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1. Introduction.

The Fibonacci heap data structure of Fredman and Tarjan allows an optimal implementation
of Dijkstra’s shortest path algorithm [FT]. It is central to the best-known algorithm for minimum
spanning trees [GGST] and many other algorithms. These applications are based on the fact that,
with a Fibonacci heap, a sequence of m decrease_key and n delete_min operations takes time
O(m + nlogn). Equivalently, Fibonacci heaps achieve an amortized time of O(1) for decresse_key
and O(logn) for delete_min. This paper presents a new data structure called the relaxed heap.
One implementation of relaxed heaps achieves the same amortized bounds as Fibonacci heaps,
but maintains greater structure. It is hoped that this structure will make relaxed heaps faster in
practice. A second implementation of relaxed heaps gives a theoretical improvement over Fibonacci
heaps: it achieves the above time bounds for decrease_key and delete_min in the worst case, rather
than in the amortized case.

Relaxed heape are based on a more structured family of trees than Fibonacci heaps, namely the
binomial trees. The height of a binomial tree of n nodes is a factor log, ¢ = .69+ times the height
of a Fibonacci tree. This improves the constant in asymptotic estimates. Whether these savings
are actually realized in practice is a matter for experimental verification, which we have not done.
(Brown [B] shows that the closely related binomial queues are efficient in practice). Relaxed heaps
give a large family of alternatives to Fibonacci heaps. These alternatives provide both theoretical
insight and possibly the flexibility needed for efficient practical implementation.

This section closes by reviewing terminology and motivating relaxed heaps. Section 2 presents
the rank relaxed heap, which achieves the same amortized time bounds as Fibonacci heaps. Section
3 presents the run relaxed heap, which makes the time bounds worst-case.

In this paper log n denotes logarithm to the base two. A priority queue is a data structure for
storing a set of stems z, each having a numerical key denoted k(z). The main operations are

make_heap— initializes a heap to store the empty set;

insert(z)— make z a new item in the heap;

decrease_key(z, v)— decreases key k(z) to a smaller value v;

delete_min(z)— deletes an item of minimum key from the queue and returns it as z.

Other operations will be introduced as needed.

Binomial queues were introduced by Vuillemin [V]. The binomsal trees B, are defined recur-
sively as follows: By is one node; B, consists of two B, trees, the root of one being a child of the
root of the other. See Figure 1(a). In all figures, a triangle labeled r represents the binomial tree



B,. Figure 1(b) shows an equivalent description of B.y: For any k, 0 < k < r, Br4y consists of
a By tree with additional children of the root that are themselves roots of B, Bi41,..., By trees.
For any node z in a binomial tree, rank(z) is the index r of the maximal subtree B, rooted at z.
A binomial tree is an ordered tree, with the children of a node ordered by increasing rank. The
last child of a node is the child of highest rank. Clearly B, has 2" nodes.

In a heap-ordered iree, each node stores one item and any node ¢ with parent p has k(p) < k(c).
Node c is a good child if this inequality holds; otherwise it is bad. A binomial queue for 27 items is
a ered tree B,. A binomial queue for n items, n arbitrary, consists of at most |logn] + 1
heap-ordered binomial trees, a tree corresponding to each one bit in the binary expansion of n. The
link operation for binomial queues takes two root nodes of equal rank r and creates a heap-ordered
tree B,y by making the node with larger key a child of the smaller.

It seems difficult to process decrease_key in O(1) time and maintain heap order. Relaxed heaps
avoid this difficulty by violating heap order (whence the name), in a limited sense. The rank relaxed
heaps of Section 2 allow just one bad child per rank. The run relaxed heaps of Section 3 are more
permissive and allow runs of bad children.

2. Rank Relaxed Heaps.

A relazed tree is a tree where each node stores one item, nodes can be good or bad, but some
nodes are distinguished as active and any bad node is active. The terms relaxed binomial tree and
relaxed binomial queue are interpreted according to this definition. A rank relazed heap is a relaxed
binomial queue that satisfies two conditions:

(a) For any r there is at most one active node of rank r.

(8) Any active node is a last child.

Condition (a) implies there are at most |logn| active nodes. Condition (b) is not crucial, but
rather it determines various programming details; we return to this point below. In the rest of this
section relaxed heap means rank relaxed heap.

