-

MINIMIZING EXPANSIONS OF RECURSIONS

Jeffrey F. Naughton

Yehoshua Sagiv

CS-TR-150-88

April 1988

Minimizing Expansions of Recursions

Jeffrey F. Naughton* Yehoshua Sagiv?
Princeton University Hebrew University

April 18, 1988

Abstract

In recent years function-free horn clauses have received a lot of attention as database
query languages. Recursive definitions in such a language are particularly problematic
in that they are hard to implement efficiently. As most evaluation procedures at least
implicitly evaluate the expansion of the recursion, it is natural to consider optimizing the
recursion by minimizing its expansion. In this paper we show how attempts to minimize
expansions of recursions lead naturally to the issues of recursively redundant predicates
and bounded recursions. We review current results, prove several new results about
inter-element redundancy in expansions, and show how both recursively redundant
predicates and bounded recursions are closely related to the existence of various types
of paths in a graph constructed from the rule.

1 Introduction

In recent years there has been a growing acknowledgement among database researchers
that relational query languages are not sufficiently powerful. One proposed alternative to
relational query languages is query languages built upon horn-clause logic. While such logic-
based query languages are more expressive than relational languages, this extra expressive
power does not come for free, as logic-based languages are more difficult to implement
efficiently. Particularly problematic for efficient implementation are recursive definitions.

There is a large body of literature proposing efficient evaluation algorithms for recursive
definitions (for a survey, see Bancilhon and Ramakrishnan [BR86].) There has been less
work on rewriting recursive definitions to remove redundancy. This paper summarizes and
unifies some earlier work in that direction, and proves some new results.

In this paper we will consider the language of function-free horn clauses, which is popu-
larly known as “Datalog” because it is the subset of prolog that obeys the first-normal form
assumptions of relational databases. Datalog has none of the extra-logical features present
in Prolog, such as the “cut” operator or a built-in procedural interpretation. However, we

*This work was done at Stanford University, and was supported by NSF grant IST-84-12791 and a grant
from the IBM Corporation.

"Work supported in part by grant 85-00082 /1 from the United States-Israel Binational Science Foundation
(BSF), Jerusalem, Israel.

will use Prolog notation and write the horn clauses as rules, with the positive literal in the
head or consequent, and the conjunction of the negative literals as the body or antecedent.

We will use the terms “predicate” and “relation” interchangably, and assume that the
relations in the system can be separated into two types. The EDB or extensional database
predicates appear in the head of no rule and are defined completely by their extent, that is,
by the tuples stored in the relations corresponding to the predicate. The IDB or intensional
database predicates are defined in terms of other predicates by the rules.

If an IDB predicate is defined either directly or transitively in terms of itself, we say
that the definition of that predicate is recursive. The relation for a recursively defined
IDB predicate is the least fixpoint that includes the given values for the EDB predicates in
the definition. The ezpansion of a recursively defined predicate will be defined precisely in
Section 2; for now it suffices to state that by an infinite sequence of rule applications to a
recursive predicate one can produce an infinite set of conjunctions of EDB predicates that
also defines the recursive predicate. This infinite set of conjunctions is the expansion of the
recursive predicate.

We say that two programs P and P’ are equivalent if they compute the same relations
for the IDB predicates. In this paper except where noted otherwise we consider programs
consisting of a single, linear recursive rule. A rule is linear recursive if the predicate in
the head appears exactly once in the body. We further assume that the head of the rule
contain no repeated variables or constants, and that all nonrecursive predicates in the rule
be EDB predicates.

Such a definition must have some initialization; we assume it is provided by a nonre-
cursive rule

[P to.
where #o does not appear in the recursive rule, has the same number of arguments as ¢, and
contains the same variables in the same position as the predicate instance in the rule head.

We say that a the expansion of a recursively defined predicate contains inter-element
redundancy if there exist elements of the expansion s; and s, such that for all possible
values of the EDB relations, evaluating s; will return a superset of the tuples returned by
82. We say that the expansion contains intra-element redundancy if there is some element
s such that there is a conjunction of some proper subset of the predicate instances in s, say
s, such that s’ and s define the same relation for all possible values of the EDB relations.

Evaluation algorithms for recursive definitions must at least implicitly evaluate enough
elements of the expansion to construct the fixpoint or some portion thereof. If the ex-
pansion contains inter-element redundancy, then in the course of evaluating the expansion
the evaluation algorithm will evaluate redundant elements of the expansion; if the expan-
sion contains intra-element redundancy, then in the course of evaluating some element of
the expansion the evaluation algorithm will evaluate redundant predicate instances. The
efficiency of the evaluation algorithm will be improved if these redundancies are first re-
moved — so a natural goal is to try to develop algorithms to convert recursive definitions
to equivalent definitions that produce redundancy free expansions.

Example 1.1 Suppose that we have the following EDB relations: {(X,Y) of consumers X
and products they like Y; ¢(Y) of inexpensive products Y; and k(X, W) of pairs of people

X,W such that X knows W. Also, suppose that a person will buy a product if it’s cheap
and they like it; or if it’s cheap and they know someone who bought the product. Then
we can define the relation b(X,Y) of consumers X and products Y that they buy with the
following rules:

Tyt b(X,Y) - I(X,Y),c(Y).
ot b X,Y) = k(X,W),b(W,Y),c(Y).
The first three elements of the expansion of buys are

I(X,Y)e(Y)
(X, Wo)l(Wo, Y)e(Y)e(Y)
k(X, Wo)k(Wo, Wi)l(Wy, Y)e(Y)e(Y)e(Y)

One can show that there is no inter-element redundancy in this expansion. However, there
is intra-element redundancy: every element after the first contains redundant instances of
¢(Y'). The recursion can be re-written equivalently as

ri: b(X,Y) = UX,Y),c(Y).

i b(X,Y) = k(X,W),b(W,Y).
Here the first three elements of the expansion are

I(X,Y)e(Y)
(X, Wo)l(Wo,Y)e(Y)
k(X, Wo)k(Wo, W1)I(Wy,Y)e(Y)

and there is no intra-element redundancy.

