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ABSTRACT

In many distributed systems it is possible to share the process-
ing capabilities among the nodes. To accomplish this goal, a number
of load balancing algorithms have been proposed in the literature.
The purpose of this type of algorithm is to redistribute the system
workload with the objective of equalizing the load at each node. In
this report we discuss two types of distributed computing environ-
ments for which load balancing techniques yield increased perfor-
mance: (1) pool of processors and (2) independently owned processors .
Both environments are built around a loosely-coupled computer net-
work, but in the former all computational nodes belong to one user
community, while in the latter each machine belongs to a different
individual or organization. We argue that these two environments
should not be treated with the same type of load balancing algo-
rithm due to their distinct nature. For the first environment we dis-
cuss a load balancing algorithm based on executing jobs at the least
loaded processor in the network. For the second environment we
introduce the concepts of lending and borrowing resources. For both
environments we present empirical results to illustrate our approach
to load balancing.
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1. Introduction

One of the reasons for the existence of distributed systems is to allow
resources to be shared across a network of computers in a user transparent way.
Work has been done in I/O device sharing, e.g.,, remote file systems [SUN1986],
but one network resource which is seldom shared is the processing capability of
the nodes. Because each node usually has its own user community and CPU
scheduler, an imbalance of the system workload throughout the network can be a
common situation. One solution to this imbalance is to allow users at one node to
run processes on other nodes in the network. The usual mechanisms for this are
remote logins, e.g. rlogin (1) [Berkeley1984], or explicit remote process executions,
e.g. rsh(1) [Berkeley1984], but for these mechanisms the selection of the execution
site and the control of the remote execution is completely up to the users. It is
more desirable to dedicate a system program to the task of sharing the processors
in much the same way that memory management software allocates the use of
memory. Users can then rely on it to automatically handle remote execution of
their jobs in order to take advantage of less loaded processors, thus possibly
achieving better average response time.

The load balancing problem consists of selecting a strategy to redistribute the
system workload in a computer network with the objective of equalizing the work-
load at each node. Recently many load balancing schemes have appeared in the
published literature: see [Wang1985] for a proposed taxonomy and a review of the
various approaches that have been pursued, or [Zhoul986] for a comparative per-
formance study of several load balancing policies. Load balancing schemes can be

t This research is supported by New Jersey Governor's Commission Award No. 85-990660-6, and
grants from IBM and SRI's Sarnoff Laboratory.
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divided in two types: static policies, as in [Ni1985a], which ignore the current sys-
tem state when making decisions and which usually follow average system
behavior, and dynamic policies, as in [Eager1986], which rely on system state
information. In this report we concern ourselves with dynamic policies.

A load balancing scheme is essentially composed of two parts: a location policy
and a load information aspect. The former determines where a job is going to be
executed. For example, a possible location policy would run jobs on the machine
which has the lowest load. The latter is given by the load metric that is used to
determine the load in any given machine. For example, a possible load metric
could compute the average number of running processes during a certain period of
time. Clearly, the selection of a particular load metric depends in the type of jobs
submitted to the machine as well as the node’s resources and capabilities, We
define the load of a machine as the value of a given load metric for that machine,
and the load of a distributed system as a function of the load of all the nodes in
the network. In order for a node to be able to make appropriate load balancing
decisions it has to gather information about the load of the system. To do this
nodes could exchange their loads.

Load balancing algorithms may comprise a variety of strategies to exchange
load information between the nodes of a network. These strategies can range from
not exchanging any information to having the nodes possess a common knowledge
of the system’s load. The former extreme could be implemented by choosing execu-
tion sites by means of educated guesses, and the opposite extreme could be imple-
mented by shared memory, a central controller, or by exchange of frequent mes-
sages. There is a tradeoff between these two extreme cases: inaccuracy of the deci-
sion made vs. overhead in the decision process. In between these two situations
there are many schemes to be explored. The selection of one over another for a
particular distributed system is a design issue that affects the service to its users.

