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ABSTRACT

In this paper we present a class of algorithms for com-
parison of remotely located file copies that use randomized sig-
natures. We are able to show a simple technique that sends on
the order of 4/log (n) bits, where f is the number of differing
pages that we want to diagnose and » is the number of pages in
the file. We later show how to improve the bound in the
number of bits sent, making them grow with fas f log (f) and
with n as log (n)log (log (n)). A third class of algorithms is
presented in which the number of signatures grows with f as
fr where r can be made to approach 1. This class of tech-
niques exhibit a worse asymptotic behavior, but they perform
very well in practice. Previously published algorithms ([Fu86]
and [Ba88]) were aimed to diagnose 1 and 2 differing pages by
sending O (log (n)log (log (n))) and O (log (n)log (log (n))) bits
respectively. Moreover, our techniques prove to be very com-
petitive in practice sending less bits than those in [Fu86] and
[Ba88] for the cases f =1 and f = 2 respectively.

September 8, 1988
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1. INTRODUCTION

File replication is used in distributed systems in order to improve relia-
bility and performance. However, due to human errors or hardware failures
file copies may diverge. It then becomes necessary to compare the remotely
located files and identify the differences.

Such a case arises, for example, in a triple modular redundant (TMR)
database system that has been built at Princeton [Pi86]. The system is
implemented on three SUN 120 computers, each with a full copy of a data-
base. Transactions are submitted to any of the three nodes, but before it is
executed it is reliably broadcast to the other two nodes. Once it is certain
that all three nodes have the transaction, each node executes the transaction
independently on its local database. The three results are sent to the user,
who then uses voting to select the correct one. The system continues to
operate with two computers until a failed computer is fixed and restarted.
The restarted machine must then identify the portion of the database that is
corrupted (if any) and then request a copy of that portion from the opera-
tional machines. This is where the file compare algorithm is used. The sys-
tem can tolerate one arbitrary failure of a machine (e.g., a head crash, or the
processor writing the wrong balance into an account) and still guarantees
correct data and transaction results.

The development of methods to test mutual consistency of replicated
files in distributed systems is a key issue for applications like the one
described above. The more sophisticated approaches try to minimize the
number of messages sent and to maximize the number of diverging pages
that can be located [Me83,Fu86,Ba88]. These parameters are important in
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the cases where the files are large and the cost of identifying the differences
must be kept low. These strategies are all based in sending a number of sig-
natures or check sums of sets of pages and running an algorithm that com-
pares such signatures with the locally computed ones to locate the differing
pages. In [Me83], O (logn) message exchanges are necessary to locate the
differing pages, where n is the total number of pages in the file. Exchanging
messages between the nodes may slow down the process of diagnosis.
However, the real drawback in this technique is that O (n) signatures must
be stored in each site, making the cost of managing large files prohibitive.
The strategies in [Fu86] (FU) and [Ba88] (BA) send only one message con-
taining O (logn) and O (log?n) signatures respectively. The strategy FU is
able to locate one differing page (giving a superset of the differing pages if
there is more than one fault), while the BA locates up to two differing pages.
If more than these number of pages are different, the algorithms give a solu-
tion where the set of differing pages is guaranteed to be properly included
with a probability that can be made to approach 1 by i mcreasmg the number
of bits that compose each signature. Only O (logn) and O (log n) signatures
need to be stored in each site respectively.

The purpose of this paper is threefold. First, we want to establish a
theoretical framework in which these techniques can be compared. Second,
we want to present some randomized techniques that achieve the best
bounds found so far in the literature. We also show that these techniques are
very competitive in practice, exhibiting a good performance in terms of the
number of bits that one needs to send. This paper also elaborates on two
important issues that were ignored by previous work in the area. First, the
signatures used to compare pages are not perfect. It is possible that two
pages that differ in their contents render the same signature. The event of
this happening becomes more unlikely as the size of the signatures grows,
but its probability is not zero. In all our analysis, we take this error into con-
sideration and bound the expected number of pages that can be falsely diag-
nosed. (A page can be falsely diagnosed as ‘‘good’’ when in reality the two
copies disagree or can pass as ‘‘bad’’ when the two copies agree.) Previous
work in the area has only suggested that the number of bits per signature has
to be ‘‘sufficiently large’’. However, the impact of this issue over the com-
plexity of the protocol has not been taken into consideration. The second
issue is that all previous analysis counted the number of signatures that the
algorithm sends. We make all our comparisons in terms of bits sent,that
being the only universal measure known to compare the traffic imposed over
the communications lines. To carry out the algorithm comparison, we use
the following definition:

Definition 1.1: For a given one message strategy, B(n,f, d) is the number of
bits sent to diagnose up to f differing pages in a file with n pages keeping the
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probability of false diagnose bounded by 9.

