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ABSTRACT

A main memory database system holds all data in semiconductor
memory. For recovery purposes, a backup copy of the database is main-
tained in secondary storage. The checkpointer is the component of the
crash recovery manager responsible for maintaining the backup copy.
Ideally, the checkpointer should maintain an almost-up-to-date backup
while interfering as little as possible with the system’s transaction pro-
cessing activities. We present several algorithms for maintaining such a
backup database, and compare them using an analytic model. Our results
show some significant performance differences among the algorithms, and
illustrate some of the tradeoffs that are available in designing such a

checkpointer.
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1. Introduction

The cost per bit of semiconductor memory is decreasing and chip densities are ris-
ing. As a result of these trends, researchers have begun to consider database systems in
which all of the data resides in main (semiconductor) memory.” Memory-resident data
can mean large performance gains for database systems. In current systems, much of a
transaction’s lifetime is spent waiting to access data on disks. In addition, much of the
complexity of the database system itself can be attributed to the long delays associated
with the disks.

The simplest way to design a main memory database management system
(MMDBMS) is to borrow the design of a disk-based database manager. A MMDBMS
can be viewed as a disk-based DBMS with a buffer that happens to be large enough to
hold the entire database. One problem with this approach is that it fails to capitalize on
many of the potential advantages that memory-residence offers. For this reason,
researchers have begun to re-examine some of the components of a traditional DBMS
with memory-resident data in mind. Some that have been considered are index structures

[Lehm85a, DeWi84a, Thom86a], query processing [Lehm86a, Bitt87a, DeWi84a] and
(primary) memory management [Eich87a].

One component of a DBMS that might be particularly difficult to transfer from a
disk-based to a memory-resident system is the recovery manager. From the point of view

of the recovery manager, there are several interesting aspects of memory-resident

T We do not rule out the existence of slow archival storage. One can think of a system as having two
databases (as in IMS Fastpath [Gawl85a] ): one memory-resident that accounts for the vast majority
of accesses, and a second on archival storage [Ston87a]. In this paper we focus on the main memory
database since its performance is critical.



databases:

At recovery time, the focus of the recovery manager must be the restoration of the
primary (memory-resident) database, rather than the disk-resident database, to a
consistent state. Since the primary database can be lost during a failure (e.g., a
memory failure or power loss), it must be reconstructed from a backup copy on

secondary storage.

In a MMDBMS, the transactions’ data requirements can be satisfied without disk
I/O. However, to manage the backup database the recovery manager requires
access to disks (or other non-volatile storage). The recovery manager’s 1/O require-
ments should be satisfied without sacrificing the performance advantages that
memory resident data can bring to transaction processing. In particular, this means
that the recovery manager should do as little synchronous 1/O as possible. Such
practices as forcing transaction updates to disk before commit, and flushing dirty
pages to disk (while transactions wait) at checkpoint time should probably be
avoided.

The relative contribution of recovery management to the total cost of executing a
transaction will increase. As a simple example, consider a "typical” transaction in a
disk-based system that costs about 20,000 instructions (without recovery) and
makes 20 database references, half of them updates. In a memory-resident system,
that same transaction may cost only half as many instructions. The savings will
come from such areas as reduced disk I/O cost (if half of the database references
would have caused I/O activity, that alone is a substantial savings at 1000 instruc-
tions per I/O), lower concurrency control costs (e.g., fewer lock conflicts,
deadlocks, and rollbacks), and reduced or eliminated buffer management costs. The
recovery manager, on the other hand, must still perform expensive operations like
disk I/O. This implies that the performance of the recovery manager will be more
critical to the overall performance of a DBMS when data is memory resident than

when it is disk resident.

In this paper we will focus on one critical aspect of crash recovery in a MMDBMS,

namely the maintenance on disk of the up-to-date secondary copy of the database. We

term this process checkpointing, although checkpointing may be realized quite differently
in a MMDBMS than in a disk-based DBMS. We will describe a number of possible



.

algorithms for asynchronous checkpointing, and compare them using a simple analytic
model.

An interesting feature of a MMDBMS is that the I/O bandwidth to the backup data-
base disks should not become a bottleneck for transaction processing since transactions
require no access to the secondary database. Similarly, I/O latency should not be a prob-
lem if I/O is done asynchronously, because asynchronous 1/O is not likely to be in the
critical execution path of any transaction. Thus evaluating "I/O cost", as is commonly
done for disk-based systems, is not a good way of measuring the impact of checkpointing
on transaction processing in a MMDBMS. This is not to say that the 1/O bandwidth is
not important to the system’s performance. As we will see, it affects recovery time in a

number of ways.

