ARCHITECTURES FOR TWO-DIMENSIONAL LATTICE
COMPUTATIONS WITH LINEAR SPEEDUP

Steven D. Kugelmass
(Thesis)

CS-TR-156-88

June 1988

Architectures for Two-Dimensional Lattice
Computations with Linear Speedup

Steven D. Kugelmass

A Dissertation
Presented to the
Faculty of Princeton University
In Candidacy for the Degree
of Doctor of Philosophy

Recommended for Acceptance by the
Department of
Computer Science

June, 1988

©1988
Steven D. Kugelmass
All Rights Reserved

Abstract

Many problems are characterized by the fact that they deal with data values distributed on a reg-
ular mesh, or lattice. They arise in a wide variety of applications such as image processing, computer
vision, the solution of partial differential equations, and the simulation of cellular automata. This
dissertation explores theoretical and practical questions in the design of massively parallel machines
for lattice processing.

We analyze and compare two architectures that are efficient for lattice computations and are
suitable for VLSI implementation: the linear array, and a block partitioned architecture proposed by
Sternberg. These architectures have a property called linear speedup. That is, n processors of fixed
size and cost provide n times the throughput of one processor on the same problem instance. We find
that the linear pipelined array is the more attractive of the two architectures for a two-dimensional lat-
tice machine, because of its great simplicity.

We next study the effect of clock skew as a possible limitation on the ultimate performance of
large, globally synchronized multi-processing systems. We propose and analyze a probabilistic model
for clock skew accumulation based on variations in buffer and wire delays. Our main result is that the
expected skew grows as O(logN) in a system with N buffers, each of which contributes an indepen-
dent, zero-mean, Gaussian skew. We also derive bounds on expected total clock skew when the skew
in each stage depends on wire length, and the distribution system is embedded in the plane.

The remainder of this dissertation describes the design and construction of a prototype machine,
called LGM-1 (for Lattice Gas Machine), for simulating the Frisch-Hasslacher-Pomeau (FHP) lattice-
gas model for fluid flow. It consists of a one-dimensional pipeline of ten identical full-custom chips
hosted by a Sun 3/160C workstation. The 64-pin DIP chips were fabricated by MOSIS in 3u CMOS,
and each contains more than 65,000 transistors. The chips themselves are capable of 14 million site-
updates/sec/chip. The particular workstation host and interface limit the performance of LGM-1 to 7
million site-updates/sec, which is nevertheless about 60 times faster than a software simulation on the
DEC VAX 8650.

iii

for Ariela

Acknowledgements

I extend my deepest gratitude to my advisor, Professor Kenneth Steiglitz, who accepted me as
his apprentice for the last three years. This work would not have possible without his support, and the
quality would have suffered without his critical eye. '

Professors Kai Li and Rafael Alonso are thanked for their critical and thorough reading of this
dissertation. MOSIS provided the fabrication service for the VLSI chips for which I am also indebted.

One can never thank one’s parents and family enough for the love, guidance, encouragement
and support that they give. They have always encouraged me to achieve the most that I can and to
never stop trying.

Ariela, my wife, has been my light, my partner and my friend. It is to her that this dissertation is
lovingly dedicated.

Table of Contents

Acknowledgementsccceeuunens T PR Pyl - 13 LN L S SUCOR v
EEREIEDIENEIIIEIILNo0i0mmresmercansserssssssosiasssssssomsbospessansssnssenssnnsnssnsnstsissmisssasstsassnssasssssshassaessssstass vi

Chapter 1 Introduction and Backgroundcecereenrnencnnninsnnsisssssssssssssssessssssssssassssnne 1
1.2 The FHP Lattice Gas MOl -...ocucinaanmmimaasmsminiiah s a s s iy 2

1.3 Scatering RUleS ..icivrumivnioimsasasmmmimmmssim stk sisin s 4

8

9

sssssscssnanass,

1.4 Summary of Results
1.5 ‘Previously Published Material .o iiinimmnniinminmeammbimsisoiinisssssseesssrer

Chapter 2 Analysis of Lattice ArchiteCturescovvveeeeeeeevenssneneseessssssssssesssssssssssssnsnsnns 10
221 TRTOABCHON . coiisiimmsreresssnsmsssriiompassersonbeass ipbasvias momtsiensenibnt ks Mo vaveorsivsssisensbindusssssssssisiss 10
2.2 A Paradigm For Lattice COMPULALIONSccceeverrirernersuseessissesesesesssesessssesesesesssssessssssnsnns 11
2.3 Serial Pipelined Architectures for LattiCe PrOCESSINGcecrseerersureemeenenesssseasessssssesssses 12
2.4 "Wide Senial ATChHECHIIE «..cmsiassmsisisasivisrsimssssionsssisssbosstsaisisssisisisessssisissstassisisssisssss 14
2.5 Sternberg Partitioned ATChHECINNS: . .siissinissuseis fisnsasisssssioisbast istsisisios bossussssstsis iosssiniis 15
2.6 . Analysig and Comparison of WSA and BPAcoicaiuviimmimmsmssiimisimiiimi 17
2.7 'Wide Serial AFCRIBCHING: wuimisii b i it itscemssesesssnssosssssssssion 17
2.8 Sternberg Partitionied ArCRIECIITG . ..iiowsumimsamsssssinsuimsinssasassisssisssissnssssssassassseorssnssonses 20
2.9 DISBOSBION oot n i sioisssssesosseinessis Do rmaseisinsselinisiasmossnsesnsusssnsassasasssn: 21

Chapter 3 A Probabilistic Model For Clock SKewccccomveuivecrcrcsienevereresscressssereenreenes 24
.1 TADROMICTION 1cuuosesrasmmssosesnsmmscsbBoasormrrsirtEbssumsnersshesosressesensss i aise e susasioustis sssisssrsiusssavass 24
3.2 A General Model of Signal DiStrDULONvvececvesesessessssssssssssssssssssmessnsssssssssssssssssses 25
3.3 Aaaiynin a0 UIDPer BOONBE .o bbby s v i 26
3 EXAMPIOR: it R s T S e 30
D0 DN G T oo bR R s ik siastassins 30
30 NIHC TS wilaimniiis s e s s s vinsspssinesassspssassassans . 33
3.7 DHBCORRION ccciiviniinsininismismonmstonimb ebassasmasass srasassavassasneanedssibibnsinssnnsissatipsanssnossmansrsrasnsrses 320
B CONCINBIING _oiinniiinsmssessisssinessaiivasin bsiiisnivas esousesivoiaesssswensbonsswonsaebesssioabonssessbnssonninansis 35

Chapter 4 Lattice Gas Cellular Automaton CMOS CRipc.cocvevirveeisiisinnsisessssincssssans 36
4.1 THIROMOCTON . ciuiicsisiseciiammininsns ditaSasy dovessrisussssss i o sssts NRowH LR b N S S 36
4.2 The Latice and Data ENCOBINE «icuuinnisiummmiin s s e ivivs desssisians 37
4.4 Architecture and Organization OVEIVIEWcc.eveueeerssmenrsssssssesessesesessesssansssesesesssserssens 41
4.5 Hardware IMPIEMENIIGON cainnmsimmmmanii i b i tsistemasssassapsseses O3
4,6 SHTERBEISIETS .oiiviiviiisiiiniinirsicmmmisstosasasinmnsesnasesasssanssstoa e e sasasssasnas ot sosonssnsbantin 44
4.7 NeighborhOOd GENETALOTcceevvereeriersaresssssessssssessssessssessssssessssssssssssasnssssssssnssessenens 45
4.8 TIPAALE PROCEREONE ,vocreriseiorinsisssssmssesssrisssssbisssrebinessssesnisssosssniosssssasnsssasssonnsssnsi soss srbbinsnsssasss 47
4.9 TeSUNE CiICUILTYcecereerereeeeiscessesessiesesssesssasasssesesssasassssesesesese sessesesesesssesssssesssssssmsnsasssses 47
410 MIEBCEIANY o occoivonessiiiminussmamsssarivisasranssissarsasnssonsinosrsssnssisaenvoos assnt huusapsssissnsiastansonsus sssins 48
4.11 Testing and PerfOMMBICE. <.c.uivmiimisiasisimsmssisisssinssivaisissssmssosibisisssiions s 48
4.12 Comparison to'Other MAERINES:ciumsmsimsvssisssiossemssosiosstissinssisssisismssessssasssss 49

vi

Chapter 5 LGM-1, A Prototype Lattice Gas Machinecoccccvivnrnvsscncccsissscncresen. 30
5.1 OVEIVIEW ..ueoeerereereresrncereesssesssssnssssssssasssmssssssesssssmesssmesssssssssssnsssssnssesassssnssssssssssssssssnssesnnssns U
5.2 HATAWATEcooeenrereenerinsesnssesssssnsessssssssssnssessssssssssssnsssssssesmsssnsssassssssessasssss shsnssssssssssssssasssns 51
5.3 Implementation OVEIVIEW: .uuusmicmisiumisssssssssissesesssimssitisisissssmsaisssnsssssivimsss D2
T T — 52
SSHOCOMEON PRI ioininsiimmmminsismasms o isss s s s sEs s s aaass s e v ss s aiass 52
SO RPOTTAMNTNG MOOGEH ...coiimaniomissimssassviossiorissiaisismssiisviesss s sssassonssssssissiessossssinsssnns 53
Fi1 DRADhie DIBPIAY . coiiiinninimmm i s s s e 55
5.8 Performance Levels of Current SYStEmccoveeirisnnsriesssssnimnesisssesnsessarsessesssnssesesns 55

Chapter 6 A Proposed Environment For Fast Prototyping of Linear Systolic Processors 67
6.1 Overview OO SR MY i i S e SO Y oo P Ty 67
6.2 Hardware SPECifiCAtIONccccvreeeecsssesesnsrssessssssissssssssssssnsssssssssssssssssssssssssssassssssssssnsasses 70
6.3 Software SPECIfiCALONccoeviererereensnnsnesesnsssssssssssssssssssssrsssssssssssssssss s sssssssssssess 71
B4 Phyeieal SpBCHCAHON -...c.uivisississessisississsssinisbissnississnasisissssasbisisnesy ISR 71
OIS EITIAT COMOMICIILS .ccs ouminsessinsssininss susesissvissonssser Nissnsasisisvssivsntonssivisnsuiossns N asssassisunsRva TSR Tas 72

Chapter 7 Conclusions and Future Work ... 74
Jae samaary and COncsions vaaasrrmsnsnsansansira s erar R s 74
TR RINRE SIRNIRconeerserssmenssssnpssisssrsnnnssinissaiinsstsssnsusauesinsssassssshoavonsansaonssssinesssssas soogsssasvnvan 76
BIDHOZTAPRY ...ceoeeereeeneereeecnecesscenesss st ensesn s ssnossss susssas sassssssssasssssensasstssssssssnssssssssnsoss susssssssssnans 78

APPENAIX 1ocviriieeiriieientiiesirsesessesressssssesssssssssessssssessssssesssssnenssesssassssssssssssssssssssasnsssssssnssssasssss 81

vii

Figure 1-1
Figure 1-2
Figure 1-3
Figure 14

Figure 2-1
Figure 2-2
Figure 2-3
Figure 24

Figure 3-1
Figure 3-2
Figure 3-3
Figure 34

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10

Figure 5-1
Table 5-1

Table 6-1

List of Figures and Tables

Single site with Bnks iMDETedc.cioimmmmsmiissiesmisisissssasas shsvis ssssssissssis s
The hexAPONAL TAHICE it s it s sesvsesssvamavsasvans
Particle cOllision Tl CIASSES ... mianissssvabissvtsoisimesastasasssssssssisnssmssasasson
Torroaaal EAMICE (o s i e e st v e s
Oné-dimensionil PIDEIIE ... oninnmimit i e i S brssbasisossivassmssirassmat
Hexagonal neighborhoodccocvveeieiinnninnssensnensennnsessenssssssssesnssessesssrssssssnssssnsns

Wide serial arChiteCUTEcoceeersereeresssrseesesreeressesseseessssnssneseessessesansnnssmssssssassnneses
Sternberg partitioned architeCtiurecccceeereniresserneresseessessresnsssssssssessssssesssnans

Clock AISEIBIBON MEE: siiuicssiiiimmaisisbsngrssiiiossiGoreisitsbemnsiitsbostbosssaisnssinissnssssnss
Range/Skew of Random Variables (Metric FI€e)c.cccevevereerereererererereesesessesenenes
Skew in tree with uniform and gaussian delayceceverereeenreneeresesneneerneenesesssees
Range/Skew of Random Variables (MELFIC)ccceeeeimemenerirseeesesesessemessssssssssessesens

Space/Time Diagram of Pipelined Computationeeveene

Theoretical and Implemented LattiCesccoovmermreereressseessseessssnesesnesresnsssesaenns
Site Sta1e ENCOTING. ..corarsscsnsrmcsemsssasesssssssssnstssrmassinsarissssrsbisspassersansstosnsssssssnssassessssses
Lattice Site NUMDETINGccceoeeeeesniesssseessnenssmnessssssssssessssasssssssssnesssssssssssssssnsssssnssans
IBRIET SCAN PAIIATIV ..o clisssmaiivmmnmissnssssisivinssvsnei oiisrveei s ibiveiiosassssais sassvsasaasunssesisisie
Basic Architectiatd] PIAicuim cuisinscemsisoisiassasisns sibissssisoisins cussisbossonssisiinssuses isssssn
NI FIOOEPIBN i vicoviisiviimimiimssionsissssissssssssssiasisssiss s oo it srmivsesssisvobusssnsss ssasssnssis
ShifkBegister Dt FIOW o i i s
Neighborhood Generator Data Dependenciesc.coeicnmscinncsinninciieseseensnenes

Basic Prototype Architectural PIancimsinmsmmsnnnsassisnsssssisssmmessssssasssssnsas
Reported Actual FHP PerfOrmancecoccesenninsnsssinness s sessssessssessssesesnens

SOftware ENLry POINLScccceveierrerenessssessssssssnssessssesssssssssssssssassessranssssasssssnssssassssssas

Chapter 1
Introduction and Background

1.1. History

Many problems are characterized by the fact that they deal with data values distributed on a reg-
ular mesh or lattice. They arise in a wide variety of applications such as image processing, computer
vision, physical modeling, and the solution of partial differential equations. These problems often
require tremendous computational resources and they are often solved on large supercomputers, capa-
ble of high-speed floating-point performance. However, because of their distributed nature, special
purpose SIMD and MIMD processor systems have been built and applied to these problems [1-4].

Another, much simpler type of lattice computation received study in the early days of computer
science: cellular automata (CA) [5]. They are thought to be able to mimic the way that computations
are performed in nature because they model the simultaneous interaction of simple things distributed
over a large area or volume [6].

A cellular automaton is built from the following components:
1) Discrete state space Zover0---k-1.

2) Set of sites called domain A. This is a discrete regular lattice in n dimensions. Each site in the
domain has a value from Z and this is referred to as the state of the site. The state of all the sites
taken collectively is called the state of the CA.

3) An update rule ® gives the state at time ¢+1 from the state at time ¢ using the state of sites from
a fixed neighborhood over the n-dimensional lattice. & can therefore be thought of as a local
re-writing rule.

The cellular automaton originally served as a model to study self-replication in systems, and
efforts were directed toward understanding the structure of the computations it supported. After a
while, the interest within the computer science community died down, partly because the cellular auto-
maton came to be viewed in the less serious light of a mathematical game and a lay scientific recrea-
tion. Stephen Wolfram, in 1984 [7], reopened this field of research with a series of papers in which he
undertook a study of some properties of a class of one-dimensional cellular automata. Vastly

Page 2

increased computational power made this possible. The scientific community responded with a flurry
of papers on the applications of CA to real problems and the beginning of a mathematical treatment of
their important properties. Today, there are conferences dedicated to the subject of cellular automata
and their applications [8-15].

Within two years following Wolfram’s 1984 papers, an idea from the mid 1960s [16] was
revived by a group of researchers (Frisch, Hasslacher, and Pomeau) at Los Alamos National Labora-
tories [17]. In their paper they showed that in the limit of large lattice size, their automaton converges
to the two-dimensional Navier-Stokes equations. They simulated their discrete particle model of a
fluid by computer program and the results of the simulation bore a striking similarity to photographs of
actual flow visualization studies [18]. This was perhaps the earliest concrete example of where a cel-
lular automaton might offer a competitive alternative method of solving a hard problem in high
demand: fluid dynamics. This problem had traditionally been attacked by various grid and finite ele-
ment techniques in the solution of the Navier-Stokes partial differential equations [19-21].

Frisch, Hasslacher and Pomeau’s demonstration sparked our interest in lattice processing archi-
tectures because it was generally held at the time that only supercomputers would offer enough com-
putational power in the simulations of CAs to allow anything but trivial examples. We sought, as a
continuation of an informal discussion group on cellular automata and an ongoing VLSI project, an

architecture for high performance lattice computations that exploited custom VLSI.

This dissertation addresses the general problem of designing a high-performance VLSI-based
architecture for lattice computations. We use the Frisch, Hasslacher and Pomeau (FHP) lattice gas cel-
lular automaton, briefly described in the next section, and originally presented in [17] as the touchstone
for our work because it comprises many of the properties that are characteristic of lattice computa-
tions: small storage per site, large number of sites, small neighborhood per site, and complete unifor-
mity of the algorithm. However, unlike other special purpose architectures dedicated to problems of
this genre [22-25], our architecture can, in principle, be indefinitely pipelined and extended to provide
arbitrary performance on a given problem: it has the property we call linear speedup.

1.2. The FHP Lattice Gas Model

The FHP lattice gas model is a discrete particle model for fluid dynamics [17]. It is based on a
regular hexagonal lattice, giving each site six nearest neighbors. Particles move around the lattice, col-
liding only at lattice sites, and possibly scattering as a result. The links along which they move are bi-
directional, and particles can interact only at lattice sites. Two particles traveling in opposite direc-
tions on the same link are not considered to be colliding.

Each site has six neighbors, and outgoing particles may be present on any of these links. See
Figure 1-1. Therefore each site in the lattice has 64 states. However, some models must also provide
for the possibility that there is a particle at rest at the site (a ‘‘center’’) and, additionally, that the site

Page 3

may not be part of free space, but rather may be solid. The ‘‘solid’’ sites are used to compose boun-
daries and obstacles for the simulation. This raises the minimum number of bits required to describe
the state of a site from six to eight.

The links of a site are numbered:

Figure 1-1: A single site with the links numbered.

The *“B”’ bit denotes that the site is solid and the *‘C’’ bit denotes that the site contains a particle at

rest, a ‘‘center.’”’

The sites in the lattice are arranged in a hexagonal lattice, as illustrated in the following diagram.

Page 4

...... @.@@ @@
S o S YO SO - OO - S M S o
...... Yo SN S SN S S o SO S S
........... s N s S o Y S s S O o S
......
........... o SO Y YN W O, - O S
......
........... o5l sl s sl vve d s

Figure 1-2: The hexagonal lattice.

1.3. Scattering Rules

The particles moving in the lattice scatter at the sites according to rules that are designed to
make the simulation converge to solutions of the Navier-Stokes equations. The rules have two funda-
mental properties: conservation of mass (particle number), and conservation of momentum. Energy
need not be conserved, and in fact, this extra conservation law is not desirable because it would inhibit
the damping of oscillations and instabilities by the viscosity of the fluid.

Further, the collision rules are designed to minimize a particle’s mean-free-path: the-number of
lattice edges it traverses without colliding and scattering with another particle. The smaller the mean-
free-path, the lower the viscosity of the lattice gas, and the larger the Reynolds number of the simula-
tion. This fact lends impetus to having as many particle interactions (scattering rules) as possible. In
the event that a particle cannot scatter with another when they reach a lattice site, it continues its tra-

jectory with its previous velocity undisturbed.

The following diagram (Figure 1-3) illustrates the particle collision rules. The configuration
before the collision is shown on the left, with the configuration after the collision on the right. In the
case where symmetry implies the existence of more than one member of a rule family, only one

Page 5

member is shown. The complete set of rules can be derived by rotation of the before and after
configurations by any multiple of 60 degrees. The small circle at the site means that a particle is

present there at rest.

Collision Rule Before After Collision Rule Before After

e L \

— — e R 1 = T .:o:_..
281 _.. .._ ______ ¥ 2 _.o
38 _-.
3Ar _.
31— .._ S

4Br SRE il T—

4B1 ...

Figure 1-3: Particle collision rule classes

Obstacles, such as cylinders, plates, or wings, are placed in the lattice by changing a site from
“‘free-space’’ to “‘solid.”” While a “‘free-space’” site scatters particles according to the rules outlined
above, a “‘solid’’ site behaves differently and there are several permissible choices. The simplest pos-
sibility is to have each particle reflect back along its incoming path. Another possibility is to have
each particle reflect in such a way that its incident angle equals its reflected angle. Unfortunately, the
latter entails having different kinds of solid sites, depending on position in an object.

