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Abstract

This paper presents an empirical comparison of the Semi-Naive, Generalized Magic
Sets, Generalized Counting, and Separable query evaluation strategies as applied to
queries on multi-rule recursions. 1 used each of the methods to evaluate queries over
randomly generated relations. For each query there is a critical density range. If
the base relations are below the density range, Generalized Magic Sets, Generalized
Counting, and Separable provide roughly equal performance and are significantly better
than Semi-Naive. Above the density range, Generalized Magic Sets degrades to Semi-
Naive, Generalized Counting is much worse than Semi-Naive, while Separable is still
significantly better than Semi-Naive. This suggests that special purpose algorithms
such as Separable can greatly improve the performance of a recursive query processor.

1 Introduction

In recent years a great deal of attention has been devoted to algorithms for evaluating
queries on recursively defined relations. Comparing the performance of these algorithms by
an inspection of their descriptions is difficult, especially on complex, multi-rule recursive
definitions. However, as answering queries on recursively defined relations promises to be
critical to the performance of systems with logic-based query languages, it is important to
develop an understanding of how the algorithms compare on various types of queries.

This paper presents empirical statistics on the performance of four evaluation algorithms
on three queries. The algorithms considered are Semi-Naive [Ban85], Generalized Magic
Sets [BR87], Generalized Counting [BR87,5Z86], and Separable [Nau88]. The queries con-
sidered are given in Figures 1, 2, and 3. The results obtained show that, on the queries and
relations considered here, Separable is much more efficient than Generalized Magic Sets or
Generalized Counting.

The evaluation algorithms were chosen as representative of 4 general approaches to
recursive query evaluation:

¢ Semi-Naive constructs the entire recursively defined relation.

o Generalized Magic Sets attempts to use constants in the query to compute only rele-
vant tuples of the recursively defined relation.



e Generalized Counting, in addition to using query constants to compute only relevant
tuples, reduces the arity (number of columns) of the recursively defined relation by
storing complete information about partial derivations of answer tuples.

e Separable uses query constants to compute only tuples, and reduces the arity of the
recursively defined relation, but does so without recording complete information about
partial derivations of answer tuples.

As Generalized Counting and Separable do not apply to all recursions, they must be backed
up by a more general algorithm such as Generalized Magic Sets or Semi-Naive. Obviously,
there is no reason to include such strategies in a system if their performance is no better
than that of more general evaluation algorithms; one of the main goals of this research was
to determine the relative performance of these specialized strategies and the more general
strategies.

In order to compare query evaluation algorithms, one must choose a database with which
to experiment. There are at least three logical choices: data from some real application,
structured synthetic data with characteristics that match those of the expected real data,
and random data. As there are no databases with recursive capabilities in general use
today, I could not find “typical” real data, nor was I confident I could accurately predict
what structure “real” data will have; hence I used randomly generated relations.

In comparing query evaluation algorithms, one is primarily concerned with the resources
of time and space. However, both are highly dependent on the particular implementation
of the algorithm in question. As this work aims to compare the algorithms, and not their
implementations, I chose the maximum number of tuples generated during the course of
answering the query as the performance metric. (This follows Bancilhon and Ramakrishnan
[BR86D].) In addition to the number of tuples, I have included some of the query evalution
times in my implementation, as those times may be of some interest.

The evaluation algorithms could be compared analytically, by finding for each a function
that gives the number of intermediate tuples as a function of certain properties of the rela-
tions. The difficulty here lies not in finding such functions (which is straightforward,) but
lies instead in finding formulas for the distribution of these properties in random relations.
Barring such a mathematical analysis, the next best thing is to compare the algorithms
experimentally, that is, by actually comparing their performance on randomly generated
relations.

I tested the algorithms by implementing them on a prototype back-end for deductive
databases called IRL (Intermediate Relational Language). The actual benchmark runs were
done on IRL running on a DEC Titan workstation, an experimental 15 MIP, 128 MByte
workstation developed at DEC’s Western Research Lab. More details about IRL appear in
Section 3.

