A FAST LAS VEGAS ALGORITHM FOR
TRIANGULATING A SIMPLE POLYGON

Kenneth L. Clarkson
Robert E. Tarjan
Christopher J. Van Wyk

CS-TR-132-88
January 1988



A Fast Las Vegas Algorithm for Triangulating a Simple Polygon

Kenneth L. Clarkson

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Robert E. Tarjan*

Department of Computer Science
Princeton University
Princeton, New Jersey 08544
and
AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Christopher J. Van Wyk

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

We show how to use random sampling to triangulate a simple polygon in nearly
linear expected time.

1. Introduction

To triangulate a simple polygon on n vertices, we add to it n—3 line segments (diagonals) that parti-
tion its interior into triangles. The complexity of triangulating a simple polygon is one of the outstanding
open problems in computational geometry.

Previous work on the triangulation problem has concentrated on finding fast deterministic algorithms
to solve it. Garey, Johnson, Preparata, and Tarjan gave an algorithm to triangulate an n-gon in O(n log n)
time [GJPT]. Tarjan and Van Wyk devised a much more complicated algorithm that runs in O(n loglog n)
time [TV].

In this paper we present an algorithm that triangulates a simple polygon in O(n log™ n) expected time.
Our algorithm uses several key ideas:

e  divide and conquer;

*Research partially supported by the National Science Foundation under Grant No. DCR-8605962.



w

e

the “‘random sampling’’ paradigm [C87], [C88], [ES], [HW];

the decomposition of the plane by a set of line segments into trapezoids determined by what is verti-

cally visible from each endpoint of each line segment [CI], [FM];

Jordan sorting [HMRT]: given the intersections of two simple curves A and B in the order in which

they occur along A, find the order in which they occur along B.

. Outline of the Algorithm

The following is the general recursive step of our algorithm:
The input is a sequence S of line segments that compose a simple polygon Pg.

Let S’ be the subset of non-vertical line segments in S; let s” be the size of S”. Choose a random sam-
ple R  §’ of size r (r is a function of s’, to be determined below).

Compute the vertical visibility decomposition V(R) of the plane according to R. If any region in V(R)
shares a vertical edge with more than two other regions, apply a random rotation to the original set of

vertices and restart the algorithm.

Trace the boundary of Pg, recording each intersection of Pg with an edge in V(R). Let I be the
number of intersections of P; with an edge in V(R). If, during this traversal, / is about to exceed
€l » OF some region in V(R) is found to intersect more than c,, segments, immediately restart the
recursive step at Step 1. (Both ¢4 and ¢, depend on r and s’; we determine their exact values

below.)
For each region in V(R), Jordan sort the intersection points found in Step 3 around its boundary.

Decompose each region in V(R ) into a set of simple polygons (We discuss in Section 4 how to do this
using the family trees produced by Jordan sorting in Step 4.); the algorithm recurs on all polygons that

contain at least one vertex of Pg that does not lie on a vertical visibility edge.

. Vertical Visibility Decomposition

To construct the vertical visibility decomposition V(§) of the plane given a set § of line segments, we

extend a ray vertically from each endpoint of each line segment until we hit another line segment in § or

we reach infinity. Thus, each vertical segment in V(S§) contains an endpoint of a segment in S. This pro-

cess produces the following kinds of regions:

(a) those bounded by two portions of line segments in § and two vertical line segments;



2

(b) those bounded by one portion of a line segment in § and two vertical rays;
(c) those bounded by two vertical lines;
(d) those bounded by one vertical line.

Figure 1 shows a vertical visibility decomposition whose regions have been labeled with their types
according to the above list. Regions of type (a) are trapezoids (or triangles), so V(§) is often called a tra-
pezoidal decomposition of the plane.

Our interest in the vertical visibility decomposition stems from the observation that computing the
vertical visibility of the edges of a simple polygon is linear-time equivalent to triangulating the polygon
[CI], [FM]. When all recursive steps of our algorithm have finished, we actually have a vertical visibility
decomposition of the edges in hand, so by this observation we have solved the original triangulation prob-

lem.