By a one-message strategy, we mean a technique in which both sites
compute a set of signatures over the actual file pages, and site A sends one
message containing its signatures to site B. Having received the signatures,
site B runs an algorithm to diagnose the differing pages, i.e., to pinpoint the
pages that are different in copies a and b of the file. The techniques are set
up to diagnose up to a given number of differing pages f. If there are f or
fewer differing pages, the algorithm will diagnose exactly these pages with a
probability less than or equal to 8. If more than f pages differ, the algorithm
will find a superset of the actual set of differing pages.

We begin in section 2 by presenting a brief review of the other pub-
lished approaches for remote file comparison that use one message and the
bounds achieved by those techniques using definition 1.1.

In section 3, we present our first technique which achieves a bound of
1
B(.f,8) = 0 W (log (n) + log(5))).

For practical purposes, we would like the dependency on f to be less
dramatic. For that reason, we show in section 4, how to improve this bound
to

B(n.f,8) =0 (f(log (n) + 108(%))(108 (log (n)) +log (f) + log (-é—)))-

In section 5, we present a class of algorithms which exhibit a worse asymp-
totic bound than the one in section 4, but have a very good performance in
practice. Section 6 compares all the techniques presented, and section 7
presents an example. In section 8, we reason about the role of randomness in
this class of algorithms and the price one must pay to make them determinis-
tic. Finally, in section 9 we offer some conclusions and suggestions for
future work.

2. OVERVIEW OF PREVIOUS FILE COMPARE STRATEGIES

All the strategies assume that the file is divided into a collection of
pages P1, Py, ..., P,. For simplicity the assumption that n is a power of 2,
i.e., n = 2" is made. This assumption, however can be dropped easily. We
assume the pages belong to one of the two following disjoint sets:

G = {P; | P; is the same in both copies }
B ={P; | P; is not the same in both copies }

That is, there is a group of differing pages that we consider to be in B (for
““bad’’ pages ) and a group of non-differing pages which are in G ( for
““‘good’’ pages).
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For each page P; we can compute a signature sig (P;). One can think of
the signature as a check sum, although the are more sophisticated ways to
compute them [Me83]. If the signature contains b bits, then the probability
that two different pages have the same signature is vl

The signatures for a set of pages can be combined into one by perform-
ing an exclusive or of the individual signatures. If the original signatures
have b bits, the combined signature will also have b bits. The combined sig-
nature can be used to compare the pages in the set to their copies in a single
operation. If the combined signatures are identical, then the copy pages are
equal with a probability that depends on the size of the signatures sent. The
probability that one or more of the j pages are different but have the same
combined signature is approximately 27 [Fu86]. If the combined signa-
tures are different, then there are some differences among the pages. An
important point to notice is that the combined signature does not by itself
identify the pages that are different.

In mechanisms FU and BA, the signatures are organized in a two-
dimensional array. This array has m rows and k columns in FU and
m(m +1)

2
algorithm builds for each row a set with the pages that correspond to the
differing signatures for the row. The solution set is computed as the intersec-
tion of these sets. It can be shown that the solution set contains exactly the
differing pages if |B |=1 in the strategy of FU or |[B|=2 in BA. If more
pages are differing, the solution set identifies a superset of the pages that
differ. We shall put the strategies FU and BA in the context of our metric,
B, in order to establish a framework to compare the techniques.

In all our analysis, we will be interested in bounding the expected
number of pages that are diagnosed incorrectly. In all our analysis we make
use of the following trivial lemma.

+1 rows and 2 columns in BA. In both cases, the diagnosing

Lemma 2.1 Let {)}i} be random variables that can take values from {0,1}.
If we define Y = ¥ X;, and E[Y] <€, then Prob[Y 21]<e. O

i

Lemma 2.1 says that proving that the expected value of the sum of a
series of random variables that take values from {0,1} is bounded from
above implies that the probability of having one of them take the value 1 is
also bounded.

Now, defining

X; =

B 1 if P; is incorrectly diagnosed
0 otherwise
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and Y = Z}}i, then the expected number of pages that are falsely diagnosed
i
is
Er=E [17] =YE [f(,-] =n Prob|[a page P; is incorrectly diagnosed ]

i

A page can be incorrectly diagnosed in one of two ways. Either the page
is in G (a “‘good’’ page) and is included in the set of diagnosed pages, or the
page is in B (a ‘‘bad’’ page) and is not included in the set of diagnosed
pages. Thus, denoting by T the set of diagnosed pages we have:

Ep =n(Prob[P;e GandP;e T]+Prob[P;e BandP; ¢ T]) (1)
Now,
Prob[P; € Gand P; e T]=Prob[P;e T/P; e G)Prob[P; € G|
and,
Prob[P; € BandP; ¢ T]=Prob[P; ¢ T /| P; € B]Prob[P; € B].
With f differing pages,

Prob[P; € B] = -f-

and,
Prob[P; e G]==1)
n

thus, the expected number of pages incorrectly diagnosed can be expressed
as:

Ep=Eqg+Ep (2)
where

EG=(n—-f)Prob[Pje T/Pje G]
and
EB =fPTOb[Pj$ T/Pj € B]

Now, we can start by bounding the probabilities, for the different strategies.
We begin with the following lemma.

