a counter in the seller’s record.

PAY (Make Payment). Make a payment on an account (20% percent of transac-

tions).

The remaining transactions change the customer description and handle lost cards.

4.1 Throughput

The first set of experiments measured the throughput of transactions when various
combinations of logging and checkpointing strategies were used. Checkpoints run as
quickly is possible, i.e., no delay between completion of one checkpoint and initiation of
the next. Non-spooling checkpointers were used. Except for checkpointing and logging

strategies, System M was identically configured for each of the experiments.

Each experiment measured the total processor time consumed by each of the
servers, the transaction throughput, and the total true transaction count. (The true
transaction count does not count restarted transactions as new transactions.) Throughput
is measured in true transactions per second over 60 second (real time) intervals by count-
ing the number of true transactions completed during the interval and dividing by 60.

Each experiment covered 30 minutes (intervals).

The results of these experiments are presented in Table 4.1. Server times are given
as pseconds of processor time per true transaction. Server times are computed by divid-
ing the total processor time used by the server (over the 30 minute experiment) by the
total true transaction count. Processor time was measured using operating system pro-

cess task timing facilities (via calls to the system routine "getrusage").

17

Experiment transaction | checkpoint log message | transaction

checkpoint log data | throughput server server server server count
FUZZY VALUE 72.7 9658 275 802 2908 130877
ACCOU VALUE 65.7 10140 1335 744 2899 118338
ACBW VALUE 71.5 9580 586 739 2981 128665
TCCOU VALUE 63.8 10613 1315 740 2891 114863
TCBW VALUE 41.61 18687 925 1128 3075 74885
ACCOU AOPER 66.4 10295 1230 511 2928 119474
ACBW AOPER 73.1 9619 493 553 2886 131557
TCCOU AOPER 66.6 10186 1250 525 2907 119967
TCBW AOPER 42.38 18591 836 700 3251 76298
TCCOU TOPER 72.6 9103 1147 482 2941 130731
TCBW TOPER 46.31 16990 786 566 3052 83382

Table 4.1 — True Throughput and Per-Transaction Process Times

As can be seen from the table, the recovery strategy can have a significant effect on
performance. Transactions run almost twice as fast under the best logging/checkpointing
combinations as under the worst. The total per-transaction processor time can be
obtained by summing the per-process times in a particular row of the table. For the
better recovery strategies, this yields 12 to 13 milliseconds of processor time per transac-
tion, including all recovery costs. With all logging and checkpointing turned off, the
transaction mix used for these experiments was measured at an average of slightly more
than eight milliseconds per transaction (i.e., recovery costs 4 to 5 milliseconds per tran-
saction). Given that the testbed’s VAX platform is roughly a one MIP machine, these
times compare very favorably with transaction execution times in disk-based

systems [Ston88a,Scru85a).

The experiments indicate that TCBW checkpoints, even when combined with tran-
saction logging, do not perform well. This is because of the high cost of rerunning tran-
sactions that are aborted for accessing both black and white segments. TCCOU check-
points, when combined with transaction logging, perform about as well as FUZZY check-
points. The savings from transaction logging cancel the additional expense of producing
the TC checkpoint in this case. However, transaction logging (and TC checkpoints)
becomes more difficult when there are long or complex (e.g., conversational or multistep)

transactions. Furthermore, recovery times may be longer with a transaction log because

logged transactions must be re-run [Sale88al. Therefore, FUZZY/VALUE or

18

ACBW/AOPER would appear to be the best recovery choices for flexibility and perfor-

mance.

4.2 Spooling

None of the checkpointing strategies evaluated in the last section used spooling.
Recall that spooling checkpoints copy segments before flushing them to disk in order to
reduce the amount of time they must lock the segment. The price paid is the processor

time required to copy the segments.