Design issues, like the one just mentioned, are influenced by the configuration
that the distributed system has. The type of computational environment in which
the load balancing strategy is to be implemented has a large impact on the design
of the load balancing mechanism. The overall objective of the distributed system
has to be taken into account when choosing a strategy because it influences the
amount of information to be exchanged among the machines as well as the type of
location policy to be used. This relation has been given very little attention by the
implementors of load balancing mechanisms.
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Distributed systems have some typical configurations. For example, a pool of
processors is a group of interconnected computers dedicated to servicing equally a
group of users. The goal is to provide the user community with improved service.
Most of the work described in the load balancing literature has dealt (explicitly or
implicitly) with this type of environment ([Stankovic1984], [Alonso1986al,
[Eager1986], [Zhoul986]). In this environment all the nodes in the network func-
tionally belong to one organization. The appropriate load balancing scheme for
this environment should focus on enhancing the overall system performance which
is the system’s goal. Examples of this type of system are most of the computer
centers in industries and universities.

Another type of distributed system is the independently owned processors
environment. In this environment each node of the network functionally belongs
to a different user, whether that is a single user or a group of users. Instances of
this environment are networks of workstations, and networks of inter-
departmental machines. Although a load balancing scheme can be used in this
type of system, it cannot be treated with the same techniques used with a pool of
processors. For this type of environment, load sharing is more appropriate. Load
sharing entails a redistribution of the system workload, but not necessarily result-
ing in an even distribution of work.

In the following sections we expand the description of the two environments
listed above by focusing on why different schemes for load balancing are needed to
satisfy their objectives. In Section 2 we describe further the pool of processors
model and we show empirical results of a scheme which enhances global system
performance. In Section 3 we discuss the independently owned processors environ-
ment and the concepts of lending and borrowing CPU cycles. In Section 4 we sug-
gest a scheme which can be used in mixed environments and, finally, in Section 5
we present our conclusions and ideas for future research.

Throughout this paper, whenever we refer to the load of a machine we mean a
consistent load metric that characterizes the usage of that machine. We will be
concerned only with the initial placement problem, i.e., where in the network a job
should be run, and we will not consider the migration of jobs once they have
started running in a node.
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2. Assigning jobs to a pool of processors

A pool of processors is a group of interconnected computers dedicated to
equally serve a group of users. The goal is to provide the overall user community
with improved services which might yield lower response time, higher throughput
or greater fault-tolerance.

As mentioned before, most of the work described in the load balancing litera-
ture deals (explicitly or implicitly) with the pool of processors environment. For
example, Chow and Kohler [Chow1979] presented the results of a queuing model-
ing study where the goal is either to reduce the average job response time, or max-
imize the system throughput, or minimize the system time. The models used are
based on a central dispatcher doing the job assignment to the different processors.
Their results showed that models incorporating load balancing schemes in the job
scheduling algorithm have a lower job turnaround time than when load balancing
schemes are not used. Many other studies from different authors followed this one
all focusing in reducing average response time as their main goal.

In [Stankovic1984], the simulation of three dynamic schemes is presented. All
of them select the least loaded machine as the executing node for an arriving job.
In the first algorithm, a job is transferred by a node if the difference between the
load of that machine and that of the least loaded node is greater than a fixed bias.
In the second algorithm two biases are used. If the difference (the one stated
before) is greater than the first bias, but less that the second bias then one job is
transferred. If the difference is greater than both biases then two jobs are moved.
The third algorithm is similar to the first with the addition that after a job is
transferred to a machine the node that is doing the transfer updates its local infor-
mation about the machine where the job has been sent, and does not transfer jobs
to the same machine for a fixed period of time.

Krueger and Finkel [Krueger1984] presented a preemptive load balancing
algorithm called "Above-Average." The scheme migrates processes from machines
whose load are above the system average to machines whose load is below such
average. The idea is to reduce the variance in load among the nodes in the net-
work. The average load of the system is maintained dynamically by allowing any
node to broadcast an updated system average whenever it believes that the
current value of the average load is inaccurate. A node assumes that the current
system load average is inaccurate whenever its own load is very different from the
average and there is no other node trying to interact with it.
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In [Ni1985b] a load balancing scheme called the "Drafting" algorithm is
presented. This is a type of bidding algorithm in which lightly loaded nodes send
messages to heavily loaded nodes requesting Jobs to be run. Loaded nodes then
send back their jobs information and the lightly loaded nodes decide which job to
run.