Lemma 2.2 In the strategies FU and BA, for a given §, the term Ep is less
than or equal to & if

b 2log(s) +log(%) +log (f)

where s is the number of rows sent by those mechanisms, and =1 for the
mechanism FU and f = 2 for the one in BA.
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Proof: In both mechanisms, the only way a ‘‘bad’’ page can be left out of
the solution is if that page is in a signature that fails to pomt out the differ-
ence between the g)ages This happens with probability 270, thus the term is
bounded by fm2™. So, if we want the term to be less than or equal to 6 we
have to chose b as shown O

The term log (%) comes from the level of confidence that one wants to

inject to the strategy in order to avoid a ‘‘bad’’ page passing unnoticed.

In FU and BA, the signatures are chosen carefully to make sure that no
good page gets into the solution when there are up to 1 or 2 differing pages
respectively. Therefore, the Eg = 0 in both strategies. Now, we can state the
following theorems:

Theorem 2.1 The strategy FU diagnoses correctly 1 differing page in an n
page size file with Er < J, using

B(n, 1,8) = O (log (n)(log (log (n)) + Iog(%)))

bits.

Proof: By using lemma 2.2 and the fact that the number of rows sent by FU
is s = O (log (n)) we arrive at the result. O

Theorem 2.2 The strategy BA diagnoses correctly up to 2 differing pages in
an n page size file with Er < 9, using

B, 2,8) = O (log(n)(log (log (n)) + log())

bits.
Proof: By usmg lemma 2.2 and the fact that the number of rows sent by FU
is s = 0 (log%(n)). O

In [Fu86] and [Ba88] the claim was that the number of signatures sent
were O (log (n)) and O (log (n)) respect:lvely The reader should recall that
the extra terms in [ that we found in Theorems 2.1 and 2.2 are due to the
fact that we are taking into consideration the actual number of bits sent. As
we saw in Lemma 2.2, the number of bits per signature has to be a function
of the number of signatures sent, the number of differing pages one wants to
catch and the bound in the expected number of falsely diagnosed pages.

The problem of comparing file copies can be reduced to that of correct-
ing bit patterns in algebraic coding theory, as has been suggested by Madej
[Ma88]. We end this section by an analysis of this technique.

If sig (P;) has b bits, we can construct b words of m parity check sym-
bols of the form
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FY] (j), ---,'Ym(f)
with j = 1,..,b, using a BCH code that can correct up to ferrors [Pe61].
Now, instead of sending the signatures, site A sends Yi,...,¥y,, Where

=Y (1), ... Yk (D).
Site B treats

wj = (8ig (P1);...,5i8 (Pp),Y1(1)s oo ¥m ()

as a BCH codeword, with the possible errors occurring among
(sig (P1),...,sig (P})). Decoding the words w1,...,w,,, B can find the differ-
ences between the signatures sig (P;) and sig (P;).

This mechanism has two drawbacks, however. The first is that the
decoding of the codewords is considerably complex. The second, and most
important, is that BCH codes are designed to correct up to a specific number
of errors in the code words. If more errors occur, the decoding algorithm
makes no guarantees. Thus, if there are more than f differing pages in the
copies, some of them may pass undetected by this method. In any of the
other methods presented in this paper, the solution is always a superset of
the actual set of differing pages.

In computing the expected number of pages that are falsely diagnosed
in this method, we should take into account that the only way a page P; can
be falsely diagnosed is if sig (P;) = sig (P ) and the pages P; and P; are dif-
ferent This happens with probability 272.Thus, the term EB is bounded by
f27P. That establishes the following lemma.

Lemma 2.3. In the strategy BCH, Er < § if
b 2log(f) +log(%)

Proof: From the argument above. O

To compute the number of parity bits needed, we can use the following
theorem from Peterson [Pe61].

Theorem 2.3. [Pe61] For any positive integers ¢ and f < %, there is a BCH
code of length n=2°—1 which corrects all combinations of f or fewer
errors and has no more than #f parity check symbols. O

Theorem 2.3 establishes that the number of parity symbols needed by
the BCH code is m = O (f log (n)). The following theorem establishes the
bound for the BCH strategy.