What does appear to be a useful checkpointing performance metric in a MMDBMS
is processor overhead. Checkpointing processor overhead results from such activities as
initialization of disk I/O’s, data movement, and locking or other synchronization with
transaction processing activities. Checkpointing can also indirectly affect the overhead
costs of other system activities, such as logging. The fact the CPU costs rather than I/O
costs may be the critical performance factors in a MMDBS is one of the reasons we

believe the model presented here is important.

Several algorithms for asynchronous maintenance of a secondary database copy
have appeared in the literature [DeWi84a, Eich87a, Hagm86a, Lehm87a, Pu86a]. The
checkpointing algorithms that we will consider are based on ideas drawn from that work.
Our emphasis in this paper is algorithmic alternatives. We have not considered check-
pointing mechanisms that rely on the existence of special purpose or functionally segre-
gated processors, nor those that require large quantities of stable primary memory. How-
ever, in Section 6 we will consider the effect of a stable log tail, i.e., the availability of

enough stable RAM to hold the in-memory portion of the log.

The rest of the paper is organized as follows. In the next section we discuss the
assumptions made and the failures considered. In Sections 3 and 4 we describe the
checkpointing algorithms. Section 5 presents our performance model and analysis, while

Section 6 gives some of results.



2. Assumptions

The hardware underlying the MMDBMS consists of one or more processing units
(CPUs), volatile memory, and disks, all linked by one or more data channels. There is
enough primary memory to hold a complete copy of the database (the primary copy) plus
any additional data structures that are required by the system, e.g., page tables.

We assume that two complete backup databases are maintained on disks and that a
ping-pong update scheme is used. Only one of the two copies is updated during a single

checkpoint, and successive checkpoints alternate between the copies.

During a checkpoint, only those portions of the database that have been updated are
written out to their corresponding position on the backup database. To implement this,
database segments in memory include two dirty bits. When a transaction modifies a seg-
ment, it sets both bits. When the checkpointer flushes a modified segment to one of the
backups, it resets one of the bits. When it flushes it to the second copy, it resets the
second bit. Thus, the checkpointer will only ignore segments that have been flushed to
both copies. When a checkpoint completes, the current checkpoint copy is noted at a
known location on disk we call home. The home block also contains a pointer to the
begin-checkpoint log entry made by this completing checkpoint. At recovery time, the

home block is used to select the most recently completed checkpoint copy.

Finally, we assume that transactions use a shadow-copy update scheme similar to
that employed by IMS/Fastpath [Gawl85a] and proposed by others [Eich87a]. Updates
are stored in a buffer local to the updating trar.saction until the transaction commits. At
that point, updates are installed in the database by overwriting (copying) the old version
of the record with the new. Transactions use REDQO-only logging. UNDO logging (i.e.,
logging old versions) is not necessary because old versions are not overwritten in the

database unless a positive commit decision is made for the transaction.

It is important to note that there are other apprc iches besides shadow-copy updates
and ping-pong backups. We are not arguing that the two selected are the best; we are
simply choosing representative and reasonable alternatives so we can study checkpoint-

ing algorithms independently of these other components.



2.1. Failures

There are numerous types of failures that can occur in a transaction processing sys-
tem. We will concentrate on recovery from transaction failures and system failures. As
defined in [Gray78a], a transaction failure occurs when a particular transaction must be
aborted, either because of some internal condition or because of external intervention.
We are particularly concerned with transactions that fail as a result of actions of the
checkpointer. The probability of a checkpoint-induced failure, p,.s., Will be computed in

Section 5 as a function of the checkpoint algorithm.

A system failure results in the halt of the system and the loss of the contents of vola-
tile memory, followed by system restart. One of the performance measures we consider
is the time for recovery from a system failure. The recovery time is discussed in more

detail in Section 4.

In our model we do not explicitly consider recovery from media failures [Gray78al.
Provided there is extra memory available, and provided that the failed portion of memory
can be mapped-out transparently to the database system, media failures in primary
memory can be treated like system failures. There are also interesting aspects to secon-
dary media failures in a MMDBMS. Recovery from such failures may be easier than in a
DBMS because the lost data will be available in primary memory (provided that a system
failure does not occur simultaneously). Dumping of the backup database (e.g., to tape)
may also be easier because of the more predictable disk access patterns of a MMDBMS.

‘We will not discuss these issues further here.