Let the density of a relation to be the ratio of the number of tuples in the relation to
the size of the domains for the columns of a relation. Briefly, my experiments show that
for each query there is a critical density range. If the density of the relations is lower than
the critical range, the relation is sparse; otherwise it is dense. The critical density ranges
for the queries considered here were low.
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a(X,W) & t(W,Y).

t(X,Y) :- b(X,W) & t(W,Y).
t(X,Y) :- a(X,Y).

t(X,Y) - b(X,Y).

v, Y7

Figure 1: Program and query for query A.

I found that if the base relations are sparse, Generalized Magic Sets, Generalized Count-
ing, and Separable provided roughly equal performance and were all superior to Semi-Naive.
If the base relations are not sparse, Generalized Magic Sets degenerates to Semi-Naive, Gen-
eralized Counting is significantly worse than Semi-Naive, while Separable is still significantly
superior to Semi-Naive.

To my knowledge this is the first work comparing these evaluation algorithms on mul-
tiple recursive rule recursions. In perhaps the most closely related work, Bancilhon and
Ramakrishnan [BR86b] provide an analytic comparison of a number of evaluation methods
over four single recursive rule queries on some highly structured databases. Their results
showed that Counting was better than Magic, while Magic was better than Semi-Naive.
The discrepancy between their results and my results arises for two reasons: first, Bancil-
hon and Ramakrishnan considered only single recursive rule queries; second, their sample
databases were highly structured.

In Section 2 I describe the queries and sample databases used in the benchmarks. Section
3 describes how the algorithms were implemented and tested in our prototype system.
Section 4 presents the results of the experiments. Section 5 discusses these results.

Appendix A describes the algorithm Separable, and is included here to make this paper
self-contained, as the primary description of Separable [Nau88] is not yet widely available.
Appendix B lists the IRL code to implement the queries considered here. Finally, Appendix
C includes graphs of the data tables included in the text.

2 Queries and Data

In this work I considered three different queries. The queries, expressed in Datalog, appear
in Figures 1, 2, and 3. In each of the queries the relations a, b, c, and d are base relations,
that is, they are defined by sets of tuples explicitly stored in the database. The relation t
is defined instead implicitly by the rules in the programs.

The symbol “:-” can be read as “if.” Uppercase letters represent variables, while
lowercase represent constants. Thus the first line in Figure 1 says “the tuple (X,Y) isin t
if, for some W, the tuple (X,W) is in a and the tuple (W,Y) is in t. The query t(v,¥)? asks
for all values of Y that appear in the second attribute of a tuple of t in which v appears in
the first column. (This query is equivalent to the relational algebra expression oy_ry(t).)

The program in Query A defines t to be the transitive closure of the union of the base



t(X,Y) :- alX,W) & t(W,Y).
t(X,Y) :- t(X,W) & b(W,Y).
LX) 0 alX,T).
t(X,Y) :- b(X,Y).

t(v,Y)7

Figure 2: Program and query for query B.

t(X,Y,Z) :- a(X,U) & t(U,Y,Z).

t(X,Y,Z) :- b(Y,W) & t(X,W,Z).
E(XNLZY 2= (2 & £, 0.
t(X,Y,Z) :- d(X,Y,Z).
t(v,Y,Z2)7

Figure 3: Program and query for query C.

relations a and b, while the program in Query B defines t to be the join of the transitive
closures of relations a and b. Both queries A and B are representative of recursive procedures
in which there are two options for how to recurse. Query C is included as an example of a
non-binary program.

Again, as my goal was to benchmark the algorithms and not IRL, I used relations in
which all fields contain 32-bit integers. (Using strings and so forth would affect the cost
of doing comparisons and storing the tuples, but would not affect the number of tuples
created by the methods in answering the queries.)

The important parameters for a relation are its number of tuples, and its “density,”
that is, the ratio of the number of tuples in the relation to the size of the domains for the
relation’s columns. To simplify matters, I considered only relations in which the domains
for all columns were identical. Then to generate a k-ary relation with n; tuples and ny
elements in its domain, I repeatedly generated random % tuples of integers in the range 0
to ng, until n; distinct tuples were produced.