In Step 2 of the algorithm we require that no region share either of its vertical edges with more than
two other regions. This certainly happens if no two vertices have the same x-coordinate; when necessary,
the random rotation in Step 2 achieves this with probability 1. When this condition holds, it is possible to

move from region to neighboring region in the decomposition in O (1) time.

4. Jordan Sorting and Polygon Reconstruction

In Step 4 we need to sort the points at which P intersects each region Q € V(R) according to their ord-
ering around the boundary of Q. (Figure 2 shows how Pg might meander around R.) Step 3 produces those
points in order along Pg. The original Jordan sorting algorithm [HMRT] can be used to sort those points
along the boundary of 0 in time proportional to the number of points.

During its operation, the Jordan sorting algorithm produces two family trees for each region. The
outer tree depicts the way pieces of Py nest outside the boundary of Q, and the inner tree depicts the way
they nest inside the boundary of Q. (Figure 3 shows two family trees from regions in Figure 2.) Thus,
each node in the inner tree, together with any children it may have, defines a subpolygon of Q. To perform
Step 5, we merely traverse the inner tree of each region Qe V(R), constructing the subpolygons of Q and

passing appropriate ones to recursive instances of the algorithm.

5. Expected Running Time

In this section we derive a bound on the expected running time of the algorithm on a polygon P with n
sides. The proof relies on probabilistic bounds provided by the following theorem:



-4.-

Theorem. Suppose § is a set of line segments of size 5, and R is a random subset of S of size r; let V(R) be
the vertical visibility decomposition that R induces on the plane. There exist constants k,,,; and k. such

that with probability at least 1/2, the following conditions hold:

(1) The sum, over all regions Q€ V(R), of the number of line segments of S that intersect Q is bounded by
kms.
(2) For all Qe V(R), the number of line segments of § that intersect Q is bounded by k ., (s/r) logr.

Proof. Both conditions are consequences of general theorems about random sampling in computational

geometry. To prove condition (1), we appeal to Theorem 3.2 of [C88]:

Let S be a set of s regions in E¢, and let F be another set of regions. Let a, b, and ¢ be fixed nonnega-
tive integers, and let m be a fixed positive real value. Let v, for 1 <k < a, be a collection of map-

pings from S® to F. For R a random subset of § of size r, let
Fp = {vi(R)I1 <k <a, ReR?},
and define a random variable

T,R)= ¥ IANSI™,
AEFg
ANR =02

where |ANS | is understood to mean the number of elements of § that intersect the interior of region

A. If the expected value of To(R) is O(r®), then the expected value of T,,(R) is O ((s/r)™r®).

To apply this theorem to prove condition (1), we take d =2, § to be a set of line segments, F to be the set of
all regions of the plane formed by the intersection of at most four half-planes, b=4, c =1, and m = 1.
Next we define a collection of a functions v;, for 1<k <a; each of these functions maps a four-tuple
(51,52,53,54) of members of S to a region in F. We define v, to be the function that maps (5;,52,53,54) tO
the half-plane bounded by a vertical line through the left endpoint of 5, v, to be the function that maps
(51,52,53,54) to the half-plane bounded by a vertical line through the right endpoint of s5;, V5 to be the
function that maps (s,52,53,54) to the vertical swath defined by the left endpoints of 5, and s,, and so on;
it is clear that with a finite number (a) of such v, we can insure that F; contains all regions that could

belong to the vertical visibility decomposition induced by any subset of S.

The expected value of T((R) is the expected number of regions in F; whose interiors do not meet R;
this is surely O (r), the number of regions in V(R). The theorem guarantees that the expected value of
T1(R) is O(s); since T (R) is the sum over all regions Q€ V(R) of the number of line segments of § that

intersect Q, this proves that the asserted value of &,,,, exists.



e

Condition (2) follows similarly from Corollary 4.2 in [C87]. W

In the algorithm, we take Cygu = Kia1S” ANd € ey = Kmax (5 /7)logr. The theorem implies that with
probability at least 1/2, Step 3 will *‘succeed,’” and not restart the recursive step with another random sam-
ple; in other words, the expected number of times we need to restart a step is O(1). If we take

r=s"/logs’, then Condition (2) further implies that the maximum depth of recursion is O (log” n).