Theorem 2.4. The strategy BCH diagnoses correctly up to f differing pages
in an n page size file with the Er < & using,

B(n.£,8) = O (f log (n)(log (f) + log (-é—)))
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Proof: The strategy sends m words 7y of b bits each. Using Theorem 2.3
and Lemma 2.3, the bound is established. O

As we shall see, a bound very close to that of Theorem 2.4 can be
achieved by a randomized algorithm that, contrary to the BCH strategy,
always finds a superset of the actual differing pages.

3. AFIRST BOUND

In this section we develop an algorithm that achieves the bound of
B(n,f,d) = 0 4 (log (n) +log(§))) where n is the number of pages of the

file, fis the number of differing pages that the algorithm is set up to diag-
nose with a level of confidence of &. This algorithm uses time O (nlog (n)) to
diagnose the differing pages.

As usual, the file is divided into n pages Py, ...,P,. There are two
copies of the file and presumably some of the pages may differ. The sites
need to agree on m random sets S1,57,...,S,, where each set

Sic {P1,P),...,P,}, before any comparison can be performed. To do this,
one of the sites computes the sets and sends them to the other. (The sets
need only to be computed and sent once, not every time that the file com-

parison is to be performed.) A page P; is in the set S; with probability %

When a file comparison is needed, both sites compute m signatures over
the sets S;. The i —th signature is constructed as the exclusive or of the signa-
ture functions of the pages in S;. We call the i—th 51gnature computed by
sites A and B, ¢} and ¢? respectlvely One of the sites sends its signatures to
the other and this site performs the comparison by creating the syndrome
matrix with elements

0 ifc] =cf

2

o; = .
; 1 ifc} #c?

Having computed the syndrome matrix, the site proceeds to build a set T
of pages that are diagnosed as differing. To do so, the site includes every
page that appears in at least mdy sets §; for which o; =1. We shall show
how to choose &, given & and f later. Building T takes O (mlog(n)) time.
Intuitively, the aI{gonthm proceeds by watchmg pages that are present when
a “‘faulty’’ signature occurs. If a page is present in too many ‘‘faulty’” sig-
natures, then it becomes ‘‘suspicious’’ and is included in the set of culprits.
(The same way that the police might arrest a citizen that happens to be at the
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scene of many crimes, on the grounds of circumstantial evidence.) Figure
3.1 shows the diagnosing algorithm, which we have called
FIND SUSPECTS (FS) for obvious reasons.

Algorithm FIND SUSPECTS

1=
for j:=1tomdo
if o; = 1 then
fori:=1tondo
if P; € S; then
count [’i ]|=count[i]+1
fori:=1tondo
if count[i] = m&y then
T:=T P}

Figure 3.1

We are now interested in showing that with m large enough we can be
confident that every page that appears in T is also in B and vice versa.
Therefore, we would like to bound Er as expressed in equation (2). We will
show that by sending enough bits, we can make (2) arbitrarily small. To do
so, we need to bound the terms Eg and Eg. Both of them can be computed
using the tail of a binomial distribution as we will show later. To bound
them, we need the following pair of lemmas.

Lemma 3.1 Let )?l- be a Bernoulli random variable as follows:
” 1 with probability p
i =) 0 with probability 1 —p

then

m ~ a2
Prob[ ¥ X; > (p +&1)m] <e 5"
i=1
where ¢ > 0 is a constant (independent of m and €;) and €; > 0 is small.
Proof: Using Chernoff [Ch52] inequality, we have:

i mk
Prob[ ¥ X;2(p+e1)m]<e”"
i=1
where

= (1~ +e)log (Lo +( +enlos (L) )
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now,
x2 3
log(1+x)=x- 7+0(x )

for x small. Thus, equation (3) becomes:

oS 11 o6 @)

P2 1-(p+¢1) p+g !
Now clearly, s > and 2 > L , provided that
; p pteg l-p  l-p~g

g < ;p . Thus,

1
- _f
Prob[YX;2(p +e1)ml<e > P 1P
i=1
o

Lemma 3.2 Let )~(,- be a Bernoulli random variable as follows:
~ 1 with probability p
‘=1 0 with probability 1 — p

then

—cedm

m ~
Prob[ Y X;<(p —€&)m]<e
i=1
where ¢ > 0 is a constant (independent of m and €;) and €, > 0 is small.
Proof: Again by using Chernoff [Ch52] inequality, we have:

Ll mk
Prob[ T X;<(p—-g&)m]<e *
i=1

where,
1- € log (———ed—xi + l
ky=(1-(@- 2))0g(1—(p— = 82)08( 82)
and by the same approximation used in lemma 3.1,
2, 1,