These two choices also correspond to different kinds of boundary layer effects [17]. In the first
case, the rule leads to a ‘‘no-slip”’ boundary, where the velocity of the fluid near a surface is zero. The

Page 6

second case corresponds to a *‘slip’” condition; the fluid next to a boundary can move. We adopt the
“‘no-slip”’ boundary because it is simpler, and more realistic for the kinds of fluid dynamic phenomena
that we expect to simulate.

Three of the rule classes, 2B, 3A, and 4B have L and R variants, so called because they scatter
left-ward and right-ward respectively. It is critical that both of these scatterings take place with equal
probability or a systematic bias will be introduced that will destroy the convergence properties of the
simulation. When the simulation is performed in software, it is a simple matter to “‘flip a coin’” and
choose either an L or an R rule when appropriate. Alternatively, the software simulation can use the R
rule during even-numbered generations and the L rule during the odd-numbered ones (or vice-versa).
In hardware, however, it is undesirable to ‘“‘flip a coin’’ or to change rules on every generation.
Instead, one of the chip’s two processors performs the R rules all the time, and the other performs the
L rules. This has the effect of placing the L and R rules throughout the lattice in a manner similar to
the squares of a checkerboard. The unbiased spatial distribution is equivalent (informally) to an
unbiased temporal distribution (coin flipping) because the events of interest occur randomly
throughout the lattice and the simulation.

The sequence in which particle collisions are computed at lattice sites is also critical to the suc-
cess of the simulation. In concept, the entire lattice is updated simultaneously, with each update called
a generation. In practice, the new site values can be computed in any sequence provided that particles
from generation i are the only ones used to compute particle velocities for generation i+1. If this rule
is violated, it is easy to give a configuration and a site update sequence that violates the mass (and

therefore the momentum) conservation law [17].

The behavior of a single particle in the lattice is effectively random, but it is correlated with the
behavior of other nearby particles. The speed of any particle in the lattice is unity, but the simulation
is intended to model a continuous process. The net velocity of an ensemble of particles over a small
region of the lattice (spatial averages) yields the hydrodynamic behavior that is sought. This function
is not computed by the Lattice Gas Cellular Automaton (LGCA) chip; it is done as part of a post-
processing phase after computation has taken place.

One question that remains before processing can be fully understood is: What is done with the
edges of the lattice? Again, there are several possibilities. The edges can be pair-wise attached so that
the lattice has the structure of a torus (Figure 1-4). This has the effect of replicating the simulation an
infinite number of times in all directions.

Page 7

| - | o
| - I
. =
p——
| - I
| o= i sane o=

Figure 1-4: Toroidal Lattice

In some cases this mirroring could be considered undesirable. It might be preferable to make the
finite lattice appear as if it were part of an infinite plane of fluid. Under certain conditions, this is pos-
sible. The key idea is that the links on the edges of the lattice should ‘‘see’” incoming particles distri-
buted as though the fluid extended infinitely in all directions, with a uniform velocity field. Let the
average density of particles in the lattice be 4. Put another way, d is the probability that a particle is
found on a given link at any site in the lattice. Assume that there is a uniform velocity field V, and that
the links point in directions @, . ..,d@. It can be shown that the probability of finding a particle on
link i is approximately [26]

P - d[l%m_[%%[f-;@wm -

The probability of finding a particle at rest at a site is given by Equation (1-1) with @V = 0.

If particles are introduced at the edges of the lattice with probabilities given by Equation (1-1),
then the lattice appears to be embedded in an infinite plane of fluid which is moving at velocity V.

Page 8

1.4. Summary of Results

This dissertation is divided into two parts. Part I (Chapters 2 and 3) discusses the theoretical and
analytical underpinnings of this work. Chapter 2 presents an analysis technique for determining the
design space of architectures geared for lattice computations and based in VLSI. We derive the allow-
able design space based on the input/output limitation of the VLSI technology.

The architecture that we implemented can theoretically provide an arbitrarily high site update
rate by concatenating any number of chips into a single pipeline. However, there is the question of
whether or not this can actually be done in practice. In the course of developing the custom chips and
the rest of the lattice gas system, we posed the following question: Can a linear pipeline be made arbi-
trarily deep or is there some point at which linear speedup breaks down and becomes sub-linear? Two
factors that seemed reasonable candidates for causes of failure are timing and reliability.

The first, timing, has been studied extensively. Numerous clocking schemes are known and
questions of synchronization and synchronization failure have been examined. However, there was lit-
tle information available on a model that describes how problems might accumulate as systems
increase in size. In fact, the only paper which we found that began to address such questions was [27].

Chapter 3 proposes and analyzes a probabilistic model for the accumulation of clock skew in
large, synchronous, multiple processing element systems. Using this model, we derive upper bounds
for expected skew, and its variance, in tree distribution systems with N synchronously clocked pro-

cessing elements.

We apply these results to two specific models for clock distribution. In the first, which we call
metric-free, the skew in a buffer stage is Gaussian with a variance independent of wire length. In this
case the upper bound on skew grows as 8(logN) for a system with N processing elements.

The second, metric, model, is intended to reflect VLSI constraints: the clock skew in a stage is
Gaussian with a variance proportional to wire length, and the distribution tree is an H-tree embedded
in the plane. In this case the upper bound on expected skew is ©(YNlogN) for a system with N proces-
sors. Thus the probabilistic model is more optimistic than the deterministic summation model of
Fisher and Kung [27], which predicts a clock skew @(N) in this case, and is also consistent with their
lower bound of Q(\/ﬁ) for planar embeddings.

We have estimates of the constants of proportionality, as well as the asymptotic behavior, and
we have verified the accuracy of our estimates by simulation. This shows that clock skew grows as a
function of system size, and system timing can limit the ultimate size of synchronous, two dimension-
ally organized processor systems.

Part I1 (Chapters 4 through 6) discusses the practical experience of implementing a system based
on a custom CMOS chip that simulates the FHP lattice gas. Chapter 4 describes the architecture and
implementation of the Lattice Gas Cellular Automaton (LGCA) chip which is a CMOS VLSI

Page 9

processor that provides 14 million site updates per second. The chips can be pipelined for even higher
performance, and it is theoretically possible to build a special purpose device that can provide the com-
putational equivalent of a CRAY XMP-48 supercomputer or a Thinking Machines, Inc. Connection
Machine for this problem.

To demonstrate the feasibility of such an undertaking, we have constructed a prototype, called
LGM-1, which uses ten of these chips arranged in a pipeline. The LGM-1 computes approximately 7
million site updates per second, which is only 5% of the maximum throughput of the 10 VLSI chips.
The discrepancy in performance levels is caused by the simple, low-bandwidth system interface and
the relatively small power of the Sun 3 workstation host.

Chapter 5 describes the hardware that we built to allow a Sun 3 workstation to act as a host for
our special purpose processor pipeline. Having had this experience, we gave some thought to the pro-
totyping process as a whole. This leads us to Chapter 6, which describes a proposed prototyping
environment which is sufficiently general to support chips fabricated by other designers. Its basic phi-
losophy is that it is more profitable to be able to add hardware easily than it is to make the underlying

system as fast as possible.

We conclude with Chapter 7, which summarizes and reviews the important results of this work.
It also outlines future tasks for the continuation of the work begun with this thesis.

1.5, Previously Published Material

Chapter 2 is taken from the first half of a paper that was co-authored with Richard Squier and
Kenneth Steiglitz and appears in its entirety in [28]. This work was supported in part by NSF Grant
ECS-8414674, U. S. Army Research Office-Durham Contract DAAG29-85-K-0191, and DARPA
Contract N0O0014-82-K-0549.

The results in Chapter 3 have been accepted for presentation at the International Conference on
Systolic Arrays to be held in San Diego, California on May 25-27, 1988 and have been submitted for
publication in the JIEEE Transactions on Computers. This work was supported by NSF Grant MIP-
8705454, U. S. Army Research Office-Durham Contract DAAG29-85-K-0191.

The material in Chapters 4 and 5 has been presented at the 22nd Conference on Information Sci-
ences and Systems held in Princeton, NJ on March 16-18, 1988.

Page 10

Chapter 2
Analysis of Lattice Architectures

2.1. Introduction

This chapter deals with the problems of designing and building practical, custom VLSI-based
computers for lattice calculations. These computational problems are characterized by being iterative,
defined on a regular lattice of points, uniform in space and time, local, and relatively simple at each
lattice point. Examples include numerical solution of differential equations, iterative image process-
ing, and cellular automata. The recently studied lattice gas automata, which are microscopic models

for fluid dynamics, are proposed as a testbed for the work.

The machines envisaged — lattice engines — would typically consist of many instances of a
custom chip and a general-purpose host machine for support. In many practical situations, the perfor-
mance of such machines is limited, not by the speed and size of the actual processing elements, but by
the communication bandwidth on- and off-chip, and by the memory capacity of the chip.

A familiar example of lattice-based computational tasks is two-dimensional image processing.
Many useful algorithms, such as linear filtering and median filtering, recompute values the same way
everywhere on the image, and so are perfectly uniform; they are local in that the computation at a
given point depends only on the immediate neighbors of the point in the two-dimensional image.

Another class of calculations, besides being uniform and local, have the additional important
characteristic of using only a few bits to store the values at lattice points, and so are extremely simple.
Further, they operate on local data iteratively, which means that they are not as demanding of external
data as many signal processing problems. These computational models — uniform, local, simple, and
iterative — are called cellular automata. We will next describe a particular class of cellular automata,
one that provides a good testbed for the general problems arising in the design of dedicated hardware
for lattice-based computations.

Page 11

2.2. A paradigm for lattice computations: the lattice gas model

Quite recently, there has been much attention given to a particularly promising kind of cellular
automaton, the so-called lattice gases, because they can model fluid dynamics [29]. These are lattices
governed by the following rules:

° At each lattice site, each edge of the lattice incident to that site may have exactly zero or
one particle traveling at unit speed away from that site, and, in some models, possibly a
particle at rest at the lattice site.

° There is a set of collision rules which determines, at each lattice site and at each time
step, what the next particle configuration will be on its incident edges.

. The collision rules satisfy certain physically plausible laws, especially particle-number

(mass) conservation, and momentum conservation.

These lattice gas models have an intrinsic exclusion principle, because no more than one particle can
occupy a given directed lattice edge at any given time. It is therefore surprising that they can model
fluid mechanics. In fact, in a two-dimensional hexagonally connected lattice, it has been shown that
the Navier-Stokes equation is satisfied in the limit of large lattice size. This model is called the FHP
model, after Frisch, Hasslacher, and Pomeau [17]. The older HPP [30] model, which uses an orthogo-
nal lattice, does not lead to isotropic solutions [17].

The idea of using hexagonal lattice gas models to predict features of fluid flow seems to be about
two years old, and whether the general approach of simulating a lattice gas can ever be competitive
with more familiar numerical solution of the Navier-Stokes equation is certainly a premature question.
Extensions to three dimensional gases are just now being formulated [31], and quantitative experimen-
tal verification of the two-dimensional results is fragmentary. The Reynolds numbers achievable
depend on the size of the lattices used, and very large Reynolds numbers will require huge lattices, and
correspondingly huge computation rates. For a discussion of the scaling of the lattice computations
with Reynolds number, see [32].

What is clear is that the ultimate practicality of the approach will depend on the technology of
special-purpose hardware implementations for the models involved. Furthermore, the uniformity,
locality and simplicity of the model mean that this is an ideal testbed for dedicated hardware that is
based on custom chips. We will therefore use the lattice gas problem as a running example in what
follows. We especially want to study the interaction between the design of custom VLSI chips and the
design of the overall system architecture for this class of problems.

We will present and compare two competing architectures for lattice gas cellular automata
(LGCA) computations that are each based on VLSI custom processors. The analysis will focus on the
permissible design space given the usual chip constraints of area and pin-out and on the achievable
performance within the design space.

Page 12

2.3. Serial Pipelined Architectures for Lattice Processing

We are primarily interested in special-purpose, VLSI-based processor architectures that have
more than one PE (processing element) per custom chip. It is important to recognize that if the PE’s
are not kept busy, then it might be more effective (in terms of overall throughput) to have fewer PE’s
per chip but to use them more efficiently. Although there are many architectures that have the pro-
perty of using PE’s efficiently, we will describe only two, both based on the idea of serial pipelining
(see Figure 2-1). The boxes containing the letter f are processing elements that compute the function f.
The other boxes represent memory that is local to the processor.

This approach has the benefit that the bandwidth to the processor system is small even though
the number of active PE’s is large. The serial technique has been used for image processing where the
size of the two-dimensional grid is small and fixed [11, 33, 34], and has also been used to design a high
performance custom processor for a one-dimensional cellular automaton [35].

Figure 2-1: One-Dimensional Pipeline

Consider what is required to pipeline a computation. We must guarantee that the appropriate
site values of the correct ages are presented to the computing elements. In the case of the LGCA, we

can express this data dependency as:
ai*' = f(N(a)

where a! is the value at lattice site g; at time ¢, N (a? is the neighborhood of the lattice site a; at time f,
and f is the function that determines the new value of a; based on its neighborhood. The LGCA
requires all the points in the neighborhood of a to be the same age in order to compute the new value,
a'*!. The LGCA has a neighborhood that looks like:

Page 13

OOO@C)@OOO
OO®®®®®OO
O O 0O 00

Figure 2-2: Hexagonal Neighborhood
The sites marked with X constitute the neighborhood of site a.

One-dimensional pipelining also requires a linear ordering of the sites in the array. That is, we
wish to send the values associated with the sites one at a time into the one dimensional pipeline and
receive the sequence of sites in the same order possibly some generations later. Therefore, we would
like sites that are close together in the lattice to be close together in the stream. In this way. the serial
PE requires a small local memory because neighborhoods (sites that are close together in the array)
will also be close together in the stream. Unfortunately, the Lattice Gas Automaton can require a large
amount of local memory per PE because there is no sub-linear embedding of an array into a list [36].

The natural row-major (raster scan) embedding of the amay into a list preserves 2-
neighborhoods” with diameter 2n—2. This means that a full neighborhood of a site from an n X lat-
tice is distributed in the list so that some elements of the neighborhood are at least 2n—2 positions
apart. This embedding is undesirable for two reasons. The amount of local memory required by a PE
is a function of the problem instance, forcing us to decide in advance the size of one dimension of the
lattice (one can actually process a prism array, finite in all but one dimension) because the chip will
only work for a single problem size due to its fixed span. The second deficiency is due to the size of
the span. If n=1000, then each PE would require about 2000 sites worth of memory. This puts a
severe restriction on the number of PE’s that can be placed on a chip.

Unfortunately, the 2n-2 embedding is optimal. Rosenberg showed this bound holds for prism
array realizations but it has been unknown whether it is possible do better for finite array realizations.
Rosenberg’s best lower bound for the finite array case has never been achieved and he suspected that
the row-major scheme was optimal. Sternberg [37] also questioned whether or not the storage require-
ment for a serial pipelined machine could be reduced. Supowit and Young [38] showed that the row-
major embedding is optimal and therefore a serial pipeline must use at least 2n—2 storage.

* Sites that are two edge traversals apart in the lattice

Page 14

Theorem 2-1: Place the numbers 1, ... ,n? in a square array a (i,j), and define the span of the array
to be

max{ la@+1.))-aG.p)| . la(i.j+1}-a(i.j)|}

Then span 2n.
Proof: Put the numbers in the array one at a time in order, starting with 1. When, for the first time,
there is either a number in every row or a number in every column, stop. Without loss of generality,

assume this happens with a number in every row.

We claim that there cannot be a full row. Suppose the contrary. The last number entered was
placed in an empty row, so there must have been a full row before we stopped. This would mean there

was a number in every column before there was a number in every row.

Since there is no full row, but a number in every row, there is at least one vacant place in every
row that is adjacent to an occupied spot. Choose one such vacant place in each row, and call them set
F (with | F| =n). Now if we stopped after placing the number ¢, the places in F will get filled with
numbers greater than . The largest number that will be put in a location in F is > ¢ +n, and will be adja-
centtoanumber <+ []

The appealing aspects of the serial architecture are the simplicity of its design, its small area in
comparison to other architectures, and the small input/output bandwidth requirement. The computa-
tion proceeds on a wavefront [39] through time and space, each succeeding PE using the data from the
previous PE without the need for further external data.

2.4. Wide Serial Architecture (WSA)

Assume that data from the two dimensional array is serialized by a row major raster scan.
Throughput in a serial architecture can be improved by adding concurrency at each level of the pipe-
line. One way to accomplish this is to have each pipeline stage compute the new value of more than
one site each clock period. For example, if the computation at PE j is at the point where site a, circled,
is to be updated, then PE j contains the data indicated by strike-out in the following:

O00000 0060
O O 0O 66-66666°0
6666600 0 O
66606 00 00 0 O0
OO0 00 0 O L O
OO0 0 0 00O 00

—_

Page 15

We could allow a second PE j' to compute site a+1 at the same time if we store just one more data

point.

O O OO O0OO0O0OO0O0OO0
g O O o—6—0-0-o-0-9

e—6—-6-0-8-66-6-6-0
66666000000

O 00000 0060
O 000000 Qw0

The most attractive feature of this scheme is that performance is increased, but at a cost of only
the incremental amount of memory needed to store the extra sites. The on-chip memory per PE is also
reduced dramatically, decreasing linearly with the number of PE’s per chip. However, there is a price
to pay: two new site valueé are required every clock period so that two site updates can be performed.
The extra PE’s require added bandwidth to and from the chip and this implies that the main memory
system must provide that bandwidth as pins or wires.

As an example, the following figure shows how two PE’s on the same chip can cooperate on a
computation. Each square of the shift register memory holds the value of one site in the lattice. Every
clock period, two new site values are input to the chip, two sites updated and their values output to the
next chip in the pipeline.

PE PE

Figure 2-3: Wide Serial Architecture

2.5. Sternberg Partitioned Architecture (SPA)

In [37] Sternberg proposes that a large array computation can be divided among several serial
processors, each of which operates as described earlier. The array is divided into adjacent, non-
overlapping columnar slices and a fully serial processor is assigned to each slice (see Figure 2-4).

The processors are not exactly the same as those described above; they are augmented to pro-

vide a bidirectional synchronous communication channel between adjacent partitions so that sites

Page 16

Site Lattice

|s-um|___ L] Ll L | Pipetine

~
&
po==c=ccsccrqfesccscccsces

ILIE
i
:
i

Figure 2-4: Sternberg Partitioned Architecture

whose neighborhoods do not lie entirely in the storage of a single PE can be computed correctly and in
step with other site updates. See [37] for details.

Dividing the work in this way accomplishes three things. First, it decreases the amount of
storage that each PE needs in order to delay site values for correct operation of the pipeline. This
comes about because each PE needs to delay only two lines of its slice, not of the whole line width.
Second, it increases the ratio of processing elements to the total number of sites, permitting an increase
in the maximum throughput by a multiplicative constant equal to the number of slices. Third, it pro-
vides a degree of modularity and extensibility. It is possible to join two smaller machines along an
edge to form a machine that handles a larger problem.

In the case of a VLSI implementation, decreasing the size of the local storage is extremely
important because most of the silicon area in the implementation of a serial processor is shift register.
Since each PE in the SPA architecture requires fewer shift register storage cells, it is possible to place
several PE’s on a chip, whereas if each serial PE were required to store two lines of the whole lattice,
then only one or two PE’s could be placed on a VLSI chip with current technology. The only way
around this limitation is to use another technology to implement the required storage, such as off-chip

commercial memories, in which case we quickly encounter pin limitations.

Page 17

It is important to recognize that the total amount of storage required under this organization is
two lines of the whole lattice per pipeline stage. Thus the total storage requirement under this imple-
mentation is not reduced below that of the fully serial approach presented earlier. In addition, each
column of serial processors requires its own data path to and from main memory, and this data path is
a relatively expensive commodity.

2.6. Analysis and Comparison of WSA and SPA

In this section we analyze and compare the Sternberg partitioned architecture (SPA) with the
wide-serial architecture (WSA) that we proposed in Section 4. The analysis derives the optimum
throughput and area of processing systems composed of VLSI chips for the two-dimensional FHP lat-
tice gas problem. We define the design parameters for each system and derive the design curves and
optimum values of those parameters. For the analysis, we assume that a memory system capable of
providing full bandwidth to the processor system is available.” Finally, we compare the systems on the
basis of maximum throughput, total system area, and throughput-to-area ratio. We also discuss the
relative advantages and disadvantages of both architectures with an emphasis on system complexity

and ease of implementation.

2.7. Wide-Serial Architecture (WSA)

The wide-serial architecture (WSA) has system parameters: (assumes 1 pipeline stage per chip,

P processing elements wide)

N =k chips (System Area) (2-1)
R=FPk ?:-E% (System Throughput) (2-2)
and chip constraints
2D-P<II (Chip Pins) (2-3)
BL+TP+3)+YP < (Chip Area) (2-4)
where

“Thisisa very important assumption.