One modification was necessary when testing the Generalized Counting algorithm. As
Generalized Counting fails to terminate when the data is cyclic, I needed to generate “ran-
dom” acyclic relations. I did this by rejecting all tuples in which the second attribute was
less than or equal to the first. (Generalized Counting only applied to Query A, which has
only binary relations.)



3 Implementation

As noted in the Introduction, Semi-Naive is described in [Ban85], while Generalized Magic
Sets is described in [BR87] and Generalized Counting is described in [BR87] and [SZ86].
Counting and Magic methods have received a lot of attention; for more information about
those methods one may consult, in addition to the references above, [BMSUS86,57Z87], and
the survey paper [BR86a]. Due to space limitations I will not further describe these al-
gorithms here. The IRL code to implement these methods on the queries considered here
appears in Appendix B.

With the exception of Generalized Counting, all the evaluation algorithms apply to all
the queries. On Queries B and C, Generalized Counting will not terminate (unless the base
relations are empty), so data for Generalized Counting is only presented for Query A.

IRL (Intermediate Relational Language) is intended to be a flexible, high-performance
back end for databases with logic-based query languages. Its specification (but not imple-
mentation) is similar to the NAIL! ICODE [Ul186]. IRL has three types of operations: data
manipulation, I/0, and control.

The IRL data manipulation operations implement an extended relational algebra. The
IRL I/O instructions are provided to initialize base relations from UNIX files, and to
print results during the execution of the program. The flow control instructions consist
of conditional and unconditional goto’s.

IRL is implemented in C. It has no facilities for concurrency control or crash recovery.
However, as IRL is fast and flexible, it provides an ideal testbed for query evaluation
algorithms.

4 Results

The benchmarks consist of a series of queries at varying densities and relation sizes. At
each density and relation size, each method was used to evaluate 100 queries. The 100
queries were divided into 10 queries on each of 10 randomly generated relations; the query
constants used were the numbers 0 through 9. The maximum number of intermediate tuples
generated during each query evaluation were averaged over the 100 trials. Graphs for these
tables appear in Appendix B.

Table 1 lists the results of evaluating Query A over randomly generated relations of
varying density, where each base relation has 200 tuples. A graph of Table 1 can be
found in Appendix B. Note that, for a given number of tuples, as the density of a relation
increases, the number of tuples in the recursively defined relation first increases as the
database becomes more and more “connected.” However, increasing the density while
keeping the number of tuples constant corresponds to decreasing the size of the domain of
the relation, thus reducing the maximum possible size for the recursively defined relation.
This is reflected in the decrease in the number of tuples produced by Semi-Naive from
density 0.9 to density 1.0.

While the time to evaluate a query depends on the implementation as much as the
evaluation algorithm, time is undoubtably of some interest. Hence Table 2 lists the average



density | snaive magic sep

0.1 514 1 1
0.2 690 2 2
0.3 1172 9 3

0.4 | 1818 29 6
0.5 | 2089 426 17
0.6 | 6909 1053 31
0.7 | 10614 6812 80
0.8 | 22312 11916 105
0.9 | 26947 13651 116
1.0 | 25566 16682 129

Table 1: Generated tuples vs. density, Query A, n = 200

density | snaive magic  sep
0.1 0.21 0.03 0.02
0.2 0.31 0.03 0.02
0.3 065 0.04 0.02
0.4 1.39  0.07 0.02
0.5 839  0.58 0.04
0.6 | 13.94 1.36  0.05
0.7 40.85 10.77 0.09
0.8 57.33 23.78 0.10
09| 56.74 29.08 0.10
1.0 | 60.23 38.92 0.12

Table 2: Seconds vs. density, Query A, n = 200



base tuples | snaive magic sep
200 908 3.81 2.38
400 | 1639 232 2.15
600 | 2431 3.24 2.32
800 | 3204 1.75 1.75
1000 | 4054  2.84 2.38
1200 | 4879 3.66 2.27
1400 | 5579 249 2.29
1600 | 6344 1.93 1.93
1800 | 7148 1.89 1.89
2000 | 7945 1.75 1.75

Table 3: Intermediate tuples vs. base tuples, Query A, d = 0.25.

base tuples | snaive magic sep
20 271 182 13
40 993 624 24
60 2177 1366 36
80 3688 2064 44
100 | 5939 3620 59
120 8827 5488 73
140 | 11293 7116 87
160 | 15883 10540 104
180 | 19249 11656 107
200 | 24966 16682 129

Table 4: Base vs. generated tuples, Query A, d = 1.00.

times (sum of system and user) to answer Query A. These tests were run on a lightly loaded
titan, but there were other users active during the course of the benchmarks.