3. Checkpointing Algorithms

In this section we describe a number of checkpointing algorithms. The algorithms
vary according to the consistency of the backup copy they produce. We will consider

fuzzy, action-consistent (AC), and transaction-consistent (T'C) checkpoints.

Consider a transaction that updates records R, and R, with two update actions. A
TC backup will reflect transaction activities atomically, i.e., the backup will contain

either the old versions of R, and R, or their new versions, but not one old and one new.

An AC backup may contain the old version of R; and the new version of R, (or vice
versa). However, each action will be reflected atomically. That is, neither record will be

found in a partially updated state. Finally, a fuzzy backup makes no guarantees about the



atomicity of transaction or actions.

As we will see, consistent checkpoints are more costly to produce than fuzzy ones.
However, an important advantage of consistent backups is that they permit the use of
logical logging’ as opposed to value logging. With logical logging, operations like
“‘insert this new record”’ or ‘‘update this field of this record’’ are recorded. Any associ-
ated changes in the database access structures are not recorded. Value logging, on the

other hand, records all changes made to memory in the course of the action.

3.1. Fuzzy Checkpoint Algorithm

Fuzzy checkpoints require little or no synchronization with executing transactions.

Fuzzy checkpoints are suggested for recovery in main memory databases in [Hagm86a].

We call our fuzzy checkpointing algorithm FUZZY. It begins a checkpoint by
entering a begin-checkpoint marker in the log, along with a list of currently committing
transactions. (A transaction is committing if it is in the process of placing its updates in
the database.) Once the marker is in place, the checkpointer flushes dirty segments from
main memory to secondary storage. Locks and other transaction activity are ignored.
Once the dirty segments have been flushed, the (in-memory) log tail is flushed to disk

and the new current checkpoint is noted (as described in section 2).

If one is not careful, fuzzy checkpointing may in general lead to violations of the
log write-ahead protocol [Gray78a] (Such a violation occurs if a transaction’s updates
are reflected in a checkpoint but not in the log.) However, because we are using two
ping-pong backup copies, the problem does not arise. While a checkpoint is in progress,
a transaction’s updates may indeed appear in one of the backups before they do in the
log. Nevertheless, since the checkpoint is incomplete, all such updates will be ignored at
recovery time. It is only when the checkpoint completes that the updates in it become
valid. (If two backup databases are not used, then a fuzzy checkpointer must copy the
data to a main memory buffer before flushing it, adding overhead to the
checkpointer [Sale87a]. )

T Logical logging is also known as transition [Haer83a] or operation logging.



3.2. Black/White Algorithms

One way to produce a consistent backup is to treat the checkpointing process as a
(long-lived) transaction. The checkpointer acquires a lock on each segment before flush-
ing and holds the locks until the checkpoint is complete. We assume that this method
will result in unacceptably frequent and long lock delays for other transactions. (At some
point during each checkpoint the checkpointer will have all of the dirty database seg-
ments locked simultaneously.) An alternative, which produces consistent backup copies
but requires that locks be held on only one segment at a time, is presented in [Pu86a].
The algorithms we will describe next are variants of the mechanism proposed in that
paper.

The basic algorithm described in [Pu86a] proceeds as follows. There is a "paint
bit" for each database segment which is used to indicate whether or not a particular seg-
ment has already been included in the current checkpoint. Assuming that all segments
are initially colored white (i.e., paint bit = 0), checkpointing is accomplished by the algo-
rithm in Figure 3.1.

The algorithm can be used to produce either a TC or an AC backup. To ensure that
the checkpointer produces a TC backup, no transaction is allowed to access both white
and black records. (A record is the same color as the segment it is a part of). Any tran-
saction that attempts to do so is aborted and restarted. Similarly, an AC backup can be
produced by ensuring that no action accesses both black and white segments. (Note that
a single transaction may contain both black-accessing and white-accessing actions.) A
transaction is aborted if any one of its actions attempts to access both white and black

records.

The "processing” of a segment can occur in two ways. One option is to simply
schedule the segment to be flushed to the backup disks. The checkpointer locks each
segment for the duration of the disk I/O operation. We call this type of checkpointer
BWI/FLUSH.

An alternative is to spool the I/O. Before flushing the segment, the checkpointer
first copies it to a special buffer and then flushes the copy. The advantage of this alterna-
tive is that the segment can be unlocked as soon as it is copied; there is no need to main-
tain the lock through the disk I/O. However, since copying the segment to the special

buffer is not free, there is a price paid in processor overhead for this advantage. When



WHILE there are white segments DO
find a white segment that is not locked
IF there are none THEN
request lock on any white segment and wait
ELSE
lock the segment
process the segment
paint the segment black (set paint bit = 1)
unlock the segment
END-WHILE

Figure 3.1 - Black/White Checkpoint

checkpointing is handled in this fashion we say that the checkpoint style is BW/COPY.