Page 18

N is the total number of chips constituting the processor,

P is the number of PE’s per VLSI chip,

k is the total depth in PE’s of the processor pipeline (path length),

F is the major cycle time of the chip,

D is the number of bits required to represent the state of a lattice site,
L is the number of sites along an edge of the square lattice,

IT is the total number of pins usable for input/output,

B is the area of a shift register that holds a site value, in A%,

yis the area of a PE, in A2,

a. is the total usable chip area, in A2.

For convenience, we also define:
B= -g = normalized site storage area

T'= % = normalized processor area

Less formally, this says that the number of chips that we need for the processor equals the total
pipeline depth required, k. The processing rate that this system achieves is equal to the depth of the
pipeline, multiplied by the number of processors at each depth, multiplied by the rate at which a pro-
cessor computes new sites. We are assuming that each VLSI chip will contain only a single wide

parallel pipeline stage. That is, the chip is not internally pipelined with wide-serial processors.

We wish to maximize R subject to having a fixed number of chips, N = Ny, and subject to con-
straints on the pin count and area of the VLSI custom chip. Notice that the problem is equivalent to
maximizing P subject to the chip constraints because R = F-P+k = F-P-N, where F and N are fixed (N
is fixed at N).

The constraints are described in the L-P plane by the following two inequalities:

P< -2% 2-5)
1-3B-2BL
P<—pr (6)

If we consider an example where D =8, I1=72, B = 576x107%, and I" = 19.4x107? (figures derived
from our actual layouts) we get the following graph:

Page 19

40 — (Eq. 2-6)
30
P
(PEs/Chip) 20
10—
(Eq.p-5)
0— g
I I I
0 500 1000
L
(Sites/Chip)

The chip constraints require that the operating point determined by P and L lie below both
curves. The intersection of the two curves is P =4 and L =785. Beyond that point, we need to
decrease the number of processors on a chip to make room for more memory — an undesirable situa-
tion because throughput then drops off linearly. Furthermore, we want L to be as big as possible, so
the corner is the logical choice of operating point.

We are also interested in the ultimate maximum performance that the architecture can deliver
using any number of chips. It is easy to see that the maximum throughput for a fixed clock frequency,
F, comes when the pipeline depth, k, is at a maximum. A maximum value, k,x = L, arises because at
that point the pipeline contains all the values of the sites in the lattice and there is no new data to intro-

duce into the processor pipeline. The maximum values for processor system area and processor sys-

tem throughput are therefore:
Nowx =L chips 27
I1 sites
Rpn=7=FL — 2-
max = 5 FL PR (2-8)

It is also interesting to note that there is an upper bound on L even if we were to accept arbi-
trarily slow computation. At a certain point all the chip area would be used for memory. Jeaving no
room for PE’s.

The major limitation of this architecture is that the largest problem instance is fixed by the chip
technology, but it has the redeeming features of simplicity, ease of implementation, and small main
memory bandwidth.

Page 20

2.8. Sternberg Partitioned Architecture (SPA)
This processor computes updates for a lattice L sites on a side by partitioning the lattice into
non-overlapping slices that are each W sites wide (there are % such slices). Each of the VLSI chips

that compose the processor computes P,, slices and the computation of each slice is pipelined on the
chip to a depth P, (see Figure 2-4). It is then easy to see that the system has area and throughput:

L
N= e, chips (System Area) (2-9)
Pw P.I:
L sites
R i, S 3
W sec (System Throughput) (2-10)

To derive the constraints on the VLSI chip, notice that the communication path between chips in
the direction of the data pipeline requires 2DP,, pins, and that the ‘‘slice to slice’’ path requires 2EP;,
where E is the number of bits required to complete the information contained in a single site’s neigh-
borhood, when that neighborhood is split across a slice boundary. However, the chip must use no
more than o area, of which processors each require v, and memory to hold a site value requires [.

Thus the whole chip is governed by the constraints
2DP,, + 2EP, <I1 (Chip Pins) (2-11)
(QW+9B +Y)P.P, < (Chip Area) (2-12)
We again wish to maximize throughput with respect to a fixed number of chips, N = N, while at

the same time satisfying the VLSI chip constraints of area and bandwidth. This again turns out to be
equivalent to maximizing the total number of processors on the chip because we can easily verify by

direct substitution that R = F -k--lL-‘-'/— =P_P,'F-N,. Since F and N are fixed, it suffices to maximize the

product PP, = P subject to the constraints above.

To evaluate the design space of SPA, it is helpful to view it in the W-P plane. We do this via a

change of variables:
P=P,P;.
Rewriting the chip inequalities yields:
2DP,, + 2EPLSH (2-13)
(QW+9B +T)P <1 (2-14)

where P,,, P, and W are variables. This is the logical choice of variables for this architecture because
they are the ones that are constrained by the chip technology and govern the optimal design of the
chip. Once we know good values for them, a machine which can compute for an arbitrary lattice

Page 21

width L can be built by increasing the number of slices of width W.

‘When these curves are projected onto the W — P plane using the values for D, I, B from the pre-
vious example; and setting E to 3 (three bits must be passed to complete an LGCA neighborhood) we

have:
40 -
30 -
P
(PEs/Chip) s
(Eq.p-13)
= k
0 - (Eq.p-14)
T T T
0 500 1000
W
(Sites/Slice)

The constant curve is a projection of the first constraint where P,, is given the value which permits P to
achieve its maximum value. For this example, this occurs at P,, = % As before, we need to operate

below both curves, and the comner at P = 13.5 and W =43 yields the best choice. Beyond this point,
throughput drops off quite rapidly as the silicon real estate is used by memory.

2.9. Discussion

The above analysis gives us two different viewpoints from which to make a comparison between
these two architectures. Ignoring extensibility, we can make a comparison between the two designs
when they are optimized for throughput, as they were in the preceding analysis. To include extensibil-
ity as a criterion, we can make the comparison by using a slight variant of WSA which allows for
extensibility by sacrificing processing speed.

First, let us compare the designs optimized for throughput without regard to extensibility. The
optimal WSA configuration limits the lattice length to L =785. Both systems, WSA and SPA, have
throughput rates which grow linearly with the number of chips. However, SPA is three times faster
than WSA (SPA has twelve processors per chip while WSA has four). On the other hand, the SPA
system requires four times as much main memory bandwidth as the WSA system: 262 bits/tick versus
64 bits/tick.

The above argument contains a bias in favor of SPA. System timing is an important considera-
tion which can make it difficult to clock SPA as fast as WSA. The WSA architecture has connectivity

Page 22

only in one dimension whereas the SPA system requires communication in both the pipeline direction
and the synchronous side-to-side data paths. This added complexity is a more pronounced drawback
for SPA when extensibility is considered, as we will mention below. The conclusion in both cases
favors the WSA system when it comes to considering an implementation. There is also the matter of
the data access pattern in the memory. The WSA machine accesses the data in a strict raster scan pat-
tern which is simpler than the row-staggered pattern that the SPA scheme requires for its operation.

The SPA architecture has one considerable advantage over the WSA scheme: extensibility.
Smaller instances of an SPA machine can be joined together to form a machine that computes a larger
lattice. This is not true for the WSA case, where computation is limited to lattice sizes which do not
exceed L as given by the chip area constraint, because all the required data must fit on the chip. This
requirement is relaxed in the SPA scheme because data can be moved between adjacent chips as W is
adjusted to the chip constraints and an arbitrary lattice width L can be supported by composing a suit-
able number of slices. In this respect the two schemes seem incomparable.

Our second point of view on the comparison of these two architectures is facilitated by consider-
ing a slight variation of WSA which allows extension of the lattice size. The extension can be accom-
plished by moving a portion of the shift register off chip. The pin constraints given previously, with
the same constants, allow only one processor per chip in this case. A stage in the pipeline consists of a
processor chip and associated shift registers sufficient to hold the remainder of the 2L + 10 node values
which do not fit onto the processor chip. We will call this version of WSA WSA-E.

Both systems, SPA and WSA-E, have throughput rates that grow linearly with the number of
chips in the system for a fixed lattice size L. However, the constant of proportionality between the two
rates grows with increasing lattice size. The reason is that the number of processors per unit chip area
is independent of lattice size for SPA, whereas it decreases with increasing lattice size for WSA-E.
So, for instance, given the same number of chips and a lattice size L<785, the SPA system is twelve
times faster than WSA-E because it has twelve processors per chip as opposed to one per chip.

A better understanding of the contrasts between the two systems can be obtained by looking at
requirements for main memory bandwidth and storage area per processor. WSA-E has a constant
bandwidth requirement of 16 bits per clock tick and requires (2L + 10)B storage area per processor;

SPA has a main memory bandwidth requirement of % bits per tick and requires (1284)B area per pro-
cessor. For a fixed processing rate the penalty for larger lattice size is either linear growth in the
number of chips for the WSA-E system, or linear growth in the main memory bandwidth in the SPA

case. For example, if L = 1000, then WSA-E requires about twice as much area as SPA, while requir-
ing about one twentieth as much bandwidth.

Page 23

2.10. Summary

The technique described in this chapter can be used to analyze other architectures. It offers a
systematic way to arrive at important system parameters. Its greatest limitation is that it depends on
constants of proportionality and offers no meaningful asymptotic information. It also requires that the
design has progressed at least as far as the layout of certain basic cells so that areas can be used in cal-

culations.

Another limitation is that the technique neglects interconnection and wiring area, which we later
found to have significant effect. It reduced the number of PEs from 4 to 2 and the line length, L, from
785 to 512 in our actual implementation (see Chapter 4).

The assumption that the required memory bandwidth is always available from the host is not
realistic. Initially, we had included a parameter which characterized the host/PE bandwidth mismatch.
However, the algebra obscured the analysis and comparison, and we therefore chose to present only

the simplified presentation.

Nevertheless, this analysis provided enough information to help us choose our implementation
and rule out alternate architectures. Given the simplicity and directness of WSA, and given that per-
formance could be increased almost arbitrarily by cascading chips, we decided to implement the WSA
architecture,

Page 24

Chapter 3
A Probabilistic Model For Clock Skew

3.1. Introduction

The accumulation of clock skew, the differences in arrival times of signals in a computing sys-
tem with a central clock, is one of the factors that limit the speed of such systems. While some
researchers have attempted to describe the underlying physical causes of skew [40,41], there is little
published material describing models of skew accumulation and the asymptotic behavior of skew with

increasing system size.

Fisher and Kung in [27] present two models and derive bounds on clock skew under each. They
assume, in each case, that the global clock is distributed via a rooted binary tree of buffers and wires.

The first of their two models, the ‘‘difference model,”’ specifies that the skew between two
clocked nodes is proportional to the difference in the path lengths from each clocked node to their
nearest common ancestor in the distribution tree. ‘‘Path length’” means the actual geometric length,
not the number of edge traversals in a representative graph. Under this model, both one and two-
dimensional arrays can be clocked without skew by distributing the global signal via a topology that
has equal path length to each clocked node. An H-tree is just one example of such a topology.

The second model, the ‘‘summation model,”’ is less optimistic. It states that the skew between
two clocked nodes is proportional to the sum of the path lengths from each node to their nearest com-
mon ancestor. Using this model, Fisher and Kung were able to show that one-dimensional arrays of
processors can be clocked with a constant amount of skew, whereas two-dimensional arrays cannot.
They establish a lower bound of Q(\W), and this model leads to a skew of &(N) for an H-tree.

Both of these models ignore what we consider to be a fundamental property of skew, namely, its
roots in the random variations of propagation time through buffers and wires.

Others [42] have developed equations that relate skew to system performance and stability, in
terms of simple timing parameters such as the propagation time and the settling time of the com-
ponents of the processing elements. The equations specify bounds on the skew for proper operation in

Page 25

terms of other system timing parameters. No attempt is made to address the nature of the origin of
skew, nor to relate its rate of growth with system size.

This chapter presents and analyzes a probabilistic model for the accumulation of skew in a glo-
bally distributed signal. We determine upper bounds for the expected clock skew between processing
elements in a processor armray, and show that under the assumption that the delay is the same at each
stage of the clock distribution tree, any array can be clocked with expected skew that is O(logN)

where N is the number of processing elements.

The organization of the chapter is as follows. In Section 3-2 we present our formal model of
global signal distribution and skew accumulation. Section 3-3 presents an analysis of the model and
derives upper bounds for the expected skew in a global signal. Section 3-4 applies the results to two
examples, and we conclude by comparing our results to previously published results and by discussing
the implications of these upper bounds on the construction of large synchronous systems.

3.2. A General Model of Signal Distribution

A global signal, such as a clock, is distributed throughout a processing system by a signal distri-
bution system. The distribution system is composed of a number of buffers (amplifiers) and wires

which may be organized in a number of different ways. Two common structures are a bus and a tree.

The clock distribution system can be represented by a graph. It has a single distinguished vertex
which is called the source. This is where the origin of the global signal is located, and it is the only
input to the distribution system. The distribution system can have multiple destinations, but for practi-
cal reasons, there is exactly one path from the source to each destination. We assume that a destina-
tion is a processing element (PE) which may have its own internal signal distribution system. Using
the tools which are developed below, the internal system can be modeled in a similar manner to the
global signal distribution system. For our purposes, however, we can think of it as hidden; we concern
ourselves only with the global signal system.

There is a second graph superimposed on the clock distribution graph. It is a communication
graph which specifies the PE-to-PE connectivity. It can take any topology: linear list, mesh, complete,
bipartite, etc, and forms connections only among the PEs. The PEs use the global clock to synchronize

their communication along the communication graph.

Each buffer and wire in the clock distribution system propagates and delays its incoming signal.
Therefore, it is natural to associate every delay element in the signal distribution system, whether a
buffer or a wire, with a real random variable, d;. The value of the random variable gives the delay con-
tribution of that element. The delay at any stage of the clock distribution system is the sum of the
delays from the signal source to that point. An equivalent process takes place in the model. The delay
at any point is a real random variable which is the sum of all the random variables along the path from
the source to that point.

Page 26

These definitions constitute the essence of the model. They make it very simple, but extremely
general, and allow one to model any clock distribution system. Geometry can be incorporated into the
model by attaching an appropriate probability density function to wire delays. There is also the free-
dom to analyze as much or as little as desired by creating simplified models, in which buffer delays or
wire delays can be ignored entirely.

Our primary interest is skew, the distribution of arrival times of a particular clock pulse to all of
the PEs that communicate. Since the model is probabilistic, it is not possible to give an expression for
the worst-case skew. Rather, we derive an expression for the expected maximum skew by assuming
that the PEs are interconnected with a complete graph.

So far, we have made no mention of any particular probability density functions. The total delay
through the distribution system, i.e., the arrival time of a clock pulse to a PE, is the sum of a number of
random variables. In many cases, it quickly converges to a normal distribution, by the Central Limit
Theorem [43-45]. Thus, in the case of the skew computations, the actual distributions attached to
buffers and wires are usually relatively unimportant.

The arrival times of a signal to the N PEs constitute a random sample of size N. From this sam-
ple, find the difference between the largest of them, A ,,, and smallest, A_;,. The random variable
R = A ax — Amin is called the range of the sample. The range is equivalent to the skew in the signal
distribution system. The maximum clocking frequency clearly can be no faster than 1/R.

3.3. Analysis and Upper Bounds

The literature contains techniques to compute the expected range of a set of independent identi-
cally distributed (iid) random variables. However, little is described about the case when the variables
are dependent, as they are in the clock tree. Fortunately, it is possible to use the statistics of iid variates
as an upper bound on the statistics of the dependent variates of the clock tree. The relationship is
given by Theorem 3-1, which can be paraphrased in the following informal way:

The expected range of a set of random variables, which are depen-
dent because they are the sums of overlapping variables, is no
greater than the expected range of the corresponding set of
independent random variables.

Let y;,i=1, 2, ..., N be independent identically distributed (iid) real random variables, with
N =kn, and let the sets o; j =1, 2, ..., n be n disjoint subsets of distinct y;, each of cardinality k. Let
the T; be similarly defined, with k distinct elements each, except that they are not necessarily pairwise
disjoint. Define the corresponding sums of the y; by

=2

YEO;

Page 27

and

=Xy

YET;

We want to show that the expected range of the s; dominates the expected range of the ¢;, and so any
upper bound for the former also holds for the latter. First we need two lemmas.

Lemma 3-1. Let F,(x) and Fg(x) be probability distribution functions for random variables A and B
respectively, and suppose further that F, and Fj are differentiable and A and B have finite means and
variances. If F4(x) = Fg(x) for all x, then E(A) < E(B).

Proof. Integrating x dF (x) by parts from a to b for F and F4 and subtracting, we get

b
EB)-E(A) = lim [bAF(b)—aAF(a)—IAF(x)dx

by too

where AF = Fg — F4 <0. To show that the first two terms go to zero as a and b approach —eo and +eo

respectively, we apply 1"Hospital’s Rule:

41 ar)

dq _ AF'(g)

1

d)|1
dq| q q’

= —q*AF'(q)

F, and Fy are differentiable and have finite variances, so the integral
+oo
[x* AF' () dx (3-1)

is finite. This implies that the integrand of (3-1) must go to zero as x approaches +eo and —eo. There-

fore
E®B)-E(A) = - [AF(x)dx 2 0
o

The next lemma expresses the intuition that the pre-condition y < can only make y < a more prob-
able, no matter what o and B are.

Lemma 3-2. For any o and B, and any continuous probability density P,

Py<aly<p) 2 Py<a)

Page 28

Proof. For convenience write
Pysa) = G(ow
Py<saly<P)=G(alp)
PO <o y<P) = G(a p)
so that we want to show

Gaip) = 8B 5 6w

First, consider the case o < B. Since
G (a, B) = G(min[c, B])

we have

G| B) = % > G ()

When a > B we have simply

G(aIB)=—g—%%=lzG(a)

O

Lemma 3-2 is easily generalized for any number of conditions to
G(a I Bl Y oo -) 2 G(a) (3'2)
and in fact to the probability distribution of sums of variables, conditioned on other sums, so long as

the inequalities in the conditions all go the same way. That is, write any Y.y; Sx as y, <x — 3.y; for
ik

some k and apply Lemma 3-2. There are no restrictions on o and p.

Theorem 3-1. The expected range of the s; is no smaller than the expected range of the ¢;.

Proof. Note first that because E[range] = E[max — min] = E[max] — E[min], it suffices to
show that the expected max of the s; cannot be less than the expected max of the #;; the appropriate
inequality for the min follows by a symmetric argument.

Let S and T be the maximum of the sums s;, j=1,2, .., n and ¢;, j =1, 2, ..., n respectively,
and Fg and Fy their distribution functions. By Lemma 3-1, it suffices to show that Fr(x) > Fs(x) for
every x.

To simplify notation, let S; denote the event 5;,= ¥, y <x and T; the event ;= 3 y <x. The

YEG; YET;

distribution function F¢(x) can then be written as

Page 29

Fg(x) = P(§1,82,...,8,)
= P(§,)P(5,) - - - P(S,) because the §; are independent.
The distribution of T is
Fr(x) = P(Ty,T,,....T,)

=PT)PT, | TOP(T3 1 T, T)P(T4 | T, Ty, T3),...

by iterated Bayes’ rule. Each factor in this product is
P(l,- <x | 18X 125X i g SX)

All the conditioning is of the form Zy < x and so we can apply the generalized version of Lemma 3-2
to show that each factor is = P(T;). The result Fr = Fg follows from the fact that the s; and ¢; are
identically distributed, each being the sum of k iid variables. [

Now that we have established this theorem, any bound that we show for iid variates is an upper
bound for the variates that arise in the clock distribution system model.

At this point we are going to assume that the arrival times are Gaussian, motivated by the Cen-
tral Limit Theorem. Although no closed-form expression is known for the expected value and the
variance of the range of N iid Gaussian distributed random variables, it is possible to obtain asymptotic
expressions. We present these as Theorem 3-2, the proof of which is due to Cramér.

Theorem 3-2. [45] Let x;, i =1,..,N be random samples from an n(u,0?) disu'ibution,* and let
R = Xpu — Xmin be the difference of the largest and smallest x;. Then the expected value of R is

asymptotically:
4logN-loglogN-logdn+2C 1

ER] = of 2108 +0 33
e (2logN)* [logN H e

where C = 0.5772... is Euler’s constant. The variance of R is given by

o n? 1

= o & -4
VarR] = i 6 0[loglNJ G4

Equation (3-3) is therefore an asymptotic upper bound on the expected skew in a clock distribution
tree with N leaves. Note that ¢ will in general be a function of N.

l'IWe use the notation n(y, 02) to denote a normal distribution with mean p and variance o2

Page 30

3.4. Examples

We now analyze two examples of global signal distribution systems. This is meant to clarify
how a model is developed for a real problem. The examples represent what we consider to be com-
mon, typical clock distribution systems, but they are not intended to represent the full scope of all pos-
sibilities.

