ORDERED AND RELIABLE MULTICAST COMMUNICATION

Hector Garcia-Molina
Annemarie Spauster

October 1988

CS-TR-184-88



Ordered and Reliable Multicast Communication

Hector Garcia-Molina
Annemarie Spauster

Department of Computer Science
Princeton University
Princeton, NJ 08544

ABSTRACT

A multicast group is a collection of processes that are the destina-
tions of the same sequence of messages. These messages may originate at
one or more source sites and the destination processes may run on one or
more sites, not necessarily distinct. A multicast protocol is responsible for
the delivery of messages to the appropriate processes. Some applications
require that the protocol provide some guarantees on the order in which
messages are delivered. In addition, in many cases reliability of delivery
is essential. In this paper we characterize three ordering properties and
discuss their solutions. We concentrate on the multiple group ordering
property, which guarantees that two messages destined to two processes
are delivered in the same relative order, even if they originate at different
sources and are addressed to different multicast groups. We present a new
protocol that solves the multiple group ordering problem. We present
extensive experimental results that illustrate the performance of our algo-
rithm compared to other techniques for ordering multicasts. We address
the issue of reliability by providing several alternatives for handling mes-
sage loss and site crash recovery. We explore the usefulness of these with
a comparison to the reliability guarantees of the other proposed solutions.
In many cases our new algorithm solves the problem with greater
efficiency than previous solutions without sacrificing reliability.



Ordered and Reliable Multicast Communication

Hector Garcia-Molina
Annemarie Spauster

Department of Computer Science
Princeton University
Princeton, NJ 08544

1. THE PROBLEM

A multicast group is a collection of processes that are the destinations of the same
sequence of messages. These messages may originate at one or more source sites and the
destination processes may run on one or more sites, not necessarily distinct. Each source
message is addressed to the multicast group (as opposed to individual sites or processes).
The multicast protocol ensures that the messages are delivered to the appropriate
processes. Much research has been done in the area of multicasting. Cheriton and Deer-
ing [CD85] have studied the use of multicasting in internetworks and claim that an
efficient multicast facility is needed because broadcast (transmission of a message to all
sites) is not a generally useful facility as there is little reason to communicate with all
sites. Gray [Gray88] concurs, saying that the scalability of multicast to very large net-

works appeals to practitioners.

For some applications, the multicast protocol must provide guarantees regarding the
order in which messages are delivered to the destination processes. The properties are

usually the following ones, arranged by increasing strength.

(a) Single source ordering. If messages m, and m originate at the same source site,
and if they are addressed to the same multicast group, then all destination processes

get them in the same relative order.

(b) Multiple source ordering. If messages m and m, are addressed to the same multi-

cast group, then all destination processes get them in the same relative order (even if
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they come from different sources).

(c) Multiple group ordering. If messages m, and m, are delivered to two processes,
they are delivered in the same relative order (even if they come from different

sources and are addressed to different but overlapping multicast groups).

There are of course applications that do not require all of these (or even any of
these) properties. But there are applications where the receipt of messages in differing
orders will lead to inconsistency or deadlock problems. To illustrate, consider a bank
with two main computers. Each computer has a copy of the entire banking database and
will process all transactions arriving from the branch offices. (The second machine is
needed for disaster recovery.) The two main computers constitute a multicast group, and
each branch office is a potential source site. Transactions should be executed in the same
order (property b) at the main computers, else the database state will differ. For instance,
consider a deposit and a withdrawal to the same account. If the withdrawal is done first,
an overdraft occurs and a penalty is charged. With the deposit first, no penalty is
incurred and the resulting account balance is different. See [GA87] for additional details

on this type of application.

In our same banking example, consider now a second multicast group to distribute
new software releases or system tables (e.g., defining overdraft penalty charges). This
second group includes the two main computers, but in addition other development
machines. Even though two separate multicast groups are involved, it is probably still
important to process all messages in the same order at the machines in the intersection of
the groups (property c).

This example illustrates why the ordering properties for multicasts are important.
Birman and Joseph [BJ87] cite updating replicated data and deadlock avoidance in lock
management as applications that can take advantage of ordered multicasts. The ISIS
System that they have implemented at Cornell relies heavily on ordered communications.
Their experience with a working system leads them to claim that "[our] communication
primitives actually simplify the design of distributed software and reduce the probability

that subtle synchronization or concurrency related bugs will arise." They further state,
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"We believe that this is a very promising and practical approach to building large fault-
tolerant distributed systems, and the only one that leads to confidence in the correctness
of the resulting software." Ordered multicasts are also useful in various concurrency

control mechanisms (e.g., see [KG87]).

It is with this motivation that we present a novel multicast message ordering tech-
nique. Our solution guarantees all three of the ordering properties listed above. Of
course, in many cases, the multicast protocol must exhibit some reliability properties, as
well. We view the reliability issue as orthogonal to the ordering issue; we believe that
any one of the ordering mechanisms we study here can be made reliable to varying
degrees by applying different message loss and site crash recovery techniques. There-
fore, we study the two issues separately. In Section 3 we describe our algorithm for pro-
viding consistent message ordering. In Section 5 we discuss two reliability alternatives

that mesh well with our strategy.

2. EXISTING SOLUTIONS

We begin our study by considering previous solutions that guarantee some or all of

the ordering properties presented in Section 1.

Guaranteeing the single source ordering property (a) is relatively simple and is
sometimes done by the underlying communication network. The basic idea is to number
the messages at the source and to have destination sites hand the messages to the destina-
tion processes in that order. Note this also allows the destination to determine if it is
missing any messages.