Eager et al. [Eager1986] discussed the issue of the appropriate level of com-
plexity for load balancing policies. Simulation results for three schemes of
increasing complexity are compared. In their simplest scheme the destination
node (where the job is going to be run) is selected at random. In their next scheme
in complexity, a destination node is randomly selected and it is probed to deter-
mine whether the transfer of a job would place its load over a predefined max-
imum value. If this is true, no job is moved to the selected node and a new node is
chosen and again probed. This process continues until either the number of probes
exceeds certain limit or a suitable node is found. Their most complex scheme
involves choosing several distinct nodes at random and polling each of these nodes
to determine the least loaded one. Once the least loaded is chosen, a job is
transferred to it if the added load does not increase its load over a limit, as in the
previous scheme.

In [Huang1986], three dynamic probabilistic load balancing algorithms are
described. In all three algorithms, each node in the network computes an average
estimate of the load of the whole system from load information broadcast by each
node. In their first scheme, the load information received by each node is used to
compute an estimate of the average amount of unfinished work in the network.
Once a job arrives at a node, the estimate of unfinished work in that node is com-
pared to the computed average. If the former is greater than the latter by more
than a fixed constant, then a remote node is picked at random and the job is
transferred there. In their second algorithm, each node associates a probability
value to each of the other nodes in the network. This probability is computed from
the relation between the local estimate of unfinished work and the estimate of
unfinished work received from the other nodes. If a job arrives at a node and it
decides to run the job remotely then a site is selected using the computed probabil-
ities. Their last scheme is similar to the previous one, but instead of estimating
unfinished work they use estimated job queue length at each node, which is
simpler to compute.

In [Zhou1986] a trace-driven simulation study of seven different dynamic load
balancing schemes is presented. The seven algorithms were chosen because they
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represent a large family of schemes: server vs. source initiated interaction,
periodic vs. on-demand load information exchange, and system-wide, subset or ran-
dom selection of execution site. This work together with [Zhoul987], an empirical
study of five out of the seven schemes proposed in their previous report, is one of
the most complete studies in dynamic load balancing done up to date.

We can see several similarities among these previously described schemes.
Most of them are decentralized in control and each node in the network frequently
acquires information about the local state of the other nodes. This information is
used to select remote execution sites. An implementation of a load balancing
scheme done in the Distributed Computing Laboratory at Princeton University’s
Department of Computer Science has many of the attributes described above. We
will focus our discussion on this implementation and through it we will show the
applicability of such load balancing schemes to pool of processors.

2.1. Lsh: a "least loaded" load balancing scheme.

In [Alonso1986a] a load balancing scheme (called Ish) was developed based on
broadcasting local system state to all the nodes in a local-area network (LAN) and
on transferring jobs to the least loaded node. Each node reaches load balancing
decisions in a decentralized fashion, i.e., without the existence of a central con-
troller. The purpose of the prototype was to demonstrate that sizable overall sys-
tem performance gains could be achieved using a simple load balancing mechan-
ism on top of an existing system with small overhead and making very few
changes in the underlying software. It was noticed that having accurate informa-
tion about the entire system was expensive because processing broadcast messages
from other nodes takes a substantial amount of CPU cycles. There is a tradeoff
between the broadcasting interval and the processing overhead which directly
affects the accuracy of the information on which a machine has to base its locality
decision. In a follow-up study [Alonso1986b], this tradeoff was discussed and the
issues involved in evaluating load metrics and decision policies were described.

Lsh was revised and improved to take care of obvious flaws that a simple
"least loaded" scheme has. These problems are the swamping and drought effects.
These effects are produced by the same factor: outdated system state information
due to update interval and communication delays. In [Williams1983] the impor-
tance of this factor is recognized in the design of load balancing strategies.

In the swamping effect many jobs are sent to one machine (the least loaded at
that moment) before it can broadcast its new load. This occurs because several
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machines may choose to transfer jobs to the least loaded site within the same
small interval of time, before new state information from the least loaded machine
is broadcast. Therefore, the response time of these transferred jobs may be even
greater than if they had been processed in their originating nodes.