3.5. Metric-Free Tree

The first example is a metric-free tree. This type of topology could be used to implement a
large-scale distribution system which would provide a clock to chips on a board or to boards in a sys-
tem. It does not constrain the circuit to be planar, so it is possible to equalize the lengths of all wires in
the tree. Therefore, every wire has the same probability distribution for delay, which can be lumped
with the delay of the buffer that follows it. This results in a model of a tree of buffers without wires.

Assume that the global clock signal is distributed via a binary tree of buffers and wires. The
root of the tree is the source of the signal, the PEs are placed at the leaves, and the intervening levels
consist of buffers and wires. See Figure 3-1 for a schematic representation of the tree.

Figure 3-1: Clock Distribution Tree

In the figure, internal nodes, represented by small circles, are buffers which retransmit the clock
signal. The leaf nodes of the tree, represented by squares, are the PEs that perform the actaal compu-
tation and that communicate among themselves. Lines connecting nodes of the clock tree represent
wires that conduct the clock signal to all the PEs.

Let the delay through a buffer of the clock distribution tree be a real random variable, d;. The
arrival time of a clock signal to any PE is the sum of the delays along the path from the root of the tree

Page 31

to the PE. Remember that all the delay is caused by the buffers; the effect of a wire is absorbed by the
effect of the buffer that follows it. The arrival time at leaf i, A;, is therefore the random variable

A; =73 d; where the d; lie on the path from the root to i.
In order to apply Theorem 3-2, we must estimate the underlying distribution of the A;.

Assuming that there are N PEs, each A; is the sum of logN d;’s, and that each d; has variance ol.
By our Gaussian assumption, the A; have the distribution n(u,logN, 6ZlogN). Applying Theorem 3-2
with this distribution, we find that the expected skew is

E[Skew] = 5, Viogh | 212

—loglogN-logdn+2C +0[1 H 55

(2logN)” logN

=0y —j;lcgN + lower order terms

= 6(logN)

The variance of the skew is

Var[skew] = G%% +0

1
logN]
which goes to a constant as N — oo,

Computer simulations corroborate the asymptotic skew results. Figure 2 shows the asymptotic
curve, Equation (3), along with data gathered from simulation of the range of arrival times in a binary
clock tree and the range of N iid n(0,logN) random variables. Both simulations present the average
behavior from 100 trials. The simulations confirm that the range of the iid variates is an upper bound
for the range of the dependent variables of the clock distribution tree, as predicted by Theorem 3-1.

To check the result when the component delays are not Gaussian, we simulated a clock tree
where the buffer delays were uniform over [-.5,+.5]. These data were compared to the results from a
similar computation when the buffer delay was normally distributed with mean 0 and variance 1/12
(The sum of k uniform [-.5,+.5] variates converges to n(0, k/12)). Figure 3-3 presents the results.
Even for trees of small depth, the expected range in both cases is nearly identical. This is due to the

rapid convergence of the sums of random variables to a normal distribution.

The explicit inclusion of wire delays into the model does not significantly alter the results.
Wires can be considered to contribute an additional random delay at each level of the tree. Assuming
that wire delays are distributed similarly to the buffer delays, the effect is to increase the variance of
the distribution of arrival times by a constant factor. This does not alter the asymptotic behavior of
skew.

Page 32

Asyhptote—Eqn. 35
- “Sum)of log(N) iid n(0,1) variates
dependent n(0,1) variates
Expected
Range
| T I I
10 100 1000 10000
Sample Size
N
Figure 3-2: Range / Skew of Random Variables (Metric Free)
id = n(0,1/12) buffer delay

5 4 = Uniform [-.5,+.5] buffer delay
4]

Expected 3_

Range
2
o
| I |
} 1000
Sample Size
N

Figure 3-3: Skew in Tree with Uniform and Gaussian Delay

Page 33

3.6. Metric Tree

The second example is a merric tree. This is the type of system that is discussed in [27] and is
typical of systems described for VLSL The central assumption of this topology is that the circuit must
be embedded in the plane. If the embedding is to be area-efficient [46], then the wires that connect
buffers cannot be the same length everywhere. The delay through a wire therefore depends on the its
location in the tree, and cannot be lumped with a buffer delay.

A common tree of this type is the H-tree [47]. We choose to model it here because it is well
known, it is feasible to implement in VLSI, and it the focus of the analysis in [27] so we may compare

our results with theirs.

There are two distinct views of the effects of increasing system size (number of PEs) under the
metric assumption. The first is to assume that a tree with an arbitrary number of leaves can be embed-
ded in the fixed area of the integrated circuit. The alternative to this view sets a lower limit on the size
of the smallest feature; in this case the size of a wire at the tree’s leaves. Each preceding level is pro-
gressively larger and the area of the entire clock tree grows with increasing system size. This view
ignores the effect of shrinking feature size but is compatible with increases in chip die size. We will
adopt the second model, as did Fisher and Kung.

Refer again to Figure 3-1, keeping in mind that in the metric case the wires are not all of the
same length. Assume that every buffer delay, d;, is n(U,,02). For this analysis, we will also assume
that a wire delay, w;, is Gaussian distributed with a mean value and a variance proportional to its
length. The linear relationship for the variance can be justified by considering a long wire to be
equivalent to two shorter wires placed end to end. The propagation delay of the long wire is equal to
the sum of the propagation delays of the two shorter wires. The expected values add, as do the vari-
ances because the delays of the short wires are independent.

The wire delay at the leaves of the tree is n(l,,,02) distributed. Because wire length doubles at
each higher level of the tree, the distribution of w; can be written as a function of the depth, 4, of the

wire. We find that w; is n(u..%, of,%) where 1<d <logN.

The total delay, A;, is the sum of logN buffer delays and the sum of wire delays from each level
of the tree. The wire delays form the geometric series (14+2+4+ - - - +—2L) =N-1. The total delay, A;,

therefore has the distribution n(u,logN+u, (N-1), 6ZlogN+62(N-1)). As N— oo, the linear (wire)
term dominates. The expected skew is therefore

—a N 4logN-loglogN-logdn+2C 1 J
E[skew] = ¢,VN W +0 TogN (3-6)
= —V NlogN + lower order terms

.\{_

Page 34

= 8('NlogN)

and the variance is given by

2

Var[skew] = —l?(;g—":-[-’;i] + 0[IOLN}
Figure 3-4 shows the results of computer simulations. The dotted curve is the asymptotic for-
mula, Equation (3-6), the solid curve is the range of iid variates, and the dashed curve shows the range
of tree-dependent variates. The simulated cases represent the average behavior from 100 trials. The
discrepancy is greater in this case because the shared variates, representing deviation from the
independence assumption, are near the root of the tree, where the wire lengths are longer. Thus, this

bound is not very tight, and a more detailed analysis might improve it.

ptote—Eqn. 3-6
of iid variates
200 —
150
E}X{Ii:](; t:d 100 — dependent variates
50
0 —
| 1 |
10 1 1000
Sample Size
N

Figure 3-4: Range / Skew of Random Variables (Metric)

3.7. Discussion

It is now possible to give an estimate on the probability that the sample value of the skew is out-
side a certain range. Assume that X is a random variable with mean p and variance ¢®. Then the one-
sided Chebyshev inequality [43] yields an upper bound on the probability of exceeding the mean skew
by an amount a:

0.'2
o’+a?

PXX > (u+a)) <

Page 35

Now let a = a; that is, o is the fractional deviation from the expected value of skew. Then, using our
estimate, in both the metric and the metric-free case, we have an estimate of an upper bound as N— eo:

4

6
<} 8(logN)*a?

P(X > (u+a)) <

3.8. Conclusions

As long as VLSI offers a finite resource, large systems must be constructed from many chips.
The clock distribution system can then be non-planar, since it is not restricted to a single VLSI
integrated circuit. We therefore consider our metric-free results to be important in answering the ques-
tion of the ultimate limit of synchronous computation. Our finding that skew grows as the logarithm of
the system size encourages us to believe that very large synchronous systems are feasible. It appears
that this estimate is new.

It is informative to compare our results for the metric tree with those of Fisher and Kung. Their
summation model yielded a lower bound of Q(\W) for the skew in a processor array with N PEs. The
worst case performance of the H-tree under their summation model is &(N), whereas we show that
expected skew is only G(V'R’EN_). This places our result between their summation model bound and
their graph-theoretic lower bound.

3.9. Acknowledgements

We wish to thank J.P. Singh for helpful discussions and literature survey [48].

Page 36

Chapter 4
Lattice Gas Cellular Automaton CMOS Chip

4.1. Introduction

This chapter describes the design and implementation of the Lattice Gas Cellular Automaton
(LGCA) special purpose chip. It is a 64 pin DIP fabricated by MOSIS in 3pu p-well CMOS and per-
forms two-dimensional lattice gas updates according to the FHP lattice gas model.

Since it is a pipelined processor, the chips can be concatenated for increased performance.
Moreover, the total performance is linear in the number of chips. Chips can be added to deepen the
pipeline without any special programming of the hardware, although the software must compensate for
the increased pipeline latency.

The LGCA chip is an implementation of the WSA architecture described in Chapter 2. It
accepts a serial stream of site values and emits a stream of values in the same sequence after one gen-
eration of computation. This allows the chips to be used in a pipelined fashion because every chip in
the pipeline receives a stream of input data values in the same temporal sequence. Every chip and
every position is equivalent from the standpoint of the data flow and the computation. Therefore, no
position-dependent hardware is required on the chip.

The processing takes place on diagonal wavefront through space and time as illustrated by Fig-
ure 4-1.

Page 37

Space- =

Generation Number

Figure 4-1: Space/Time Diagram of Pipelined Computation

In designing the chip, we undertook to satisfy the following goals:
= Efficient use of VLSI resources.
® Short design cycle.
. Ease of verification and testing.
. Simple integration with the host.
® High performance on the FHP problem.
. Some degree of programmability.

4.2. The Lattice and Data Encoding

The LGCA chip performs a particle simulation of a two-dimensional fluid according to the FHP
model. The fluid is modeled by a hexagonally connected lattice with unit-length edges. Particles with
unit mass and unit velocity move around in the lattice and collide at sites which are located at the inter-
section of the edges. See Chapter 1 for details of the FHP model. In theory, the lattice can be finite or
infinite in any direction, but the chip can only support simulations in which one dimension is fixed. In
this implementation, the lattice is cut on a zig-zag along both sides to make it as rectilinear as possible.
There is no limit on the number of rows in the lattice, but a top row is designated. Thus the lattice can

be considered semi-infinite in one dimension.

Page 38

\]/

000000 000000
__ _0o0o0O0OOO___ 000000
000000 000000
000000 000000

/] N

Figure 4-2: Theoretical and Implemented Lattices

Data for the fluid simulation are kept in an array, which is scanned to produce a serial stream of
lattice site values for input to the processor pipeline. The value stored at a site is an encoding of the
number of particles at that lattice site and their directions. We define the state of a lattice site to be the
state of its outgoing links, i.e., which links have outgoing particles.

The converse definition, that the state of a site is described by the configuration of incoming par-
ticles, is equally valid. This second interpretation is often preferable in software simulations because it
is then not necessary to probe the state of the neighbors of a site in order to determine its next state.
All the incoming particle information is stored at the site to be updated. Additionally, only those
neighbors affected by the site’s next state need to have their state updated to reflect their new incoming
particle configuration.

For example, if site i has two particles incoming head-on, we can compute the behavior of these
particles after the collision using rule 2Br or 2Bl. After the collision, the state of only two neighbors
of site i will be updated to include these two particles as incoming along their links. The other neigh-
bors of site i are not accessed. The new state of site i will be updated similarly by its neighbors. In the
case of storing outgoing particle configurations, every neighbor of site i would need to be accessed in
order to compute the next state of site i, Thus, the average number of accesses to the array which
holds the lattice site information is smaller when the site states are described by incoming particle
information.

However, the price of the added performance is that different particle configurations are com-
puted by different update rules because different neighbors are updated depending upon which scatter-
ing rule is applied. In the case of a hardware simulation, this leads to greater complexity in the circui-
try. Since there is little hardware cost to move all the bits of a state every update because the move

Page 39

can be done in parallel, we chose to implement our hardware using the outgoing particle definition of

“‘state’’ and use simpler processors.

It is conceivable that there might be some very clever encoding of the state that would aid in the
computation of next state information for the sites. For example, the encoding might provide some
information as to the structures that are present at the site: two-body collision, three-body collision,
etc. The hope is that the added information in the data encoding would simplify the logic of the update
processor, making it smaller and faster. Unfortunately, the size of the data word probably would
enlarge, increasing the amount of chip real estate used to hold site values.

We therefore chose an encoding that was natural and compact, assigning a bit to each link from
the site. The bit is set to *‘1”" if and only if there is a particle leaving the site along the corresponding
link. In addition, there are two more bits, one is set to “‘1"" if and only if there is a particle at rest at
the site (‘“C’’ for center), and the other is set to “1’” if and only if the site is to be considered a boun-
dary (solid as opposed to free space, denoted **B”’ for boundary).

The information is encoded in machine byte as follows:

—
/ \ Most Significant Bit Least Significant Bit
C 6 5| 4 3 2 1 B
6 5

Figure 4-3: Site state encoding

Boundary sites and free-space sites are distinguished by the way that particle interactions take
place. In free space, particles collide and scatter according to the rules given in Chapter 1, while any
particle that arrives at a boundary site is always reflected back in the direction from which it came. A
side effect of this rule is that there cannot be rest particles at a boundary site, for indeed even if there
were one, it could not interact with any other particles. We therefore choose not to permit them at all,
and the update rules built into the chip enforce this decision.

Sites in a lattice are arranged and numbered according to the following diagram.

Page 40

FOo0000000 B0

SO0 00000 = 68000
00000000 -~ 0000
514 1024

OO OO OQOOQ»~" Q000

Figure 4-4: Lattice Site Numbering

As the chip data path is 16 bits wide, two sites can enter simultaneously. The chip expects site number
one (and all odd numbered sites) to be in the least significant byte and site two (and all even numbered
sites) to be in the most significant byte. It generates its output in the same format.

Data in this format can be interpreted in two ways. Referring back to Figure 4-4, the sites num-
bered 1 through 512 can be considered one row or two. If the former, then the row length is 512, and
the simulation can represent any 512 by N lattice. The chip then accepts adjacent lattice sites simul-
taneously to produce the same. If the latter, two rows, then the row length is 256, and the simulation is
on a lattice of size 256 by N. The chip then accepts similarly numbered columns from two separate
rows simultaneously to produce data in the same format. Both of these views are consistent, provided
the interpretation is maintained during the initialization and i)ost-processing phases of the simulation as

well.

4.3. Raster Scan

The data must be serialized in order to be processed by the LGCA chip. The scan is left-to-
right, top-to-bottom, and provides the state of two lattices sites each clock period. Refer to Figure 4-5.

Page 41

36,

f'l""l'z"'l"s"'ﬂ T

Op'vooo0oo00 -~ 000U
; P A2

i ddodoooo0oo0- 0043
513 1023

Fooooo0oo00 - 00O0O
doooo0oo000- 00O0O

-

Figure 4-5: Raster Scan Pattern

The data are paired as indicated by the dashed rectangles, with the odd-numbered site value placed in
the least significant byte of a 16 bit word. The 16 bit words are sent to the processor array in the order
given by the italic numbering shown in the figure.

This scan has advantages over other possibilities. First, it eliminates the need to keep track of
the row number. Every other row is identical in its connectivity to adjacent rows. If the data had been
grouped (1,3), (5,7), etc., the neighborhoods would differ on a row-to-row basis. Then the neighbor-
hood generator would need to keep track of the row number parity, which would have added unneces-
sary complexity to its design.

4.4. Architecture and Organization Overview

The underlying architecture of the chip is determined by the wide serial architecture (WSA) as
described in Chapter 2. In this implementation, the data path is two sites wide. The chip simultane-
ously accepts the values of two lattice sites and generates new values for two more lattice sites during
the same cycle. It can process a lattice either 512 or 256 sites on a side.

A particle collision rule set is chosen from a set of four possibilities by applying control voltages
to two pins of the chip, C1 and C0. This permits a small degree of programmability of the device and
some control over the viscosity of the lattice gas. C1, CO interpreted as a binary number determines
which set is active. The four particle collision rule sets are numbered (refer to Figure 1-3 for descrip-
tions of the rules 2B, 38, etc.):

2-body, 3-body, centers (2B,35,C1,C2)

2-body, 3-body, centers, 3-body-asymmetric (2B,35,3A,C1,C2)

2-body, 3-body, centers, 4-body (2B,35,C1,C2,4B)

2-body, 3-body, centers, 3-body-asymmetric, 4-body (2B,3S,C1,C2,3A 4B)

N —

Page 42

Each chip consists of three principal parts: the shift register memory, the neighborhood genera-
tor, and the update processors. The basic architectural plan is shown in Figure 4-6.

-

Data Out

Data In

Figure 4-6: Basic Architectural Plan

The shift registers provide delay to permit two-dimensional processing of the one-dimensional
data stream, When a data value is entered into a shift register, the registers emit the value of the site in
the same column of the previous line. The shift registers are not of programmable length; chip area
considerations (see Chapter 2) led to a register length of 256. Each stage in the shift register is wide
enough to hold two sites (16 bits) so that the values of 512 sites fit within each of the two shift regis-
ters.

The neighborhood generator converts outgoing particle information from the neighbors of the
two sites to be updated into incoming particle information for those sites. The neighborhood generator
is composed of a set of shift registers in which the required bits are extracted and brought out to the
update processors. These processors map from a site’s incoming particle configuration to its new state
(outgoing particle configuration). This process will be described in more detail later.

The chip contains two update processors, each of which computes a function slightly different
than that of the other. This is required because some of the rules (2B, 4B) are probabilistic and have
two equally likely outcomes, designated L and R. Failure to provide both L and R processing will
introduce a systematic bias in the simulation and will remove the isotropy that allows the simulation to
converge to the Navier-Stokes equation. Whether we choose to sclect randomly an L or an R outcome
when applying rule 2B or 4B, or we choose to distribute the availability of L and R collisions equally
about the lattice (spatially) because we expect that these events occur randomly throughout the simula-
tion, no qualitative difference in the simulation will be detectable. Rather than make the processor
sophisticated enough to ““flip a coin’’ and behave randomly, we designed each processor to compute

Page 43

always one of the two possibilities, L and R. Sites numbered (see Figure 4-4) with an even number,
will always scatter particles using rules 2Br and 4Br, while sites numbered with an odd number will

use the L variants of the basic rules.

With each major clock cycle of the chip, the following activities take place: A new 16 bit word,
comprising the states of two lattice sites, is latched into the chip’s shift registers and Neighborhood
Generator. All other data values in the registers are shifted forward one stage. When this shift is com-
pleted, the Neighborhood Generator is then presenting extracted incoming state information for the
“‘current sites”’ to the Update Processors which place the new site values on the output pins. Because
of the latency in the shift registers, the site values emitted are one row above and one column behind
those just accepted.

4.5. Hardware Implementation

These architectural ideas are implemented in a straightforward way. Each logical component in
Figure 4-6 has a hardware counterpart, but there is additional circuitry to aid testing and debugging.
The floor plan of the chip is shown in Figure 4-7.

Page 44

Shift Register Shift Register
Test
Neighborhood Generator Circuitry
L-Processor R-Processor

Figure 4-7: Chip floor plan

The majority of the chip real-estate is dedicated to the shift register memory. The neighborhood gen-
erator and the update processors are much smaller. The test circuitry is to aid in the testing and
verification of the chip behavior.

4.6. Shift Registers

The shift register memory provides delay for the data values that enter the processor. It has 256
stages of 16 bit data words. It is dynamic memory because a static design would have required too
much area. The basic cell is shown among the plots in Appendix 1. It is a ‘‘master-slave’’ design,
with the master register loaded during ¢; and the slave loaded during ¢,. The layout was done by
hand, using magic, a graphical layout tool, and verified with esim, a switch level simulator.

The basic cell was replicated to create a 16 bit wide shift register stage. Copies of this stage
were adjoined to create two 128-stage-deep by 16-bit-wide shift registers. These two registers were

Page 45

placed side-by-side and connected to form the final 256 by 16 bit register. The folding was necessary

* for one important reason: a linear 256 stage register would not fit on the chip die. As it turned out,
folding the shift registers had an added benefit. Since the output of one shift register is connected to
the input of the other, the folding placed these two ports in close proximity and shortened the connect-

- ing wires. Two of these registers form the upper part of the floor plan shown earlier. The data flow
for one of the two shift registers is shown schematically in Figure 4-8.