Enforcing the multiple source and group properties (b, ¢) is harder. One solution is
to assign a timestamp to each message at the source and then deliver messages in times-
tamp order [Lamp78, Schn82]. To illustrate, consider the scenario of Figure 1. Sites x
and y are sending to multicast group o = {a,b,c,d}, while site z is sending to B = {c,d,ef}.
We use a, b, etc. to refer to both the destination process and the site where it resides.
Suppose that x sends to o. message m with timestamp T;. When site ¢ receives m it

cannot immediately give it to its destination process. It first must find out from all
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potential sources if there are other messages with smaller timestamps. Only when a site
is certain that a message has the smallest timestamp of any undelivered message does it
deliver it. For property (b), site ¢ must check with all a source sites (e.g., y). For pro-
perty (c), site ¢ must in addition check with potential B sources. If the potential sources

are unknown, ¢ must check with all sites in the system.

/1IN
N

Figure 1

Birman and Joseph have proposed another interesting solution [BJ87] (attributed in
part to Dale Skeen) that is similar to two-phase commit. Each site maintains a priority
queue per process. The sender sends the message to the multicast destinations who each
give it their own priority number, a systemwide unique number higher than any given so
far for that process. The message is marked "undeliverable" and put on the queue. Each
receiver returns the priority number to the sender. The sender picks the highest priority
number it got and sends it back to the receivers who replace their original number with
the new one and tag the message as "deliverable." Each receiver reorders its queue.
Whenever a message at the front of the queue is "deliverable”, it is delivered. Note that
this algorithm guarantees all three ordering properties without requiring receivers to con-

tact all potential sources.

The two approaches we have sketched are fully distributed and may have substan-

tial message overheads. A more centralized approach is suggested in [CM84] to reduce
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the synchronization cost. Here all sources transmit to a central site, which assigns
sequence numbers to the messages and forwards them to the destination sites. (The cen-
tral site is identified with a token, and this token circulates through the system. However,
from the point of view of ordering, the fact that the central site moves over time is not
important.) The paper [CM84] does not discuss multiple multicast groups, but the same
approach could be used to guarantee the multiple group ordering property, as long as all

overlapping groups use the same central controller.

There are also other solutions that we do not review here. In particular, [Wuu85]
uses logs of message receipts at each site. In [NCN88] a solution to the multiple source
ordering problem is presented. Each multicast group has a group manager (and backup
managers) responsible for delivering the messages to the group members. [LG88]
presents a decentralized solution that relies on majority consensus among designated
processes at each site to commit on the ordering of broadcasts. The paper [GKL88]
focuses on the single source problem and how to make failure recovery particularly

efficient.

3. OUR SOLUTION

In this paper we propose a new solution for guaranteeing property (c) in a multicast
environment, called the propagation algorithm. Our algorithm is inspired by [CM84]
and also attempts to reduce some of the overhead of fully distributed solutions. How-
ever, instead of ordering all messages at a single central site, they are ordered by a col-
lection of nodes structured into a message propagation graph (in particular, a forest).
Each node in the graph represents a computer site. The graph indicates the paths mes-
sages should follow to get to all intended destinations. Instead of sending the messages
to the destinations and then ordering them, the messages get propagated via a series of
sites that order them along the way by merging messages destined for different groups.
Eventually, all messages end up at their destinations, already ordered. The key idea is to

use sites that are in the intersections of multicast groups as the intermediary nodes.
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Using the example of Figure 1, a simple propagation graph is indicated in Figure 2.
In order to guarantee that all messages are delivered in the same relative order, x, y, and z
send their messages only to site ¢, who merges them. Site ¢ forwards the group o mes-
sages from x and y to a and b, the 3 messages from z to e and f, and the merged o, B mes-

sages to d. Thus, all sites deliver their messages in the order defined by site c.

Our propagation algorithm has two components: the propagation graph (PG) gen-
erator and the message passing (MP) protocol. The PG generator builds the propagation
graph for a given set of multicast groups. For simplicity, we assume one site runs the PG
generator and transmits the resulting graph to the other sites. Dynamic changes to the set
of multicast groups are discussed in Section 5. Once a site knows what the graph looks

like, it uses the MP protocol to send, receive, propagate and forward messages.

We establish some terminology for message passing. We call the site that ori-
ginates a message for a multicast group the source and the group that is to receive that
message the destination group. The source sends the multicast message to one site in the
multicast group, called the primary destination. (The primary destination could be the
source.) Any time a site sends a message to another site, we refer to these sites as the

sender and receiver, respectively.

One important requirement for the algorithm is that property (a) of Section 1 be

satisfied; if the underlying network does not provide this, we use sequence numbering.
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Note the implied use of single source ordering in the example of Figure 2. Site ¢ delivers
its o. and B messages locally in the same order in which it sends them to site d. Site d is
able to determine the order in which they were merged by the sequence numbers. In fact,
every edge in the graph relies on the messages being ordered at the receiver the same

way in which they were sent by the sender.

In Figure 3 we show a propagation graph for a more complicated example. Here we
have nine sites: a, b, ¢, d, e, f, g, h and j and eight destination groups:
oy ={cd}, oy = {a,b,c}, a3 = (b,c.de}, o4 = (def}, 05 = {ef},
o¢ = {b.g}, a7 = {c,h} and og = {d,j}.
Site d is the primary destination for o, 03, 04 and 0g, ¢ is the primary destination for o,
and o, e is the primary destination for o5 and b is the primary destination for og. Note
that messages do not necessarily flow down to the bottom of the tree. For instance, g

only receives 0 messages.

Figure 3

Detailed pseudo-code for the PG generator and the MP protocol is given in Appen-
dix I and a proof of correctness is provided in Appendix II. In the rest of this section we

present our approach in a less formal fashion.



3.1 The PG Generator
Our technique must guarantee the following two properties:

(1) Property (c) of Section 1, i.e., all messages are delivered in the same relative order,

and
(2) Ifxisin group a, then x gets all messages destined to group o.

To satisfy these requirements, it is sufficient for the propagation graph to have the

following two properties:
(PG1) For every group o there is a unique primary destination p; and
(PG2) For every site x € o, there is a unique path from p to x.

There are also two optional properties that the graph can exhibit and which our PG

generator attempts to provide:
(PG3) The primary destination of group o is a member of o; and

(PG4) Let p be the primary destination of o and x be another site in o. Then, the nodes

in the path from p to x are all members of .