To see that this is not completely trivial, consider the rules

r3: b(X,Y) - r(X),I(X,Y).

7 H bX,Y) - r(X),k(X,W),b(W,Y).
where k(X) is perhaps interpreted as “X is rich.” The first three elements of the expansion
of b as defined by these rules begins

e[XJ(X,Y)
'J‘"(X)k(X, Wg)T(Wo)l(Wo, Y)
T(X)k(X, Wo)’l"(Wo)k(Wo, WI)T(Wl)I(W] y Y)

which contains no inter-element or intra-element redundancy. |

The predicate ¢ in the first definition in the previous example is what was called a
recursively redundant predicate in Naughton [Nau86d]. (The word “recursively” is included
because neither rule ry nor ry contain any predicates that are redundant when the rule
bodies are viewed as relational expressions.) Briefly, a predicate instance p in a recursive
definition D is recursively redundant if and only if there is an equivalent definition D’ in
which that instance of p appears in no recursive rule. Recursively redundant predicates will
produce intra-element redundancy.

This definition of redundancy is similar but not identical to that used in Sagiv [Sag87],
which states that a predicate instance p in a recursive rule is redundant if the definition
defines the same relation when that predicate instance is removed. One difference is that
according to Naughton’s definition, a predicate instance is recursively redundant if it can
be removed from a recursive rule by changing the nonrecursive rules or adding some new
nonrecursive rules; Sagiv’s definition, on the other hand, considers only removing a predicate
instance without changing anything else in the definition. Because of this difference the
redundancy removing algorithms in Sagiv [Sag87] are able to handle more general recursions
than those given in Naughton [Nau86c].

The two definitions happen to coincide on the previous example, but this is not always
the case. In the recursion consisting of the two rules

s b(X,Y) - I(X,Y).

rs: W(X,Y) - k(X,W),4W,Y),c(Y).
the instance of ¢(Y') in 74 is recursively redundant by Naughton’s definition (and, therefore,
will cause intra-element redundancy in the expansion) but not by Sagiv’s. In this case an
optimized equivalent program is

76! b(X,Y) — I(X,Y).

o X,Y) - V(X,Y).

Tg: V(X,Y) = k(X,W),(W,Y),c(Y).

ro: V(X,Y) = kK(X,W),¥(W,Y).

There are also redundant predicates that will be detected by Sagiv’s optimizing algorithms
but not by Naughton’s. These include predicate instances that are redundant in the body of
the rule when viewed as a relational expression. In this paper we concentrate on recursively
redundant predicates as defined by Naughton, because (as we will show) there is a close
relationship between intra-element and inter-element redundancy and predicates of this
type.

The following is a recursion that produces inter-element redundancy.

Example 1.2 Suppose that we introduce a new relation i(X), which stands for “person
X is impressionable.” Also, suppose now that a person will buy a product if the person
likes it, or if the person is impressionable and someone else has bought it. This situation is
captured by the following rules:

T10: HX,Y) - UX,Y).

ri1: W(X,Y) - i(X),b(W,Y).
The first three elements of this expansion are

(X,Y)
W(X)(Wo,Y)
i(X)i(Wo)l(Wh,Y)
One can prove that for any valuation of ¢ and [, the relation returned by any element other
than the first will be identical to that returned by the second element, so the recursion

produces an expansion with inter-element redundancy. The recursion can be re-written
equivalently as

T10: b(X, Y) P I(X,Y)
it H(X,Y) - i(X),[(W,Y).
which produces no inter-element redundancy. |

In the previous example something interesting has happened. We were able to replace
a recursive definition by a nonrecursive definition. Recursions that are replaceable by non-
recursive definitions are called bounded recursions. Bounded recursions are a particularly
interesting subset of recursions with inter-element redundancy. Early work on sufficient
conditions for a recursion to be bounded appeared in Minker and Nicolas [MN82]. Sagiv
[Sag85] gave necessary and sufficient conditions for strongly typed, single predicate recur-
sions to be bounded. Cosmadakis and Kanellakis [CK86] showed that Sagiv’s result can be
extended to certain untyped recursions. Recently Gaifman et al. [GMSV87] have proven
that the general problem is undecidable. Here with respect to boundedness we summarize
the line of research beginning in Ioannidis [Ioa85] and in Naughton [Nau86a] and continued
in Naughton and Sagiv [NS87].

As we will show, all but a finite number of elements in the expansion of a bounded
recursive definition are redundant. Thus, boundedness of a recursive definition means
inter-element redundancy, but the converse is not necessarily true. Another observation is
that boundedness is a special case of intra-element redundancy, as can be seen when we
ask “what if every predicate in every recursive rule is recursively redundant?” Then, by
definition of recursively redundant, there is an equivalent definition in which no predicate
appears in any recursive rule. But this means that there is an equivalent nonrecursive
definition, so that the recursion is bounded. The price we pay for this observation is an
easy reduction that proves that detecting redundant predicates is undecidable.

The ideal would be an algorithm that, for any recursive definition, outputs an equivalent
definition that contains no inter-element or intra-element redundancy in its expansion. The
previous undecidabilty results show that this is unachievable, but actually it is worse than
that — in Section 4 we prove that there are recursions that are not equivalent to any
inter-element redundancy free recursion. However, we can isolate subclasses of recursions
for which redundancy eliminating algorithms do exist. Inasmuch as these subclasses of
recursions cover most of the recursions we have encountered in actual horn-clause programs,
we expect these algorithms will be useful as part of the optimization of horn-clause database
query languages.