128 Stages

<«— 16 pits —

In Out

Figure 4-8: Shift Register Data Flow

4.7. Neighborhood Generator

The function of the neighborhood generator is to collect a 3 by 3 neighborhood and convert the
outgoing particle information of a site’s neighbors into incoming particle information, which is then
used to compute the next state. It is composed of a set of shift registers in which the required bits are
extracted. To see which bits are required, consider the following diagram (Figure 4-9) in which new
states for sites numbered 517 and 518 are to be computed and sites numbered 1031 and 1032 have just
been latched as input by the chip.

Page 46

Let j:k denote bit k of site j. Referring to Figures 4-9, 4-5 and 4-3, we find that site number 517
sees a particle moving toward it on link 1 if 515:4 is 1.

520 | 518] 516 1 | 12] 10 8 | 6 | 4
________________ . EEEEE EEEEE EEERE P o EECEE EEEEE EEREE
f 519 | 517] 515 13 [117] 9 77175 3
1032 | 1030] 1028 536 | 54| 522 530 | 518] 516
________________________________ —rs | e o e o e
1031 | 1029] 1027 525 | s23]| s;m 519 | s17] s15

13 5 7
G- O O O O

2
000 O O

513 515 ST S19°

1025 1027 1029 “y031
O O O O O

1028 1030 1032

1026
QWO 0O @

Figure 4-9: Neighborhood Generator Data Dependencies

Similarly for all the other links of site 517. We find that site number 517 depends on 4:5, 6:6, 515:4,
517:0, 5177, 519:1, 516:3, and 518:2. Site 518 depends on 517:5, 519:6, 516:4, 518:0, 518:7, 520:1,
1029:3, and 1031:2.

Notice that sites 3, 5, 7, 1028, 1030, and 1032 are not involved in these dependencies. They are
therefore not stored in the neighborhood generator. Even though sites 8 and 1027 are not used either,
site 8 will be required for the next computation, so storage is provided to delay that site value until
then. We left storage for site 1027 although it is not strictly necessary.

The bits extracted are sorted and presented to the update processors from which the new state
values of sites 517 and 518 are computed. On the next clock cycle all the sites move one stage to the

Page 47

right, and the process repeats itself. The layout of this section can be found in Appendix 1.

4.8. Update Processors

The update processors map from the input configuration of a site to its output configuration (new
state). We wanted to provide some degree of flexibility or programmability over the chip, but at the
same time, we wanted to retain the simplicity, ease of design, and small size of a fixed rule implemen-
tation.

There is a spectrum of possible structures, ranging from a Turing Machine equivalent processor
to combinational logic. The former offers very general programmability and flexibility, whereas the
latter is very restricted in the functions that it can compute. What we really want is something between
these two extremes.

We chose 4 sets of collision rules which we knew worked by having simulated them. We built a
PLA that implemented all of them, and found that this PLA was only twice the size of a PLA that
implemented any one of the rule sets. The first PLA is ‘‘programmed’’ by selecting a rule set at the
time the inputs are presented. This is accomplished via two control lines, C1 and CO, that determine

which rule set number is active at that time.

One PLA performs R rotations for the 2 body and 4 body cases (rules 2Br and 4Br), and the
other performs L rotations (rules 2Bl and 4Bl). Their layouts were built by programs, no hand layout
was necessary in this case. Two programs, allL.c and allR.c, were used to generate truth tables for the
functions. These truth tables were ‘‘minimized’” by the program espresso, and the results fed to a
PLA generator, mpla. They use a static structure, with pseudo-nMOS pull-ups for the AND and OR
planes.

4.9. Testing Circuitry

The LGCA chip has more than 65,000 transistors. As the vast majority of them are used in the
shift register memory, failures and fabrication defects are more likely to show up here than anywhere
else. The integrity of the shift register memory is tested by a parity generator which computes the par-
ity of the 16 bit data after it has passed through both shift registers. It is an easy task to determine if
there is a ‘‘stuck at’’ fault by sending data through the shift registers and comparing the output of the
parity generator with the parity of the input word.

The parity generator is built from a tree of XOR gates. The XOR gate was based on a cell given
in [49] but modified slightly. The tree was placed by hand, using magic and the functional behavior
was verified using esim. The XOR cell and the tree are shown in the layouts of Appendix 1.

Page 48

4.10. Miscellany
Appendix 1 contains the pin-out table and all the layouts for the chip.

Refer to Figure 4-10 for the timing diagram of the chip’s major cycle.

Data In —< >

¢1..__...___/_\

Data Out < >_

Figure 4-10: Chip Timing Diagram

Data is presented to the chip and must be held until after the falling edge of ¢,. The next state values,
are not available until after the rising edge of ¢, or, if CO or C1 have been active, not until after they
have been stable. ¢, and ¢, must be non-overlapping.

4.11. Testing and Performance

The LGCA chip has been tested on the laboratory bench and as an ancillary processor for a Sun
3 workstation. The yield on the fabrication run from MOSIS was approximately 50%, and all the
detected failures were ““stuck-ats’’ in the shift register memory. In all cases, the offending part was
detected by attaching an oscilloscope probe to the output of the parity generator circuitry.

The parts were tested to speeds of 50ns per clock phase using a static input data set. However,
when a changing input was presented, the parts were reliable only when the phases were at least 70ns,
yielding a maximum computation rate of 14 million site updates per second per chip. The power con-
sumption of a chip is less than 100 mW at a clock rate of SMHz (each phase 100ns).

Page 49

4.12. Comparison to Other Machines

CAM-6 [25] uses the same basic technique of scanning the two-dimensional array to create a
serial stream of data, but it is not a pipelined architecture. It is also designed and tuned for particular
host architecture, the IBM PC. Even though it is extensible to larger problems, it cannot provide
increased throughput on the same problem. This is where the LGCA chip excels, because it can be
pipelined to achieve nearly an arbitrary speedup on the same problem instance.

Sternberg’s machines [11,37] are significantly more complicated, but they are pipelined. Even
though it is more powerful than the LGCA, it obtains this power by using more input/output
bandwidth. See Chapter 2 and the latter half of [28] for a treatment of computation rate versus
input/output bandwidth tradeoffs.

In spirit, our work is closest to that of Broderson and Ruetz [33]. They built separate chips for
the various functions of their image processor, including a line delay chip that we implemented as shift
register. They concatenated their chips in a pipeline to achieve a final function, which is the composi-
tion of the functions of each chip in the pipeline. Since we perform the same function at each stage of
the computation, we achieve high performance from chip concatenation, whereas Broderson and Ruetz
were forced to make all their chips operate at video rates in order for their system to function at all.

Most of the other work on lattice gas cellular automata implementation has been done in
software on general purpose computers. The only directly comparable figures therefore are total
throughput. We defer this comparison until the next chapter where we discuss the performance of our
prototype system, LGM-1, built around the LGCA chip.

Page 50

CHAPTER 5
LGM-1, A Prototype Lattice Gas Machine

5.1. Overview

This chapter describes the operation of a prototype system, LGM-1, which hosts the special pur-
pose chips of the previous chapter. The prototype consists of hardware and software that allows a Sun
3/160C workstation to host an LGCA pipeline and use it for the computation of a lattice gas simula-
tion. The prototype is built and tested, and its current configuration is a pipeline of 10 LGCA chips on
two boards.

The Sun 3 workstation host does not require a kernel device driver because the user can map the
appropriate parts of the prototype into the application program’s address space. This allows manipula-
tions which bypass the regular input/output system of the UNIX system and the concomitant overhead.
Except for DMA, this is the fastest way we know to perform input/output between the host system and
a peripheral. A second benefit is that the prototype can be moved from workstation to workstation
without building a new kernel for the host machine.

The prototype system is extensible. Additional cards and chips can be added with a minimum of
hardware changes. The original prototype contained only two special purpose chips, but we were able
to extend the system to ten LGCA chips with only a small amount of hardware work.

The rest of the chapter will be organized as follows: First, we will describe the hardware of the
prototype and its operation. A certain amount of familiarity with the VMEbus, digital logic and
hardware construction is assumed. The reader should consult [50-52] for details and descriptions of
the omitted background material. Second, we will give the programmer’s view of the special purpose
hardware and outline the algorithms that produced the flow simulations pictured in a later section of
this dissertation.

Page 51

5.2. Hardware

The Sun 3 uses a triple high VMEbus backplane. We used a VME Specialists master/slave
repeater system to extend the Sun’s internal bus to an external card cage where we could attach testing
equipment to our hardware. We constructed our interface and LGCA chip support hardware within the
extended card cage. The basic plan of this system is shown in Figure 5-1.

Sun 3 Host

VME Bus

VME Bus Repeater

Repeated VME Bus

Interface and

Special Purpose Chips

Figure 5-1: Basic Prototype Architectural Plan

The strategy was to have 3 read/write registers: data_in, data_out, and control/status. The application
program puts data to be processed into the data_in register. The pipeline is started by writing to the
controlfstatus register. This activates a simple sequencer which generates the required clock phases
for the special purpose chips, and latches the output of the pipeline into the output register. The appli-
cation program can then read the result of the computation from the data_out register.

The prototype is a multi-board system. One board houses the VMEDbus interface and all the data
path and control path logic. It also has room for two of the LGCA chips. Additional boards house
buffers and up to eight processor chips each, but they do not interact with the VMEbus directly. They
receive their timing signals from the first board.

Page 52

5.3. Implementation Overview

The VMEbus is an asynchronous bus based on a master/slave paradigm. The bus master gen-
erates requests of bus slaves which perform the requested actions and send an acknowledgement of
their completion. The VMEbus interface logic performs the signaling necessary to act as a VMEbus
slave interface. See the VMEbus interface specification [50] for details on these and other protocol

issues.

A set of dual in-line packaged (DIP) switches select the base address to which the interface
responds. It is currently set to an unused part of the Sun3 vine24d16 address space (24 bit address, 16
bit data) at physical address Oxdfe000. Appendix 1 has all the schematics of the interface.

5.4. Data Path

The 16 bit data_in and data_out registers are implemented with edge triggered flip flops.
Data_in is located at the base address of the board, and data_out is located at base+2. The data_in
register can be switched into the input of the processor array, and the output of the array is fed into the
input of data_out.

The data path is extendable to other boards via a ribbon cable. The output of the last processor
is fed to drivers which lead to a 24 pin ribbon cable socket. A second socket leads to input buffers
which then feed the data_out register. Single board use is achieved by connecting these two sockets
together with a ribbon cable jumper. The data path can be extended to other boards by connecting the
output socket of the first to the input socket of the second, and the output socket of the second to the
input socket of the first. We used this technique with a second board, consisting solely of LGCA chips
and buffers, to build the 10 chip LGM-1 prototype. It is possible to continue the extension of the
machine with more boards using this procedure.

§.5. Control Path

The control path is responsible for generating timing signals for the pipeline of LGCA chips and
for latching the results of the computation into the data_out register. It also provides the control sig-
nals CO and C1 to the array. (These control which rule set the chips will use.) The control path is
implemented with flip flops and random logic in TTL.

The control circuitry is synchronous, based on a clock generated by dividing the 16.7 MHz bus
clock which is provided by the bus master (Sun3). A finite state machine generates timing information
in response to a start signal which is provided by the controlling application program.

The control and status register is located at the base address pius 4. Bit 0 of this 16 bit register,
the least significant bit, is the start signal. When this is set to 1 by the application program, the state
machine is started and puts the array through one complete major cycle, and then latches the result into

Page 53

the data_out register. The next two significant bits of the control register, bits 1 and 2, hold C0 and C1
respectively. These two control signals are delivered to all of the processor chips in the array.

The state Mhim automatically clears the start signal bit in the control register so that when the
cycle is complete, the machine is not retriggered. It also guarantees that the two clock phases, ¢; and
¢, are non-overlapping. The data paths of the data_in and data_out registers are switched so that the
path to the processor array is active instead of the path to the VMEbus. This eliminates possible con-
tention between the two systems.

¢1, 92, C1, and CO are buffered and brought to the ribbon cable connector. This provides timing
and control signals for additional boards of processors. The additional boards buffer the incoming sig-
nals, and the clocks are further buffered every four additional processor chips. The data bits do not
need additional buffering because each processor chip only drives one load: its neighbor.

See Appendix 1 for all schematics, timing diagrams, and state machine specifications.

5.6. Programming Model

The programmer sees only the three registers described above. They are memory-mapped onto
a structure in the user process address space. This structure is defined by the C declaration:
#include <sfmreg.h> which contains the following:

#define START 0x0001
/* a structure that matches the actual board */

struct sfmdevmem {

unsigned short data_in; /* data in register */

unsigned short data_out; /* data out register */

unsigned short s_ctrl; /* status and control register */
char wasted space[8186]; /* £ill out the Bk page */

}:

The basic algorithm used to operate the processor array is:

data_in = 2site_values;
status_control = START;
2new_site_values = data_out;

A large simulation uses this as an inner loop in each of 3 stages. The first stage fills up the pro-
cessor pipeline latency. Array data is sent to the pipeline, but no new data is produced because the
pipeline is empty. During the second stage, the pipeline is full, so every data word sent to the pipeline
allows the computation of two new site values. The third stage begins once all of the old lattice data
has been entered. There are still data points in the pipeline, so we force them through by sending

Page 54

random sites with particle distributions given by Equation 1-1. The latency of the pipeline is a func-
tion of the number of chips in it. The program therefore has the following structure:

BEGIN
initialize array of sites according to uniform velocity distribution

set boundary bits in selected array cells

while (current generation < last generation) do
pre-load array with uniform velocity field
compute latency of processor array (function of number of chips)
while (latency not filled) do /* stage I --fill latency */
data_in = array_data:;
status_control = START;

array_data = data_out;
od
while (still old data to send) do /*stage 2 -- send and receive data */
data_in = array data;
status_control = START;
array_data = data_out;
od
while (still not received all new data back) do /* stage 3 -- flush pipeline */
data_in = random site;
status_control = START;
array data = data_ out;
od
od
END

The treatment of the sides of the lattice is subtle, but very important. Remember from Chapter 1
that if the finite lattice is to be made to look infinite, then the links to the sites on the sides of the lattice
should see particles that are consistent with a fluid flow of the simulated velocity. Failure to observe
this will guarantee catastrophic failure of the simulation.

For example, if the sites at the sides of the lattice see no incoming particles, then in essence, the
lattice sees a vacuum on all sides. The response of the system will be the natural one: all the particles
(fluid) will flow out on all sides to try to fill the vacuum. Naturally, this will disrupt whatever the

simulation is trying show.

Another example of how the simulation might fail is if the incoming links to sites on the sides of
the lattice are set to particular, unchanging values. These settings may have been derived from Equa-
tion 1-1 (the particle distribution equation) by flipping a biased coin, but once the links are set they are
never changed or are changed infrequently. This again introduces fixed biases in the distribution of
particles “‘outside’’ the lattice, and the lattice will not *‘see’’ the distribution of particles that would
indicate that it is embedded in an infinite array of fluid.

We have empirically determined that if the side link conditions are changed at least every 10
generations of the simulation, then the simulation will behave properly. If the particle occupancy were

Page 55

changed every generation, the results are slightly different and measurable, but are not significant for
our purposes.

During the time that the lattice data is in the processor pipeline, the data are not available for
update. Since each chip in the pipeline contributes one further generation of computation, the edge
update criterion implies that the maximum depth of the pipeline is ten and the prototype hardware has
this limit.

We will discuss a possible hardware solution to this problem in Chapter 7, but software manipu-
lations can ameliorate the ill effects of infrequent boundary influx. The sides of the lattice effectively
are wrapped around because of the way the raster scan is done. We want to isolate these edges from
one another, preventing any correlation of behavior from one side of the lattice to the other. We do
this by changing the values of all sites near the sides of the lattice before each pass through the proces-
sor pipeline. The top and bottom sides do not require this treatment because random sites conforming
to the probabilities given in Equation 1-1 are introduced to fill the pipeline before real computation
takes place, and to flush the pipeline after the last lattice site value is introduced.

5.7. Graphic Display

The graphics display software was written by undergraduate Mark Taylor as part of his senior
independent work [53]. It runs under Sunview (Sun 3 windowing system) and performs post-
processing of the raw lattice data into hydrodynamic cells and graphic display of the resulting hydro-
dynamic velocity fields. It supports arbitrary lattice dimensions, hydrodynamic cell size, number of
frames, and frame of reference.

5.8. Performance Levels Of Current System

The application program is heavily I/O bound. It can only start the array once every 3
microseconds, yielding a throughput of 7 million site updates per second with a pipeline that is 10
chips deep. The top hardware speed is 14 million site updates per second per chip, so only a small per-
centage of the maximum performance is realized.

The machine was operated continuously for more than a week without any detected hardware
failures. We performed simulations of flows over variously shaped objects, and examples of the
results are shown in the following figures. All the simulations shown were performed on the ten chip
LGM-1 system, where the total throughput was approximately 7 million site updates per second. The
particle density in each case was 0.2, which we know to yield good results and a relatively small fluid
viscosity. We estimate the Reynolds number at 40 for these simulations.

The figures show the velocity field of a flow simulation, and the flow is always from top to bot-
tom. A bias velocity is a vector subtracted from every hydro cell velocity vector and the effect of this
is to shift the frame of reference of the viewer. For example, if the bias velocity is zero, the frame of

Page 56

reference is that of the object at rest with the fluid moving past it. If the bias velocity is equal to the
speed of the majority of the fluid, then the fluid is at rest and the object is seen to be moving through
the fluid. Intermediate values of the bias velocity yield other reference frames where different struc-
tures of the flow will be more easily visible.

Page 57

s g s
e gt et g o g — o
= i o
—— Py - e PRy
—s S o o et ot ot gy ——— -
p ot et p— st
L e wol ool il HEA
- ST P SE=
— - ot -y i A Wr
el iy b b e ot N el - P

e e el st S

- e e S

ettt eyt g et b A e e

el S

- gt it P W2 — iy T

— — I._l.vlvlo\-\.I-aptll.J ———-

gt gt p ot B I e e 4 oy =
gt et et g o g A ¥ B e ¢ =
s Pt et b ———

g 3 P e g & B A b g,

rptep by y My
Iol..tl‘l.l.olv.lvl']vlolvlol-lolc{‘ . A
IiJl-lelc/,llo.lf\r\'\.\-th

N

- g =

ill-vlvlv'vl‘l.‘ll.lj
R e s s T e . 3
e e S PP

b P g e S fer

— Sy ————

0.00
1000

0.55

Bias Velocity
Generations

512 by 1024 sites

Bluff Plate
Velocity

Page 58

b il s gia O e ———
i - - b N
-t - —r— ——— - —+—
kil R b) b
gy — i ——r — e e s
et . ek ozt e cn i e —h— m— i sman o e o o 3
il i e ol it SN
e s i s ~r et i - —
e ey —— il ol el TS — — — — P —— Y p—
—- — — - - ~ -— —=r
S — ot e e e e W iy iy - — ettt —— gt
g b, e e o ok ey i oy
F— — et R P Bttty ey P— — — e N —— st
S—— - i, = S —— S — - — - .
i Lrl.olo‘\n\wl.ll1|l - — 3 ——— b i B o
5 rtp ot Iy oy oy b ettt et ~ et TR
et et AL B a4 ——— B et g e e - ——
T i B,y BN B oy e g —r—t— —r—r - N g — d
—— B I T T I e L T g = —— —r s
—t ettt P g gt BB w4 o = — et et
by, g o e g, —p —F W ., PR L B — e e iy ey ey ey
- oty e ¢ B 4 P B L A A A o g o g, ~ e T = —g
D —] ety Wy vy AR Ay - o
S lc.wl&l&..l‘f‘o P e e —t e — . S
A g g R R iy /......l.n...lyl.!\-L gt gt - g e
g g it e by gt —— et e —~ SBee ammamonae it —yt— ~v ——
et i ———— A by e
e g b i B i ek CEAN MG -~
i e b g " Ry — RS- i g Bl giisrlsgeiii
b gl g i i BB et P EEE R it s - gl
b b e g et o~ e ety p—t NP
ey — ey, b =t SR o =
— - — —— - — s
o il PR b b sl
— et g e s = g - — et — —
i i i —-.
gy - iy ey — —r — - - —
- - R S e S e G T it s - ™ Ef
—— Py o gy - e ——t—r b et b SERam e o -