When there exists a node a on the path from p to x where a is not a member of ¢, we call

a an extra node.

Both of these properties are desirable because they yield more efficient graphs:
there is no need for nodes that are not involved in a multicast group to be handling mes-
sages for that group. Our PG generator does guarantee property (PG3), but unfortunately
generates extra nodes sometimes. For example, if we add group og = {d, a} to the exam-
ple of Figure 3, we obtain the same tree. However, node ¢ is an extra node for og. We

discuss the impact of extra nodes in Section 4.

To start, the PG generator selects the site in the largest number of groups (d in our
example) and makes it a root. This greedy heuristic helps keep the trees in the forest
short. (We therefore do not consider the cost of processing the messages at a primary
destination to be substantial, but rather attempt to minimize the length of the path down
the tree to cut communication cost.) For purposes of explanation, we call the groups to

which the root belongs root groups and the other sites in the root groups intersecters.
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The root, then, is the primary destination for all root groups.

To determine the children of the root, procedure new_subtree is called, with the root
d as parameter. This procedure works as follows. It partitions the non-root groups so
that no group in a partition intersects a group in another partition. In our example there
are two partitions, P = {a,b,c},{b,g}, {c,h} and P, = {ef}. This step also has the effect
of partitioning the sites (a,b,c,g and ef). In an attempt to achieve property (PG4), among
the partitions, the generator only considers those that contain an intersecter. From each
of these, one of the intersecters is chosen to be a child of the root using the same heuristic
used for picking the root: choose the site that is in the most groups in the partition. In our
example, for P 1, b and ¢ occur in the most groups, so we arbitrarily pick ¢ over b. In P,,
we arbitrarily pick e over f. Finally, there may be sites that are intersecters but do not
occur in any partition. In our example, this is true of j. These sites become children of

the root. At this point the tree looks as shown in Figure 4.

/N

(a,b,g,h) 1,

/
/
r

Figure 4

To generate the next level of the tree, a recursive call is made to new subtree for
each child, with the child as parameter. Since by determining the root and adding the
children, we have found primary destinations for the groups {c,d}, {a.,b,c}, {b,c.d,e},
{def}, {ef}, and {d,j}, we no longer consider these groups for partitioning in these
recursions. Also, we have placed d, ¢, e and j in the graph, so these are no longer candi-

dates as children.
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In our example, the recursion on ¢ leads to a single partition consisting of {b,g}.
Sites a, b and h are attached as children of ¢. The recursion on e leads to no partitions
and to attaching f as a child of e. The recursion on j leads to no new nodes in the tree. At
the next level, new_subtree is called four times with a, b, h and f as parameters. The call
with b as parameter leads to g being added. The others result in no new nodes. Finally,
the recursive call to new_subtree for g leads to no new nodes and the process terminates
having determined the propagation graph. In this case, just one tree is obtained. If, how-
ever, there were still sites that had not been placed (hence, groups whose primary desti-
nations had not been determined) after the original call to new_subtree returned, another
root would be picked from the groups left and new_subtree called again to determine the

next tree. The loop continues until no more sites are left.

3.2 The MP Protocol

The propagation graph specifies the flow of the messages in the network. The pri-
mary destination for each multicast group is the member closest to a root. A site that
receives a message propagates it down any subtree that contains members of the destina-
tion group for the message. In our example, d is the primary destination for {c,d},
{b,c,de}, {def) and {dj}, c is the primary destination for {a,b,c} and {c,h}, and so on.
When, for instance, d receives a message for {b,c,d,e}, it sends copies to ¢ and e. Site c,

in turn, sends a copy to site b.

To be more precise about processing messages, we describe the message passing
protocol (given in Appendix I in pseudo-code) for the case of point-to-point networks.
The MP protocol requires every site to maintain sequence numbers for each site to which
it sends messages, as determined by the propagation graph. This guarantees that a
receiver can order the messages from a sender correctly in case they arrive out of order.
It also allows for the detection of lost messages. Acknowledgments are not required in
the MP protocol. Null messages and timeouts are used for failure detection, a topic we

return to in Section 5.
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At each site, two queues are maintained, a queue for messages destined to a local
process and a wait queue for messages that arrive out of sequence. When a site receives
a message, it checks the sequence number against the sequence number it expects from
that sender. If they do not match, the message is queued on the appropriate wait queue
until the earlier one is received. If they do match, the receiver determines if any of its
descendants in the tree are destinations for this message. If so, it sends it to the children
that are the subroots of those subtrees, using the appropriate sequence number for each
child it sends it to. If the receiver is a member of the destination group, the message is
queued for local delivery. In addition, the receiver checks if there are any messages in
the wait queue from that sender that were waiting on this message. If so, it processes

these message(s) in the same manner.

4. PERFORMANCE

Performance is the crucial measure of the practicality of the propagation algorithm,
so here we compare the propagation method to the two-phase algorithm of [BJ87] and to
a strictly centralized version of [CM84] ’. Two models are considered, a point-to-point
network and a broadcast network. We look specifically at three performance measures:
N, the number of messages required to send a multicast under the multiple group order-
ing property; D, the time elapsed between the beginning of the ordered multicast and the
time when all the members of the multicast destination group can mark the message
ready for local delivery; and the load incurred at the sites to process the multicast mes-

sages.

+ Since [CM84] relies on a broadcast network we do not consider changing the central site. In-
stead, we look at a centralized solution which is essentially a propagation graph that consists of
one tree of depth 1.
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4.1. Point-to-point model

The point-to-point network model we consider here is typical of networks like the
ARPANET. For a single source to send the same message to n sites it must send # mes-
sages, one to each receiver. For site a sending a message to site b, we say it takes a pro-
cessing time P to put the message on the network and it takes latency time L for the mes-
sage to get to site b (network delivery time). Thus, a simple multicast with no ordering
requirements from source s to n sites requires » messages and the time elapsed before the

last site receives the message is nP+L.