In the drought effect, truly least loaded nodes do not receive remote jobs. This
happens because the moment a machine gets less loaded or even idle is not syn-
chronized with its broadcast interval. A node may be the least loaded site in the
network, but until it broadcasts its new state, no other node will know it.

To correct the above described anomalies two policies were incorporated to
Ish: required load difference and implied load. The required load difference limits
a machine to send one of its jobs to a remote node only if the difference between
its load and the load of the remote machine is more than some specific amount.
This would reduce remote execution overhead. With implied load the system load
information kept at a machine is updated each time a local job is migrated to
another node, i.e., when a machine transfers a job to another node, it adds a cer-
tain amount to its information about the receiving node. This is done to compen-
sate for the added workload at the remote site, until an updated load message is
received. In this way the sending machine has more accurate information when
making the next load balancing decision.

So far we have presented different details which have to be taken into account
when designing or choosing a load balancing scheme for a pool of processors.
Eager et al. [Eager1986] suggested that " ... extremely simple load sharing policies
using small amounts of information perform quite well - dramatically better than
when no load sharing is performed, and nearly as well as more complex policies

that utilize more information ... Although we agree with most of this state-
ment we believe that more complex policies are more stable and robust even

though their gain in performance is small compared to simpler schemes.

To explore this possibility we have implemented a random job allocation pol-
icy (labeled random in our figures). This policy selects an executing node at ran-
dom and the job is transferred there. No exchange of information is done between
the nodes. We have compared this policy against the naive implementation of Ish
(labeled Ish in our figures) and the best choice of parameters for the current ver-
sion of Ish (labeled Ish-best in our figures).

The system we used for our experiments uses a network of workstations. Our
environment consists of four identical single-processor machines (SUN 2"

¥ SUN 2 is a trademark of Sun Microsystems, Inc.
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connected by an Ethernet [Metcalfe1976] and using a fifth machine as a remote
file server. The load metric we used for our experiments is the UNIX' 4.2 BSD
"load average" metric provided by the uptime (1) command [Berkeley1984] and
defined as the exponentially smoothed average number of jobs in the run queue
over the last 1, 5 and 15 minutes. In our experiments we use the average over the
last minute. This is the load metric we used for all the experiments in this report.

2.2. Performance of Ish.

In figure 1 we show the average response time of all the schemes under
different user distributions. The abscissa depicts the number of users per
machine, which gives a sense of the balance of the system. The further to the
right along this axis the more unbalanced the system load is. The labels in the
ordinate denote the values for the average response time (in seconds) of jobs sub-
mitted to the system. Each user is simulated by a script and the time the script
takes to complete is defined as the response time of each user job. The script con-
sists of repeated cycles of editing, compiling and running a C program. The pro-
gram performs several arithmetic operations.

As can be seen, all the policies behave well under unbalanced distributions,
but under balanced ones, Ish and random do worst than the "no load balancing"
case (labeled no-lsh in our figures). The random policy spreads jobs around the
system equalizing the job queues among all the nodes. Under balanced distribu-
tions, this behavior represents worthless job transfers which add significant com-
munication delay to the jobs’ response time. Notice that all the policies tend to
smooth the value of the average response time for any distribution of users. This
is a desired behavior because users can expect their jobs to complete within a cer-
tain range of time, regardless of the load distribution in the system.

In figure 2 the average standard deviation for all the policies is shown. Note
that the value range of Ish-best’s standard deviation is the smallest of all the poli-
cies. This suggests that the most complex policy has a better stability than the
simpler policies.

1 UNIX is a trademark of AT&T Bell Laboratories.
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3. Sharing jobs among independently owned processors

Computer networks were initially intended to allow communication between
independent machines owned by distinct organizations. At first, most of the com-
munication was done through point-to-point connections (long-haul networks), but
since the advent of broadcast technology, local distributed computer systems have
evolved around it (local area networks).