Experiments with spooling checkpointers indicate that, as expected, they have
slightly lower throughputs than their non-spooling counterparts (typically 1-3 transac-
tions per second less). Using facilities built into the testbed’s lock manager, we evaluated
lock contention using spooling and non-spooling checkpointers to determine whether
spooling produced less contention in return for its higher overhead. Table 4.2 shows the
results of these experiments. Lock contention is expressed as the percentage of lock

requests that block.

lock requests
log checkpoint spooling non-spooling
strategy strategy total conflictin contention total conflictin contention
AOPER ACBW 459466 2 0.0004 979309 222 0.0227
VALUE ACBW 459112 3 0.0007 916527 261 0.0285
AOPER ACCOU 457316 10 0.0022 896807 211 0.0235
TOPER TCCOU 488704 5 0.0010 957610 264 0.0276
TOPER TCBW 596845 8 0.0013 1344143 543 0.0402

Table 4 2 - Lock Contention with Spooling and Non-Spooling Checkpointers

While spooling does reduce contention slightly, lock conflicts are rare enough with
non-spooling checkpointers that the reduction is not significant. Note that lock conten-
tion is low because the TS runs transactions serially as much as possible. Spooling may
be a useful technique in a multiprocessor system with multiple priority TE’s. However,

in our environment it is unnecessary.

19

4.3 Response Times

Table 4.3 shows the mean transaction response time for different combinations of
checkpointing and logging strategies. To measure response time, message servers in Sys-
tem M timestamp each transaction request message when it is placed on the transaction
request queue. Another stamp is generated when the response is taken from the message
server’s response queue, and the response time is taken to be the difference between the
stamps. Thus, response time includes the entire time spent in the system, including

queueing delays.

transaction response time (seconds)
log checkpoint 90% confidence interval
strategy strategy mean min max
VALUE FUZZY 3.40 3.40 3.41
AOPER ACBW 3.86 3.85 3.86
AOPER ACCOU 4.09 4.09 410
TOPER TCBW 33.85 33.46 34.24
TOPER TCCOU 3.93 3.93 3.93

Table 4.3 — Transaction Response Times

Except for TCBW checkpointers, most of the strategies exhibit comparable response
times. Under TCBW checkpoints, many transactions suffer from repeated
abort/delay/restart cycles from violation of the black/white restriction. When using
TCBW, transactions with no black/white violations have response times comparable to
transactions under other strategies. However, those with violations can take an

extremely long time.

The response time of the TCBW strategy can be improved by varying the retry
time. (Recall that the retry interval is delay between the abortion of a transaction for
black /white violations and it’s restart.) We investigated this, but the improvement was
small [Sale88a]. Thus, we rule out TCBW as a viable recovery strategy on the basis of

its poor response time.

Note that the response times for the remaining recovery strategies are still relatively
high. This is because the message servers used to drive the experiments create messages
much more quickly than they can be processed. The request rate is limited only by the
size of the request queue, which is much larger than necessary. Thus, transaction

requests wait a long time in the request queue before being accepted by the TS. We

20

expect that response times can be lowered significantly (with little or no loss of

throughput) by reducing the size of the request queue.

4.4 Basic Measurements

In order to understand the System M performance and to facilitate comparison with
other systems, we evaluated some of the basic system operations. Some of these meas-

urements are shown in Table 4.4. Times are given in gseconds.

operation time

segment allocation 267

log page allocation 1050

log sequence number | 81-148

lock request 285
1/0 request 5200

Table 4.4 — Some Basic Operations

Segment allocation refers to the cost of allocating and freeing a memory-resident
database segment, an operation performed frequently when COU or spooling checkpoints
are used. The log page allocation time is incurred each time a log page is filled and a
new current log page must be prepared. It includes the time to place a request in the LS
queue to have the full page flushed to the log disks. The log sequence number is the cost
of checking whether a page with a particular log page is safely on disk. This operation is
used by some checkpointers to implement the log page “"clearance" facility. The costs
vary depending on whether the log page in question is still memory-resident or not. The
lock request time includes both the lock and unlock times. It is for the most common
case, namely the case when no other server holds a lock on the requested object. The
locking operation is more costly when other locks are held on the object. Finally, the I/O
request operation is used by the checkpointer and logger to move data from memory to
the log and backup disks. Note that 5200 microseconds is only the CPU time involved in
handling the I/O request. Also note that much of this time is accounted for by Mach’s
1/0 routines and not by System M itself.