L 1
Prob[ Y X;<(p-ey)m]<e 2 P 1P
i=1

provided that €, < %. o)
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Now we can use lemmas 3.1 and 3.2 to bound the conditional probabili-
ties in (3) by noticing that for a page in B, the probability of being in a
““faulty’’ signature, i.e., one with o; = 1 is

p=20-27) 5)

where b is the number of bits used per symbol. For a page in G, the same

probability becomes:
1 - i
=5(1-2 H1-2?) (6)

Now, choosing Sf = %(1 - 2“")(1 ~-2f )+ g4 , we can state the follow-

ing lemmas.

Lemma 3.3

m
=C1—%
Besfe ¥ 7
1.1
h = (=
where ¢ Z(p + T-»
Proof: By using lemma 3.2 and p—¢; = &y, we arrive at equation (7). O

) and p as in equation (5).

Lemma 3.4

o
Pg<(n—f)e (8)

1.1
where c¢p = 2(p + 1-p
Proof: By using lemma 3.2 and p—€; = 8¢, we arrive at equation (8). O

) and p as in equation (6).

Using Lemmas 3.3 and 3.4 we can rewrite equation (2) as follows:

5 o,
Ep <fe ™™ 4 (n—f)e ™2™ )
making ¢ < min(c1,c2), (9) becomes:
Ep < ne—c47m (10)

In fact, we can make ¢ = 1.5, since both ¢ and ¢, can be proven to be
greater than 1.5. If we want this probability to be less than J, then m should
be chosen to satisfy:

4 (log (%) +log(n))

m2 5 (11)
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We can now state the following theorem:

Theorem 3.1 With the technique FS, we can diagnose up to f differing
pages in an n page file with a probability of false diagnosis less than or equal

to 8, sending B(n,f,d) =0 4 (log (n) + log (—é—))) bits.
Proof: By equation (11). O

The number of bits per signature b plays a very small role here. Having
bounded the constant ¢ as 1.5, we are better off by making b =1, so the
number of bits sent is equal to m.

4. FINDING INNOCENT PAGES

In this section we shall improve the bound found in Theorem 3.1 by
developing a technique that uses the signatures that agree on both copies.

_In this technique, the sites agree in m randomly chosen_sets of pages
S1s82, ... ,5n. Each set is chosen so that a page P; is in set S; with proba-

bility —. To perform a comparison, site A sends the actual signatures c} of

the sets to site B and site B compares them with its own signatures, (c%),
building again the syndrome matrix as

e 1 _ 2
0 ifcj=cj
2.

(ij )
d

Lifc}#c

Intuitively, in this algorithm we discard pages that are in signatures that
agree and form the set T with the rest of the pages. (The same way the police
would discard somebody from the list of suspects if this person has a strong
alibi.) The algorithm to diagnose the pages is shown in Figure 4.1.

The set S in the algorithm of Figure 4.1 is the whole set of pages. The
T, contains the pages that are diagnosed as ‘‘good’’ by the algorithm, and
finally, the set T contains the pages diagnosed as ‘‘bad’’ pages.

Again, we have to bound E in equation (2). We begin with the second
term of the equation, by stating a lemma similar to Lemma 2.2.

Lenéma 4.1 In the strategy FIND INNOCENTS (FI), the term Ep is bound
by E if

b =2log(m)+log(f)+ log(—g-)
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Algorithm FIND_INNOCENTS

Tg::@;
for j :=1tomdo
if a.; = 0 then
fori:=1tondo
if P; € S; then
T, =T, U (P}
1T=8 —Tg;

Figure 4.1
is the number of bits sent in each signature.

Proof: Similar to Lemma 2.2. O

We turn our attention to the other term in equation (2). It is easy to see
that a non-differing page is in T} if there is a signature to which the page
belongs and has no ‘‘bad’’ page in it. Since a page gets into a signature with

probability l, the probability for a non-differing page to be in T, is

1 1
—(1 — =Y. Therefore,
f f
Prob[P;e T/P;e G]=(1 - %(1 -~ -JI;)f)'"
this equation can be approximated by
m
Prob[P;e T/P;e Gl~e ¢ (12)
Using the results, equation (2) can be rewritten for this case as:
m
,&SE+M—ﬂed (13)

2

and if we want to make this probability less than or equal &, we should
choose

m > ef log (1) +log () (14)

With equation (14) and Lemma 4.1, we can prove the following
Theorem.