3.3. Copy-on-Update Algorithms

Copy-on-update checkpointing forces transactions to save a consistent "snapshot” of
the database, for use by the checkpointer, as they perform updates. The principal advan-
tage of copy-on-update (COU) checkpointing is that once the checkpoint has started, it
will not cause transactions to abort, as do the black/white algorithms. On the other hand,
primary storage is required to hold the snapshot as it is being produced. Potentially, the
snapshot could grow to be as large as the database itself. The COU mechanisms we will
describe are inspired by the technique described in [DeWi84a]. the "initial value"
method of [Rose78a] and the "save-some" method of [Pu86a]

To begin a COU checkpoint, the database must first brought into a state of the
desired consistency (either action-consistent or transaction-consistent). In this case it is
almost as easy to get a TC state as an AC state’, so we will only consider TC COU
checkpoints in the rest of the paper. A simple way to achieve a TC database state is to
quiesce the system: the updates of all currently committing transactions are completed,
while no new transaction are allowed to commit. (Note that running transactions that are
not in the process of committing are allowed to continue. All their updates are private

and can be ignored at this point.)

T This is true because we are assuming database updates are not installed until the commit point. If
updates are installed before commit, AC states are easier to achieve than TC,
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When the database is quiescent a begin-checkpoint record is written to the log, and
the log tail is flushed to stable storage. The consistent database state that exists in pri-
mary memory is the "snapshot" that will be flushed to secondary storage by the check-
pointer. Once the begin-checkpoint entry is in the log, transaction committing can

resume.

The algorithm uses a paint bit per segment in much the same way the black/white
algorithm (the bit determines whether or not the segment has already been included in
the current checkpoint). In addition, each segment has a pointer which will be used to

point at the "snapshot" copy of the segment, if one exists.

Checkpointing is accomplished by the algorithm shown in Figure 3.2. (As before,

we assume that all segments are initially colored white.)

WHILE there are white segments DO
find a white segment (S) that is not locked
IF there are none THEN
request shared lock on any white segment and wait
ELSE
lock §
IF S has a pointer to a "snapshot” copy S THEN
paint § black
save pointer from §
unlock §
IF §’ is dirty THEN
flush §” to the backup
free §*
ELSE
process §
unlock §
END_WHILE

Figure 3.2 - COU Checkpointing

The transactions are responsible for saving snapshot copies of segments when
necessary so that the consistency of the snapshot is preserved. When a transaction
wishes to update a segment that the current checkpointer has not reached (a white seg-
ment), it first makes a copy of the old version of the segment if such a copy does not

already exist. A pointer in the segment is set to point at the newly-created copy.

When the checkpointer processes a segment which does not have a "snapshot" copy

it has two options, much as the black/white checkpointer did. It can flush the segment
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while retaining its lock, or spool the segment so that the lock need not be held for the
duration of the I/O operation. The former strategy will be termed COU/FLUSH, and the
latter COU/COPY. (Note that if segment § already has a snapshot copy §’, then neither
locking for the duration of the I/O nor copying is necessary.)

4. System Failure Recovery

After a system failure, the recovery manager has at its disposal a backup copy of the
database and a transaction log on stable storage. In a disk-based system, the log is used
to bring the stable database copy to a consistent state. In a MMDBMS, the stable data-
base copy and the log are used to recreate a consistent primary database copy in main

memory.

The recovery procedure is to first read the backup database into main memory (as
discussed in Section 2), and then to apply the log to the new primary database to bring it
into an up-to-date consistent state. Applying the log to the database means the following.
Recall that the location of the begin-checkpoint log marker of the most recently com-
pleted checkpoint is stored in the home block. Thus it is not necessary to scan the log
backwards to find the begin-checkpoint marker. (With the FUZZY algorithm, the log
must be scanned backwards a short ways from the begin-checkpoint marker to retrieve
all updates made by transactions that were committing at the time the checkpoint
started.) From that point the log is scanned forwards. If the log is a value log, new
values of modified records are written in place in primary memory. Otherwise, the

logged actions are rerun against the database’.