Many researchers have studied the CPU sharing issue in relation to the
independently owned processors environment. For example, Theimer et al. [Thei-
merl1985] proposed to use idle nodes as computational servers in networks of
workstations. It is clearly noted in this work that using idle workstations to serve
remote jobs should not conflict with the use of the machines by their owners | i.e.,
owners should not see a higher response time for their jobs. Theimer et al. meet
this requirement by using priority scheduling. Locally invoked jobs to a worksta-
tion have a greater scheduling priority than remote Jobs. While this priority
scheme assures the availability of resources to the owner of a workstation, it does
not guarantee any performance improvement to remote jobs.

Hagmann [Hagmann1986] presented an experimental system for distributing
computations normally performed on a workstation to some collection of machines,
possibly other workstations. In the current state of the system, a machine can
simultaneously be serving local jobs and remote jobs. An owner of a workstation
that is serving remote jobs will only perceive an increase in the machine’s cpu
utilization. Ownership of resources is guaranteed in the same manner as in the
previously described system.

Zhou [Zhoul986] studied the effect of load balancing schemes on individual
nodes. His simulation results indicated that the performance of all nodes, even
the lightly loaded ones, is generally improved. However, in a follow up study Zhou
and Ferrari [Zhoul987] empirically showed that the reduction in local response
time does not occur on machines that were originally lightly loaded. This effect is
undesirable with independently owned processors. Clearly, it is important to
develop a technique that minimizes the performance degradation of the lightly
loaded nodes.

On one hand, users want faster response time which could imply greater load
distribution. On the other hand, the owner of a particular node will only partici-
pate in the load balancing scheme if the benefits he will receive are far more than
the cost he will have to pay. The cost is usually reflected as the amount of CPU
time dedicated to service jobs from other nodes.
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With any load balancing scheme, heavily loaded nodes will get all the benefits
while lightly loaded machines will have poorer response time than in a stand-
alone fashion. Users of a frequently heavily loaded machine will cheer for a load
balancing scheme while users of a frequently lightly loaded one will strongly
oppose participation in such a scheme. What would be desirable is a fair strategy
that will improve response time to the former without significantly affecting the
latter. With independently owned processors , load balancing schemes cannot con-
sider the whole network as one unit and thus try to optimize average response
time or system throughput. Instead they have to consider the main objective of
the environment: " guaranteed delivery of resources to owners. " The sharing of
resources should behave according to the same rules of borrowing and lending that
a commercial bank may have, i.e., a machine should only transfer jobs to another
node if it is really necessary (borrowing CPU cycles) and it should process incom-
ing remote jobs if by doing so the service to the local user is not significantly
affected (lending CPU cycles). We will now focus on these two ideas.

3.1. High-mark and Low-mark schemes

Computers participating in a system where load balancing takes place may be
viewed as being either sources of jobs or servers of jobs. When a machine is
viewed as a source of jobs it should only try to remotely execute jobs if by doing so
the performance of the rest of its local jobs is greatly improved. It is only then
that the load balancing mechanism should automatically transfer jobs. It emu-
lates the principle of borrowing only when necessary. On the other hand, when a
computer is viewed as a server of jobs it should only accept remote jobs if its load
is such that the added workload of processing these incoming jobs does not
significantly affect the service to the local ones. It emulates the principle of lend-
ing only when affordable. These two notions can be adapted to a load balancing
environment via two policies: High-mark and Low-mark.

The High-mark policy behaves as follows: each time a new job is invoked at a
node the load of the machine is compared against its High-mark value. If the
former is greater than the latter then the load balancing mechanism tries to exe-
cute the job in a remote node. Otherwise the job is processed locally. Thus, High-
mark sets a lower level on the load a machine must have before it begins to
transfer jobs to other nodes. Its purpose is to try to reduce processing overhead by
load balancing only when the workload of the machine degrades its service
dramatically.
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The Low-mark policy sets a ceiling on the load a computer may have and still
accept incoming remote jobs for service. Its purpose is to guarantee that the
machine will be able to handle these incoming jobs while the service to the local
ones is not significantly affected. Low-mark works as follows: whenever a request
to execute a remote job arrives at a machine, the processor checks if its load is less
than its Low-mark value. If so, then the request is accepted and the job is pro-
cessed locally. Otherwise the request is rejected.