Table 1 indicates the performance of the three multicast methods for the first two
measures, N and D. Consider first NV for an ordered multicast from source s to n sites.
The two-phase algorithm requires n messages to initially get the message from the source
to the destinations. Another n messages are required to return the locally-assigned prior-
ity number from the destinations to the source. Finally, the source sends out the final
priority number of the message, for a total of 3n messages. The centralized solution
requires one message from the source to the central site and »n-1 messages from the cen-
tral site to the remaining nodes, for a total of n messages. The propagation algorithm
requires 1 message from the source to the primary destination. In the best case, only
group members form the path down the tree, so n-1 more messages are required to get the
message to every destination. If there are extra nodes on the path, then the number of

messages totals n+¢€, where € is the expected number of extra nodes.

To compute the delay for the two-phase method we consider the three rounds of
messages. The time it takes between when the source sends its first message and the last
site receives the message is L+nP. Then, the delay for that last site to send the local ord-
ering information back to the source is L+P. The source then sends the final priority
order to the sites, again L+nP. The total is 3L+(2n+1)P. The centralized algorithm has
delay L+P from the source to the central site plus L+(n-/)P delay from the central site to

the last recipient, for a total of 2L+nP.

The delay in the propagation graph case depends on the length of the longest path

from the primary destination to a member of the multicast destination group. We



-13-

introduce the variable d to represent the expected depth of this recipient from the primary

destination.

The total delay in this case, then, is the sum of the delays from the source to the pri-
mary destination and the delay from the primary destination to the group member that is
furthest away (at depth d). The delay from the source to the primary destination is sim-
ply L+P. It is simple to show that the delay from the primary destination to the group
member at depth d is maximized at dL+(n-1+€)P (and in general is much less). Total

delay then for the propagation algorithm is at most (d+/)L+(n+¢)P.

two-phase centralized propagation
N 3n n n+e
D 3L+(@2n+1)P 2L+nP (d+1)L+(n+e)P
Table 1

Clearly, the performance of the propagation algorithm depends on the values of €
and d. It turns out that in most cases of interest, € and d are relatively small. We esta-
blished this via experiments on randomly generated multicast groups. For a fixed
number of sites, number of groups, and group size we chose sites from a uniform distri-
bution to generate a random set of multicast groups and then computed their propagation
graph. We have looked at a broad range of network sizes (from 20 to 1000 sites), group
sizes (from 5 to 40) and number of groups (from 10 to 40). We present a representative

sample of those results here.

Graphs 1 and 2 indicate results for the average depth, with Graph 1 considering a
static group size for a varying number of sites participating in the system and Graph 2
considering varying group sizes for a static number of system sites. These curves
represent an average over all the runs of the average value of d for the groups in a run.
For these and all graphs, each data point is asserted with 95% confidence. For Graphs 1

and 2, the confidence interval is within £10% of the mean. The behavior of the curves is
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explained by the ratio of group size to the number of sites. When this ratio is large (left
end of the horizontal axis), there are many intersections among the groups; the abun-
dance of common nodes leads to short bushy trees. As the ratio decreases, there are
fewer intersections, the trees get longer, so d increases. However, when the ratio is very
small (right end of the horizontal axis), there are so few intersections that the algorithm

produces a forest of many sparse, short trees.

Another factor in the measurement of D for the propagation graph algorithm is g,
the expected number of extra nodes (see Table 1), for which we show results in Graph 3.
(The confidence interval is 0.5.) For each propagation graph generated in the experi-
ment, the number of extra nodes required to deliver a message to each site in a group was
averaged over all the groups. The graph indicates the average over all these runs. The
number of extra nodes is low in general and the curves display the same behavior as

those for the depth.

With a range of values available for € and d, we can return to Table 1 and compare
the algorithms in detail. Clearly, for N, the number of messages, the propagation method
is significantly more efficient than the two-phase approach, since € is shown to be small
in our experiments. Also, the propagation technique is only slightly worse than the cen-
tralized solution for this measure. For D, the delay, if the depth of the tree, d, is less than
or equal to 2, then the propagation method is better than the two-phase solution. If the
depth is greater than 2, the propagation method may incur longer delay for message
delivery than the two-phase approach. Note, though, that this is only the case if the
latency time of a message dominates. If the processing costs are significant, then the pro-
pagation algorithm may still achieve better performance. Further, we expect d to be less
than or close to 2 when the group size is small. Small group sizes occur in many interest-
ing applications; for instance, since maintaining copies of replicated data is expensive,
copies are kept at only a few sites.

Also, it is important to remember that the depth computed in the experiments is an
average over the worst case delay for a group. Thus, for any one group, the delay may be

long for one or just a few nodes, whereas the other nodes may get the message with small
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delay. In the two-phase algorithm, it is only when the commit messages are sent out that
there is any variance in the delay among the nodes; each site must wait at least two full
rounds. Finally, note that the centralized solution is better in terms of delay and number
of messages. However, for large group sizes, the central site of the centralized solution
is a bottleneck, so D and N are not sufficient measures of performance. For this reason

we next consider the load at the sites.

To measure the load of the three methods we generated multicast groups as in the
experiments for € and d. Then we considered how many messages a site must process if
a message were sent to each group. Both send and receive messages are included in the
load. In the experiments presented here, for each set of groups we determine the max-

imum over the loads at the sites and average this over all the runs.

In Graphs 4 and 5 we show the load results, using a confidence interval of £10% of
the mean. For the propagation graph method, load is high when just a few sites are pri-
mary destinations and we have short, bushy trees. As trees get longer, load decreases
until trees are sparse and load is very low. The load for the two-phase method is very
well distributed, yielding low average numbers. This is the load at receivers, though.
Load at the source will be higher (possibly much higher) if the groups are large since the
source must communicate directly with every site in the group. As expected, load in the

centralized case is high, reflecting the central site bottleneck.