5. Performance

In this section we consider the performance of the various checkpoint algorithms
that were presented. The performance metrics that we will consider are processing over-

head and recovery time (from system failures).

i In general, actions may not be idempotent. We assume that an identifier is associated with the log
entry for each action (much like a log sequence number [Gray78a] ). This identifier is stored with
each segment affected by the action and is used to ensure that an action is applied exactly once to a
segment,
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5.1. Performance Model

The first step is to model the hardware, database, and the arriving transactions.
Each CPU is able to perform certain operations at a cost of some instruction executions.
A discussed earlier, synchronization (for consistent checkpoints) is accomplished through
locking. Cy, is the cost to lock and unlock a database object. Storage management costs
are represented by C,y,., which is charged for allocating (and later freeing) of a block of
memory. C;, is the processor cost of a disk I/O. We assume that the disk controllers sup-
port direct memory access, so that C;, is independent of the amount of data being
transferred. The cost of data movement in memory is taken to be proportional to the
number of words moved, with constant of proportionality one instruction per word.
(Note that the number of processors is not needed since we will only compute overhead

per transaction.)

The parameters we have described, together with the rest we will cover, are sum-
marized in Table 5a. The table also lists the default values used. We believe that the
default values are realistic, at least for some types of hardware and applications. Of
course, other values are possible. In the next section we will explore the sensitivity of

our results to variations in some of the more critical parameters.

symbol parameter default units
Clock (un)locking overhead 50 instructions
Calloc buffer (de)allocation overhead 200 instructions
Ci I/O overhead 1500 instructions
Ticar 1/O delay time 0.03 seconds
T uis transfer time constant 3 useconds/word
Npisis number of backup disks 20 disks
Nigisks number of log disks 5 disks
Sa database size 256 Mwords
Siec record size 32 words
Sseq segment size 8192 words
Sitens log entry overhead 4 words
A arrival rate 1000 | transactions/second
Dfait failure probability 0.05 no units
N number of actions 3 actions/transaction
Repa segments per action 1.1 segments/action
C ois transaction processor cost 10000 instructions

Table 5a — Parameters and their defaults
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The disks are used to hold the secondary database copies and for logging. Ny, is
number of disks available for backups. Disks are modeled as simple servers that can
transfer d words of data in time T, + Thaws . We assume that the transfer bandwidth
scales linearly with the number of disks, i.e., we do not consider interference caused by
bus contention or secondary reference locality’ Note that I/O to the backup disks in a
MMDB is likely to be better behaved than I/O in a disk-based system since I/O in a
MMBDB is done only by the checkpointer. Thus we might expect seek delays to be some-
what shorter for a MMDB than for a disk-based system.

The database is assumed to contain S, words of data, grouped into records of size
Sy The record is the granule at which the transaction interface operates, i.e. the primi-
tive actions of a transaction are record reads and writes. Records are stored on larger
physical blocks, called segments, for efficient transfer to the backup disks. S, is the seg-

ment size, which can be any multiple of §,... S.. is the space overhead of each log entry.

For simplicity we assume that all transactions running against the database are
identical. They are assumed to arrive at the system at the rate of A transactions per
second. With probability p,, transactions voluntarily abort (e.g., insufficient funds found
in account). The model treats the execution of a transaction, much like a basic operation.
The cost of executing a transaction is C,,,,. This is the cost of executing the transaction
exclusive of recovery costs, i.e., as if the transaction were running in a failure-free

environment.

Each transaction consists of N,, actions, each of which modifies a single record. In
many cases, the modifications made by an action will be contained within a single seg-
ment. However, in other cases, a single action may affect more than one segment. (For
example, if the record update makes it grow, it may have to be moved to another seg-
ment.) We let R, represent the expected number of segments that will be modified by
each action. The update probability is distributed uniformly across all of the database
segments.

Note that we have chosen a R,,, relatively close to 1. This is because we assume

that secondary indexes are not checkpointed (and their changes are not logged). In a

T This may require a high performance IO subsystem. An example of such a subsystem is found on
the Convex C-1. It can support up to 160 I/O controllers though five buffered I/O processors onto an
eighty megabyte per second bus to the main memory [Dozi84a].
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memory resident database, secondary indexes can easily be recreated as the database is
loaded up after a failure. Thus, there is no need to consider them part of the recoverable
database. In a conventional system, this is not true and we would expect R,,, to be larger.
In any case, we will consider the impact of R, in Section 6. Also note that a uniform
distribution for segment updates is in a sense a ‘‘worst case’’ assumption. If some type
of hot spots exist, the number of segments dirtied during a checkpoint interval will be

less, and the checkpointer will have less work to do.