The decrease_key algorithm works by rearranging nodes to keep the heap relaxed. It does
this with three transformations. More precisely decrease_key(z,v) resets k(z), after which it may
stop or execute a transformation; a transformation does O(1) work, after which it may stop or
execute another transformation. This gives rise to a sequence of tranformations. To achieve the
time bound, let a denote the number of active nodes at any point in the algorithm. If resetting k(z)
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in decrease_key makes z bad, z is designated active. This increases o by one. Each transformation
either

(¢) decreases a, or

(#5) does not change o and does not execute another transformation.

Observe that (s) - (1) imply any sequence of m decrease_keys uses time O(m): There are at
most m type (s3) transformations (each is last in its sequence) and there are at most m type (3)
transformations (only decreasekey increases a; assume there are no active nodes initially). This
argument will not be affected by delete.min operations (see the proof of Theorem 2.1 below).

Now we describe the transformations informally. They are illustrated in Figures 2-5. In these
figures an edge joining a child ¢ to its parent p is labeled in one of four ways: An arrow from ¢
to p indicates that ¢ is good; a croes mark on the edge indicates c is active (and so can be good
or bad); no mark indicates the status of ¢ is unknown; an arrow pointing to the edge indicates ¢
may be a new active node. The transformations use an operation “make node z the rank r child
of node y*. This means that the entire B, tree rooted at z becomes the B, subtree of y. For each
transformation, assume decrease_key (or a transformation) has created an active node a of rank r
with parent p and grandparent g (a is actually a bad node, although this fact is not used).

The main idea is embodied in the pasr transformation (Figure 2). It applies when a is the
last child of p, and further, the relaxed heap already contains an active node a’ of rank r, with
parent p’ and grandparent ¢’. The transform removes the active nodes from their parents, so nodes
a, a’, p, ¢ all have rank r. Without loss of generality assume k(p) < k(p’). The transform makes
¢’ the rank r child of p (hence p remains a rank r + 1 node). Then it links ¢ and a’ to form a By
tree with root ¢ (so ¢ is @ or a’). It makes ¢ the rank r + 1 child of ¢'. If ¢ is now a bad child it is
active, and a transformation is done for it.

The last detail concerns linking a and ¢’. In general as in Figure 3 suppose nodes ¢ and ¢’ of
rank s + 1 have just been linked, making ¢ the new root. If z, the rank s child of g, is active, it
now violates condition (b) of the relaxed heap structure. Figure 3 fixes this up by doing a cleaning
operation. It uses the fact that z’, the rank s child of ¢, is good if z is active. This follows from the
definition of a relaxed heap. (Care should be taken here, since the transformations are applied to
heaps where the relaxed heap structure has been violated; however we will use the clean operation
only when this deduction is valid). The operation repairs the damage by interchanging z and z’. In
what follows, to clean node ¢ means to apply the operation of Figure 3 if z is active; otherwise do
nothing. To combine two nodes means to link them and then clean the new root. Thus, in Figure

2, the pair transformation combines a and a'.



The pasr transformation achieves property (5) , since two initially active nodes are replaced
by at most one. Also note that the reason this transformation is used only when a and a’ are last
children is to achieve the O(1) time bound: If 6’ has rank r but is not the last child, its siblings
must not be transferred with p/. Assuming a reasonable data structure (e.g., a parent pointer for
each node) this can consume more than constant time. Note that this objection does not apply if
a is a last child but a is not. This is the case in the good sibling transformation described below,
which does a pair transform of this kind.

The remaining transformations are °sibling transformations®. For these assume that o has
next larger sibling s. The active ssbling transformation applies when s is active (Figure 4). The
definition of a relaxed heap implies that s is a last child, so p has rank r+2. The transform removes
the two active children from their parent p. It combines p and a, making a a rank r+1 node. Then
it combines a and # into a tree whose root ¢ becomes the rank r + 2 child of g. If ¢ is now bad, a
transformation is done for it. The active sibling transformation achieves property (i) , since again
two active nodes are replaced by at most one.