21

5. Conclusions

We have described System M, a transaction processing system for memory-resident
databases. System M has been designed from scratch for memory-resident databases. As
a result, it uses a unique process architecture and recovery techniques not normally
employed in other systems. System M permits stable backup databases and the transac-
tion log to be maintained on disk with minimal interference with transactions accessing
the memory-resident database. Because the primary database is in memory, transaction
execution in System M is relatively simple and efficient. Transactions run serially if pos-

sible, and they require no expensive I/O operations to access data.

Disk-based transaction processing systems may require 100,000 instructions to pro-
cess a transaction [Ston88a|. Thus, the CPU will limit such systems to 10 transactions
per MIP. Currently, System M requires roughly 12,000 instructions per transaction, and
we believe that this figure can be brought below 10,000. Thus, memory-resident data
may represent an order of magnitude increase in transaction processing capability. Of
course, 1t is difficult to compare System M to commercial systems, since such systems cer-
tainly provide greater functionality than is available in the testbed. On the other hand,

System M’s performance is the result of only two man-years of work.

Another relevant issue in comparing System M performance to that of a conven-
tional system is the communications overhead. In System M the message server (MS)
emulates the component that would communicate with terminals. In System M the MS
consumes roughly 27% of the CPU cycles (see Table 4.1). It was actually implemented in
an inefficient fashion so that its load would be comparable to that of a component that
actually communicated over a local area network with a set of communications proces-
sors. These communications processors would in turn connect to the long haul network
and the terminals. We think that this two level structure is the most appropriate for a
MTPS; the main processor is a critical resource and should not be burdened with all the
communications. Thus, the 27% overhead for the MS seems reasonable. However, if all
the telecommunications load were to be placed at the main processor, then the MS over-

head should be higher and the overall System M performance would be lower.

The testbed is intended to be a vehicle for comparison of algorithms in the
memory-resident environment. We have used it to compare a variety of checkpointing

and logging strategies. Our results suggest that FUZZY (inconsistent) checkpoints

22

perform as well as or better than consistent checkpoints, even when the consistent check-

points are combined with efficient operation logging.

Many other experiments are possible using System M. We have begun to study
other aspects of recovery and memory management. Experiments with other aspects of
the system, such as concurrency control, are also possible. System M’s processor archi-
tecture is also ideally suited to shared memory multiprocessors. Its message, logging, and
execution processes effectively pipeline transaction execution, while checkpointing

proceeds in parallel. Thus, a number of processors can easily be brought to bear without
the need for large numbers of concurrently executing transactions.

References

AcceB6a.
Accetta, Mike, Robert Baron, Willian Bolosky, David Golub, Richard Rashid, Avadis
Tevanian, and Michael Young, ‘“‘Mach: A New Kernal Foundation For UNIX Development,”
Proceedings of the Useniz Association Summer Conference, pp. 93-111, Atlanta, GA, June,
1986.

Bitt87a.
Bitton, Dina, Maria Butrico Hanrahan, and Carolyn Turbyfill, “Performance of Complex
Queries in Main Memory Database Systems,” Proceedings of the Third Int'l. Conference on
Database Engincering, pp. 72-81, Los Angeles, CA, February, 1987.

Coopa.
Cooper, Eric C., “C Threads,” unpublished report, Computer Science Dept., Carnegie-
Mellon University, Pittsburgh, PA. Implementation overview and manual.