Choosing appropriate values for High-mark and Low-mark is not simple. An
automatic fine tuning mechanism together with specifications submitted by
machine’s owners could be used to obtain adequate values. For example, a user
could specify that he will allow his machine to process remote jobs if the average
response time for his jobs does not deteriorate by more than 10% of the stand-
alone time. Selecting the High-mark and Low-mark values is a continuing area of
our research. At the present time we are developing a simple analytical model
that uses workload information, user specifications of expected service quality, and
machine performance to estimate appropriate values for High-mark and Low-
mark. As it will be seen later, our experiments suggest that appropriate values
depend on the load distribution in the system.

As we have mentioned before, this type of environment fits the description of
most long-haul networks as well as the description for the more recent networks
of workstations. Since the communication delays of long-haul networks make load
balancing impractical, we will use the latter type of network to further describe
the independently owned processors environment.

3.2. An Example: The Network of Workstations.

The fast development of computer technology has made more powerful and
smaller processors and peripherals available at smaller prices. Because of this,
powerful personal computers (workstations) can be bought and used by a single
user. These workstations have processors of about 1-3 MIPS, main memory of
about 0.5-2 MBytes and are usually used with magnetic disks of about 50-120
MBytes or with specialized computers acting as file servers. The basic purpose of
these workstations is to insure the availability of resources to their owners, but
many resources or peripherals are still either too expensive to be owned by a sin-
gle user (e.g., magnetic disk pack drivers) or are rarely used thus making it
impractical to assign them to one person (e.g., phototypesetters). Networking is
then a way of sharing this type of devices between workstations.
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Workstations have been usually connected to local area networks using broad-
cast media (e.g., Ethernets) or by a token ring [Farber1972] . Many research
laboratories as well as universities have assigned workstations instead of simple
terminals to their members. The usefulness of this type of network grew with the
inclusion of remote procedure calls, shared or global file systems and network
operating systems. This collection of workstations became a rich and powerful
computing environment. However, often a user cannot take full advantage of the
available resources. For example, in many cases it is burdensome for an unsophis-
ticated user to simultaneously use more than one machine to service his jobs.
Thus load balancing techniques can be used to achieve higher availability of pro-
cessing power in a user-transparent way.

The Distributed Computing Laboratory at our department is an example of
the workstation network just described. Using the laboratory’s facilities we imple-
mented two versions of the random policy to test the two concepts explained
before: High-mark and Low-mark. One implementation incorporates High-mark
and the other incorporates Low-mark. We have run several tests and compared
the results obtained against the pure random scheme and lsh-best. For these tests
we followed the same methodology described in section 2. However, emphasis was
not only on the average response time of the system, i.e., of all the nodes, but also
in the average response time of the jobs at each individual machine. This last
measurement gives an idea of the changes in local service time when a machine
participates in a load balancing scheme.

3.3. The High-mark scheme.

Figures 3 to 5 are related to the High-mark scheme. Our implementation
uses numbers related to the "load average" calculated by the UNIX 4.2 BSD
operating system as High-mark values. The High-mark scheme is implemented as
follows: whenever a new job arrives at a machine, its load value for the last
minute is compared to the High-mark value. If the former is greater or equal
than the latter then a remote machine is randomly chosen and the job is
transferred there for execution.

One set of our experiments tested High-mark values ranging from 0.5 to 3.25
(increasing 0.5 each time). For our discussion we chose three values which
represent three broad classes: low, medium and high High-mark values. In figure
3 we show a comparison of the High-mark scheme with the three significant
values: 0.75, 1.75 and 3.0. Notice that a small value for the High-mark parameter
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allows the utilization of more remote processors. For unbalanced distributions of
users this would mean lower average response time for the system. In balanced
cases the transfer of a job would only add communication delay to its service time,
thus the average response time of the system would not improve. For a higher
High-mark value the situation is the opposite. Most of the work is done by the
local processor. This situation is desired when the system is balanced because
each machine will spend most of its time processing local jobs and will not waste
CPU time in handling remote jobs. Communication delay will not be added to the
response time of jobs. Dynamically setting the High-mark parameter depending
on the system’s load distribution can be a possible option for a load balancing
scheme. Meanwhile, using a High-mark value near the median will provide an
appropriate starting point for our experiments.