We now summarize the rest of the paper. Section 2 precisely defines the expansion
of an IDB predicate, inter-element redundancy, and intra-element redundancy. Section
3 introduces the A/V graph, a graph constructed from a recursive rule that is useful in
detecting both types of redundancy. This section also introduces chains and branches,
properties of elements of expansions that determine whether or not redundancy will occur.

Section 4 concentrates on inter-element redundancy. This section relates boundedness
to inter-element redundancy, defines two types of boundedness, and reviews current results
about the decidability of boundedness. Section 5 concentrates on intra-element redundancy.
In it we relate intra-element redundancy to syntactic properties of the elements of an
expansion, and show how to detect certain intra-element redundancies from the A/V graph
for a recursive rule. We conclude in Section 6 with some open problems and directions for
future research.

1) Give all variables in rules subscript 0;
2) S:=46

3) CurString :=t;

4) while true do

6) S := S U {CurString with r. applied};
7) CurString := CurString with r, applied;
8) increment the subscripts of all variables in r, and r.;

9) endwhile;

Figure 1: Procedure ExpandRule

2 Expansions of IDB Predicates

The expansion of an IDB predicate ¢ is the set of all conjunctions of EDB predicates that
can be generated by some sequence of rule applications to f. More precisely, let s be a
conjunction of predicate instances. To apply a rule to s, find some rule r such that the
head of = unifies with some predicate instance p in s. Then replace that instance of p by
the body of r, after applying the most general unifier (of the rule head and p) to both the
body of r and the predicate instances in s — p. Then the expansion of an IDB predicate ¢ is
the set of all conjunctions of EDB predicates such that each conjunction can be produced
by some sequence of rule applications beginning with an application of some rule to t. For
recursive predicates, the expansion is infinite.

Recall that in this paper, we are dealing with linear recursive rules without constants
or repeated variables in the rule head. Procedure ExpandRule (Figure 1), enumerates the
expansion of such definitions consisting of a recursive rule, r,, and a nonrecursive rule, r.
The output of ExpandRule is the expansion of the recursively defined predicate, represented
by the infinite set S.

Throughout the procedure, the string-valued variable CurString will have exactly one
occurrence of the recursive predicate ¢. To “apply” a rule r to CurString, replace that
occurrence of ¢ by the right side of 7, after the substitutions required to unify it with the
head of the rule. In the initialization, we subscript the variables in the rules so that no
variable appears in both CurString and one of the rules. On each iteration, we increment
the subscripts for the same reason.

Example 2.1 If e is the edge relation of a digraph, then the following rules define the
transitive closure ¢ of the graph.

it H(X,Y) —e(X,2),1(Z,Y).

s HX,Y) - e(X,Y).

In order to distinguish between an application of the recursive rule and an application of
the nonrecursive rule, we let e denote the occurrence of e in the recursive rule, and ¢’ denote
the occurrence in the nonrecursive rule. The first four strings in the set S are

(XY),

E(X, ZQ)E'(Z(), Y),
€(X, ZD)B(ZOa Zl)8’(21, Y)a
E(X, Zo)e(Zo, Zl)e(Z1 y Zg)er(Zg, Y)

A string in an expansion may contain multiple occurrences of each predicate appearing
in the recursive rule. We will use “predicate instance” to refer to occurrences of predicates
in the strings of the expansion.

The strings in an expansion are conjunctive queries, a subset of relational expressions. If
a variable V' appears in the head of the rule, then V is a distinguished variable; otherwise, it
is nondistinguished. The distinguished variables appearing in each element of the expansion
are those of the original recursive rule (possibly not all of them.) On the other hand, new
nondistinguished variables are created in each element of the expansion. The variable W;
denotes a nondistinguished variable that appears for the first time in the i + 2 element of
the expansion, and it corresponds to the nondistinguished variable W in the body of the
recursive rule.

IfV4,Va,...,V; are the distinguished variables, and Wy, Wy, ..., W; the nondistinguished
variables, then the relation specified by the string p;p;...p, is

{1, Ve, ..., V)|AW1, Wy, ... ,W;)(pr Ap2 A ... Apn)}

The recursively defined relation is the union of the relations for the strings in the expansion.

In the next section we will need to decide equivalences between conjunctive queries; to
do this, we use techniques developed by Aho et al. [ASU79] and by Chandra and Merlin
[CMTT].

Definition 2.1 A mapping m from the variables of a string s; to the variables of a string s,
is a containment mapping if distinguished variables map to themselves, and if p(X3,...,X,)
appears in s1, then p(m(Xy),...,m(X,)) appears in s;.

The following lemma was proved by Chandra and Merlin [CM77]. (Aho et al. also
attributed this to Chandra and Merlin although they proved it independently, because
[CM77] was published a year earlier.)

Lemma 2.1 If a string s; maps to a string sq, then the relation specified by s is contained
in the relation specified by s;.

Aho et al. [ASU79] and Chandra and Merlin [CM77] defined a conjunctive query c to
be minimal if there is no conjunctive query ¢’ such that ¢’ is equivalent to ¢ yet contains
fewer predicate instances. Any conjunctive query ¢ has a unique minimal form (up to a
renaming of variables), and that minimal form is always a subset of the predicate instances
in e.

We are now ready to define inter-element and intra-element redundancy.

Definition 2.2 An expansion S of an IDB predicate ¢ contains inter-element redundancy
if there are two elements s; and sz of S such that s; maps to ss.

If an expansion contains no inter-element dependency we say that the expansion is
conlainment-free.