0.00
2000

0.55

512 by 1024 sites
Velocity =
Bias Velocity

Bluff Plate
Generations

Page 59

- = _— il = i i s g i
i " P — Py ” ——" - P S——
et b ey ot s b ey e - i ——r —— i
A - —yr — NE— - — —— S
e T S B R P O — N— — — - —t S
i bk N a e sl e
et g —= it e e — e —
g - e et e ot b o Aoy RN e R L gl - e i ey
- b et b b - e Sy et g i i
B e S —— — A g S e — — i e
—_— bt et e et b o N P e S et i
— iy o N), et —tf et e e e gty by -
et - \.\.'..vl.o.l.....-nllc!l...ltl.ii- — e e — —
gt e g s et mpep e b g e B By g oy oy o - Y — S
— et mbp et P B g e \1(14‘1‘111111111}‘{1{1\!{.{1’}]{0
— e T E N I I e o oY g — r— N
. Iqlolo_...{.‘i!a4..(...1.‘\.1-.\.{.....1.&1JI.. - ot —t- i
— e e L I A N e e e e D e s e s g -
e — ety Pa e g b PP Py bt N g p o g g o s b e e S
- —r —p—t Be ¢ » e b N e b o o g = — ~— gt
————— cpema ey Prs s aartas — At gt g —
Iqlblulilo/...olc!olol.,llrlalcloll- S — oy o i
. ik, a e . e i -t
— iy - SN~ — i 2 e - —p—p—
l{lo}il{-‘ll.lvl‘!ll o S il T et Saasne s by ey —h
— S = il e i ol A ik "
— — — — — — —r e
i e syl — o ——
—rp— — — — — gy B B +—p— L
g g g b b e g b ey, g bl e iyt — gt -+
— e S o S e e ey e M b el - - gt - S —
gy e gy b g, g " aon -t et ———beyr —. —- —g—t—t
g e e g e e o e o e e Aty ey - i e ——p—t
il b — i - .
e - —p—py A —r—r — -
——— - - , S S - i N s S
iy > g — el i o - aa s e i i —

512 by 1024 sites

Bluff Plate

0.55
=0.00
3000

Bias Velocity

Generations

Velocity

Page 60

e

P G G, . N -,

gy et o,
B e S
- e e b e b ¥ bt

IllI...&.'ol.lloltllvl.llll\l\\f\P‘l‘.l ——r— PO Py
I.illelol.\ol-.lvllolc\ol&\b\\ullr.illlll.!IiII - --.I...Iclrll-
I‘jll'llvloll&lllilvl}ll\l\.\.l.‘.‘lil&lflolr‘ljlvlv\\-
by b bt b e et ot A g g e o gt = A A
—pt et B a -y \t.lol}..ll.v\-\.\.l.lllnl{llllllv
e o e e L S I 1'\/.!.1\.\\.\.111].11!’11[-11
— et d P ooy g oA lvill-ns\.\.\...o}-l{.l-lo.llc\tlblolcll —
bttt bt g et et e = 4 ¢ B e g e 2] o2 ...-l._lr...-‘\ A ot g g g, o o o o g
B . e e e L R N R ™ /(l\\.\lllt-.ll.l-lvlo\llollollolllelllrilr}lll
ety W n w0 3 P TP o P iy ot o bt b g et e bbbt
— by ety Br s awalrlra, - (.Iv\-\-\-uo — g o b e e by
bt ep g g b =t gy, P 4w o R B R T
Iqlolilo..._.l{.lllvl.ll.llo\a\-\-ll.!vll.\flb
ltu.o'.l.lll.llloltill!lllllv.lul‘.ll.
S e S S e S b S S

e et b e —h e e o g bRl

|.1
—r— -+
P

P B

4

bt o g, e e e g et g e
et g, g) e S Sy o e

Bluff Plate

512 by 1024 sites
Velocity = 0.55

Bias Velocity = 0.00
Generations = 4000

Page 61

e g o i g W — — S

- - —y P Gap—y e i
— — eigteg—t— - - —— e - g

PR I _—y PR il & _— S - _—e —
— — —— -y - -+ i ———— -

- R g, S, -l
—p e —p——’ — —~ —p—— o
p— P -y i ey PR, il P —
g g, R g e e . S e e —— > ——
PP — § o ety sl B - 25 i -

- e ———y—t s e Al

il
—r
b e et e N — g pe— tLI’II&II!\-Il'lI.IL.IfItJ = e >

lt{illiilxx\{f‘zi};l o bt gy —

— - N s S syttt {{\}LJ‘ - - — ——t
—

Sy Iotl\-\s\-\nlllfﬂrﬂlrlrrlilill At e i

- eyt b N e e N A Pt e ettt A bt et S — —

S—_— "y — ey \lllj!{\\n\bl;i\-\-\r ey et .

p b e —— —— -,y » ‘v}l‘ftl\c\\tf;l’\r{-‘\o\t\-lrl S— e T e S
ettt ey e bt et b et A P Wy gy L 4 PP T gt T ey = - e e
——tpt gt b g bttt By, o, . P 7 e S i D e et T —

- ettt 2 Mo v PP e T ottt g et et b

ot gt gt b » W ", rta, /.Ilo_.\-\.\-olll.lclv.\t\o\.lol&jlvlol'll e g -
ey et ptgep by Wy %8 g A Froa l/{lo\t\.\...tf(l‘tlllul-\}lal}.l-lol.lo.lvll- b e ot e T
et et b ettt y, W 1y AT A e — - e
i e R e T I e i o — ettty
g g gt e b g g = gt e oy o, AT et o o et g g bt —t-

g - }lll.ttllllﬁl'nr‘vl"ltll- .I¢..|\|r\n4|lal.?b...-:...-1;_-1 I S Lo i 5 —

— Jll»llol.ll.’.l‘.ﬂlllfu“v\-lrlltl"\.\altlijllﬂ‘l e A —
g e e b e b e, - ettt

b — —— e e — Tz s

e o e e e e e i g g e s — g -

. A kA AN A
it —_— O S— — e ——— —— - e

B o T —— — i < il i A i

bt e} g g g e et e i e ettt e A - gt

I UG W s - —t

e e — e e —

B e e T A s g S— e

& penp— e bt

e 4 — - i ep— — e L o —p—p— ————

0.00
5000

0.55

512 by 1024 sites
Velocity
Bias Velocity

Bluff Plate
Generations

Page 62

o - e e b e o ettt N e e e et —= e bt s et

.Iololo\clcnllalqlolvlola.\-\b.l\.-.‘f‘lr’lz{i. \\tll..'l"]—.l.lt.ol-lolr\.r e b e e e e
S] .‘-l-r.l.vllrll’-'l . \\-Infli-lcl.‘lliloll;-\oulroltlclilvll\c\v — —r e o Y
“lll.lblcnololouil-l.\-\tl}"lol-flllﬁl{:l\“-“ P 4 \-\Jl?llj“l\-.\-lu[l'&l\liloltl\c\-ubll e S
B T L \-l.“\lrl.lf}l-r P ““\olo.lz; . > \.\\.\Inr.vlllilil l\n\.“\lvlf.-.la_l-lilolo.lololollll
.t N N N S i +« ! \.'..l!u AL et . R e e it b et
HHH‘I;I;“I.“\.I-\.\.\}I&/IN”.U » \.\.\-ll’."-lfll-d““ » \.\-\tlllltnlﬁl-l_-“” o I'\-\-.-\flr.o-lf.‘lill{ltlclolll
bt ot ey b b ot gt ot AL .lr.vbl./f oy) \\.\-.\fl-]wll-! . \\.\.nlrl..-]-l._lo}.l AR A e g oy N et
oy g tin arh b g g o AT B N _.\.fj/.//_. » \._\..ulrl'lhl.l.l(\ AP P i e
et et e e oy p b b gt 4 AT @S \’CJA ot\ \\\.}]f.//l » \\.\.}]III.—I.J.& \\\\.\v!l’lf}l.l&io\.\-
gt et et e b b b p At 4 4 P AT \.'0//!\. \.\.\.\..l././.{{;. ” \\\ll..l.lsfl.((l_\.\.lt.lrfrz{l-fjil.\-\-\t
illlvlvl.l.lvl.lvlv\.tqtﬁ.ﬁ_ / \\\\.\- l\.\\-\-\q l\\-\a\-\rtl#.l b

TSR, S R NN 2NN SN
bt p b p ot p et b b 4w T J.\ \..l.\l.. /I\\ \\onl)f//./.:c\.\.\\-\.\-l’ljl‘llttlt\.\o
bt g b o o o p g o AN =l \-/. /..l\\\\.\lc/n///.l\\.\\1\1/.///.1..}\. _\-\..\tlll)ll/..llolo\-\t-\c
BRAMEANRM IR T T N /J.\.__\\.1//”/.J_\\.\\f.///..{....\a\.\-\\.lltl..lf!.!l.lt‘.\.-l
ey g g S e e A Y j.”/ 1 // /..l\\\.\\.jl/./_//li\\\\\}///.I-IJ\\\.\.\\.}I-..J:J—J{(\I\-
e) - / ”l\.\\.\\.l/ //.lo\\\-\‘\.I-I-/./.I...l\.\.\\v\.\-lolofuluf.lcf\lt\f\.
b o e e o b g o g b oy gy 4 O . /”/I-_“\\\ l/.”Il/l*\\\.\.ll-/./.fll\b\.\-\\.\-!ol—l-l-l-l{lntlt}\f\t
et e e e o e p h Jt.‘d s /...l\- \.\-l//./.lll-\-\._\\l/././/tf‘\c\-\.\.\.\-lo.ll-l.fulill\v\-\-
g e e e g, e e W} - /..lv\.\\\\-i’_/Ir/-l\-\\\\‘///f-"&\.\\\\-l:‘llslll\l'\fl-\
illlvlo-llolvlolﬁlolv“lr - L] /.I\-\-\\&tf//l‘llvl\.\\\.&((/!ll‘&\\\\\“lvll‘ll‘\.\t-\‘.
g e e P Pl a A S by gttt
fl\-\ f!il\\a\.\ YN AP NN > il
S S S e s N "IN L] J./Illj—llf\v\ l..cl-.lcll..l‘lp_-_f\. o g g

Itlaallllll.&ll...ll/-l&\\.\.- 'y /.....I..\.\.\.\ L J.Il_.lll.\v\\.\.\. D e o
f.l.l..l............llll...ll.l-l.\‘..\.lf R IR A e e e T T e
——— sy TP e BN A ettt o | g bbbt oy b ey et
——— b oy g oy o gt e e A b gy ettt B b oy oy gttt ey ey eyt
i e e . g g . . g o P g g IR bR bbb N) g g A, g g it

}111111“‘1111}1}*‘ —p — e S S B — it
pr—— e —— ——1 2 —— —
— -~— ——t A e gt = et

Bluff Plate

0.55
=0.00

Bias Velocity

Generations = 10000

512 by 1024 sites

Velocity

Page 63

— -y by a
e —— — o,
. ol - e Bl i il S5
P b — i il e
e -y - gy e —— P gt
- S —y s _
—p —r—y —p—r—ir - e g
- et - bl e "
—— — by —r— —r— —p—p—p—r — s
- T SR " S P
- - —p—pr gt] g
b e Y el e e, s B "
e s AP e e s
o i, P PP Gl sk L A e P
s ——y—r e o — At
Iy -, RIS PR
e bt sy s s st e, S——— gy |\-I|fr|'ll‘-l.-|1 gt B

liilliiiijil‘gl%lﬂvlllillk = S

et et ot b et bttt B B ’jl}}il\-\slollll‘l.\v\-\-\f] - —. g
[ESREE————— Y R E T B e e S e S
—r — st BRAR, o Otltln-\tljllilc\\all,'(lllol\lllltllj SEPRR— -
gttt B P v s Py 48 g o & ‘c{.l-l-l-\-\t\lo.lol‘l{l.u\.\t\n g g g b b b gy
B e L R I e T T e et o i
gt gttt P Wy vy Wa v 464 nad PP N A A et g b ot o
Illl{l.ololv-ltl.‘." A oo v&li\\.o.‘{t‘\-\:\ul&l&-ll‘ui b ey o g oy it i
g et ..l.lv.l-lo"-t v 8 % W ll\c\a\l‘ftll‘flflt-\-l'.ltl‘rl-‘.f\fl-la.lv] — o e, ok g
- -— Jtltcl.'...ol-i..-tolv.l.l-\\-lllsll\-\-\.\ololol..l\lo\-lftlji — - e

lr.l-lrli:llltl‘j.lljl\vl.l.l.l.‘l\'\-l l:ll;l.ruf.fll.l‘lcl.\tflirlnli ot a4

ii’lll}i-il‘tl‘{ll{‘l‘}'}{ g et S

P

et g b e oy g — — e S —ser nillvlclilv\bllvlc e gt gy s

i B U, Y — .

-+ S e S S i —r—— g pp——— o
B, B r— A, .
— e gt e g d e v g
el —i g . o
— -+ —— - —r— - —y— —p— P
b - sl i, — —
-+ P ——— e e L —ar
kg Sy Y - e
— - o S e e e e — —
= b Phr e, S
- g S i - — ~ar e
I e — -
—r" ——— — — — —r— e
o F— i i . o .
L - S — — Ty ey — "’
. — et
- s - — — - —— —

Wedge

0.55
=0.00

512 by 1024 sites
Generations = 5000

Velocity
Bias Velocity

Page 64

4 & T TR LT ET YT S LR LSRN
*+ 4 B s " B s T e T TR R T T N ST AN YT SN SEon

* T h 3T e kg T e d AT TEY T TS H YT AT Ao

DR T S T B N B T R SR S

LR I

v 4 v 9 v g h g g a4 v a4 < e

* 8 « 4 A v b Ao up v 4T Lo @

L)

f " % b @ ¥y ey e d e A

- " b b p @ b

P b v e At g bagwevareTedvvoebasies

an v b

* 4 1 4 A g A v v w oo o b hda sy el ea,

L b2y &b e
LIS

-
ko ¥ T 4P S S A Ao

LI S T U I U UNE TR U Y N I W

‘
4 v 4 4 d

-

P I

A a 3 4 v » f v 4 o v pa ¥ g % A p v b

Oy 48 & v v

v 4 m

LN I T A N

f Y 4 4y

A]
i a9

A v 4 P 0 4 r Ao

YA e oae T I T I I T e T N

. 4k ¥ 4 & poa

-

»

L L T I B]

[T O A A N A A R A B)

T AP s pay A r YN YY AN Ao

A a ® sy sy

”* v

“a sy v st VY g

» PP P FE P AF A Ay A ye s ey

P st e suy st E LA sa A b Py "y oAy b

LR I

P E & A F a4 Pt t s s P an s Py Y Y REYYA ANy Y

LI I B B I Y

® & v v N

A w s ottt P e e3P aawaoay

PRI A R I N
D e A A
N e T N B
PR R T I dind
L R R e N e
L e e
L R R B e
T L N
L I R T)
L I I e B
TP AN A Ay N
R L L S
* \\-I-lol-.llilb
- \\\-I-lololc...—(.-b
* U\‘l&l’lolc{l!c
+ 1 \\.IO-OI....O:‘I‘.
ou\\..ol-o..-(rrr
ﬁﬂ\‘.'.‘lf'..
Jad’ﬁl -tPhtt
a.frl........rrqﬁh.....
j.ff.r?.ﬁ.lnlou\k_\t
_r.ff.ll‘.l..lllcols\.\\ .
-.-I.l.....l.lbl‘tl\.\-\o
!t..ol-oll—.lyll-\.\\ v
e N 4 *
-ttt 4 P
e . et e PR
papeees B T T A]
papers B N R B]
e Say YRR R
-‘-IolIw AP A s A
v PR AR AR gy ”aa

LA I I O)
LA B)
- ey
-y
- oy oy
R I
AA Sy,
nl\t‘lol.v.‘f
oy Sy
AAL
- OY b g gy
L R Ty
"..“{{
_‘u\‘l(f
‘uﬁ..o-{/
-.—s\‘(f
-aﬂi‘f{
s L E wany
aanocrv
aaaaev

-aa...w
-zaa.ﬁ

-a,’nt“
na.f.ltl_\h
on.f./-r..s&
Ol”.l‘\
s.-f?.\‘
ll.’r-‘!
L S .
amy e e g
C IR I I T T
L I T

PO B B R R e e g

TR B O L N L B B B B B B A N R A A R

LR T A N S T L 3

* 4 4 ¥ % b 2E 8 kR v

¥ 4 N L NN TS sy e a b4 4 sy EE YNy T s s Y

T I R TR I A A I B I I VL VI R VI A I N 3

T R I T A T A U SV S Sy

.alaa.—rd.......,,,“““‘““l"_

L B S O ¢

I.‘f....,"‘
PR AR R R e ey g

.
»
YAk (NS s e rrryy

IR R R R EEEEEEER R
i
'
{
[4

A A A I A B A B A S A

ye e T vl e ia g s i its s v vt
AR IR T IR L I R 2 B T T U I S O O I R A
' R AL A L A I AR B N T O SN R N R B B R 2R
PR IR I I S A A A A AR T L T)
PO SN SR T TN U I U S TR S S S A A
TR R IO AR AR B I S AR AR IR IR R A B AR A S B BRI BN N R A
Y T T B R I S B T TR TR I T O S A S B R B 1
P B R B T R IR T B R B I O I B I N
IR S O T I I S A T A A B I R I BN U N
P I T R T O T LT R N T S TR I T R S
L T T N T R I BN B B B L B B B L B N R BN 1

e v 4

4 % % & 3% ¢ 4 BT CR RS T RSN
FEE SR I S A S 2R TR R T I R O TN U B

Jut

0.40

0.55
Generations = 300

Bias Veloci

512 by 1024 sites

Velocity

Page 65

Despite its small size and modest support interface, the LGM-1 is one of the fastest machines in
the world for the computation of the FHP lattice gas. Hayot, et al. [54], discuss the implementation
and performance of the best known algorithms for the FHP lattice-gas software simulation as executed
on several different general purpose machines. They also extrapolate to predict the performance of
larger sibling computers on the same problem.

Hayot reports a site update rate of 2.3 million sites per second on a 32-processor INTEL iPSC
hypercube. An Alliant FX-8 shared memory vector supercomputer gave only 0.7 million sites per
second on the same problem because a large part of the code had not been vectorized nor made con-
current. We summarize the reported measured performance of various machines in the following table
(from [54]). Even though the lattice sizes differ, the comparison is fair because the performance of
these machines is independent of the size of the problem.

System Lattice Problem Size Performance, site updates/sec
32-processor iPSC 4096x4096 2.3 % 10°

Alliant FX-8 4096x4096 0.7 x 10%

CAM-6 256x256 4.0x10°

GAS (built at ENS Paris) 512x256 6.5x10°

Connection Machine 4096x4096 10°

LGM-1 512x1024 7 x 10%

Table 5-1: Reported Actual FHP Performance

The GAS machine is a dedicated FHP lattice gas machine designed and built at Ecole Normale
Supérieure in Paris. No published material is available for this machine. The Connection Machine is a
general purpose computer composed of 65536 one-bit processors arranged in a multi-dimensional
hypercube [55].

Hayot, et al., were able to predict the performance of more powerful hypercube processor sys-
tems by extrapolation. They report a predicted performance of 86 million sites per second on a 128-
processor INTEL iPSC-VX, and 120 million sites per second on a 1024-processor N Cube-10. The
LGM-1 has a theoretical maximum performance of 140 million sites per second with 10 chips, but the
prototype implementation used only a small fraction of this power. The reduced performance is
caused by a having a slow host, and a simple, memory-mapped system interface.

It would be possible to tune the program that controls the chips for higher performance, but this
would probably only offer a marginal improvement in throughput. Similarly, the entire prototype sys-
tem could be moved to a faster Sun 3 workstation. This might offer a doubling of speed, but the real
gains would come from being able to deepen the processor pipeline.

Page 66

As we have already stated, a problem in our implementation starts to occur if the pipeline is
deepened beyond 10 chips. If the sides of the lattice are not recomputed, then the particle distribution
becomes seriously biased and the simulation does not converge. We must recompute the edge sites
inside the pipeline because these intermediate generations are not otherwise accessible. Because the
current processors are not capable of doing this, we need a new processor that can compute a random
site value that conforms to the probabilities given by Equation 1-1.

The design of this *‘boundary processor’’ is described more fully in Chapter 7. We [56] already
have sections of it built in TTL and tested. We expect that a working prototype of it will be ready for
installation in the current processor pipeline in several months.

Page 67

CHAPTER 6

A Proposed Environment For Fast Prototyping Of Linear Sys-
tolic Processors

6.1. Overview

The LGM-1 prototype we constructed was a success from several standpoints. First, the LGM-1
was instrumental in allowing us to test and verify the special purpose chip. It provided an environment
in which the chip could be exercised by providing input patterns and by comparing the results with
known correct output. Its biggest shortcoming was the input/output bottleneck that limited system
speed when the system was debugged and ready for production use.

In this chapter we propose a host support system that is conducive to fast prototype implementa-
tion of pipelined arrays and other special purpose structures with custom outboard devices. The
environment includes both the hardware support and a programming model that enables chip designers
to debug and operate their creations. The proposed hardware interface is standardized to simplify the
construction of the prototyping environment, but would not necessarily force common chip pin-out
conventions on the designer. The programming model is an illusion created by a subroutine library
that provides entry points for data format conversion, data input, data output, and device control.