Theorem 4.1 The technique FI, achieves a bound
1
B(n.f,8) = O(f (log (n) + log (%))(log (log (n)) + log (f) + log (5)))
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Proof: By equation (14) and Lemma 4.1. O
5. SCREENING OUT PAGES

In this section we present a class of strategies that exhibit a good practi-
cal behavior, although their asymptotic bound is not as good as the one
found for the strategy in section 4. We begin with the simplest technique in
the family and then generalize the results to the whole class of algorithms.

In this strategy each of the two sites compute m pairs of 51gnatures
each pair consmtmg of the mgnature of a set §; and its complement S (e,
any page not in S; is in S :). As before, the pages in §; are selected at ran-

dom with every page having a probability % of being in the set. A page that

iS not in S belongs to S This idea is similar to the one used in [Fu86],
except that the two mgnatures in the same row do not have to contain the
same number of pages. Again, the sites agree on the sets once before doing
any comparison. For a file comparison, both sites compute the signatures of
the sets and their complements c; and cy;, for j=1,...,m and one of the
sites sends the signatures to the other This site computes an m by 2 syn-
drome matrix as follows:
0 if C% j= C% j

ol; =4 .
1 L f c{j;tc%j

: | S

0 if CZj"CZZj
On; =< .
2 1 lfC%j?EC%j

~

Having built the matrix, we can run the following algorithm that outputs
the set T as the set of pages that differ in the two copies. Intuitively, the
algorithm looks at the instances in which only one of the signatures differ,
and discards the pages that are in the non-differing signature.

We call the algorithm SCREEN(2), because the pages are ‘‘screened
out’” as the algorithm proceeds. The intuition here is to discard pages that
appear in signatures that agree. Every time a row is found where o; # 0y,
a subset of pages is left out of the solution. We call these rows distinguished
TOWS.

Again, we are interested in showing that with this algorithm, Er (equa-
tion (1)) can be made arbitrarily small by choosing m and b properly. As
before, B ={ all pages for which the copies are different } and G ={ all
pages that are the same in both copies /.
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Algorithm SCREEN(2)

= (P st p1 1}
for j:=1tomdo
if Qj # Q) then

if o; =1 then
T:=T nNS§;

else _
T'=T mSjc-;

Figure 5.1
We begin by bounding Ep by noticing that a differing page will not be
in the 7 of a distinguished row j only if the signature fa11s to pinpoint the
d1fference which happens with probability smaller than 272. Now,

Eg < fm27° (15)
By making

T logg(%) (16)

we can make Ej, to be less than g

We turn our attention to Eg. We can compute it as follows:
Eg=(n-f)Prob[P;e TIP;e Gl=@n-f)1-27)" (17)

this comes from the fact that a non-differing page can only be in T if it is not
screened out in any of the rows, i.e., if it happens to be together with differ-
ing pages in every single row.

Now,

Er <2+ (=129 (18)

Again, since we want Er to be smaller than 8, we should choose m to
satisfy:

logs (n —f)+log2(§)
s (19)

log ( )

_2f

Using the equations above, we can now prove the following Theorem.
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Theorem 5.1 The mechanism SCREEN(2) achieves
1 1
B(n.f,8) =0 (2 (log (n) + log (3))(f +log (log (n)) + log (E)))'

Proof: Using the approximation:
2

—log(1-x)=x + %+0(x3)
we can prove that
f
1 _ ) 0
og——) 122 00
-2 )

thus, using equation (19)
m =02/ (log (n) +1og (£))
now,
b =0 (log (m) + log () +log () = O (f + log log (w)) + log () + log ()

and the theorem follows. O

From a practical point of view, as suggested in [Fu86], we do not need
to send 2mb bits for this technique. In each row, the second signature can be
recovered by using the first signature and the signature for the whole set of
pages. Thus, only (m + 1)b bits are necessary.

We now generalize the previous analysis to define a class of random-
ized mechanisms and we show that we can improve the bound on Theorem
5.1. We will do so by allowing each row to be composed of k signatures.
Thus, for each row j, there are k sets S1;,5;,...,5;. A page is equally

likely to be in any of the sets with probability T Again, the sets are agreed

upon by the sites before any comparison is performed. When a comparison

is to be performed, the sites compute the actual signatures over the sets and,

as before one of the sites computes a syndrome matrix of size m by k with
elements

e 1 _ 2

0 1if cjj=cjj

2

o) = .
PO L ofy# e

where 1 <j<mand1<i<k.
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The solution is found by intersecting sets for which the signatures
differ. If we send k signatures and 0 < k1 <k of them differ, we will inter-
sect the solution so far with the union of the subsets that compose those k1
signatures. Again, pages that are in sets where the signatures agree are
screened out of the solution. The modified algorithm to diagnose page
differences is presented in Figure 5.2.