Definition 2.3 An expansion S of an IDB predicate ¢ contains intra-element redundancy
if there exists an element s in S such that s is not minimal as a conjunctive query.

3 The A/V Graph and Branches

Inter-element and intra-element redundancies depend on certain properties of the strings.
In this section we discuss these properties, and develop tools to detect them. The lemmas
and facts cited in this section are proven in Naughton [Nau86b,Nau86c].

3.1 A/V Graphs and Expansions

To relate the patterns of variables appearing in the strings of S to the structure of the rules,
we define the argument/variable (A/V) graph:

e For each variable appearing in the rules add a variable node.
e For each argument position in each rule body add an argument node.

e Draw an undirected edge from each argument node to the node for the variable that
appears in that position in the rule. This kind of edge is called an identity edge.

e Draw a directed edge from each argument node corresponding to a position p in the
recursive predicate to the node for the distinguished variable that appears in p in the
rule head. This kind of edge is called a unification edge.

The node for a variable X is labeled X, and the node for argument position i of a predicate
pislabeled p'. A node for a distinguished variable is a distinguished variable node; all other
variables nodes are nondistinguished. Because of the one-to-one correspondence between
positions in the bodies of rules and the argument nodes in the A/V graph, we use position
names to refer to both an argument position and the argument node it is represented by.
Similarly, we use variable names to refer to variable nodes.

Many of the subsequent results depend on the existence of certain kinds of paths through
the A/V graph. Some nonstandard terminology arises because we allow the directed edges
in an A/V graph to be traversed from head to tail as well as from tail to head; thus a path
in an A/V graph can contain unification edges traversed in either direction.

Example 3.1 Figure 2 gives the A/V graph for the rules of Example 2.1. I

€ €
Z.X 1Y
el 2 2

Figure 2: A/V graph for Example 2.1.

There is a close relationship between the A/V graph and procedure ExpandRule of Section
2. If a predicate instance first appears through applying a rule on iteration i, then we say
that predicate instance was produced on iteration i. (The first iteration of the while loop is
iteration 0.) There are two ways a predicate appearing in a string s of S can be produced
on iteration 7. It can be added to CurString through applying the recursive rule, or, if s
was added to S on iteration i, it can be produced by applying the nonrecursive rule.

Consider iteration i. At line 8 on iteration ¢ — 1, the variables in the rules were given
subscript ¢. Letting the argument nodes of the A/V graph represent the bodies of the rules,
we represent iteration ¢ by subscripting the labels of the variable nodes by i. (Figure 3(a)).

Because the heads of the rules contain no repeated variables or constants, the unification
can be done by replacing the subscripted distinguished variables by the variables appearing
in the instance of ¢ in CurString. If we consider the argument nodes for ¢ as representing
that instance of ¢, the variable at the head of a unification edge is replaced by the variable
appearing in the argument at the tail. On iteration 0, because of the initialization of
CurString, the arguments contain the distinguished variables. On all other iterations, they
hold the variables that were put there on the previous iteration — in this case, Z;_; and
Y. (Figure 3(b)).

After the substitution, argument a of a predicate instance produced on iteration 7 will
contain the variable that is the label of the node at the end of its incident identity edge.
In our example, the predicate instance added by the nonrecursive rule will be ¢’ (Zi1,Y)
and the predicate instances added by the recursive rule will be e(Z;_1, Z;)t(Z;,Y).

The previous two paragraphs show how we can determine what variable appears in any
position of any predicate instance in the expansion. The following two facts can be proven
by induction:

Fact 3.1 A nondistinguished variable W; appears in position p in a predicate instance
produced on iteration i+ k if and only if there is a path from W to p containing k unification
edges, all traversed in the forward direction.

2 1 2

€ e e 4 €
Zi } X; Y; Zig Zia Y
el e? ! 12 el €2 ! 12

(a) (b)
Figure 3: A/V graph for Example 2.1.

Fact 3.2 A distinguished variable V appears in position p on iteration i if and only if there
is a path from V to p containing 7 unification edges, all traversed in the forward direction.

Any A/V graph can be divided into two kinds of connected components, those containing
nondistinguished variables and those containing only distinguished variables. (Connected
components in A /V graphs can require unification edges to be traversed in either direction.)
Each type of component has a specific structure.

Lemma 3.1 If a connected component in an A/V graph contains a nondistinguished vari-
able W, it is a tree, and W is the only nondistinguished variable in the component.

Lemma 3.2 If a connected component contains no nondistinguished variable, that compo-
nent must contain a cycle.

Lemmas 3.1 and 3.2 combine with Facts 3.1 and 3.2 to prove that

1. Arguments in connected components that contain a cycle will always contain the
distinguished variables appearing on the cycle.

2. Arguments in connected components that contain no cycles will eventually contain
only subscripted instances of the nondistinguished variable in the component.

In view of point number 1 above, we have the following definition.

Definition 3.1 A persistent variable is a distinguished variable that appears in a cyclic
component of the A/V graph.

Example 3.2 See Figure 2 for the A/V graph for Example 2.1. There are two connected
components in this graph. The first, {t2,Y,e’?}, contains the cycle t? — ¥ — ¢2. Then
Fact 3.2 implies that Y always appears in €’2. Y is a persistent variable. The remaining
nodes form a tree, with Z at the root. By Fact 3.1, Z; appears in e? and e on iteration i,
and in e! on iteration i+ 1. |

10

In the following subsection, it will be important to know how variables are shared
between the predicate instances in the expansion. Things are complicated by the possibility
of repeated variables in the rule body. Repeated variables give rise to branches in the paths
from variable nodes to argument nodes, and the variable at the root of such paths appears
on all branches. Thus to determine when argument positions share variables, we need to
follow unification edges backward (toward the argument nodes) as well as forward.