Table 3 gives the average performance of Semi-Naive, Generalized Magic Sets, and
Separable on random relations with densities of .25 and sizes varying from 200 to 2000
tuples.

Table 4 shows the performance of Semi-Naive, Generalized Magic Sets, and Separable
on random relations of density 1.0, ranging in size from 20 to 200 tuples.

Table 5 compares Semi-Naive, Generalized Magic Sets, Separable, and Counting on
acyclic random relations of varying density, all with 100 tuples. The effect of the smaller
domain size reducing the possible number of answer tuples is clear from density 1.5 on.

At low densities, Counting and Separable are roughly equivalent, while Generalized
Magic Sets is about a factor of two worse. (See Table 6.)



density | snaive counting magic sep
0.5 354 9 13 7
1.0 573 54 100 23
1.5 610 303 211 31
2.0 593 1076 282 32
2.5 481 1939 250 27
3.0 420 4250 265 26
3.5 316 6747 182 21
4.0 268 9561 161 19

Table 5: Generated tuples vs. density, Query A, acyclic relations, n = 100.

base tuples | snaive counting magic sep
200 912 Tor 15.0 7.6
400 | 1774 8.2 172 8.0
600 | 2498 6.8 122 6.8
800 | 3468 6.9 127 6.8
1000 | 4280 6.6 11.9 6.6
1200 | 5145 Tl 13.8 7.1
1400 | 6040 7.5 142 7.5
1600 | 6836 6.7 12,5 6.7
1800 | 7688 8.2 17.0 8.2
2000 | 8679 6.8 126 6.8

Table 6: Base vs. generated tuples, Query A, acyclic relations, d = 0.5.

base tuples | snaive counting magic sep
20 10 18 4 3

40 45 482 29 8

60 102 1720 74 13

80 171 3750 124 17

100 271 7603 205 22

Table 7: Base vs. generated tuples, Query A, acyclic relations, d = 4.0.



density | snaive magic sep

0.2 379 1 2
0.4 942 5 4
0.6 | 1608 8 5

0.8 | 4427 218 20
1.0 | 8431 596 45
1.2 | 10344 1536 67
1.4 11657 3733 92
1.6 | 11501 4172 96
1.8 | 10573 4712 87
2.0 8711 5320 99

Table 8: Generated tuples vs. density, Query B, n = 200.

density | snaive magic sep
0.2 496 2 2
0.4 555 7 4
0.6 | 1253 22 14
0.8 | 3572 314 61
1.0 | 8637 1699 165
1.2 | 11271 2284 252
1.4 | 16206 5802 423
1.6 | 16598 9365 560
1.8 | 14958 9218 547
2.0 | 12092 7864 462

Table 9: Density vs. generated tuples, Query C, n = 50.

Table 7 shows the relative performances at higher density with acyclic data.

Table 8 compares Semi-Naive, Generalized Magic Sets, and Generalized Counting on
relations of varying density, each with 200 tuples. Again, at higher densities Generalized
Magic Sets approaches Semi-Naive, although this density is higher than that in Query A.
This is because Query A effectively takes the union of the relations a and b, whereas Query
B does not. Comparing Semi-Naive, Generalized Magic Sets, and Separable at high and
low densities for varying relation sizes yielded similar results for Query B as for Query A
(acyclic data), so the results of those trials are omitted.

Finally, Table 9 compares Semi-Naive, Generalized Magic Sets, and Separable on query
C for varying densities of random relations of size 50. Again, comparing Semi-Naive,
Generalized Magic Sets, and Separable at high and low densities for varying relation sizes
yielded similar results for Query C as for Query A, so the results of those trials are omitted.