The experiments show that the propagation graph method strikes a good comprom-
ise between minimizing delay and distributing load. In addition, it provides a flexible
solution that can be tailored to a particular network or application. For instance, the
greedy heuristic for picking primary destinations is just one option for generating propa-
gation trees; other techniques with different goals can be used. Also, the graph can often
be modified to find the correct balance between delay and load. For example, groups o =
{ab,cde}, B={bfgh},v={ab} yield the tree in Figure 5(a). To reduce the load at a
and b, we can transform our graph into the tree in Figure 5(b), which is correct and does
not use extra nodes. The depth, however, has increased. Further, the propagation graph

requires fewer messages than the two-phase algorithm, making it a desirable alternative
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in cases where network traffic is already high.

Finally, we comment that we have performed many other experiments using the
exponential distribution for determining the size of the groups, instead of the fixed value
for which we presented results here. The graphs produced by these runs have the same
shape but generally give lower numbers for the average depth. Thus, the propagation
strategy yields good results when a propagation graph is formed for groups of various

sizes.

4.2. Broadcast Model

The second model we consider is a broadcast network of the Ethernet variety. With
this model, any message sent by a source is transmitted to all sites on the network at

once. Each site must check if it is a destination of the message. In the case of a unicast
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or broadcast, this is done in hardware at each site’s network interface. Multicast address-
ing is available, but requires the source to broadcast and each site on the network to
check in. software if it is a member of the destination group. Note that no message
transmission is reliable (for example, buffers may overflow); thus, the network does not
provide any ordering properties. Note, also, that we do not achieve any concurrency in

sending messages; there is just one message on the network at a time.

The performance results for this case are shown in Table 2 for the three algorithms
we are considering here. N for each case is determined as follows. The two-phase algo-
rithm requires one message from the source to the n destinations, n» messages from the
destinations to the source and one message back from the source to the destination group,
for a total of n+2. The centralized solution requires simply two messages: one from the
source to the central site and one from the central site to the rest of the members of the
destination group. The propagation graph algorithm requires a message from the source
to the primary destination and a multicast at each level of the subtree. If the expected

depth of the subtree is d, the resulting number of messages is d+1.

Due to the nature of the broadcast network, each message has the same delay. This
delay consists of the time for the sender to put the message on the network, plus the time

for the message to get to the other sites plus the time for each site to determine if it is a
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two-phase centralized propagation
N n+2 & d+1
D (n+2)T 27 (d+1)T
Table 2

member of the destination group. Let T be this total delay. The delay in each of the
three algorithms is simply the number of messages multiplied by 7, as indicated in Table

2.

The table seems to indicate that the centralized solution is superior in the broadcast
case. Also relevant, however, is the bottleneck at the central site, which will increase the
value of T and the delay. Given the results for values of d as presented in the last section,
the propagation graph method has small delay and requires few messages. The two-

phase algorithm is only comparable for small values of .

With the broadcast model, it is important to consider the fact that many of the mes-
sages are multicasts, requiring a software check (for membership) at the receiving com-
puters. Any such check will affect the load at a site. These checks occur not just at des-
tinations but at all sites on the network, whether or not they are involved with multicasts.
Indeed, it may be preferable to ignore the network-provided multicast facility and revert
to point-to-point mechanisms (i.e., a series of unicasts) to multicast a message. Such an
option might be followed if the number of sites receiving the multicasts is small com-

pared to the number of sites on the network and/or load at the sites is already high.

4.3. Performance Conclusions

It is evident that the propagation strategy provides a viable alternative for ordered
multicasts in both point-to-point and broadcast networks. However, it (as well as the
centralized solution) has one important drawback in both network cases: there is a sub-

stantial cost in setting up the propagation graph. Thus, the propagation approach will
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only be of interest if a relatively large number of messages are sent during the lifetime of
each group. We expect this to be the case in most of the applications that require multi-

cast, e.g., updates to replicated data, software distributions and mailing lists.

Finally, we comment briefly on one optimization we have considered that attempts
to reduce the number of extra nodes, thereby reducing the delay and the number of mes-
sages for the propagation strategy. This method involves amending the propagation
graph in such a way that the tree structure is lost, but the solution is still correct. Unfor-
tunately, it is not always possible to eliminate extra nodes and often the solution requires
additional messages. Since the expected number of extra nodes is small according to our

experiments, we do not elaborate further on this technique.

5. DYNAMIC MULTICAST GROUPS AND RELIABILITY

The solution presented in Section 3 is correct when there are no failures and the
multicast groups are static. It is likely, however, that the multicast groups will change
over time, thus requiring alterations to the propagation graph. For instance, in the bank-
ing example of the Introduction, a new site with a new copy of the data may be added to
the network. Or, a site may be permanently removed from the network. An entire group
may be disbanded or a new group may be added. Site failures may also necessitate tem-
porary changes to the multicast groups. For instance, in the example of Figure 3, if ¢
fails, it may be desirable to temporarily delete ¢ from o, o, 03 and o7 and rebuild the
graph, then return to the original graph when ¢ comes back up. For these reasons, we
describe extending the propagation algorithm to allow for dynamic multicast groups.
This initial description applies when the changes to the groups are not due to failures.
We follow this with two alternatives for providing reliable message delivery in the face
of failures, one which makes use of dynamic multicast groups (with slight changes to
account for failed sites) and one which does not. For the purposes of this paper, we do
not provide all the details of these algorithms; instead, we present a high-level descrip-

tion that captures the essential features.
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5.1 Dynamic Multicast Groups

The main objective of our technique for providing dynamic multicast groups is to
institute changes to the propagation graph efficiently, i.e., without requiring tight coordi-
nation among the sites and without preventing the delivery of messages for long periods
of time. One solution is to have one site compute the new graph and use a commit proto-
col involving all the sites to terminate the old graph and install the new graph. This is a
clean solution that prevents discrepancies over the state of the system; however, it
involves high communication overhead and long delays. -Instead, it is possible to take
advantage of the ordering properties guaranteed by the propagation graph to make the

changes to the graph consistently and rapidly.