5.2. Performance Analysis

To compute the cost of running each transaction we compute a synchronous over-
head (i.e., extra work done while running a transaction) and an asynchronous overhead,
the cost of checkpointing the database. Synchronous overhead represents recovery-
related work done for each transaction (e.g., logging overhead). Asynchronous overhead
is the cost of making a database checkpoint. We combine both overheads into a single
cost measure (instructions per transaction) with the equation

Carynch
Aty

Clo.t = Lsynch +

where 1, is the intercheckpoint interval and A is the transaction processing rate.

The value ¢, is a model parameter, but it must be greater than f;,m,, the minimum
intercheckpoint interval that gives the system a chance to flush all dirtied pages. We now
discuss how f;,m, is computed. We start by computing the number of pages that are dir-
tied in an arbitrary time period, N, (). Transactions update N, = N,.R,,, random seg-
ments. The probability that a particular segment will not be touched by the A+ transac-

2 Now ¥
S/ Seeg

The expected number of dirtied segments, N, (¢) will be the above quantity multiplied by

tions executing in the period is

the number of segments, Sz /S,,-

The number of segments that can be flushed by the checkpointer in an interval ¢ is

given by

t
N: =N ppp ——————
‘O(I) - Tuak + Ttmnssscg
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In the minimum interval ,,,,,, a ping-pong checkpointer must flush all dirtied pages in

the current and previous period (see Section 2). Thus,
Nio(ticpmin) = Nairty(2ticpmin)-
By solving this equation we determine ;... As discussed above, the actual checkpoint

duration may be made longer than the minimum by inserting a delay between the com-

pletion of a checkpoint and the initiation of the next.

The synchronous costs are computed by

Clrans
Coynch = (1 = Ppait)Couce + PraitCrain + pru:art(”T + Crair)s

where py,; is the probability that the transaction aborts on its OWn, p,..a- i the probability
that it must be restarted due to a checkpointer conflict, C,,, is a transaction’s synchronous
overhead during normal execution, and Cy,; is the overhead in case it fails. Note that
when a transaction is aborted by a restart we charge the expected wasted processing

Curans /2 t0 Overhead (this assumes that transactions fail halfway through).

The synchronous overheads C,,.. and Cy,; include the costs of log maintenance and
of making "snapshot" copies of segments (COU checkpoints only). Log costs are
assigned for allocating, flushing, and copying data to the log, in proportion to the log
bulk per transaction. For logical or value logging, each updated record must be written,
including S,,, overhead. For value logs only, any incidental changes to segments (that
occur when records are installed) must also be logged. We assume this involves S,
extra words for each of the RN, segments dirtied by each transaction. Unsuccessful

transactions have no log bulk, since no log entries are made until commit.

Unless black/white checkpointing is used, pyesar 18 zero. (FUZZY and COU check-
points never cause transaction aborts.) For the TC black/white checkpointers, we com-
pute p,.... as follows. Let W be the fraction of the database colored white, and let
Pr[OK |W=0] be the probability that a transaction executes without being aborted for
violating the color rule, given that W=0. (We assume that W remains constant throughout
the execution of the transaction, reasonable when the database is large and the transac-
tion small.) This occurs when all segments touched by the transaction are the same

color, so

PriOKIW=0] = "™ + (1-0)"™



< 1%

If checkpoints are always occurring (£, = ticpmis) W€ can assume that W is uniformly distri-

- buted from zero to one. By integrating the above expression we can show that

2
Ny +1

Pr[OK] =

The restart probability, p,.g., is simply 1 - Pr[OK]. If t;, > t;pms then we multiply the
value obtained bY fipm/ticp, the fraction of the time the checkpointer is in operation and
transaction in danger of being aborted.

For AC black/white checkpoints, we are interested in the probability that a single
action violates the two color rule. An action affects R,,, segments on the average, so (by

a similar calculation) we get

2

spa

Pr[OK] =

Rya+1

The asynchronous overhead costs, Cugyn, arise from the activities of the check-
pointer. Consistent checkpointers lock and unlock each database segment at a cost of
Cie Per segment. Dirty segments are flushed to the backup at a cost of C;, per segment.
In addition, spooling checkpointers copy dirty segments before the I/O at a cost of S,,,.
The number of dirty segments per checkpoint (N (2,,)) was calculated earlier. We
omit further details here, but the complete analysis is presented in [Sale87a]

The checkpoint duration is also used to determine recovery time, the other perfor-
mance metric. Recovery time has a number of different components. The failure must
be detected, the disks must be spun-up (if power failed), the backup database and the log
must be read in off of the disks, and communications must be restored [Hagm86a]. We
will consider only the restoration of the database from the backup and the log in our
measure of response times. The other components, while possibly introducing significant

delays, are not likely to be affected by the transaction processing system.