Next we compute the work done during the recursive steps of the algorithm. First, note that a vertex
sends out visibility segments above and below during exactly one recursive step of the algorithm, when it is
an endpoint of an edge chosen in Step 1; this is the only time that a vertex can cause the boundary of P to
be cut into pieces. Condition (1) implies that the total number of pieces into which the boundary of P can
be cut in this way is k7. Moreover, since the boundary can contain at most one vertical segment for
each non-vertical segment, the number of different vertical segments considered in the algorithm is at most
k.xan. The subpolygons processed at the ith level of recursion are area-disjoint, so they contain at most
4k a1t pieces.

At each level of the recursion, Step 2 can be performed in O(r logr) = O (n) time [PS], and Steps 3, 4,
and 5 can be performed in O () time, which is O (n) by the observations in the preceding paragraph. Thus
a single level of recursion takes O (n) time. Since there are O (log" n) levels of recursion, the total running

time is O (n log” n).

References

[C87] K. L. Clarkson, ‘‘New applications of random sampling in computational geometry,”’ Discrete
and Computational Geometry, 2 (1987), 195-222.

[C88] K. L. Clarkson, ““Applications of random sampling in computational geometry, II,”” submitted to
Fourth Annual ACM Symposium on Computational Geometry.

[C1] B. Chazelle and J. Incerpi, ‘*Triangulation and shape complexity,”” ACM Transactions on Graph-
ics, 3 (1984), 135-152.

[ES] P. Erdos and J. Spencer, Probabilistic Methods in Combinatorics, Academic Press, New York,
1974.

[FM] A. Fournier and D. Y. Montuno, ‘‘Triangulating simple polygons and equivalent problems,’
ACM Transactions on Graphics, 3 (1984), 153-174.

[GIPT] M.R. Garey, D. S. Johnson, F. P. Preparata and R. E. Tarjan, ‘‘Triangulating a simple polygon,”
Information Processing Letters, 7 (1978), 175-180.



-

[HW]  D. Haussler and E. Welzl, *‘e-nets and simplex range queries,”” Discrete and Computational
Geomerry, 2 (1987), 127-151.

[HMRT] K. Hoffman, K. Mehlhorn, P. Rosenstiehl, and R. Tarjan, ‘‘Sorting Jordan sequences in linear
time using level-linked search trees,”’ Information and Control, 68 (1986), 170-184.

[PS] F. P. Preparata and M. 1. Shamos, Computational Geometry: An Introduction, Springer-Verlag,
New York, 1985.

[TV] R. E. Tarjan and C. J. Van Wyk, ““An O (n loglogn)-time algorithm for triangulating a simple

polygon,”” SIAM Journal on Computing, to appear.



(P)

— e — — — — — — — — — — —

. — — — — — — — — —

*uonIsoduroddp AIQISIA [EI1)I9A J19Y) pue SHUIWSIS Ul ALY ] dInSyy|

()

()

_
_
_
_
_
_
_
_
_
_
_
_
_

()

(a)

(0)

(q)

(q) _

SRR, T, i e, e e Bl i, B e i e

(P)



‘sureyd jeuodAjod 3q pinom saaand ayj uodLjod e uy “(1£0€)

pue {ZT6DOTED(6°9)(LET) dae syudwmi3as [eurdrio ayy jo syurodpud ayy,
*T 31n31 Jo syudmidas durf Ay Y3noay) aAnd duns y °7 danSryg




33¢32
28 ¢ 29

23822

Figure 3. Representative family trees for the curve shown in Figure 2.
The tree on the left is the inner family tree for the region whose corners are 7,
8, 15, and 14. The tree on the right is the inner family tree for the region of

type (c) in Figure 1.