The new algorithm is essentially the same as for the static case, except now we
designate one site as the manager. When the multicast groups change, the manager is
responsible for computing a new propagation graph and initiating the change system-
wide. - The manager is analogous to the coordinator of a commit protocol solution, but
instead of committing the change, the propagation method will guarantee that it happens
safely. Two operations are required: Close and Open. First the manager Closes the old
tree by broadcasting a Close message. (Broadcast simply requires sending the message
to each root and having it propagated down to every node in the trees.) Upon receiving
the Close, a site stops processing later messages (i.e., does not deliver them locally or
propagate them). Any new messages from sources are queued. Note that messages from
sources are the only messages a site will receive on its tree after a Close since each
parent Closes before its child and then does not propagate any more messages. Since the
Close message is ordered along with all other messages, for a message m, either all desti-
nations will order m before the Close or all destinations will order m after the Close.
Thus, a message m is either delivered at all destinations before the Close or is not

delivered anywhere until the next graph is Opened.
The manager opens a new graph by broadcasting an Open message to each new
root, along with the new graph information. This Open message is also ordered among

the other messages. After receiving the Open, each site incorporates the new graph
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information locally and propagates the Open to its new children. Then it checks each
message it queued after the Close. If the site is still the primary destination for the mes-
sage, it processes it in the usual way (delivers it locally if appropriate and propagates it
down the new tree to its new children). If the site is not the primary destination for the
message, it throws it away and informs the source of the new primary destination. The
source resends the message to the new primary destination. A source does not begin
sending messages to the new primary destination until the old primary destination
informs it of the change, even if the source is already aware of the change. This prevents
messages from a single source from getting delivered contrary to the order in which they

were first sent.

Since sources must sometimes resend messages, we assume that each site maintains
a message history - a log of messages received and sent, along with message contents.
Such an assumption is not unreasonable for many applications, including a database,
where recovery information is generally maintained anyway. The message history will

be useful for reliability purposes, as well.

The solution presented here allows for concurrent incomplete Opens; for instance, a
site may be added to a group, thereby initiating Open messages from the manager, before
the new graph for a different site addition is opened everywhere. Due to communication
delays, it is possible for sites to receive these Opens in different orders, since they are
traveling via different graphs. To prevent confusion, the manager must number the
graphs and include this with the Open and Close messages. When a site receives an
Open, it must be sure that this is the Open for the next graph following the last graph
closed. If not, the Open must be queued until all earlier graphs are opened and closed.
In addition, all messages must include a graph number field to ensure that they are
delivered following the Open of the correct graph. Any arriving messages that do not

belong to the current graph are queued until the appropriate graph is opened.

It is not difficult to see that the multiple group ordering property is preserved using
this algorithm. A two-level message ordering is established: the top level orders mes-

sages by the graph number and within the graph numbering messages are ordered by the
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propagation path of the tree. It is simple to verify that this hierarchical ordering is

correct; we do not present the proof here.

5.2 Reliability

Failures are inevitable in networks and we must consider how to ensure reliable
message delivery despite them. As we mentioned in the Introduction, we believe that our
approach can be made reliable to any desired degree. In this section we present two reli-
ability alternatives that mesh nicely with our ordering strategy. Here we consider only
fail-stop processor failures and assume there are no network partitions. The two methods
for handling failures are atomic delivery and non-atomic delivery. Atomic delivery
guarantees that all sites receiving the same messages always deliver them in the same
order, but in many cases failure forces sites to block. With this method, the propagation
graph is not changed; rather, the other sites wait for the failure to be repaired. Blocking
is avoided with the second alternative, but message delivery is not atomic. Non-
atomicity occurs infrequently, however, and only a failed site may have delivered mes-

sages in the wrong order. We begin with non-atomic delivery.

5.2.1 Non-atomic Delivery

With this alternative, we make use of the dynamic multicast groups. Sites con-
stantly monitor the sites on the propagation graph from which they receive messages.
Failures are detected via timeouts. If a child has not received a message from a parent
within some predetermined time interval, the child assumes the parent has failed. If the
parent has no messages to send, it sends a null message periodically to prevent false
failure detection. If a failure is detected, a two-phase process is initiated among the sur-
vivors and the manager. In the first phase, the manager is informed of the failure and it
closes the group involved. Since the graph may be broken, the manager may have to uni-
cast Close messages directly to the survivors, without using the propagation graph. To
ensure that all sites order the Close messages with the other messages consistently, when
each site receives the Close, it stops processing messages and reports back to the

manager the last message it installed per group. (Note this was not necessary when there
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were no failures since all messages used the propagation graph.) Knowing the last mes-
sages installed per group requires a group sequence number, which the primary destina-
tion is responsible for assigning to messages. Each new graph starts with the group

sequence numbers initialized to 0.

The second phase requires each survivor to install any missing messages that the
other sites report. To see how this works, consider the following example. The network
has five sites and multicast groups o = {a,b,c,d,e}, B = {c,d,e} and y= {a,b}. The propa-
gation graph is shown in Figure 6, along with a history of message delivery at each site
up until the time that site ¢ fails, some site detects this and the manager, site @, sends out
the Close messages. (The first message sent to group o is numbered o by the primary

destination, the second is numbered o, and so on.)
a
b C

(0y,000,B1,Close) d e (0tq,000,Close)

(0 ,Y1,002,03,Close)

(al ;Yl ,0lp,003 ,CIOSC) (051 aa29B1 962 ;03 3[33)

Figure 6

To maintain availability, site ¢ is temporarily omitted from o and B, forming o’ =
{abde} and B’ = {d,e}. The new tree, PG’, is shown in Figure 7. Before message pro-
cessing can resume, all sites in PG’ must have consistent message delivery histories. In
our example, d and e must deliver o3 and e must deliver B;. To accomplish this, the
manager determines what messages every site is missing using the group sequence
numbers and informs each site, by sending messages down the new tree, of what the his-

tory should be and which site can provide each missing message.