We assume that recovery time is dominated by I/O time. In particular, we take the
recovery time to be the time necessary to read the backup database copy into main
memory, plus the time to read the appropriate portion of the log. The time to read in the
backup copy (or log) is determined by the size of the database (or log) and the bandwidth
to the backup (or log) disks. The log size is computed as #,,AB, where B is the log bulk

per transaction.
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6. Results

Figure 6a shows processor overhead and recovery time for each of the checkpoint-
ing algorithms. The data were obtained assuming that the checkpoints duration was as
short as possible (no time between checkpoints) and using the basic operation costs given

in Section five.

[ FUZZY/FLUSH ]
ACBW/FLUSH ]
ACBW/COPY E|
TCBW/FLUSH ]
TCBW/COPY

TCCOU/FLUSH I

TCCOU/COPY |
1 I I I | | I
200 100 0 0 2500 5000 7500

Recovery Time (Seconds) CPU Overhead (Instr./Trans.)

Figure 6a - Processor Overhead and Recovery Time

Several points are apparent from Figure 6a. Most obvious is the relatively high cost
of the TC black/white checkpoint algorithms compared to the corresponding COU algo-
rithms. Most of the additional cost comes from rerunning transactions that are aborted for
violating the black/white restriction. It is also apparent that spooling adds substantially
to the cost of a checkpoint (e.g., compare ACBW/FLUSH with ACBW/COPY). Of
course, spooling algorithms lock segments for shorter periods, but this is not reflected in

our overhead metric.

AC checkpointing (with logical logging) can be done almost as cheaply as FUZZY.
Though the FUZZY algorithm need not lock pages and never causes transaction aborts,
ACBW/FLUSH does not cause too many aborts and is able to take advantage of less-
costly logical logging. As we shall see shortly, this gap widens as actions become more
complex (access more segments).

Recovery times vary little. The slightly longer time for the FUZZY algorithm arises
from the greater log bulk (per transaction) of value logging. This difference would be

much greater if R,,, were larger, i.e., if activities such as secondary index modifications
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had to be logged (in a value log). (See Section 5.1.)

Although recovery times do not vary significantly with changes in the checkpoint
algorithm, they can be made to vary by controlling the checkpoint duration. In fact, for a
given checkpoint algorithm there is a tradeoff between processor overhead and recovery
time than can be controlled by varying the checkpoint duration. This tradeoff is illus-
trated in Figure 6b for two of the checkpoint algorithms, TCBW/FLUSH and
TCCOU/FLUSH.

40000 — - TcBW/COPY
CPU Overhead 30000 —« =
(intructions 3000 —
20000 —
per
2000 —
transaction) 10000 —|
1000 —
| | | |
200 400 600 800 500 1000 1500
Recovery Time (Seconds) Transaction Load (Trans/Sec)
Figure 6b - Processor Overhead/Recovery Time Tradeoff Figure 6¢ - Effect of Varying Transaction Load

The two solid curves represent the trajectory of TCBW/FLUSH and TCCOU/FLUSH
through the processor overhead/recovery time space as the checkpoint duration is varied.
The checkpoint duration is smallest at the left end of each curve and increases to the
right. Thus, by increasing the checkpoint duration, it is possible to drive processor over-

head down at the cost of increased recovery time.

The dotted lines in the figure represent the same experiment except that the
bandwidth from primary memory to the backup disks has been doubled (by adding more
disks). The dotted lines extend further to the left than their solid counterparts because the
higher bandwidth permits a lower minimum checkpoint interval. Thus, greater
bandwidth allows the designer of a memory-resident database system greater range of

processor overhead/recovery tradeoff.
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It is also interesting that the increased bandwidth is much more beneficial to
TCBW/FLUSH than to TCCOU/FLUSH. Though the black/white algorithm is more
costly in the original experiment (particularly with fast checkpoints), its performance is
indistinguishable from TCCOU at the higher bandwidth. This is because of reductions in
the number of transactions that must be rerun because of violations of the black/white
constraints. As the bandwidth increases, the checkpointer requires less time to update the
backup copy. As a result, an incoming transaction is less likely to encounter an ongoing

checkpoint and, consequently, a black/white constraint violation.