5 Conclusion

The data presented here demonstrates that the performance of these evaluation algorithms
depends critically on the density of the base relations. If the base relations are sparse, any
of the algorithms (other than Semi-Naive) provides acceptable performance. However, if
the relations are dense Separable is preferable. This can be explained as follows.

Generalized Magic Sets computes the portion of the recursively defined relation deemed
relevant by the “magic set.” As the relation becomes more dense, the “magic set” com-
prises more and more of the database. Once the magic set includes the entire database,
Generalized Magic Sets and Semi-Naive compute exactly the same relation.

Generalized Counting reduces the “arity” of the recursively defined relation, which
reduces the number of tuples computed. However, it stores complete information about
every possible derivation of an answer tuple. (Here, a derivation is just the list of rule
applications that produce the answer.) As the relation becomes more dense, there are an
exponential number of ways to derive answers, and Generalized Counting computes far
more information than Semi-Naive.

Separable reduces the “arity” of the recursively defined relation while storing only min-
imal information about derivations. (It records that an intermediate tuple has been pro-
duced, without recording the sequence of rule applications by which it was produced.)

The density at which Separable begins to dominate the other algorithms is low. For
example, Separable out performs Generalized Magic Sets by a factor of 110 on relations
with density 0.8 and 200 tuples. To put this into perspective, consider the select-project-
join query @ = og;—.(a >a b), where each of @ and b have densities 0.8 and have 200 tuples.
This means that the domains for the columns of @ and b are of size 250. First, the join
a >a b can be expected to yield only 200 * 200/250 = 160 tuples. If we assume the constant
¢ is randomly chosen among the 250 domain values, ¢ can be expected to appear in the first
column of the result 160/250 = 0.64 times, hence the answer to ) has an expected size of
0.64 tuples. The point is that these relations are so sparse that evaluating select-project-join
queries over them is trivial.

Furthermore, the density range over which the algorithms go from being roughly equiv-
alent to being very different is small. This mirrors the situation with the size of connected
components in random graphs. For example, asymptotically a random (undirected) graph
of density less than n/2 has a largest connected component of size O(logn), whereas a
random graph of density equal to n/2 has a largest connected component of size O(nz/ 2y
[Bol85]. Of course, as relations are directed hypergraphs rather than undirected graphs,
and the performance of the evaluation algorithm depends on the shape as well as the size
of the components of these hypergraphs, the analogy is not precise.

As the Separable algorithm does not apply to all recursions, it must be supplemented
by other evaluation algorithms. However, given the performance of Generalized Magic
Sets and Generalized Counting on even the small relations considered here, special purpose
algorithms such as Separable will significantly improve system performance on recursive
queries.
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A The Separable Algorithm

In this appendix we present the separable algorithm, which evaluates queries of the form
“column = constant” on relations defined by separable recursions. First, however, we must
define what constitutes a “separable” recursion. We begin with some auxiliary definitions.

Definition A.1 A predicate instance p; is connected to a predicate instance ps if py shares
a variable with py, or shares a variable with a predicate instance connected to ps.

11



Definition A.2 A subset of predicate instances C' in a Datalog rule is a connected set if

1. For every pair of predicate instances p; and py in C, py and py are connected, and

2. No predicate instance in C' shares a variable with any predicate instance not in C'.

Definition A.3 Let r be a linear recursive rule and let ¢ be the recursive predicate in
r. Then 7 contains shifting variables if there is some variable X such that X appears in
position #* in the head of r and in position ¢/ in the body of r, where t* # t7.

Definition A.4 (Separable Recursions) Let ¢ be defined by n recursive rules 7; through
7. Furthermore, let t# be the argument positions of ¢ such that in the instance of ¢ at the
head of rule 7;, each argument position in t? shares a variable with a nonrecursive predicate
in the body of r;. Similarly, let t? be the argument positions of ¢ such that in the instance of
t in the body of rule 7;, each argument position in ¢ shares a variable with a nonrecursive
predicate in the body of ;. Then the definition of ¢ is a separable recursion if

1. For 1 < i < n, r; has no shifting variables, and

2. For1<i<n,th =1, and

3. For 1 <¢<mand i< j<n,either t? = t? or tf and 't;?‘ are disjoint, and
4.

For 1 € ¢ £ n, removing the instance of ¢ from the body of r; leaves a connected set.