In figures 4 and 5 we are comparing local average response time of the least
loaded machines (1 user per node) and that of the most loaded machines under
several load balancing schemes. In these Figures the abscissa represents the sys-
tem workload, as explained before. For each abscissa label there is a column in
which the response time for each tested scheme is marked. The point we want to
show is that in the independently owned processors environment it is important to
use strategies in which the local average response time of a machine does not get
much worse compared to its stand-alone response time.

In figure 4 we observe that the High-mark scheme with value 3.0 keeps the
local average response time of the single user machines lower than in the no-Ish or
Ish case. This is because idle workstations are being used. Idle workstations can
process remote jobs very fast and the non-idle nodes are freed to a level where job
processing is done quickly. Clearly, load balancing schemes should take advan-
tage of idle sites first. Looking at the same scheme in figure 5 we see that the
situation is not the same for the most loaded nodes. In some load distributions the
local average time is better, but not significantly. If we now pay attention in the
same two figures to the High-mark scheme with value 0.75 we note that we draw
opposite conclusions to the ones drawn for the value 3.0. Finally, looking at the
High-mark scheme with value 1.75 and Ish in both figures, we note that the local
average time is also improved for the least loaded machines as well as for the most
loaded machines in almost all the distributions. This is the type of effect we are
looking for, where global average response time is improved and single user

machines do not get significantly penalized for collaborating in the load balancing
scheme.
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3.4. The Low-mark scheme.

Figures 6 to 8 are related to the Low-mark scheme. As with the High-mark
scheme, we used UNIX "load average" numbers to characterize the Low-mark
values. The Low-mark scheme is implemented as follows: whenever a request for a
remote job execution arrives at a machine, its load value for the last minute is
compared to the Low-mark value. If the former is less than the latter then the
request is accepted and the remote job is executed. In any other case the request
is rejected and the job is executed in its originating node.

We followed the same methodology used for the High-mark scheme and
explained in the previous subsection. We tested different Low-mark values ranging
from 0.5 to 3.25 (increasing 0.5 each time) and we chose three values: 0.5, 1.5, 2.25
to represent low, medium and high Low-mark values. In figure 6 we show a com-
parison of the Low-mark schemes with the chosen values. It can be noted that a
low value allows little remote execution, situation that is desirable under balanced
load distributions, but not so under unbalanced ones. On the other hand, as the
Low-mark value increases, more remote executions are allowed thus making it
more appropriate for unbalanced distributions, but not for balanced ones because
only communication delay time would be added to the jobs’s service time. Dynam-
ically setting the Low-mark value depending on the system’s load distribution can
be a possible option for a load balancing scheme. Meanwhile, using a value near
the median will provide an appropriate value for most of our experiments. Note
that the conclusions drawn so far about the system’s load distribution and the
Low-mark value are opposite to the ones drawn for the High-mark value. The
same will be true for the next two figures.

In figures 7 and 8 we compare local average response time of the least loaded
machines (1 user per node) and that of the most loaded machines. In figure 7, we
can see that the 0.5 value achieves lower response time than the no-lsh case. This
occurs because single user machines are exclusively dedicated to their local jobs,
rejecting most of the remote execution requests. Instead, in figure 8, we notice
that this Low-mark value is not appropriate for the most loaded machines under
unbalanced distributions. Paying attention to the high value in the same two
figures, we get opposite conclusions as those drawn for the low value. Finally,
looking at the scheme with value 1.5 we get the effect we are looking for: global
average response time improves and the response time of the least loaded machine
does not deteriorate significantly.
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4. A scheme to handle mixed computational environments

So far we have discussed each environment separately, but it is likely that
distributed systems evolve to become a mixture of both environments: supercom-
puters dedicated to intensive computations, mainframes taking care of "housekeep-
ing" operations, minicomputers acting as specialized servers and workstations
dedicated to personal use. What is desired is a load balancing scheme that minim-
izes the global average response time for jobs being submitted to shared computa-
tional facilities, i.e., those belonging to the whole user community of the network,
while making sure that resources owned by a particular user or group are not
abused by other users of the system.