The proposal of this prototyping environment is motivated primarily from our observations of
VLSI hardware projects undertaken in the Department of Computer Science over the last 3 years and
our experience with this project. Only two projects culminated in the operation of a working produc-
tion prototype of some sort. Many projects never even reached this stage; their chips remain untested.

In 1984, Steiglitz, et al. [35], designed and fabricated a chip that simulated a one-dimensional
cellular automaton. The chip was tested in a primitive bread board environment by exploiting a priori
knowledge about the ‘‘fixed points’’ in the machine’s functions. Because a production level system
was never built, the full power of the chip was never exploited to do useful computation.

In 1986, Lopresti built the PNAC (Princeton Nucleic Acid Comparator) nMOS chip [57]. In this
case, the chip was eventually incorporated into a production level support board (multibus SUN-2) and

Page 68

tested. The performance of this system was impressive, but was still far less than the capabilities of
the custom chip. Since that time, PNAC has been installed in other computer systems (IBM PC AT in
progress). Even though the second generation designs have included “‘tricks”™ that allow the custom
chips to be operated more efficiently, the PNAC chips on the board are still grossly underutilized by
the host system.

To some extent, our project has suffered from the same failings. Our hardware prototype offers
about 60 to 100 times more performance than software simulation on a Digital Equipment Corporation
Vax 8650, but this is still two orders of magnitude less performance than the custom chips themselves

can provide.

Each of the aforementioned projects has several common elements or aspects. They are all pipe-
line processors or linear systolic arrays, and each operates according to the same inner loop:

step (a). Write data to chip.
step (b). Start chip.
step (c). Read result from chip.

However, each of these projects had differences in data format, word size, number of ports, and
chip pin-out conventions. This precluded the use of the same interface board for each. The designer
was forced to build interface hardware for a particular target host and support hardware that was tuned
for the particular special purpose chip. This entailed re-inventing known technology: interface
handshaking circuits, address decoders, etc. In reality, all that was desired was a hardware platform
that would make it easy to write software to implement the basic loop just described.

In some circumstances, a VLSI chip can be an end in itself, rather than a means to achieve a
larger scale goal. In these cases, the chips often go unused, even untested. Our viewpoint is, however,
that a custom chip design needs to be integrated in a larger system, and that the goal is enhanced per-
formance for a special class of problem. Nevertheless, it is true that less is learned by building an
interface board than is leamned by building some new, previously unstudied architecture. But the fact
remains, without the scaffolding, an isolated chip is of limited utility.

A related issue is whether the ideal prototyping environment should free the chip designer from
additional hardware work, allowing him or her to plug the custom chip into an existing framework
without doing any further wiring. The complexity of such an environment would be formidable. We
argue that it is more sensible to build something simple that provides a wealth of generic services
which the chip designer can exploit. After all, if he or she is comfortable with hardware, and if the
time necessary to install the chip in the interfacing and support environment is modest, then it will not
be an impediment to complete system integration. The advocates of a “‘plug it in and go’” support sys-
tem tend to underestimate the hardware work needed to build the support system and software work

Page 69

that would be involved in configuring the system to a new custom chip.

The prototyping system must meet the needs of current and future VLSI based linear systolic
array and pipeline processor projects without modification. It also must allow the easy addition of cus-
tom chips to lengthen the array or deepen the pipeline. We intend to use this system to test our
theories about the indefinite extension of processor pipelines. It may be more important to provide the
facility to add hardware than it is to make each stage of the system operate extremely fast.

To summarize the requirements, the prototype system should satisfy all the needs of all linear
systolic and pipeline projects. It should support different word sizes at each of a number of data input
and output ports, as well as flexible timing and clock generation. The clock rate, and therefore the sys-
tem throughput, should be adjustable via software. The pin-out conventions of the experimental dev-
ice should not be fixed, but the amount of hardware work necessary for the installation of the special
purpose devices should be minimal.

Another consideration is the implementation of the prototype system itself. It must be feasible
to build and test with our current hardware configuration and local expertise. This rules out technol-
ogy such as microprogrammed sequencers for on-board state machine control because we lack both
the equipment and the experience to construct systems from these parts. Commercial interface and
prototyping boards may be of some help, but we have found them to be of low quality and reliability.

Some thought was given to changing the the interface paradigm from memory mapped to direct
memory access (DMA). The hope was that performance could be increased by as much as a factor of
10 by eliminating the CPU from the memory input/output data path. The increased complexity is not
justified for two reasons. First, performance can be increased to any arbitrary level by increasing the
number of special purpose chips in the pipeline. Second, a DMA system requires a device driver, and
is therefore not as transportable as a memory mapped system. We therefore retain the memory
mapped paradigm, relying on the possibility of adding additional special purpose chips to make up for
the performance differential.

Another contentious question is what computer system should act as the host to this prototyping
environment. Some have argued that the IBM PC/AT is a natural choice because it is common, and
because the programmer has full control over the machine. We disagree. The lack of a real operating
system for these machines is a serious liability, and for the purposes of doing research, the services
provided by a machine like a Sun workstation and an operating system like Unix are very desirable.
The objection usually raised against doing development under Unix is that a device driver is necessary
and the virtual memory management system makes using absolute hardware addresses difficult. We
have shown in our previous work that neither of these objections is valid, and we therefore adopt the
Sun 3 workstation and Unix as the host to our hypothetical prototyping system.

What follows is a more specific proposal for a prototyping environment for linear systolic and
pipelined processors. This hardware would be useful for the continuation of this project, and possibly

Page 70

for future VLSI projects. Since none of this hardware has been constructed, we have left some details
in a more or less vague form. It is difficult to anticipate features that may be desirable, but once
detailed design and construction has begun, some of the details may be become obvious or con-
strained.

6.2. Hardware Specification

The prototyping system occupies 8K in the virtual address space of the host, chosen to coincide
with the hardware page size of the Sun 3. The hardware address is switch-selectable and may begin on
any page boundary within either the 24 bit address space and the 32 bit address space VME bus.
There are eight read/write 32 bit data registers which are divided equally between input and output.
Four input registers, located at addresses 0, 4, 8 and 16, provide data to the special purpose chips.
Similarly, four output registers, located at addresses 20, 24, 28 and 32, receive data from the processor
array. The designer is free to use as many or as few of the bits in the data path as desired.

There are three control registers. The first, located at address 36, controls the clock generator
period. The value stored in this register is used as part of a programmable divide-by-r circuit which
creates a time base for clock and timing signals. The second register, located at address 40, is the
status and control register for the state machine. Its bits provide the start signal to run the special pur-
pose chips and to latch results into the output registers. Other bits indicate whether the machine is idle
or running. The third control register is for special purpose chip control. It provides 32 bits for use on
the control pins (if any) of the special purpose chips. It is located at address 44.

All the registers are read/write, and must be addressed as words (32 bit quantities) on word
boundaries.

The other major hardware unit is the clock generator. It is responsible for the synthesis of clock
and timing signals, some of which are provided to the custom chips, and others which are used to con-
trol the underlying state machine. It can be programmed to produce a clock rate between 50ns and 500
ns per clock phase in 25 ns steps. All the generated phases will have the same period. Our suggested
implementation is to use a programmable divider to divide a free running clock based on a quartz crys-
tal oscillator.

Most of the usual prototype circuit specificity occurs in the clocking and latching circuitry, so
naturally this is where we want to provide the greatest possible generality. The clock generator pro-
vides 2, 4, 8, or 16 non-overlapping clock phases. The developer can use them to drive clock pins and
to latch data from the chips into the output registers. Initially, we suggest that a jumper block select
the number of clock phases and which phase is used to latch each output register. It is conceivable that
these functions might be moved to programmable switches in the future, and there is ample room
remaining in ;he address space to accommodate the requisite control registers.

Page 71

6.3. Software Specification

We anticipate minimal information hiding. A C struct defines the offsets of the various registers
and constants and masks that are useful in starting the machine and determining its status.

struct protodevmem {
unsigned int ir 0; 1* input registers */
unsigned int ir_1;
unsigned int ir 2;
unsigned int ir_3;

unsigned int or_0; I* output registers */
unsigned int or_1;
unsigned int or_2;
unsigned int or_3;

unsigned int ck_per; * clock period control */
unsigned int ctl_state; /* state machine control and status */
unsigned int ctl_user; /* user control word */

char filler([8148]; /* use up the 8K page */

};

In addition, there are a few skeleton macros and functions that simplify the programmer’s job.
They and their functions are given in Table 6-1:

Functions and Macros

Name Action

wdata(port, value) | Writes data specified by value to designated port. Value is
treated as a 32 bit unsigned quantity.

rdata(port,) Reads data from designated port. Returns an unsigned int.

clkper(nanos) Set the clock period to the requested number of nanoseconds.
The requested period will be rounded to the nearest 10

nanoseconds.
clkQ Run the processor array for one multi-phase major cycle.
clkstat() Returns 1 if the processor array is running, 0 if idle.

Table 6-1: Software Entry Points

6.4. Physical Specification

The prototyping system should be constructed on double high VME cards. We highly recom-
mend that the intemal Sun 3 VME bus be repeated by a suitable commercial repeater system to an
external card cage. This will provide a degree of safety for the developer and the Sun 3 host by

Page 72

providing physical access for the former and electrical isolation for the latter.

The proposed prototyping environment is a multiple board system comprising two basic board
types: type M, and type S. There is only one type M board, the master control board, in a system, but
there can be an arbitrary number of type S (slave) boards. The type M board would contain the VME
interface logic with full 32 bit address recognition, and all of the 32 bit registers and the state machine
circuitry. There would also be a set of differential line drivers to drive twisted pair ribbon cable that
carries data and control signals to the type S cards. The type M card also would contain a set of dif-
ferential receivers to allow type S cards to return results to be latched in the output registers. The
drivers on the master board should transmit the contents of the 4 input registers, the 16 bits of clock
phase, and the 32 bits of device control. The receivers would buffer four 32 bit quantities which are to
be latched into the output registers, and 16 bits of clock.

Separate data and clock cabling should be used so that different distributions topologies can be
used for each type of signal. For example, the developer might want to use a tree for the clocks to
keep skew small, but use a linear bus for the data lines. Twisted pair cable is used to provide immun-
ity from noise. The master should also be able to receive clock signals so that latching signals are not
skewed with respect to the incoming data signals (which come from another board).

The second type of board, type S, is a slave of the type M board. It would contain differential
receivers and transmitters and the special purpose chips. The receivers would buffer four 32 bit data
words, one 32 bit control word, and the 16 bits of clock. The incoming data words should be provided
to a special purpose chip, and the clocks distributed as desired. Differential transmitters would be pro-
vided to chain type S boards together. The clocks and control bits would be propagated automatically
from the receivers to the transmitters, but the data bits would come from the output of one (or more) of
the special purpose chips. The clock signals would be propagated to two output connectors to allow
clocks to be distributed as binary trees, if desired.

6.5. Final Comments

The developer is presented with this raw environment. It provides some organization and struc-
ture, but hardware work remains before the designer’s chips can become operational. We have one
implementation suggestions that could accelerate the process. The designer should develop another
board which has all the chip-specific wiring but has the connectors that mate with the type S board
connectors. The chip-specific board has no logic; it only contains the wire routing to provide data and
clocks to the special purpose chips. Once this is developed and produced, it is a simple matter to plug
all the pieces together to arrive at a working system.

The separation of functionality has an added benefit beyond providing a simple hardware inter-
face. It is also bus and host independent and this makes it simple to migrate the special purpose chips
to a new host. The design of a type M board is all that is required. We grant that this might not be an

Page 73

inconsequential amount of work, but it is restricted to a portion of the system and this in itself is
simpler than the traditional, chip-specific prototyping technique.

Page 74

Chapter 7

Conclusions and Future Work

7.1. Summary and Conclusions

This dissertation has explored theoretical and practical questions in the design of massively
parallel machines for regular, iterative, spatially distributed problems. We have analyzed and com-
pared two architectures that are efficient for lattice computations and that are suitable for VLSI imple-
mentation. We also have studied the effect of clock skew as a possible limitation on the ultimate per-
formance of large, globally synchronized multi-processing systems. This work culminated in the
design of a special purpose VLSI CMOS chip and the construction of a working prototype machine for
the Frisch Hasslacher and Pomeau (FHP) lattice-gas model [17].

Part I (Chapters 2 and 3) of this dissertation has addressed two different theoretical issues. In
Chapter 2, we have given an analysis method that evaluates VLSI architectures geared toward lattice
computation based on size-throughput and area-bandwidth (number of pins) tradeoffs. Using this
technique, we analyzed and compared two competing architectures (SPA and WSA) for the two
dimensional lattice computation problem. This analysis convinced us to build a chip based on the
WSA architecture.

The WSA architecture has a property that we call linear speedup. If n processors, which are
fixed in size and cost, provide n times the throughput of one processor on the same problem instance,
we say that the processor provides linear speedup. Other lattice processing architectures, such as the
CAM-6 [25] and the PE-1 [4] lack this important property. Speedup is achieved with these architec-
tures only when the problem instance size is also increased. We consider this to be a disadvantage of
these architectures.

A consequence of this simple idea is that under certain circumstances it may be more profitable
to make the machine larger than it is to increase its clock rate. The reason why is simple: a perfor-
mance differential between a system with a fast clock and a system with a slow clock can be equalized
by adding more hardware to the slower system at linear cost, but with linear speedup. This fact
motivated our discussion in Chapter 6 of a prototyping environment in which it is easy to add

Page 75

hardware.

Given these properties, it was natural to ask if there would be a theoretical limit to the length to
which a linear array can be extended. Our hypothesis is that the length would be restricted because of
either timing problems or reliability and we suspect that power density or power dissipation would not
be a limiting factor. We began to answer this question by investigating the problem of timing. We
presented this work in Chapter 3 where we proposed and analyzed a probabilistic model for clock
skew accumulation based on variations in buffer and wire delays.

We applied these results to two different models for clock distribution. The first, called metric-
free, dictates that the skew in a buffer stage is Gaussian with a variance independent of wire length. In
this case the upper bound on expected skew grows as 8(logN) for a system with N processing ele-
ments. In the the second model, called metric, the clock skew in a stage is Gaussian with a variance
proportional to wire length, and the distribution tree is an H-tree embedded in the plane. In this case
the upper bound on expected skew is G(W) for a system with N processors. Thus the probabilis-
tic model is more optimistic than the deterministic summation model of Fisher and Kung [27], which
predicts a clock skew of ®(N) in this case, and is also consistent with their lower bound of Q(\W) for
planar embeddings.

Further work in this area will include the analysis of other clock distribution topologies and the
inclusion of the effects of processor interconnection graphs. In addition, study must inevitably turn to
the effects of reliability.

Part II of this dissertation (Chapters 4 through 6) describes the practical aspects of this work.
Chapter 4 describes the design and implementation of the WSA architecture in full custom 3p CMOS
VLSI. This chip, the LGCA chip, is the first CMOS chip to be realized at the Princeton University
Department of Computer Science. It was found to operate at up to a 7 MHz clock rate, giving a max-
imum performance of 14 million lattice site updates per second.

Chapter 5 gives the details of the construction of a prototype lattice gas machine, LGM-1, based
on the LGCA (lattice gas cellular automata) chips described in Chapter 4. The LGM-1 uses a pipeline
of ten of the special purpose chips and the two board prototype is installed in a Sun 3/160 workstation
host. The system interface is simple and has small bandwidth, so the LGM-1 can provide only 7 mil-
lion site updates per second even though the chips are capable of 20 times more performance.

Nevertheless, the performance exceeds that of much larger machines of much greater cost. For
example, the 32 node INTEL iPSC hypercube can perform 2.3 million site updates per second, an Alli-
ant FX-8 vector processor can update 0.7 million sites per second, and the CAM-6 can perform 4 mil-
lion site updates per second. The massively parallel Connection Machine, with its 65536 processors,
sets the performance standard with 1 billion site updates per second [54].

The fact that our machine achieves high performance even though its hardware is slow

Page 76

demonstrates the effectiveness of linear speedup. Unfortunately, our prototype machine has reached
its performance limit because of the boundary value problem that we described earlier. Extensibility
will require the design of a new chip or processor.

Chapter 6 describes a general host support system that should facilitate the construction of future
linear systolic and pipelined special purpose VLSI processors. Its design is guided by the desire to
make it easy to add hardware to extend the length of the special purpose pipeline.

7.2. Next Steps

One of the things that must be done immediately is to relax the 10 chip restriction on pipeline
depth. As discussed earlier, the host has no access to data that is in the processor pipeline, so we are
faced with the problem of not being able to extend the processor pipeline because we are unable to
update the edge conditions frequently enough. If we were to add hardware to the pipeline to allow the
pipeline itself to modify sites on the edges, then we could theoretically extend the pipeline indefinitely.

We propose to do this with a ‘‘boundary processor’’ that would be inserted into the processor
pipeline at regular intervals. The interval should be adjustable, but should be no more than every 10
chips. Every time an edge site passes through the boundary processor, it will replace the value at that
site with a random value that conforms to the probabilities given by Equation 1-1. This will allow a
pipeline longer than 10 chips to be built because edge updates will take place in the pipeline as well as

in the host.

In theory, the boundary processor could be placed on the same chip as the update processors. If
they could be made small enough so that the amount shift register memory on chip would not be
reduced, this would be an ideal situation. There would then be only one type of chip instead of the two
(LGCA chip and Boundary Processor Chip) that we currently propose.

There are two main problems associated with the design of this processor. The first is the crea-
tion of weighted binary bits. A standard method is to create a word of pseudorandom bits using a
linear feedback shift register [58] and compare this word to a threshold (the weight). If the random
word exceeds the threshold, the result (weighted bit) is 0, otherwise it is 1. We have begun investiga-
tions into structures that would allow the parallel computation of many random bits from a pair of shift
registers.

The second main problem is to distinguish an edge site from a non-edge site. One solution to
this problem is to count the sites as they go through the pipeline. Since we know the dimensions of the
lattice, we know exactly when the edge sites reach each stage of the pipeline. It is then an easy matter
to substitute a random site value for the one currently in the pipeline. A small prototype that imple-
ments this strategy is being constructed by undergraduate Tarun Khanna [56].

A second possibility is to augment the state of a site from eight to nine bits by using additional

Page 77

shift registers in parallel with the ones in the LGCA chip. The shift registers for the extra bit could be
placed on the same chip as the pseudo random number generator and comparators, but could also be
kept separate. Further thought will be given to this approach and simulations will have to be per-
formed before we will know whether this technique is feasible.

Some prototyping environment such as that described in Chapter 6 should have a high priority.
Without it, hardware development and experimentation is stalled. Any new chips (such as the boun-
dary processor) or new hardware will require the design of new interface and support board hardware.

Finally, one of the most exciting prospects for future work is to extend our ideas to the develop-
ment of a machine which simulates a three dimensional lattice gas cellular automaton. A lattice which
meets the criteria for convergence to the full three dimensional Navier-Stokes equations has been pub-
lished [31]. Graduate student Carl Staelin has done some preliminary work on the specification of par-
ticle collision rules, and on techniques for efficient simulation of the automaton [59]. This is a daunt-
ing problem. Each site in the three dimensional model has 24 neighbors, and there are thousands of
collision rules. Currently, three dimensional fluid dynamics problems are solved by numerical integra-
tion on large supercomputers. Success in this endeavor could lead to an alternative technique for fluid
dynamics computation. The three dimensional lattice gas automata also provide a valuable opportun-
ity to explore highly parallel three dimensional lattice computations — presently beyond the capabili-
ties of the largest computing machines.

Page 78

References

1.

10.

11.

12,

13.

14,

15;

16.

17.

18.
19.

20.

21,

22.

G. Barnes, R. Brown, M. Kato, D. Kuck, D. Slotnick, and R. Stokes, ‘“The ILLIAC IV Com-
puter,”” IEEE Transactions on Computers, vol. C-17, no. 8, pp. 746-757, August 1968.

K. E. Batcher, ‘‘Design of a Massively Parallel Processor,”” IEEE Transactions on Computers,
vol. C-29, no. 9, pp. 836-840, September 1980.

D. M. Nosenchuck and M. G. Littman, ‘“The Coming Age of the Parallel-Processing Supercom-
puter,’” presented at the 23rd Annual Space Conference, John F. Kennedy Space Center, Florida,
April 22, 1986.

S. Manohar and G. M. Baudet, ‘‘PE-I: A Super-coprocessor for solving PDE’s,”” Technical
Report No. CS-86-06, Brown University, Department of Computer Science, Providence, Rhode
Island 02912, March 1986.

J. Von Neumann, Theory of Self-Reproducing Systems, University of Illinois Press, Urbana,
1966. ed. Arthur W. Burks

R. P. Feynman, *‘Simulating Physics with Computers,”” International Journal of Theoretical
Physics, vol. 21, no. 6/7, 1982.

S. Wolfram, “‘Cellular automata as models of complexity,”’ Nature, vol. 311, pp. 419-424,
October 1984. ‘

Cellular Automata 86, Cambridge, MA, June 16-18, 1986.