Figure 4 gives a general schema for evaluating a selection on a separable recursion. The
carry;, the seen;, and ans are relation-valued variables. The f;, g;, and h are relational
operators. In addition to the arguments listed, the f;, g;, and » may involve relations and
constants appearing in the rules and in the query.

The details of how this schema is instantiated are given in [Nau88].

B Sample IRL Code

Here we present the resulting IRL code that implements the evaluation methods on the
queries considered in this paper.
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1)  init carry;
2)  seeny := carry;
3)  while earry; not empty do

4) carryy = fi(carry;);
5) seeny = seeny U carryy;
6) carry; 1= carry; — seeny;

7)  endwhile;

8)  carryy := go(seeny);

9)  seeng := carrys;

10) while carrys not empty do

11) carryz := fa(carrys);
12) seeng = seeng U carrys;
13) CarTyy = carrys — seensy;

14)  endwhile;
15) ans := h(seeny,seeny);

Figure 4: A schema for evaluating single selections on separable recursions.

readin(a, a);
readin(b, b);

tmp(X,Y) := a(X,Y) + b(X,Y);
t(X,Y) := tmp(X,Y);

#ansLoop: ifempty tmp(X,Y) goto #done;
ttmp1(X,Y) := a(X,W) & tmp(W,Y);
ttmp2(X,Y) := b(X,W) & tmp(W,Y);
tmp (X,Y) = ttmpl(X,Y) + ttmp2(X,Y);
tmp (X,Y) := tmp(X,Y) - t(X,Y);

X, YD := t(X,Y) + tmp(X,Y);

goto #ansLoop;

#done: ans(Y) := seed(X) & t(X,Y);

Figure 5: IRL code for Semi-Naive on Query A
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#start:

#magloop:

#initAns:

#ansLoop:

#tdone:

readin(seed, seed);

readin(a, a);
readin(b, b);

magtmp(X) := seed(X);
magic(X) := magtmp(X);
ifempty magtmp(X) goto #initAns;

magatmp(W) :=
magbtmp (W) :=

magtmp(X) & a(X,W);
magtmp(X) & b(X,W);

magtmp(X) := magatmp(X) + magbtmp(X);
magtmp(X) := magtmp(X) - magic(X);
magic(X) := magic(X) + magtmp(X);

goto #magloop;

ttmpl (X,Y)
ttmp2(X,Y) :=

magic(X) & a(X,Y);
magic(X) & b(X,Y);

tmp(X,Y) := ttmpi(X,Y) + ttmp2(X,Y);
t(X,Y) := tmp(X,Y);

ifempty tmp(X,
ttmp1(X,Y) :=
ttmp2(X,Y) :=
tmp(X,Y) =
tmp(X,Y) :=
t(X,Y) =
goto #ansLoop;

Y) goto #done;

magic(X) & a(X,W) & tmp(W,Y);
magic(X) & b(X,W) & tmp(W,Y);
ttmp1(X,Y) + ttmp2(X,Y);

tmp (X,Y) - t(X,Y);

t(X,Y) + tmp(X,Y);

ans(Y) := seed(X) & t(X,Y);

Figure 6: IRL code for GMS on Query A
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#start:

#cntloop:

#initAns:

#ansLoop:

#done:

readin(seed, seed);
readin(a, a);
readin(b, b);

cnttmp(K,X) := seed(X) & cond(K=1);
cnt(K,X) := conttmp(XK,X);
ifempty cnttmp(K,X) goto #inithns;

cntatmp(K1,W) := cnttmp(K,X) & a(X,W) & K1 = 2xK;

cntbtmp(K1,W) := cnttmp(X,X)

& b(X,W)