To count the net number of forward unification edges in a path, we introduce weights on
the edges of the A/V graph. The weight of an identity edge is 0; the weight of a unification
edge traversed in the forward direction is 1, and the weight of a unification edge traversed
in the reverse direction is —1. The weight of a path in the A/V graph is the sum of the
weights of the edges in the path. With this definition, we have the following lemma:

Lemma 3.3 A variable appears in position p' of a predicate instance produced on iteration
i, and in position p* of a predicate instance produced on iteration i+ k, if and only if there
is a path from from p! to p? of weight k such that the weight of the minimal point on the
path, relative to p', is > —i.

3.2 Chains and Branches

In this subsection we discuss some properties of the strings of an expansion that will be
useful in determining redundancy. These properties depend only on the recursive rule.

Definition 3.2 A chain is a sequence of predicate instances py,py,...,pn, such that for
1 <i < m, p; and p;4 share a nondistinguished variable.

Definition 3.3 A branch is a sequence of predicate instances such that for all p and ¢ in
the sequence, there is a chain containing p and q.

Example 3.3 Assuming that X and Y are the only distinguished variables,
P(X, Wo)p(Wo, W1)p(W1,Y)
is a chain of length three. The sequence
P(Wo, X)p(X, Y)p(Y, W)
contains three chains of length one. The sequence
P(X, Wo, Zo)g(Wo)p(Zo, W, Z1)a(W1)p(Z1, W, Z2)q(Ws)
is a branch. ||

By examining the A/V graph for a recursive rule, we can tell what chains (and therefore,
what branches) will appear in the strings of the expansion. Chains depend only on shared
nondistinguished variables, so the first task is to eliminate from the A/V graph the nodes
for arguments that contain only distinguished variables. By Lemmas 3.1 and 3.2, we can
do this by removing all connected components that contain cycles.

For the second step, we augment the remaining subgraph by adding predicate edges
between adjacent argument nodes of the same nonrecursive predicate. The result is the
augmented A /V graph for the rule.

11

Figure 4: A/V graph for Example 3.4

r V w

,,.2 t2 pZ ql q2

Figure 5: Augmented A/V graph for Example 3.4

Example 3.4 The following rule illustrates the concepts that will be developed in this
section.

Tr HX,Y) = (X, V), p(X,W),q(W,V),r(X,Y).
The A/V graph for this rule is given in Figure 4. X appears in a connected component

with a cycle, so we remove the nodes for X, t!, p', and r!. The augmented A/V graph for
the rule is given in Figure 5. |1

The following lemma and its two corollaries show the relationship between the aug-
mented A/V graph for a rule and the branches that appear in its expansion. Recall that
in paths in an A/V graph, unification edges (arcs) can be traversed in either direction.

Lemma 3.4 There is a chain containing an instance of predicate r produced on iteration
i, and an instance of s produced on ileration i + k, if and only if there is a path of weight

k from some argument of r to some argument of s.

Corollary 3.1 Instances of two predicates appear in the same branch if and only if the
argument nodes for those predicates appear in the same connected component.

Definition 3.4 The rank of a predicate is the weight of a maximal path from any variable
node to an argument node of the predicate. The span of a branch is the rank of its maximal
predicate.

If there are cycles the rank of some predicates may be infinite.

Corollary 3.2 The span of a branch is the mazimum weight of any path in the connected
component for the branch.

12

Two branches in a string are instances of the same branch if the predicates in each appear
in the same connected component in the augmented A /V graph. A rule produces multiple
branches if there are multiple connected components in the augmented A/V graph for the
rule. An instance of each branch is begun on every iteration. If the span of a branch is k,
the first complete instance of that branch will be produced by iteration k + 1. In addition
to the complete instances of branches, there will also be incomplete instances of branches
produced.

Example 3.5 In Figure 5, there is only one connected component, and it contains all
the argument nodes. This implies that there is a branch (chain, in this case) containing
instances of p, ¢, and r. There are paths of weight 0 from V and W to the nodes of p and
g, thus p and ¢ are of rank 0. There is a path from V to 72 of weight 1, so r is of rank 1.
The span of the branch is 1.

The third string in the expansion,

p2(X, W1)g2(Wh, Va)ra(X, Vo)m (X, Wo)q1 (Wo, Vo)ri(X,Y),

contains a partial instance of the branch produced on iteration 1 (r1(X,Y)), a complete
instance produced on iterations 1 and 2

(X, Wo)g1(Wo, Vo)ra(X, Vo)

and another partial instance produced on iteration 2 (p2(X,W;)g2(Wy,V1)). This last
partial instance will be completed on iteration 3. |}

If there is a cycle of nonzero weight in a component of an augmented A/V, then there
will be a branch with an infinite span. Such branches will never be completed; in this case
we say the expansion contains unbounded branches.

Definition 3.5 A connected component of an augmented A /V graph is a bounded compo-
nent if it contains no cycle of nonzero weight; otherwise it is an unbounded component.

Definition 3.6 A nonzero weight cycle in the augmented A/V graph is called a chain-
generating path.

Definition 3.7 Any argument position on a chain-generating path is a linking position;
the variables that appear in linking positions in the elements of the expansion are called
linking variables.

Example 3.6 The augmented A/V graph for the recursive rule of the transitive closure
example (Example 2.1), Figure 6, contains an unbounded component. The cycle in that
component is a chain-generating path. Argument positions e! and e? are linking positions.
The expansion contains unbounded branches — for any n, we can find a string in the
expansion containing a branch of at least n instances of e. |

13

e € il

Figure 6: Augmented A/V graph for the recursive rule of Example 2.1.

4 Inter-Element Redundancy

In this section we concentrate on inter-element redundancy. We begin by giving a sufficient
condition for an expansion to contain no inter-element redundancy.