When this catch up phase is completed, the live sites will have consistent message
delivery orders and all live members of the same group will have delivered the same

messages. We get Figure 8. (The merge of the Close messages can be disregarded at this
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a (04,Y1,09,03,Close)
(al "Yl 9(12 ’a3 ’Close) b d (a’l :(XQsBl ’Close)
e (0tq,000,Close)
Figure 7

point.) The same is not true of failed sites. Note that site ¢ has delivered messages that d
and e have not (B, and f3). Since the message information at site ¢ is not available, sites
d and e are not aware of B, and B3. To prevent new messages from the source(s) of B,
and B3 from getting delivered at d and e before B, and B3, a source sequence number is
used. Each source maintains a sequence number for each group to which it sends mes-
sages. When d receives another message from the source(s) of B, and PBs, it determines
that it missed some messages and asks to have them resent. Sources learn of the new pri-

mary destination by checking with the manager after detecting the failure of site c.
a
b d

4 (al 02 1B1 03 )

(01,Y1,002,003)

(04 ,Y1,0,03) (0t,00,B1,03)

Figure 8

Of course, although site d eventually receives B, and B3, it is too late to have them
delivered before 043, as ¢ did. Instead, site d finds a new spot in the message history for
these messages, as indicated in Figure 8. Thus, when ¢ revives, the tail end of its mes-
sage deliveries are out of order with respect to the other sites. It is necessary in this

example to rollback delivery of B, , a3, and B3 at site ¢. Site ¢ may redeliver them, using
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the order defined by d along with any other messages it has missed while down.

/\

(al Y1, ,(13)

(al ¥1,002 ’0"'3) d (a‘l 0l !Bl 03 SBZ !BS)

e (alaCCZ?Bl!a3!B2sB3)

Figure 9

We also must consider the case of a site failure during the recovery protocol.
Failure of the manager necessitates electing a new manager [Garc82)] or maintaining a
backup manager. (These are also used if the manager fails when there is no recovery in
progress.) A simple polling of the roots can determine that an Open or Close is in pro-
gress. At the same time, the roots can be directed not to accept any more messages from
the old manager which may be en route. The new manager completes the Open(s) and/or
Close(s). If a participant site fails during recovery, each descendant of the failed site
either has received the Close or has not received the Close. If not, if that site receives a
new Open it will queue it until the Close appears (i.e., the site blocks). This will happen
if either the failed site recovers or the manager runs recovery again (which it will do for
the newly failed site). If it has received the Close, it may receive the Open, in which case

it is keeping up with the other Open sites.

Finally, it is important to note that it is only a failed site which may deliver mes-
sages in the wrong order; even in that case, it is only the tail end of its message history
that may be incorrect. In addition, there are two big advantages with this method. One is
that during failure-free operation, no additional messages have to be sent (e.g., no two-
phase commit). Although there is some extra bookkeeping as messages are propagated,
the performance of the reliable and unreliable versions during normal operation is
roughly the same. The second is that message delivery can continue after the recovery,

even though the site is still down.
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5.2.2 Atomic Delivery

If rolling back messages is not satisfactory and atomicity is desired, then sites that
detect a failure can simply block on messages destined for groups that include the failed
site. Blocking is not necessary in all cases. For example, if a leaf site of the propagation
tree fails, the other sites in its group(s) can continue, assuming the failed site can get its
missed messages upon recovery. If a non-leaf site fails, however, the sites to which it
propagates messages must block on the messages they ordinarily receive from that node.

When the failed site recovers, it can continue forwarding messages from where it left off.

5.2.3 Reliability of other solutions

Both the algorithms of [BJ87] and [CM84] address the reliability issue. In the origi-
nal algorithm for the centralized solution (not the simplified version discussed here), fault
tolerance is achieved by committing the message ordering via token passing. When this
is taken into account, the delay as measured in Section 4 increases considerably
[Birm88]. The reliability alternatives as presented here can be applied to the simplified

centralized solution and thus face the same tradeoff of rollback vs. blocking.

The reliability of the algorithm in [BJ87] is an inherent part of the two-phase nature
of the protocol and suffers the same problem of blocking as does two-phase commit. In
fact, it can block under the same conditions as the propagation method and the central-
ized solution (e.g., the source fails before it can send the second phase messages). A
three-phase protocol may be adequate to prevent blocking, but this is even less efficient.
Thus, the blocking propagation method (the second reliability solution we described)
provides the same reliability as the two-phase protocol. Intuitively, it may seem that
having a second broadcast phase is necessary for atomic delivery. However, since sites
never can refuse to process messages, the propagation graph approach achieves atomic
delivery in a single phase by making centralized ordering decisions (enforced via

sequence numbers) and blocking sites when failures occur.
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6. CONCLUSIONS

The propagation algorithm provides an efficient and distributed method for guaran-
teeing single source, multiple source and multiple group ordering properties of multicast
messages. In most cases, it is superior to the two-phase algorithm in terms of number of
messages. It is competitive with the two-phase method in terms of delay, and can surpass
the two-phase method when the size of the groups is small, as we would expect in many
applications. At the same time, the propagation algorithm alleviates the bottleneck asso-

ciated with a centralized solution.

In addition, the propagation method provides flexibility by allowing different graphs
for the same set of groups to accomodate the requirements of the network or application.
Also, different degrees of reliability are achievable. Changes to the multicast groups are

done quickly and easily.

Finally, the major weakness of this method is the set up cost of the propagation
graph; thus, the technique should only be used for multicast streams that are long-lived,
thereby amortizing the set up cost over many messages. Another disadvantage is that
sometimes sites are required to handle messages which they do not need to deliver

locally. These "extra" nodes, however, do not occur frequently according to our experi-

ments.
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8. APPENDIX I
Here we specify the PG Generator and the MP Protocol in pseudo-code form.