The good sibling transformation applies when s is good. Let ¢ be the last child of s; ¢ has rank
r. There are two cases. If ¢ is active the algorithm does a pair transform for a and ¢ (Figure 5). As
noted above, the transformation works correctly even though a is not a last child; the only delicate
point is to make sure that if k(p) = k(s) the algorithm makes s the child of p, not vice versa. This
case achieves property (i) , as above. The second case occurs if ¢ a good child. Then the cleaning
operation of Figure 3 is applicable. The transform cleans p, making a a bad last child of s. It then
processes ¢ as a new active last child. If there is an active node of rank r a pasr transform achieves
property (i) ; otherwise the sequence of transformations stops, achieving (i1) .

Now we describe delete.min. Note that in most applications (e.g., all those in [FT, GGST])
it is unnecessary to reclaim the storage used by a deleted node. We give two implementations of
delete_min, the simpler of which does not reclaim storage. Both implementations start by finding
the smallest node z. Since z is either active or the root of a tree in the queue, it can be found in
O(log n) time.

The nonreclaiming algorithm sets k(z) to co and changes rank(z) from r to 0. Then it merges
z and its former children into a new rank r node, by repeatedly combsning the two nodes of smallest
previous rank. The new rank r node replaces z in the tree. Note that z becomes a leaf and will
not participate in any future transformation.

The reclaiming algorithm is similar. It deletes z and removes the root node of smallest rank y
from its tree; this makes the previous children of y into roots with the smallest ranks in the queue.
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Then it processes y (not z) and the former children of z as in the nonreclaiming algorithm.

Figure 6 gives a more detailed description of the algorithm in pseudo-Algol. The delete_min
implementation uses the reclaiming algorithm. The following data structure is assumed. Each
node z has a record containing k(z), rank(z), and pointers to its last child, its two neighboring
siblings, and its parent. (A sibling pointer is needed in the sibling transformations, go pointers to
both siblings are needed to allow nodes to be moved; a last child pointer is needed in the good
sibling transformation). There is a dummy node treated as the root of the entire queue, so the
roots of binomial trees are treated as siblings and are not special cases. In addition there is an
array A[0..|log 1] — 1]; each A(r) is a pointer to the bad last child of rank r, if it exists. The A
array is used to check if a node is active, e.g., promote tests if s is active by checking the condition
A(r + 1) = 5. It should be clear that this data structure supports the desired operations and can
be maintained in time O(1) per transformation.

Note that the data structure can be initialized in O(n) time (assuming, as is often the case, that
the number of items n is known in advance). One way is to construct a binomial queue on n items,
with each key equal to co. The operation insert(z) is done by executing decrease_key(z, k(z)).

Theorem 2.1. Rank relaxed heaps correctly process a sequence of m decreasekey and k < n
delete_min operations in time O(m + klogn).

Proof. It is easy to check that the algorithm maintains this invariant: At the start of each call
to promote, making the edge between ¢ and its parent good gives a valid relaxed heap structure.
This implies correctness. (Note that an active node can be good or bad: An entry in the A array
starts out as a bad child; it may become good without being processed in a transformation, if the
key of its parent is sufficiently decreased).

For the timing, observe that the decrease_key routine uses O(1) time and the delete_min routine
uzes Ologn) time. The time for transformations is bounded as above (delete.min decreases o by
one or zero, and so only improves bound). §

The transformations in this section were selected for economy of description. Probably different
ones would be more efficient in practice. For instance, in the combine routine, a more productive
way to clean the tree of the new root is to repeatedly make an active bad child of the root into
the new root, until the root has no active child. This approach has the advantage of decreasing
the mumber of active nodes. Alternatively, cleaning can be eliminated entirely by dropping the
requirement that an active node in a relaxed heap be last. Instead, the active sibling transfomation
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is extended to process a string of consecutive active siblings; the processing is similar to delete_min.
Such transformations might work better if the processing of a decrease_key operation is delayed
until the next delete_min (in the hope of getting longer strings of active nodes).

A drawback in practice is the large number of pointers per node. The sibling and last child
pointers are redundant, and increase both time and space. These three pointers per node can be
replaced as follows. Each node z has a child table, i.e., an array of pointers to its children, indexed
by rank. The siblings of a node can be read from the child table of its parent in O(1) time.

The disadvantage of child tables is that a rank r node needs a table of r entries, and r can
be |logn]. Hence a uniform node size increases the space requirement to ©(nlogn). However
a two-tiered data structure can reduce the space to linear— in fact to (1 + ¢)n words, for any
¢ > 0. Further, the disadvantage of a nonuniform data structure seems to be compensated by the
simplicity of the second tier. Details are as follows.