Theorem 4.1 Let D be a recursion with a single, linear recursive rule r. Suppose that the
augmented A/V graph for D has some unbounded component and that the body of r contains
no repeated predicates. Then the expansion of D contains no inter-element redundancy.

Proof: Let the augmented A/V graph have a chain-generating path. We prove
that if an element s; of the expansion maps to an element s; of the expansion, then
the predicate instance appearing ¢ predicate instances from the start of the chain in
81 must map to the instance appearing ¢ instances from the start in s;. The proof
is by induction on the predicate instances in the chains.

Let p be the first predicate in the chain. Then, by Fact 4.2 from Naughton
[Nau86b], there is a linking position a in p that contains a distinguished variable.
Because there are no repeated predicates in the rule, by Fact 4.1 from Naughton
[Nau86b], this is the only instance of p such that a contains that distinguished
variable. Thus if s; is to map to sg, the first predicate instance of the chain in s;
must map to the first predicate instance in the chain in s,.

Now suppose that for i < n, if 3 maps to sy, then the ith predicate instance
from the beginning of the chain in s; maps to the ith predicate instance from the
beginning of the chain in s;. The nth predicate in from the beginning of the chain
in s must, by definition of a chain, share some linking variable V with the instance
n — 1 from the beginning. By induction, any mapping m must map V to some
variable, say V', that appears in the same position in the predicate n — 1 from
the beginning in s3. But again by definition of chain, V' must appear in the same
position in the predicate n from the beginning in s as V does in s;. But because
there are no repeated predicates in the body of the recursive rule, this is the only
instance in which V' appears in that position, the instance in s; that is n instances
from the beginning must map to the predicate instance n from the beginning in s,.

But if s; # s2, then the instance of the chain is longer in one string than in the
other. If s; is longer than sy, then we will some predicate instance in the chain in s,
with no predicate instance in s; to map to, and hence s; cannot be mapped to s,. If

14

83 is longer than s;, then the exit predicate to will have to be mapped to some other
predicate in the chain. But this is impossible by definition of mapping, so again, s;
cannot be mapped to s;.

Because this holds for any distinct pair of strings s; and sz, the expansion must
contain no inter-element redundancy. |[I

We now turn to definitions of bounded recursions. Strictly speaking, because of the class
of recursions we are considering, in this paper we are talking about uniform boundedness.
For a discussion of uniform vs. simple boundedness see Naughton and Sagiv [NS87].

There are two natural ways to define boundedness.

Definition 4.1 A program P is bounded if there is a nonrecursive program P’ such that
P and P’ are equivalent.

Definition 4.2 A program P is bounded if there is some k such that for any value of
the relations, the iterative bottom-up construction of the fixpoint will converge in < k
iterations.

The following lemma is from Naughton and Sagiv [NS87].
Lemma 4.1 Definitions 4.1 and 4.2 are equivalent.

The following theorem is from Naughton [Nau86a]. It shows the relationship of bound-
edness to a particular kind of inter-element redundancy.

Theorem 4.2 A set of rules defining a predicate t is bounded if and only if, in the ezpansion
of t, there exists an ng such that for all n > ng, s, is mapped to by some previous string.

Also in [Nau86a] it was shown that the absence of a chain generating path was a sufficient
condition for bounded recursion. However, not all programs with chain generating paths
are unbounded.

Example 4.1 The following program

UX,Y,Z) - (X, W, Z) & e(W,Y) &
e(W,Z) & e(Z,2) & e(Z,Y).
(X,Y,Z) - to(X,Y, Z).

has a chain generating path but is bounded. |
We now turn to a class C for which a chain-generating path is necessary and sufficient

for the recursion to be unbounded. This class was defined in Naughton and Sagiv [NS87].

Definition 4.3 Let r be a linear recursive rule, and let s; and s;, where i < j, be any pair
of strings in the expansion of 7. Then r is in the class C if and only if there can be no
mapping m from s; to s; such that m maps a linking variable in s; to a persistent variable
in s;.

15

Theorem 4.3 Let P be a recursive rule in class C. Then P is bounded if and only if there
is no chain generating path in the A/V graph for P.

The simplest way to prove that a recursive rule is in the class C is to prove that no
persistent variable ever appears in a linking position. This technique allows us to prove
that the following four classes are subclasses of C'. The following lemmas are from Naughton
and Sagiv [NS87].

Lemma 4.2 If no sequence of argument positions in the recursive predicate in the body
of the recursive rule in P contains a permutation of the variables that appear in the same
positions in the instance of the recursive predicate in the head, then P is in C.

Ioannidis first gave a necessary and sufficient condition for boundedness in this class in
[Ioa85].

Lemma 4.3 If the body of the recursive rule in a recursion P has no repeated predicates,
then P is in the class C.

A chain-generating path was first proven necessary and sufficient for recursions in this class
in Naughton [Nau86a).

Lemma 4.4 If no persistent variable appears in a nonrecursive predicate in the body of the
recursive rule of P, then P is in C.

In [Ioa86], Ioannidis has shown that his condition from [Ioa85] holds for this class as well.
It includes recursions in which no distinguished variable appears both in a nonrecursive
predicate and in the recursive predicate in the body.

Lemma 4.5 If no persistent variable appears in a linking position in the body of the recur-
sive rule of P, then P isin C.

The subclasses of C' described by Lemmas 4.2, 4.3, and 4.4 are incommensurate and
there are linear time membership algorithms for each. The subclass described by Lemma
4.5 properly includes that described by Lemma 4.4 and has a polynomial time membership
algorithm.

We finish this section with a negative result about eliminating all redundancy from an
expansion:

Theorem 4.4 There are recursively defined predicates that cannot be defined by any inter-
element redundancy free definition.