The Propagation Graph (PG) Algorithm

main()
begin

groups « the set of multicast groups;
sites « the set of sites;
unmarked_groups « groups,
unmarked_sites « sites;

while unmarked_groups <> @

{
root < s | s occurs most frequently in unmarked_groups;
new_subtree(root);

}

end

new_subtree(current_subroot)
begin
intersecters « O,

/* Mark site since it has been placed in forest. */
mark_site(current_subroot),

/* Determine the sites that are in groups with the subroot. */
for each s € unmarked_sites
if 3¢ € unmarked_groups such that (s € g A current_subroot € g)
then
intersecters <« intersecters U s;

/* Mark all groups that contain subroot since now we have a primary destination
for them. */
for each g € unmarked groups
if current_subroot € g
then
mark_group(g);

/* Partition groups so that no group in a partition intersects a group in another partition
and some site in some group of each partition is included in a group with the subroot (is in
intersecters). */
G « {g| g € unmarked groups N—s € g such thats € intersecters};
repeat

S« {s|=dge Gsuchthatse g}

G « G U {g| g € unmarked_groups N=s € G such thats € S)



s 3x

until no change to G
P+ -+ Py « partition of G so that no group in a partition intersects a group
in another partition;

/* If 5 is in a group with the root but is not in a partition, make it a child. */
for each s € intersecters
if sisnotina P;
current_subroot — s; [* make s a child of current_subroot */

/* Determine a child from each partition. */
fori:=1tok
{

newsite < s | s occurs most frequently in P; A s € intersecters;
current_subroot — newsite; [* make newsite a child of current_site */
new_subtree( newsite );

end

mark_site(s)
begin

unmarked_sites «— unmarked_sites - s;
end,;

mark_group(g)
begin

unmarked_groups < unmarked_groups - g;

end;
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Message Passing (MP) Protocol
message m = RECORD
{

originator
sender
seqht
contents
dest_group
receiver

};

/* At each site, array of next expected sequence numbers, one per sender. */
integer next seq# in[ J;

/* At each site, array of next sequence number to use for sending, one per receiver. */
integer next_seq# out] |;

/* At each site, a wait queue for out of sequence messages, one per sender. */
queue wait_queue| |;

/* At each site, a local delivery queue. */
queue local queuel ],

/* At each site, a timeout to indicate when to send null messages, one
per site to which it sends messages. */
clock time_msg_out[ ];

/* At each site, a timeout to determine when it has been too long
since a sender has been heard from, one per sender. */
clock time_msg _in[ |;

/* The following handle processing a message at site me */

receive_message(m)
begin

time_msg_in[m.sender]| = current time,
if m.seq# = next_seq#_in[m.sender]

if me € m.dest_group
queue_for_delivery(m);
send_message(m);
next_seq# _in|[m.sender]++;
} check_queue(m);
else
queue_for_waiting(m);

end
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send_message(m)
begin

t{'or all s such that s is a child of me in propagation graph and s is an ancestor of a site in m.dest _group in prc
m.seq# « next_seq#_out[s];
m.sender ¢« me;
m.receiver « s
send(m) to s;
next_seq# outls] ++;

}

end

originate_message(contents,gp)
begin

m.originator < me,

m.receiver « primary destination of gp;
m.dest_group « gp;

m.contents < contents;,

m.seq# < next_seqit out[m.receiver];
m.sender < me;

send(m) to m.receiver;

end

check_queue(m)
begin

m’ « head of wait_queue[m.sender];
if m’.seq# = next_seq#_in[m.sender]

delete m” from wait_queue[m.sender];

receive_message(m”);

}

end

queue_for_delivery(m)
begin

insert m in local_queue;
end

queue_for_waiting(m)
begin
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insert m in wait_queue[m.sender];
order wait_queue[m.sender] by m.seq#

end

say_I’'m_alive() /* Run periodically */
begin
for s such that me — s
if (current_time - time_msg_out[s]) > threshhold_out
send_null to s;

end

timeout() /* Run periodically */
begin
for s such that s — me
if (current_time - time_msg_in[s]) > threshhold_in
recover

end

9. APPENDIX II

Correctness

It is not difficult to see that the PG generator indeed builds a forest that includes
every site. To show that the forest guarantees the multiple group ordering property we
must prove two things: (1) all sites receiving the same messages deliver them in the same

order; (2) all sites receive the messages destined to them.

To see that property 1 is satisfied, say we have two sites, a and b, that receive mes-
sages mq1 and ma. Say that a delivers these in the order m ;m4 and b delivers them in the
order mom 1. If my and m, are messages for the same multicast group o, then initially
they are ordered by the primary destination for o. It is easy to see that the sequence
numbering scheme used in the MP protocol guarantees that this order is maintained as
m1 and m are propagated.

Suppose, then, that m is destined for group 0y and m, is destined for 0. Call the
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primary destinations for these types pd (o) and pd(0y), respectively. If pd (o) and
pd (o) are the same site, then the situation is the same as when m; and m both are des-
tined for o. Say then that pd (o) and pd (o) are two different sites. Certainly a, b,
pd(0y) and pd(0y) are all in one tree of the forest, and pd(0y) and pd(op) are both
ancestors of a, b. By the properties of trees, we know that there is only one path from the
root of the tree to any node. Thus, there is only one path from the root to a, only one
path from o to a and only one path from o to a. This implies that either pd (o) is
ancestor to pd (0tp) or vice-versa. Say pd (o) is ancestor to pd (op). Then, at pd (0p) m
and m, are merged and propagated to a. By the same reasoning, m; and m, are merged
at pd (o) and propagated to b. Certainly pd (¢t;) determines the order just once by the
MP protocol and the messages are propagated to both a and b. Since this ordering is
easily seen to be preserved by the MP protocol, a and b cannot deliver these messages in

inconsistent orders.

It is also not difficult to see that the algorithm guarantees that all sites receive their
message types. Say some site does not get some message type that it should. The situa-
tion should look as in Figure 10, where a and b are supposed to receive type of messages,
but b is not on a path for o messages. Figure 10 indicates that the PG generator places
nodes a and b in different subtrees of x, even though they are in the same group (o). This
is an impossibility since the partitioning step of new_subtree puts all sites that share

groups in one subtree of the current subroot.

a\ /x
7N\ .

’, ~

N
a’ b

~

Figure 10