& K1 = 2%K+1;
cnttmp(K,X) := cntatmp(K,X) + cntbtmp(K,X);
cnttmp (K,X) := cnttmp(X,X) - cnt(K,X);
cnt(K,X) := cnt(K,X) + cnttmp(XK,X);
goto #cntloop;

ttmp(K,Y) := cnt(X,X) & c(X,Y);
t(XK,Y) := ttmp(K,Y);
ifempty ttmp(K,Y) goto #done;
ttmpa(K1,Y) := ttmp(K,Y)

& Ki = K/2

& K/2%2 = K;
ttmpb(K1,Y) := ttmp(X,Y)

& Ki=(X-1)/2

& ((K-1)/2)*2=K-1;
ttmp(K,Y) := ttmpa(K,Y) + ttmpb(K,Y);
ttmp(K,Y) := ttmp(X,Y) - t(K,Y);
t(K,¥Y) := t(K,Y) + ttmp(K,Y);
goto #ansLoop;

ans(X) := t(I,X) & I = 0;

Figure 7: IRL code for GC on Query A
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#start: readin(seed, seed);
readin(a, a);
readin(b, b);

tmp(X) := seed(X);
seen(X) := tmp(X);

#loop: ifempty tmp(X) goto #domne;
catmp (W) := tmp(X) & a(X,W);

cbtmp(W) := tmp(X) & b(X,W);
tmp(X) := catmp(X) + cbtmp(X);
tmp(X) := tmp(X) - seen(X);
seen(X) := seen(X) + tmp(X);
goto #loop;

#done: ansa(X) := seen(W) & a(W,X);

ansb(X) seen(W) & b(W,X);
ans(X) := ansa(X) + ansb(X);

Figure 8: IRL code for Sep on Query A

readin(a, a);
readin(b, b);

tmp(X,Y) := a(X,Y) + b(X,Y);
t(X,Y) := tmp(X,Y);

#ansLoop: ifempty tmp(X,Y) goto #done;
ttmpl (X,Y) := a(X,W) & tmp(W,Y);
ttmp2(X,Y) := tmp(X,W) & b(W,Y);
tmp (X,Y) = ttmpl1(X,Y) + ttmp2(X,Y);
tmp (X,Y) = tmp(X,Y) - t(X,Y);
t(X,Y) = t(X,Y) + tmp(X,Y);

goto #ansLoop;

#done: ans(Y) := seed(X) & t(X,Y);

Figure 9: IRL code for Semi-Naive on Query B
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#start:

#magloop:

#initlAns:

#ansLoop:

#done:

readin(seed, seed);

readin(a, a);
readin(b, b);

magtmp(X) := seed(X);

magic(X) := magtmp(X);

ifempty magtmp(X) goto #initAns;
magtmp (W) := magtmp(X) & a(X,W);
magtmp(X) := magtmp(X) - magic(X);
magic(X) := magic(X) + magtmp(X);

goto #magloop;

tmp (X,Y) := magic(X) & a(X,Y);
t(X,Y) := magic(X) & b(X,Y);
t(X,Y) := tmp(X,Y) + t(X,Y);
tmp(X,Y) := t(X,Y);

ifempty tmp(X,

ttmpl(X,Y) :=
ttmp2(X,Y)
tmp (X,Y)

tmp (X,Y) 1=
(X, T) :=
goto #ansLoop;

Y) goto #done;

magic(X) & a(X,W) & tmp(W,Y);
magic(X) & tmp(X,W) & b(W,Y);
ttmp1(X,Y) + ttmp2(X,Y);
tmp(X,Y) - t(X,Y);

t(X,Y) + tmp(X,Y);

ans(Y) := seed(X) & t(X,Y);

Figure 10: IRL code for GMS on Query B
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#start: readin(seed, seed);
readin(a, a);
readin(b, b);

tmp(X) := seed(X);
seena(X) := tmp(X);

#aloop: ifempty tmp(X) goto #initb;
tmp (W) := tmp(X) & a(X,W);
tmp(X) := tmp(X) - seena(X);
seena(X) := seena(X) + tmp(X);
goto #aloop;

#initb: tmp(X) := seena(X);
seenb(X) := tmp(X);