Algorithm SCREEN(k)

T := {P()s----’Pn—l};
for j:=1tomdo
T;=9
if= o’ #1 then _
for every i such that o} = 1
Tj = Tj (. Sij

Figure 5.2

By an analysis identical to the one presented above, we can show that

Ep <2+ (= X1~ r )" 20)

where r = . Equation (20) follows from the fact that now the probabil-

k-1
ity of a non-differing page not being screened out in a row is 1 minus the
probability that no differing page is in the set where the non-differing page

is located. The probability of a differing page being in any of the other £k — 1
, thus

signatures is

k1 k-1
Eg=(n-f)1- ¥ -(—))
¢ 2k

and thus,
k —
Eg=mn-f)1-(——=)y)"
6= ~f)1~ ()
By using equation (20), we can state that m should satisfy

logy (n —f)+10g2(-§—)
m2= (21)

log, ( )

1-r7



-18 -

Equation (21) serve as the basis to establish the bound for these techniques,
as proven in the following theorem.

Theorem 52 The i mechanism SCREElN(k) sends
B(n.f,8) =0 (r'(log (n) + log (E))(f +log (log (n)) + log (g))) bits to diag-
nose f differing pages in a file of n pages with a level of confidence &
Proof: Using again the approximation:
2
—log(1 -x)=x + "7 +0(x3)
we can prove that

V4
e a =0 ()

~
) 1+’T+0(r-2f)

log (

“ 1-r7
thus, using equation (21)
#)

m =0 (rf(log (n) + log(=)))

and the theorem follows. O
An important corollary follows

Corollary 5.1 By increasing &, the bound can be made almost linear in f

Proof: Since r = ,as k grows, rtends to 1. O

k
k-1
As before, only (m(k — 1) + 1)b bits are necessary to perform the com-

parison, since the signature of the last set of a row can be recovered from the
previous k — 1 signatures and the one for the entire set of pages.

6. COMPARING THE TECHNIQUES

In this section, we compare all the techniques developed in sections 3,
4 and 5. To do so, we plot B as a function of f for the different mechanisms.

In table 6.1, we show the bounds for the different techniques presented
and those of strategies FU and BA.

Notice again that the strategies FU and BA are aimed at diagnosing up
to 1 and 2 differing pages respectively. For a fixed f, the best bound
achieved is O (log (n)) by all three of the new strategies presented. For an
arbitrary f, the strategy FI achieves the best bound.
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Strategy B
FS 0 W(log () +log ()
FI O (f(log (n) + log (%))(log (log (n) +log (f) + log (@)
SCREEN(K) | 0 (/(log(n) + log () +log (log (n) + log ()
FU O (log (n)(log (log (1) + log (5-)))
BA O (log?(n)(log (log (n)) + log()))
BCH O (f log (n)(log (f) + log (5))
Table 6.1

In Figure 6.1, we show B(n,f,d) as a function of f for the techmques
FS, FI, and SCREEN(2), SCREEN(10), CREEN(ZO) using a file size of
220 pages and for a level of confidence § =272, We see that in the case of
FS, the number of bits that we have to send grows exponentially fast with
the number of differing pages that we want to diagnose. For f =2, however,
the algorithm sends only 350 bits to perform the diagnosis, a remarkable
figure when compared with previous approaches. For the same level of
confidence and file size, [Ba88] needs to send 221 signatures of 32 bits each,
i.e., 7072 bits. To diagnose a single differing page the strategy on [Fu86]
sends 21 signatures of 32 bits, i.e., 672 bits.

For the case of the SCREEN mechanisms, we can see that as k grows,
the behavior becomes more and more linear with f. However, after a point,
the gains obtained are offset by the number of extra signatures per row sent.
This is the case of k =20 which is outperformed by & = 10. It is also worth
noticing that the algorithm FS outperforms all the SCREEN mechanisms
for f < 4. From there on, those mechanisms send less number of bits.

The mechanism FI exhibits a performance close to the one for
SCREEN(10) and SCREEN(20), but is outperformed by them almost in the
entire region of values of fplotted. In figure 6.2, we show a different region
of values of f (10 to 20) and in there we see that eventually FI gets better
than SCREEN(10). The strategy FI finally outperforms SCREEN(20) for
values of flarger than 38.

As a conclusion, we can say that for small values of f, it is advisable to
use the algorithm FS. As f grows, the other techniques become the choice.
For large values of f, we either have to choose FI or a technique
SCREEN(k) with a value of k sufficiently large.
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7. AN EXAMPLE

In this section we present one example of how one of the proposed
mechanisms work. We will call the pages by their numbers. In Figure 7.1,
we show a 2 by m array for the case n = 16, with m = 8 for the SCREEN(4)
mechanism. The signatures were generated by running a random number
generator for each page and placing the page in the one of the signatures

with the same probability (Z)' (The fact that there are almost as many rows

as pages in this example is irrelevant, since we are only interested in show-
ing how the algorithm works.)