N. Margolus, ‘‘Physics-Like Models of Computation,” in Cellular Automata (Physica 10D), ed.
S. Wolfram, pp. 81-95, North-Holland Physics Publishing, Amsterdam, 1984.

B. L. Buzbee, ‘“Two Parallel Formulations of Particle-In-Cell Models,”’ in Algorithmically Spe-
cialized Parallel Computers, ed. H. 1. Siegel, pp. 223-231, Academic Press, 1985.

S. R. Sternberg, ‘‘Computer Architectures Specialized for Mathematical Morphology,”” in Algo-
rithmically Specialized Parallel Computers, ed. H. J. Siegel, pp. 169-176, Academic Press,
1985.

T. Hatori and D. Montgomery, Transport Coefficients for Magnetohydrodynamic Cellular Auto-
mata, Department of Physics, Dartmouth College, January 1987. Unpublished Manuscript

J. K. Park, K. Steiglitz, and W. P. Thurston, ‘‘Soliton-Like Behavior in Automata,’” Physica D,
vol. 19D, pp. 423-432, 1986. Reprinted in Theory and Applications of Cellular Automata, (S.
Wolfram, ed.), World Scientific Publishing Co., Hong Kong, 1986, pp. 333-342.

K. Steiglitz, I. Kamal, and A. Watson, ‘‘Embedding Computation in One-Dimensional Automata
by Phase Coding Solitons,’’ IEEE Trans. on Computers, vol. 37, no. 2, pp. 138-145, Feb. 1988.
C. H. Goldberg, ‘‘“Toward a Theory of Parity Filter Automata,”” Unpublished Manuscript, Dept.
Comp. Sci., Princeton University, Princeton, NJ, November 12, 1987.

S. Harris, ‘*Approach to Equilibrium in a Moderately Dense Discrete Velocity Gas,”” The Phy-
sics of Fluids, vol. 9,no. 7, pp. 1328-1332, 1966.

U. Frisch, B. Hasslacher, and Y. Pomeau, ‘‘A Lattice Gas Automaton For The Navier Stokes
Equation,”” Phys. Rev. Lett., vol. 56, no. 14, pp. 1505-1508, April 7, 1986.

M. Van Dyke, An Album of Fluid Motion, Parabolic Press, Stanford, CA, 1982.

J. R. Herring, S. A. Orszag, R. H. Kraichnan, and D. G. Fox, ‘‘Decay of Two-Dimensional
Homogeneous Turbulence,’’ Journal of Fluid Mechanics, vol. 66, no. 3, pp. 417-444, 1974,

S. A. Orszag, ‘‘Analytical Theories of Turbulence,’” Journal of Fluid Mechanics, vol. 41, no. 2,
Pp. 363-386, 1970.

P. J. Roache, Computational Fluid Dynamics, Hermosa Publishers, Alburquerque, New Mexico,
1972

R. B. Pearson, J. L. Richardson, and D. Toussaint, ‘‘A Fast Processor for Monte-Carlo Simula-
tion,”’ Journal of Computational Physics, vol. 51, pp. 241-249, 1983.

23.

25,

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

3

38.
39.

40.

41.

42.

43.

45.
46.

Page 79

A. Hoogland, J. Spaa, B. Selman, and A. Compagner, ‘‘A Special-Purpose Processor for the
Monte Carlo Simulation of Ising Spin Systems,’” Journal of Computational Physics, vol. 51, pp.
250-160, 1983.

N. Margolus, T. Toffoli, and G. Vichniac, ‘‘Cellular-Automata Supercomputers for Fluid-
Dynamics Modeling,”’ Physical Review Letters, vol. 56, no. 16, pp. 1694-1696, April 21, 1986.
T. Toffoli and N. Margolus, Cellular Automata Machines: A New Environment for Modeling,
MIT Press, Cambridge, MA, 1987.

G. Zannetti, personal correspondence..

A. L. Fisher and H. T. Kung, ‘‘Synchronizing Large VLSI Processor Arrays,”’ IEEE Transac-
tions on Computers, vol. c-34, no. 8, pp. 734-740, August 1985.

S. D. Kugelmass, R. Squier, and K. Steiglitz, ‘‘Performance of VLSI Engines for Lattice Com-
putations,’’ Journal of Complex Systems, vol. 1, no. 5, pp. 939-965, October 1987.

J. B. Salem and S. Wolfram, ‘‘Thermodynamics and Hydrodynamics with Cellular Automata,”’
in Theory and Applications of Cellular Automata, ed. S. Wolfram, pp. 362-366, World Scientific

‘Publishing Co., Hong Kong, 1986.

J. Hardy, Y. Pomeau, and O. de Pazzis, ‘‘Time evolution of a two-dimensional model system. I.
Invariant states and time correlation functions,”” J. Math. Phys., vol. 14, no. 12, pp. 1746-1759,
December 1973.

D. d’Humiéres, P. Lallemand, and U. Frisch, ‘‘Lattice Gas Models for 3D Hydrodynamics,”’
Europhysics Letters, vol. 4, no. 2, pp. 291-299, 15 August 1986.

S. A. Orszag and V. Yakhot, ‘‘Reynolds Number Scaling of Cellular Automaton Hydrodynam-
ics,”” Physical Review Letters, vol. 56, no. 16, pp. 1691-1693, April 21, 1986.

P. A. Ruetz and R. W. Broderson, ‘‘Architectures and Design Techniques for Real-Time
Image-Processing IC’s,”” IEEE Journal of Solid-State Circuits, vol. SC-22, no. 2, April 1987.

J. Kittler and M. J. B. Duff, eds., Image Processing System Architectures, Research Studies
Press, Ltd., John Wiley and Sons, Inc., 1985.

K. Steiglitz and R. R. Morita, ‘‘A Multi-Processor Cellular Automaton Chip,”” Proc. 1985 IEEE
Int. Conf. on Acoustics, Speech, and Signal Processing, Tampa, Florida, March 1985.

A. L. Rosenberg, ‘‘Preserving Proximity in Arrays,’” SIAM J. Computing, vol. 4, no. 4, pp. 443-
460, December 1975.

S. R. Sternberg, ‘‘Pipeline Architectures For Image Processing,’” in Multicomputers and Image
Processing, Algorithms and Programs, ed. L. Uhr, pp. 291-305, Academic Press, 1982.

Kenneth Supowit and Neal Young, personal communication, 1986.

S.Y.Kung, S. C. Lo, S. N. Jean, and J. N. Hwang, ‘“Wavefront Array Processors - Concept to
Implementation,”’ Computer, vol. 20, no. 7, IEEE, New York, July 1987.

R. L. M. Dang and N. Shigyo, ‘A two-dimensional simulation of LSI interconnect capaci-
tance,”’ IEEE Electron Device Lett., vol. EDL-2, August 1981.

K. C. Saraswat and F. Mohammadi, ‘‘Effect of scaling of interconnections on the time delay of
VLSI circuits,”” IEEE J. Solid State Circuits, vol. SC-17, no. 2, April 1982,

M. Hatamian, ‘‘Understanding Clock Skew in Synchronous Systems,”” 1987 Princeton
Workshop on Algorithm, Architecture and Technology Issues in Models of Concurrent Computa-
tions.

S. Ross, A First Course in Probability, Macmillan Publishing Company, New York, 1984.

W. Feller, An Introduction to Probability Theory and Its Applications, Volume II, John Wiley &
Sons, New York, 1971.

H. Cramér, Mathematical Methods of Statistics, Princeton University Press, Princeton, NJ, 1946.

M. S. Paterson, W. L. Ruzzo, and L. Snyder, ‘‘Bounds on Minimax Edge Length for Complete
Binary Trees,”” Proc. Thirteenth Annual ACM Symp. Theory Comput., pp. 293-299, May 1981.

47.

48.

49.
50.

51.
52.

53,

55.

56.

57.

58.
59.

Page 80

C. A. Mead and M. Rem, ‘“Cost and Performance of VLSI Computing Structures,’”” IEEE J.
Sold-State Circuits, vol. SC-14, pp. 455-462, April 1979.

J. P. Singh, ‘‘Synchronization of Large VLSI Systems,”’ Unpublished Manuscript, Dept. Electri-
cal Engineering, Princeton University.
N. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison-Wesley, 1985.

VMEbus Specification Manual, Motorola Semiconductor Products, Inc., February 1985. Revi-
sion C

P. Horowitz and W. Hill, The Art of Electronics, Cambridge University Press, 1980.

W. 1. Fletcher, An Engineering Approach to Digital Design, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1980.

M. D. Taylor, Report of Senior Independent Work, Department of Computer Science, Princeton
University, January, 1988.

F. Hayot, M. Mandal, and P. Sadayappan, Implementation and Performance of a Binary Lattice
Gas Algorithm on Parallel Processor Systems, Department of Physics, The Ohio State Univer-
sity, 1987. Submitted to J. of Comp. Phys.

W. D. Hillis, ‘“The Connection Machine: A Computer Architecture Based on Cellular Auto-
mata,”” in Physica 10D, pp. 213-228, North-Holland, Amsterdam, 1984.

T. Khanna, Report of Senior Independent Work, Department of Computer Science, Princeton
University, January, 1988.

R. J. Lipton and D. Lopresti, ‘‘Comparing Long Strings on a Short Systolic Array,”” TR CS-026,
Princeton University, Princeton, NJ, February 12, 1986.

S. W. Golomb, Shift Register Sequences, Holden-Day, Inc., San Francisco, 1967.
Carl Staelin, private communication, 1987.

Page 81

Appendix 1

SFM-4 Pin Assignments SFM-4 Pin Assignments
1 Substrate 54 Data Out 12
2 Data Out 07 55 Data Out 13
3 Parity Out 56 Data Out 14
4 57 Data Out 15
5 58 Data Out 00
6 59 Data Out 01
7 60 Data Out 02
8 61 Data Out 03
9 62 Data Out 04
10 63 Data Out 05
11 64 Data Out 06
12
13 Phi 2 BAR
14 Phi 2 BAR
15 Phi 2
16 Phi 2
17 vdd
18 Phi 1
19 Phil
20 Phi 1 BAR
21 Phi 1 BAR
22
23
24
25
26
27
28
29
30
31 Control 1
32 Control 0
33 Data In 15
34 Data In 14
35 DataIn 13
36 Data In 12
37 Dataln 11
38 Data In 10
39 Data In 09
40 Data In 08
41 Data In 07
42 Data In 06
43 Data In 05
44 Data In 04
45 Data In 03
46 Data In 02
47 Data In 01
48 Data In 00
49 GND
50 Data Out 08
51 Data Out 09
52 Data Out 10
53 Data Out 11

X0R TREE

PRy
o0,
::“ _zl’l’

E FIGIIEERY
& ALIP0#00008 7
Ryl

o

I
AL

’4,’/,’/,;’/
770,700,
e, "/d

v

7
b,
s
i,
AL
ey
AAAAIENA ‘s AR
A
NN AN
23 3
2 e 3N
=
7 w A 23 —
1,’(; & s % ~ o
N, 3 0%
(A 53 L, nnw
(AL :’: I A
333 v, X o
le‘ "’:”"‘/{”: DI
A N s
= s, o~ N
~ Vot o, o~ e
N porre e N
S s N N
3 AR AIRRRLIRINN
4 :E‘
AR
. AR AN
& IRRNNR
o e o
= x Wy N
B A2 N A
2B . 2
2 N
X ARANEAANAY
: SRRRARANANNS
. ~ s
8 3 SR
AR = 3 AN
N o " 2 o
W 3 3 RN
PR N v e 0 ~
RN N 3 3
-
55 AR
>
o~ Ry \\N _
gl NG i
& "
Y
SEEE - ‘

ouT

SHiFT REGISTER
QeLL

i
o,
s,
2ELP

b 3.
15220028

N

B
i,

7
O PLPATAD
WAL A
S &

i
S

(A PRI SO /
Ly < Ay
el (A

% (R

&
7

) A

PP EELILTLR A,

A
7, b

XO0R GATE

JEVHES

Pit

Rpla_0

Clock State Machine

e

; 011/Latch_Result
Input/Output
011 /Pml.ClwﬁmN 011/Phi2

State = QB QA
Input = Proc_Running
Ouput = Phil, Phi2, Clear_Proc_Running

s.cie- F3 ()

()
(u)%(zi
dz0
U
VHE. RESET @ | o
KL
W @2 D Q @) g =
ME_Lae
PROC . R I W6 (H)
e oV @ [S
Cw.Pr " amdide (V) ® S PROC . Rumaing (L)

s.evhr- et ()

S.evRu. PR (1)

S.eTRL. tAmen (1)

™E.DI

VME . RESET

S.CTRL - LA"eH (1\

YME = D2

VHE . RESET

|
)1
\\
|
() S)
e
[d) N BT
08 uzi
(pletr B Ko
LS
(10) lﬁ 20 (4)
(”) >Cl
(12) 2> za_&
LN, TR

SEM .7

SFH. ¢ |

(s Q)]
e (80 @) | :hew T
O] detrestus [e
)) £:
(zh hh2Z, D T
(4 i 5
® (G 4
&) sen [eh ¢
(©) h & (WL
t (V) 3 Mereora = 2034
c:: 0]
[€D)] @ b: 3Ta¥"1
()] 7er~osz <2 [(h) or:
(r §)] fe:
@) b2, @ Zi;
(b) @ gl
(5 ()] 4l
@ 9zn @ §
7) an 20318071

() 20ty 3034

1 :39y2 Q

B s T WM N

1 310v¥2 79

o

R Rk & B
]

"

2i

€/

hl

S

41 3m9) -0

(O]
[t1] @
™ ,
0| 08 °319W-0
@
Q) hhZ,
(&)
— @ &
G]
(40) w
180 IO
“n O] fa
| 28730 [N 01
(N (&) [}
(+) hZ, [T 219
) = £
@ AZn (s L
(€) (e 59

$¥3130Q SSRITW (Mavetn — 5 [Ty (H)sLzam

L EEEL ww_zuwrm@ Jaﬂﬁwc As4s T (5] s«0/ [(50 (@IV) AIshs
3 q (H) 311 im) D .jﬂﬂiﬁ;j

mes T ()] I7 7l 15q

(M esT —@n| oz, [] #51

(Mysy = (A0 ™ @ ()sY

(ryqdsmy — (9771 v a0y (avea

H)a333% 7 (3] gsewy (72T (o) (VL33

W) 3418 () Sqd

?w_. :__y_
O

Gy ED
(mn @ (a1 9
ﬂNJ_ Ul jﬂ. p'a
) @ o ¥
@ Ve e
- (sn| ey g "
(| s [w7 o
| @ ¥4
T @n] #ead [(2) ey 29

(ghavdn (Jsad

(bD " Sﬂw :._WF

] - BIEEE
3, {3 Gi (v) 8 jﬂn 4q
— L) e @ e
_w G (] C 7T 59
) ‘I._Wirn_lm.ﬂ 5 IAMJ. qa ..q j Q) hq
@ i 2y (£29) Ht (| s =y £
I _ o @) 0 L7 N ()] &
.. o e ey @ © o T
A R 2 L T seeadn [AW 4

vaI o33 Wheq

403503
(H) s
) () ,
@ N A
(5) (H) Tyery
T
L (H) 1sa
e TE
() sqa . "
Onm_
@ (b JuA._
| AN QELE
,\mw A
€] («) () L1t -wH
- 1ragal
e e () 11y
T
() s

o

MOILYHINTD AT

N AovLq

)

5q,
2%,

(£

(€4)]

(n

(@)

Q)]

&7

(#)

£)

HO
79
38
39
qo
)9
a9
90

M)

i

(»)

2

[63)

@)

0]

S+

(#)Sa?

A1I5AS

NMeILDILIT SSIHATY

() 21K -r&.l\ CIED! EHY
& _— s olht eIy PV
(ra) WV
Q) L4 ~vH >
/ -
- o) w0
ﬁl als B-A
o O o T +8 £d ?h) ® ,3&N¢
(¢ O & N bl pZ| el (9 ,jﬂﬂ_\
C s e] *° e (4 [—cr 17
¢ —.Mo Orij, L) Ll) (&) i~ e
¢ ° oT——@———5i=® 2, el an| wkzn [b
¢ ot & 3] Kl &)]) [@ (o) &y
Mv OlHMli - @l e 4G o [(m— (=) £y
j, “ &.tq:cn @) @) 3e8vd [(0] Ly
PJUE:S\
& y
@) ;_&Iw%
dis [~ HML‘L:I\‘A
L e S L HED (<) [<= 5t
® O+ us-j e @) 1S [T b
D o O ©] 5P 2 () (¢ [(559) et
p (ROt @357 18 282 W ® k7, [5n 21t
L e Gsssss vy B 5] @n [@ &5 o
¢ O -e— i 741 {2 oy Y
Aw W R M) @) oo H
- L (- @ e [T corw BV

SIPM s FLIAM HILY]

MR (1) o0
Am -LAO- () $33 HILvv o
(+) 3 a \NKJ - \I
o ©]
(or)
((21) m%vﬁ}\l of
S nh (1) 735 ~vra-4
) FUAM qyLa s w
ont i
(9 .
7)
- *) a7 [
(<) OREREEIP R
(}) 2020 m-q
o
ﬁm.y Ch
(9 ar\ oM g

O iy

(H)
Juym = (
1<
Zh]

57
b
2I1S
qQY3y
- ENE
S
3y
™
dq
[E b
135
Q)
A (
Yy " Lln 5
0
-q
(on
®)
C 7
aq QY3 | :
\m-ﬁ: ~ ylasy

-
Q)
()

mﬂ ﬁ.s n3s
-3
a
-q

(z

Q)
Q) 3%
NI
R

oty oy

dripNva T I0Nd

b
Z ¢
HILYT A
e
[ﬁ]
.% (M,
(e]

P

QLR RS

(%)
&)
(#)
¥
% (m ®
ED) Z AV Vv
| S _
i st ! @ wxe .)
Is Heo N |
@ B
o]
gsl (eD| [0] ®
s+ St
g © 4
o
®)
(2]

A0 a

o Y Tr)
e

£

e PRT-v)
roclidl 3233_.

tHio

qD)] (2)
V4 v
ZHH s°7
ATl
) © Ut @ e
héht Y piht w_
@] 2 @ Ho
S [=
ot st
pdod
(s -wios Galm A 29 “.3 i
oy st
(1) 135 "1n0 "9 on 9 4 B4
ﬂmdd.rzli!IAzu
Q) e q rndto # S1@
B\ﬂ 4Y]

IG5,

Q)s@

oz - Newa”0 A\/
bl : QY2 "0 A
<
. . un
3t (8) ™ (b) (7
n0s
<
& :AN8yo-0 W) 2N ® @
E& (&0) dg) J |30 (@) |8 |od |(ar)
g s i
Oh - 7
J
FdS ’ 45 1dS A
~-a

. Ao wr 1
~——] g A
~ (v) (1) .
- | o Q » e A
. D)}) /i
. ()! 13) 1
~— 9] 117/
~— 1) (1L
in id
(]
. uill g " 3 Ih /
T !*) .‘ﬂ 1
= 1)) -]
~ g Q » 2 A
~ n »
™~ (3 is) e
s 1 £) (1£) -~
. 7] "]
L)
)y Jeny
) ¢ 5 gL I]

o)) Fal G
~Ju (n L“? o)
S~ b A

i ud)f py @ a b A
~D iy) b3
~2! (7)) ie) 1

b (] (14} -1
A ot
@ T,, i
[~ 13 379 F4)
13 { 15)
s | i
-l [Ls! 1)

3 whl D) 4
D2 1) (5] A
S~ (19 e
D | I A

1 (0]

».09T.0€ () D.ouT.LATCHE

drit . Dok - Out TWC- ‘e W ‘.ﬂ.]-.ul J:u] .

g i

I 18| L Y iz i
e 1 iy 1]
213 1w) ¥ i3
bz 1 o Q » e 2
Din) (10} il
D | (13) »
0 1| ud)
2 I lugs » A
N~ 1)) 3]
in Er
T
—
!
[
27 I P IH) p? -
L 1) iy, De T
[D 1) 16,
Y i <I » |22
| poX] N e B3 -~
i 2 (3 li3) be ~
|
5 ~_ > 15) Ulh‘ (15) 31 -~
1 ~~_ >0 1) I P P
‘ AL
A
- sl P AR
~—] uis | PYS—1:]
| Pegios oo ol Yo PR .]
1 e it 2l g D o ke du
TP PR SO 1 3 MO B
MR N o) v, 39~
LTI B CALT -
A OE
¢
v
S
A 13 ‘34 (2 D7 /
Lk (o 15 D
P ate) Ul lo ps A
i 1) ")
b A b) D2 e
B () 3 D2
i (1) vy B4
b | (e B0 e
VAN T
() Tm
Towofl) Yoo uaredt

Do B (1)