We believe that a scheme similar to Ish incorporating High-mark and Low-
mark policies will be adequate for mixed environments. The idea behind the
scheme will be to use the Ish mechanism as a hint to select the remote sites, and
to use the High-mark and Low-mark policies to maintain the ownership of
resources.

The above scheme could also be used when the overhead for broadcasting
information becomes too high. As figure 9 shows there is an upper limit in the
number of broadcast messages per interval of time that a machine can effectively
process. This is generated by the overhead a node incurs in processing broadcast
messages. To produce the figure we took four workstations and made them send
broadcast messages at different time intervals. Two other workstations received
these messages and processed them by updating their local information about the
network. By using different intervals of broadcasting time, we produced different
rates of messages sent per second. At each receiving node we measured the
number of messages received per second and the amount of CPU time used in pro-
cessing these received messages. Note that the same effect could be achieved if
instead of decreasing the interval of broadcasting time we increased the number of
machines transmitting. For example, 20 messages received per second can be
achieved by having 20 nodes broadcasting at intervals of 1 second or by 400 com-
puters transmitting every 20 seconds.

In networks with many nodes, it would be preferred to use a large interval of
time to allow smaller processing overhead for the load balancing mechanism. This
larger interval would have a direct effect on the accuracy of the information each
node keeps. By using our scheme, the effect of this stale information would be
ameliorated, thus reducing the amount of bad decisions that the load balancing
strategy could make.
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5. Conclusions and future research

We discussed two known distributed environments where load balancing may
improve performance: pool of processors and independently owned processors. We
argued that because of their distinctive objectives different schemes are needed to
handle load balancing in these environments. For the former, schemes should
improve global performance indices since the network belongs to the whole user
community. For the latter, schemes should make sure that the local response time
of user’s jobs at any node does not deteriorate more than a certain level.

We presented a comparison between an implemented version of a random
scheme and a "least loaded" scheme showing the effectiveness of the "least loaded"
scheme to the pool of processors model.

We discussed the principles that have to guide the load balancing schemes
when dealing with independently owned processors. Mainly, we discussed the
High-mark and Low-mark policies, and showed how these principles allow a pro-
cessor to participate in load balancing schemes while maintaining the ownership
of its resources. We suggested that a load balancing scheme that incorporates the
High-mark and the Low-mark policies would be adequate in a network of worksta-
tions. A further point is that the capability to migrate jobs after they have started
executing in a machine may be desirable for this environment. For example, once
a machine gets overloaded by remote jobs, it could move some of these jobs to their

originating nodes or to a new node. In this way control of the local resources could
still be maintained.

Finally, we commented on the plausibility of a scheme to handle mixed com-
putational environments based on an implementation of the "least loaded" policy
combined with High-mark and Low-mark policies.

As for future research, we will concentrate in studying the independently
owned processors environment. We have proceeded so far to test the High-mark
and Low-mark schemes separately to avoid influence of one scheme over the
results of the other. We will explore how these two schemes could be effectively
used together to control the load sharing in a network of workstations. First, we
will implement and test this combined scheme. Having a real user community,
like our computer science department, using a load balancing scheme will give us
an environment where the effect of load balancing can be studied. Second, we will
work on the design of an algorithm for dynamically setting the High-mark and the
Low-mark parameters, as suggested in section 3. Our goal is to formulate a
scheme that using specifications submitted by the machine owner as well as the
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current system load, will adapt the High-mark and the Low-mark parameters to
achieve the best possible performance out of the load balancing scheme.

Recently, many multiprocessor workstations have been introduced to the
market. In a network of such workstations, load balancing has to be done at two
levels: within the local processors of a workstation and among the workstations.
This presents a new interesting research problem.

There are many other interesting issues to explore in the area of dynamic
load balancing. A couple of examples follow: What scheme, if any, is suitable for
point-to-point networks? How could the design of load balancing schemes change
when the capability to migrate partially executed jobs exists?
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