Figure 6¢ describes the effect of transaction load, A, on processor overhead for four
of the algorithms. The general trend is for decreasing per-transaction cost with increasing
load, because the cost of a checkpoint is distributed over a greater number of transactions
as the load increases. In particular, the spooling algorithms (dotted lines) are much more
expensive at low loads than their non-spooling counterparts. However, at high loads they
are more comparable. This is because at low loads the cost of spooling dirty segments
(which changes little with the load) is shouldered by fewer transactions in a lightly
loaded system.
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CPU Overhead e 4000 —
6000 — i
(intructions ’ .
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Figure 6d - Effect of Varying Segment Size Figure 6e - Effect of Varying Action Complexity

We have already seen that checkpointing overhead can be controlled by varying the
checkpoint interval. Figure 6d describes the effect of another parameter, the segment
Size (Sy), ASSUMING iz, = tipmin. (Recall that segments are the units of transfer to secon-

dary storage.)
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The variety of behavior exhibited by the different algorithms arises from a combina-
tion of two effects. First, as segments get larger, the total number of segments in the
database decreases. Thus, checkpoints can be produced with fewer per-segment over-
head charges. For example, fewer I/O’s need to be initiated since each I/O moves more

data.

Second, larger segments mean more efficient disk I/O and hence faster checkpoints.
This tends to increase per-transaction overhead since relatively fixed components of the
checkpoint overhead, such as copy costs, must be shared by fewer transactions. (Note
that it also reduces recovery time for all of the algorithms, though recovery times haven’t
been plotted here.)

Spooling algorithms (e.g., the two dotted curves in the figure) are affected most
strongly by this second effect. Their per-transaction overhead costs increase with the
segment size as a result. TCCOU/FLUSH, which does not spool but which still requires
a significant amount of data copying, is affected in the same way though not as strongly.
The performance of other non-spooling algorithms is dominated by the first effect and

their overhead costs are lower for larger segments.

Finally, Figure 6e looks at the effect of increasing R,,,, the complexity of (the
number of segments accessed by) a database action. The most strongly affected algo-
rithm is the black/white AC algorithm, whose performance suffers because more com-
plex actions are more likely to violate the two-color restriction, causing transaction roll-
back and restart. The cost of TC black/white checkpoints increases for a similar reason:
more complex actions mean more complex transactions which are more likely to violate

the two-color constraint.

In closing this section, let us consider how the availability of stable main memory to
hold the log tail affects the cost of checkpointing. A stable log tail makes it possible to
commit transactions without waiting for a log flush. This improves response time some-
what, but does not reduce the CPU overhead of checkpointing. Thus, we expect perfor-
mance results with a stable log to be essentially equal to those of Figure 6a. In terms of

transaction throughput and recovery time, a stable log tail has no advantages.

It is worthwhile pointing out that with other database backup strategies, a stable log
can help. For example, if there is a single backup database, then the fuzzy checkpointer

we described here can violate the log write-ahead rule. The problem can be avoided with
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a stable log tail or by making the checkpointer spool segments, delaying their I/O until
the appropriate log pages are on stable storage. Clearly, the stable log alternative reduces
the overhead substantially.

7. Conclusions

We have presented a performance model for an important aspect of crash recovery
in memory-resident databases. We have used the model to compare several checkpoint-
ing algorithms. Our results indicate that there may be significant differences in perfor-

mance among them.

The absolute and relative performance of checkpointing algorithms is not an intrin-
sic property of the algorithm. As we have seen, an algorithm’s performance depends on
the system and environment of which it is a part (e.g., transaction load, checkpoint inter-
val). However, it seems safe to say that fuzzy checkpointing is the most efficient,
although it does require pure physical afterimage logging. For consistent checkpoints, a
strategy like ACBW+FLUSH seems to have the least overhead. For dual backup data-

base copies, a stable log tail has minimal impact on transaction throughput.

We have considered checkpoint algorithms independently of the other components
of the transaction processing system. In [Sale87a], we explore the interactions between
the checkpointer and some of the other components, namely logging and storage
management of both primary and secondary storage. In some cases, more expensive
checkpointing algorithms may actually prove to be beneficial because they can be used in

conjunction with less costly logging or storage management techniques.

We are currently implementing a testbed with which we will be able to experimen-
tally evaluate the algorithms presented here, as well as other aspects of crash recovery in
memory-resident databases. We hope to able to measure synchronization and other

delays using the testbed, as well as to verify the processor overhead and recovery time
models used here.
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