#bloop: ifempty tmp(X) goto #done;
tmp (Y) tmp(Z) & b(Z,Y);
tmp (Y) tmp (Y) - seenb(Y);
seenb(Y) := seenb(Y) + tmp(Y);
goto #bloop;

#done: ans(Y) := seenb(Y);

Figure 11: IRL code for Sep on Query B
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#ansLoop:

#done:

tmp(X,Y,Z) := d(X,Y,Z);
t(X,Y,Z2) := tmp(X,Y,Z);

ifempty tmp(X,Y,

ttmpl (X,Y,Z)
ttmp2(X,Y,Z)
ttmp3(X,Y,2)
tmp (X,Y,Z)

Z) goto #done;

a(X,Ww) & tmp(W,Y,Z);
tmp(X,W,Z) & b(W,Y);

tmp (X,Y,W) & c(W,Z);
ttmp1(X,Y,Z) + ttmp2(X,Y,Z);

tmp(X,Y,Z) := tmp(X,Y,Z2) + ttmp3(X,Y,Z);

tmp(X,Y,2)
t(X,Y.,2)
goto #ansLoop;

]

ans(Y,Z) := t(X,

tup(X,Y,Z) - t(X,Y,2);
t(X,Y,2) + tmp(X,Y,Z);

Y,Z2) & seed(X);

Figure 12: IRL code for Semi-Naive on Query C
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#start:

#magloop:

#initAns:

#ansLoop:

#done:

readin(seed, seed);
readin(a, a);
readin(b, b);
readin(d, d);

magtmp (X) := seed(X);

magic(X) := magtmp(X);

ifempty magtmp(X) goto #initAns;
magtmp (W) := magtmp(X) & a(X,W);
magtmp (X) magtmp (X) - magic(X);
magic(X) := magic(X) + magtmp(X);
goto #magloop;

tmp(X,Y,2) := magic(X) & d(X,Y,Z);
t(X,Y,2) := tmp(X,Y,Z);

ifempty tmp(X,Y,Z) goto #done;
ttmp1(X,Y,Z) magic(X) & a(X,W) & tmp(W,Y,Z);
ttmp2(X,Y,Z) := magic(X) & tmp(X,W,Z) & b(W,Y);

ttmp3(X,Y,Z) := magic(X) & tmp(X,Y,W) & c(W,Z);
tmp(X,Y,2) = ttmp1(X,Y,Z) + ttmp2(X,Y,Z);
tmp(X,Y,2) := tmp(X,Y,Z) + ttmp3(X,Y,Z);

tmp (X,Y,Z) iw tmp(X,Y,2) - t(X,Y,.Z);

t(X,Y,Z) := t(X,Y,2) + tmp(X,Y,2);

goto #ansLoop;

ans(Y,Z) := seed(X) & t(X,Y,2);

Figure 13: IRL code for GMS on Query C
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#start:

#loop:

#initbc:

#bloop:

#done:

readin(seed, seed);
readin(a, a);
readin(b, b);
readin(d, d);

tmpa(X) := seed(X);

seena(X) := tmpa(X);

ifempty tmpa(X) goto #initbc;
tmpa(W) := tmpa(X) & a(X,W);
tmpa(X) := tmpa(X) - seena(X);
seena(X) := seena(X) + tmpa(X);
goto #loop;

tmpbe(Y,Z) := seena(X) & d(X,Y,Z);
seenbc(Y,Z) := tmpbc(Y,Z);

ifempty tmpbc(Y,Z) goto #done;
tmpbc1(Y,Z) := tmpbc(W,Z) & b(W,Y);
tmpbc2(Y,Z) := tmpbe(Y,W) & c(W,Z);
tmpbe (Y,Z) tmpbc1(Y,Z) + tmpbc2(Y,Z);
tmpbe(Y,Z) tmpbc(Y,Z) - seenbc(Y,Z);
seenbc(Y,Z) := seenbc(Y,Z) + tmpbc(Y,Z);
goto #bloop;

ans(Y,Z) := seenbc(Y,Z);

Figure 14: IRL code for Sep on Query C
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