Assume that only pages 1 and 7 differ. Then, the T';s are as follows:
T,={1,7,9,11}
T,=1{1,4,5,7,12,14,15}
T3={0,1,4,5,7,11,12,13,15}
T4=11,3,4,35,7.8,9,10,12,15)}
T5={0,1,6,7,9,11,12,13,14}
T¢=1{1,7,9,14}
Tr,={0,1,5,7,9,10,11,12,13,14,15}
Tg={1,2,4,7,8,9,11,12,15}
T¢={0,1,2,3,5,4,6,7,8,11,13,15}
T =1{0,1,2,3,4,6,7,8,11,13,15}
And finally the intersection of all T)s gives us:
T={1,7}

and the two pages are diagnosed without any non-differing page getting into
the set 7. In this example this is always the case for every pair of pages i},
although this is not true in general.
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8. THE ROLE OF RANDOMNESS

Throughout this paper, the techniques presented have all been random-
ized. This fact raises some questions about the bounds that we have found.
First, what is the role that randomness play in these bounds? Secondly, is it
fair to compare those bounds with the ones achieved by techniques that are
not random?

To answer those questions we first have to take a close look at the way
randomness have been used in the techniques exposed. There are two places
in which one uses randomness. The first one is in the signature functions.
These functions are hashing functions and therefore are subject to the proba-
bility that two different pages produce a collision, i.e., give the same value
for their signature. This is true in every published mechanism for file com-
parison that is based on check sums. The second place in which we use ran-
domness is in the structure of the signatures themselves. Previous
approaches selected the structure of the signature carefully so for a given
number of differing pages (1 or 2) there was no chance of finding an
instance for which the algorithm did not diagnose correctly those pages. Our
approach differs in the sense that if one is allowed to look at the signatures
and select the ““bad’’ pages, it is conceivable that one could find an instance
that defeats the algorithm, i.e., for which the algorithm diagnoses a larger set
of pages than the actual set of differing ones. However, the number of
instances for which this happens, is bound to be very small.

However, if one would like to make sure that no such instance can ever
occur, there is a way of transforming our techniques to insure that, by mak-
ing them deterministic in the structure of the signatures sent. To show that
this statement is true, we use the algorithm FI presented in section 4 and
show that by paying the right price, the algorithm can be made deterministic.

Theorem 8.1 Algorithm FI can be made deterministic by sending
0 (f2 log (n)) signatures.
Proof: To make the algorithm work in all cases, we need to insure the fol-
lowing property
For all tuples xg,xi,...xs distinct, there exists S; such that
X0 € S8;,xj & 8;, forj=1,...f. andx; € {Py,...,P,},for0<I<f.

This property says that in order for a “‘good’’ page to get in T, (and
subsequently not be in T), it is enough that there exists a signature to which
the page belongs and no ‘‘bad’’ page is located in that signature. It is easy to
see that the expected number of f + 1-tuples of pages that fail t?n satisfy the

property is given by: n/ ¥1(1 — l(1 - l)f)”‘, which is n/*le ¢ . In order
to find an arrangement of signatures that satisfies the property, this expected
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value has to be less than 1. Thus, we have to send on the order of
m =0 (f%log (n)) signatures to avoid any instance from defeating the algo-
rithm. O

As we can see, we pay the price by affecting the behavior of the bound
in f. A similar analysis can be made for the other techniques.

9. CONCLUSIONS

We have presented a class of randomized mechanisms for low cost
comparison of remotely located files. Several conclusions can be drawn
from the results.

First, the mechanisms perform very well without having to resort to
more elaborate signatures. In some cases, we can guarantee a good perfor-
mance over a large range of the number of differing pages, while keeping
the total number of signatures sent very low.

Also, we have presented a technique, FI that achleves a bound B, linear
on the number of differing pages that one wants to diagnose and logarithmic
in the size of the file. It remains to be proven whether this bound is optimal
or not. In section 8, we showed that if one wants to do away with the ran-
domness in choosing the s1gnatures the price to be paid is to increase the
complexity of the algorithm to f2. A deterministic technique that achieves
this bound for an arbitrary f, is yet to be found. (The strategy FU actually
achieves the bound, but only for f=1.)

The results shown in section 6 prove that if one is expecting only a few
differing pages, a mechanism like FS offers a very good performance. On
the other hand, if the expected number of differing pages is larger, as it may
happen after the crash of one of the machines, one is better off by using a
SCREEN(k) mechanism or the FI mechanism.
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