Proof: Consider the following definition:
UX,Y) - &(X,Y),e(Y,Y).
HX,Y) - (X, W),e(W,Y),e(W,W).

16

The expansion § of this recursion begins

e(X,Y)e(Y,Y)
G(X, WB)B(WU: WD)E(WU ’ Y)B(Ys Y)
e(X, W1)6(W1, Wl)E(Wl ’ Wo)E(Wo, Wo)e(Wg,Y)e(Y, Y)

It is easy to verify that this expansion has the property that for all ¢,7 > 0,if j > 4
then s; maps to s;. Call this recursion D.

Now suppose that there is some other definition D’ that is equivalent to D, and
let S” be the expansion of D'. Furthermore, assume that S’ has no inter-element
redundancy. We first prove that S’ must be infinite.

Assume that S’ is finite. This means that § is definable by a finite union of
conjunctive queries, and this finite union would then be a nonrecursive program
equivalent to 5. But by Theorem 4.3 and Lemma 4.5, S is not bounded. So S’ must
be infinite.

Take any element s, from S’. By a theorem due to Sagiv and Yannakakis [SY80],
if S and S’ are equivalent, then there is at least one element s, in § such that s,,
maps to s}. Similarly, s,, must be mapped to by some s/, of S, and so s/, maps to
53 Since S’ does not have any inter-element redundancy, k = n, so each element 8}
of S’ has an equivalent element s,,, in 5.

Now take any two distinct elements of §’, say s} and s}, and let s,, and s, be
their equivalent elements in S. Because there is containment between every pair of
elements in .S, there is containment between s,, and s,, hence there must also be
containment between s} and s), which is a contradiction. [

5 Intra-Element Redundancy

In this section we concentrate on intra-element redundancy. We show that if a predicate
p appears in a bounded component of the augmented A/V graph, then p is recursively
redundant, that is, the elements of the expansion will contain redundant p instances. For
a useful subset of recursive rules, only predicates appearing in bounded components are
redundant. These predicates can be found by a linear-time algorithm.

5.1 A Sufficient Condition

The following theorem from Naughton [Nau86d] relates redundancy to connected compo-
nents in the augmented A/V graph for the recursive rule. (Recall that in a connected
component of an A/V graph, unification edges can be traversed in either direction.)

Theorem 5.1 Let a predicate p appear in a rule v, and suppose that no argument of p ap-

pears in an unbounded component of the augmented A/V graph for r. Then p is recursively
redundant in r.

¢

Figure 7: A/V graph for the recursive rule of Example 5.1

Note that if one argument of p appears in an unbounded component of the augmented
A/V graph, then all arguments of p are in that component.

Example 5.1 Consider the following rules:

(W, X,Y,Z) - to(W,X,Y, Z).

(W, X,Y,Z) - t(X,W,P,Q),e(P,Y),a(X,Q),bZ).
In the A/V graph for the recursive rule (Figure 7), there is a cycle involving X and W of
weight 2. The nodes connected to this cycle form an unbounded component.

In the augmented A/V graph for the recursive rule (Figure 8) there are two components.
The argument nodes of e appear in an unbounded component, while all other predicate
arguments appear in a component with a maximal path of weight 1. The rank of a is 0,
and the rank of bis 1. Consider the string produced on iteration five. We display it below,
one branch to a line, one column for each iteration, starting with iteration 0 on the right.

1) to(X,W,Ps,Q4) a(X,Qq)e(Py,P5) e(Ps,P2) e(Py,P;) e(P1,Py) e(Py,Y)

2) H(Qs) a(W, Qa)

3) H(Q2) a(X,Q2)

4) b(Ql) a’(Wan)

5) b(Qo) a(X, Qo)
6) Z)

The instances of @ produced on iterations 2 and 3 (a(X, @2) and a(W, Q3)) and the instances
of b produced on iterations 3 and 4 (b(Q32) and 5(Q3)) are redundant. |

More detail can be found in Naughton [Nau86c], which shows how to determine which
instances of redundant predicates will be redundant, and gives an algorithm to rewrite
recursive definitions to remove redundant predicates.

5.2 A Necessary and Sufficient Condition

In general, the converse of Theorem 5.1 fails to hold: some predicates appearing in un-
bounded components are redundant. If the nonrecursive predicates are IDB predicates,
their definition may cause redundancy. For example, if we take the standard transitive
closure rules,

18

bt a? 3 4 el e?

Figure 8: Augmented A/V graph for the recursive rule of Example 5.1

H(X,Y) - e(X,Y).
t(X,Y) - t(X,W),e(W,Y).
and add
e(X;Y) = & X)), (Y).
then t is completely defined by the rule
t(X,Y) = a(X),n(Y).
and e is redundant in the recursive rule.
Even if the nonrecursive predicates are EDB predicates, interactions between the recur-
sive and nonrecursive rule can make predicates redundant. The pair of rules
tH(X,Y) = b(X),t(X,W),e(W,Y).
HX,Y) - b(X),e(W,Y).
can be replaced by the nonrecursive rule alone.
However, we can state the following theorem, again from Naughton [Nau86d).

Theorem 5.2 Let all nonrecursive predicates in r be EDB predicates, and suppose that
there are no repeated nonrecursive predicates in v. Then a predicate p is recursively redun-
dant in r if and only if p appears in a bounded component of the augmented A/V graph.

5.3 Detecting Redundant Predicates

In this subsection we present a linear-time algorithm that detects redundant predicates in
an augmented A/V graph. A variant of this algorithm was presented in Ioannidis [Toa85].
There it was used on a different graph, the a-graph, to decide the bounded recursion
problem for a restricted class of rules.