DeWi84a.
DeWitt, David J., Randy H. Katz, Frank Olken, Leonard D. Shapiro, Michael R. Stone-

braker, and David Wood, Implementation Techniques for Main Memory Database Systems,
ACM, 1984,

Eich87a.
Eich, Margaret, “A Classification and Comparison of Main Memory Database Recovery
Techniques,” Proc. 8rd Int’l Conf. on Data Engineering, pp. 332-339, Los Angeles, CA,
February, 1987.

Garc87a.
Garcia-Molina, Hector and Kenneth Salem, ‘“High Performance Trapsaction Processing
with Memory Resident Data,” Proc. Int’l. Workshop on High Performance Computer Sys-
tems, Paris, December, 1987.
Gawl85a.
Gawlick, Dieter and David Kinkade, “Varieties of Concurrency Control in IMS/VS Fast
Path,” Data Engineering Bulletin, vol. 8, no. 2, pp. 3-10, June, 1985,
Gray78a.
Gray, Jim, ‘“Notes on Data Base Operating Systems,” in Operating Systems: An Advanced
Course, ed. G. Seegmiiller, pp. 393-481, Springer—Verlag, 1978,
Hagm86a.
Hagmann, Robert B., “A Crash Recovery Scheme for a Memory-Resident Database Sys-
tem,” IEEE Transactions on Computers, vol. C-35, no. 9, pp. 839-843, September, 1986.
Kern78a.
Kernighan, Brian W. and Dennis M. Ritchie, The C Programming Language, Prentice-Hall,

23

Inc., Englewood Cliffs, NJ, 1978.

Lehm85a.
Lehman, Tobin J. and Michael J. Carey, ““A Study of Index Structures for Main Memory
Database Management Systems,” Proc. Int’l Workshop on High Performance Transaction
Systems, Asilomar, CA, September, 1985.

Lehm86a.
Lehman, Tobin J. and Michael J. Carey, “Query Processing in Main Memory Database
Management Systems,” Proc. ACM-SIGMOD Conference, pp. 239-250, Washington, DC,
1986.

Lehm87a.
Lehman, T. J. and M. J. Carey, “A Recovery Algorithm for a High-Performance Memory-
Resident Database System,” Proc. ACM SIGMOD Annual Conference, pp. 104-117, San
Francisco, CA, May, 1987.

Pu86a.Pu, Calton, “On-the-Fly, Incremental, Consistent Reading of Entire Databases,”” Algorith-
mica, no. 1, pp. 271-287, Springer-Verlag, New York, 1986.

Rose78a.
Rosenkrantz, Daniel J., “Dynamic Database Dumping,” Proc. SIGMOD Int'l Conf. on
Management of Data, pp. 3-8, ACM, 1978.

Sale88a.
Salem, Kenneth, “Failure Recovery in Memory-Resident Transaction Processing Systems,”
PhD Thesis, Department of Computer Science, Princeton University, Princeton, NJ,
November, 1988.

Sale87a.
Salem, Kenneth, Hector Garcia-Molina, and Rafael Alonso, “Altruistic Locking: A Stratagy
for Coping with Long-Lived Transactions,” Proc. 2nd Int’l Workshop on High Performance
Transaction Systems, Asilomar, CA, September, 1987.

Scru8ba.
Scrutchin, Tom, “TPF: Performance, Capacity, Availability,” foils and minutes from a

presentation at the Int’l Workshop on High Performance Transaction Systems, Asilomar,
CA, Sept., 1985.

Ston87a.
Stonebraker, Michael, “The Design of the POSTGRES Storage System,” Proc. 18th VLDB
Conference, pp. 289-300, Brighton, England, 1987.

Ston88a.
Stonebraker, Michael, Randy Katz, David Patterson, and John Ousterhout, “The Design of
XPRS,” Proc. 14th VLDB Conference, pp. 318-330, Los Angeles, CA, 1988.

Vigu87a.
Viguers, Dave, “IMS/VS Version 2 Release 2 Fast Path Benchmark (ONEKAY),” Proc. of

the Second Int’l Workshop on High Performance Transaction Systems, Asilomar, CA, Sep-
tember, 1987.