An A/V graph can be converted to an augmented A/V graph by a straightforward
application of depth-first search. We assume that the augmented A/V graph is presented
in adjacency list form. Each edge is represented by a pair of directed edges. Associated
with each directed edge is a weight. Both directed edges for a predicate or identity edge
have weight zero; the directed edge corresponding to a forward traversed unification edge
has weight one, while the directed edge for a reverse unification edge has weight minus one.

A linear-time algorithm to detect redundant predicates is given in Figure 9.

19

Input. An augmented A/V graph G = (V, FE) represented by adjacency lists L[v], for
v € V. The function w(e(v,u)) returns the weight for each edge e(v, u).
Output. A list of the bounded components in the graph.

cycle: boolean; /* true if current component contains a cycle */
weight: array of integer; /* weight[u] holds weight of u if visited */

Procedure SearchComp(v, cycle);

begin
1 mark v old;
2. for each vertex u on L[v] do
3 if u is marked “old” and weight(u] # weight[v] + w(e(v,u)) then
4 cycle := true;
5. return;
6. else
7 weight[u] := weight[v] + w(e(v,u));
8 SearchComp(v);
9 endif;
10. endfor;
end;
begin
1 mark all vertices “new”;
2 while there exists a vertex v in V marked “new” do
3 cycle := false;
4. SearchComp(v);
4. if not cycle then
6 list bounded component containing v;
7 endif;
8 endwhile;

Figure 9: An algorithm to detect redundant predicates.

20

6 Conclusion

Removing redundancy is only one part of efficient evaluation of queries on recursively
defined relations. An evaluation algorithm should attempt to use selection constants to
restrict the EDB tuples looked at during evaluation, and attempt to reuse the results from
partial evaluation of one element of an expansion when evaluating another. These issues
are ignored here because they are orthogonal to the issue of removing redundancy from a
recursion.

This paper focussed on recursions containing one, linear recursive rule. We are cur-
rently extending the redundancy and boundedness detection procedures for more general
recursions.

Another, more specific question is: is testing for containment-freedom (no inter-element
redundancy) decidable? The general techniques given in Gaifman et al. [GMSV87] do not
apply here, because although containment-freedom is strongly non-trivial, it is not semantic
— there exist equivalent recursions Dy and D, such that D; is containment free whereas
Dy is not.

Finally, the condition for redundancy given in Theorem 5.1 is similar to the condition
for boundedness given by Theorem 4.3. Yet the class of recursions for which the condition
of Theorem 5.1 is complete (no repeated predicates) is much more restrictive than the class
C' for which the condition of Theorem 4.3 is complete. Can the class of recursions for which
Theorem 5.1 is complete be extended?

Acknowledgement: The importance of containment-free expansions in minimizing recur-
sions first arose in discussions with Jeff Ullman and Allen Van Gelder.

References

[ASU79] Alfred V. Aho, Yehoshua Sagiv, and Jeffrey D. Ullman. Equivalence of rela-
tional expressions. SIAM Journal of Computing, 8(2):218-246, 1979.

[BR86] Francois Bancilhon and Raghu Ramakrishnan. An amateur’s introduction to
recursive query processing strategies. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 1986.

[CK86] Stavros S. Cosmadakis and Paris C. Kanellakis. Parallel evaluation of recursive
rule queries. In Proceedings of the ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, 1986.

[CM77] Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunc-
tive queries in relational data bases. In Conference Record of the Ninth Annual
ACM Symposium on Theory of Computing, pages 77-90, 1977.

[GMSV87] Haim Gaifman, Harry Mairson, Yehoshua Sagiv, and Moshe Y. Vardi. Undecid-
able optimization problems for database logic programs. In Proceedings of the

Second IEEE Symposium on Logic in Computer Science, pages 106-115, June
1987.

21

[Toa85]

[Toa86]

[MN82]

[Nau86a]

[Nau86b]

[Nau86¢]

[Nau86d]

[NS87]

[Sag85]

[Sag87]

[SY80]

Yannis E. loannidis. Bounded recursion in deductive databases. Technical Re-
port UCB/ERL M85/6, UC Berkeley, February 1985.

Yannis E. Ioannidis. A time bound on the materialization of some recursively
defined views. 1986. To appear in Algorithmica.

Jack Minker and Jean M. Nicolas. On recursive axioms in relational databases.
Information Systems, 8(1):1-13, 1982.

Jeffrey F. Naughton. Data independent recursion in deductive databases.
In Proceedings of the ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems, pages 267-279, 1986. Selected for special issue of JCSS.

Jeffrey F. Naughton. Data independent recursion in deductive databases. Tech-
nical Report STAN-CS-86-1114, Stanford, May 1986.

Jeffrey F. Naughton. Optimizing Function-free Recursive Inference Rules. Tech-
nical Report STAN-CS-86-1114, Stanford, May 1986.

Jeffrey F. Naughton. Redundancy in function-free recursive inference rules. In
Proceedings of the IEEE Symposium on Logic Programming, 1986.

Jeffrey F. Naughton and Yehoshua Sagiv. A decidable class of bounded recur-
sions. In Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pages 227-236, 1987. Selected for special issue
of the Journal of Logic Programming.

Yehoshua Sagiv. On computing restricted projections of representative in-
stances. In Proceedings of the ACM SIGACT-SIGMOD Symposium on Princi-
ples of Database Systems, pages 171-180, 1985.

Yehoshua Sagiv. Optimizing datalog programs. In Proceedings of the ACM
SIGACT-SIGART-SIGMOD Symposium on Principles of Database Systems,
March 1987.

Yehoshua Sagiv and Mihalis Yannakakis. Equivalences among relational expres-
sions with the union and difference operators. JACM, 27(4):633-655, October
1980.

22