Form n/logn groups of log n items (the last group may have fewer items). The grouping can
be arbitrary. For instance if the items are numbered from 1 to n and accessed by number (as can be
arranged in many applications) the groups are consecutively numbered items; no extra storage is
needed for the group strﬁcture. Each group is represented by a node g in a relaxed heap of n/logn
nodes; the key of g is the smallest key of an item z in the group corresponding to g; g stores a pointer
to z (30 k(g) need not be stored); the relaxed heap uses child tables. To do decrease_key(z,v) the
algorithm updates the key of the group corresponding to z; if it decreases, the group is promoted in
the relaxed heap. To do delete.min(z), the group corresponding to z is scanned for the undeleted
item y with smallest key; a pointer to y replaces the pointer to z in the relaxed heap node, and the
algorithm follows the delete_min algorithm without reclamation. Clearly the storage is O(n); if the
relaxed heap uses w words per node, choosing a group size of w/e gives en storage for the relaxed
heap. The time bound is unchanged if w = O(logn).

Child tables may be used with Fibonacci heaps but are not as effective. In Fibonacci heaps
an arbitrary child of a node may be deleted without replacement. This causes arbitrary deletions
of entries in the child tables. This forces the algorithm to keep track of the free entries in a child
table, by a free storage list. This overhead is not present in relaxed heaps, where only a highest
rank entry gets deleted without replacement.

The algorithm given so far can be used instead of Fibonacci heaps in two important appli-
cations, Dijkstra’s shortest path algorithm and the computation of minimum spanning trees. It
is easy to extend the algorithm to support all the operations supported by Fibonacci heaps. To
delete an arbitrary node, decrease its key to —co and then do a delete_min. The amortized time
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is O(logn). A node can be inserted in O(1) amortized time. This is done by the technique given
above for initializing the heap, if n is known in advance. Alternatively, the algorithm makes the
inserted node into a By tree, and then repeatedly links B, trees of equal rank until this is no longer
possible. The amortized time for an insert is O(1), since in a sequence of 1 inserts and d deletes
the number of times B, trees are linked by inserts is at most i + dlog n.

To merge two relaxed heaps, repeatedly link B, trees of equal rank, until this is no longer
possible. Use the A array of the first heap as the A array of the merged heap, but before discarding
the A array of the second heap, promote each node in it. (Doing the promotions in order of decreas-
ing rank ensures correctness: In a sequence of transformations rank(b) is nondecreasing. Thus the
transformations only work on portions of the heap that have valid relaxed heap structure). This
algorithm achieves O(log n) amortized time for merging. This can be reduced to O(1) amortized
time (although such a reduction would probably not change the asymptotic running time for an
applications program). The idea is to keep a list of all nonnull entries in each A array, and further,
to delay linking B, trees and processing A arrays until a delete_msn operation occurs.

3. Run Relaxed Heaps.

Consider a relaxed binomial queue (defined as in Section 2). A runis a maximal sequence of
two or more active siblings. A singleton is an active node that is not in a run. Rank relaxed heaps
clearly do not have runs, but the heaps of this section do.

A run relazed heap is a relaxed binomial queue with at most |logn] active nodes, ie., a <
[logn] (recall that « is the number of active nodes). This definition allows decreasekey to be
implemented in O(1) time. The ides is that if a decrease_key makes a > |logn| then there are
two active nodes a, o’ with equal rank. Hence a pair transformation can decrease o in O(1)
time. Unfortunately if a or ¢’ is not a last child, the pasr transformation does not apply. A new
transformation for runs can be used to handle this situation. The details are as follows. In the rest
of this section relaxed heap refers to run relaxed heap, unless stated otherwise.

The algorithm keeps track of the run- and singleton- structure of the active nodes, which
we refer to as the run-singleton structure. The run-singleton structure can change as a result
of a transformation creating a new bad node or rearranging nodes. The bookkeeping details for
the run-singleton structure are relatively straightforward and will be postponed until after the
transformations.



There are two transformations, for runs and for pairs. In this section a transformation does
O(1) work and decreases o, and then stops. Unlike Section 2, there are no sequences of tranfor-
mations. Instead if a transformation creates a new bad node b, b is added to the run-singleton
structure. Transformations do the rearrangements of Figures 2-5, but these figures are interpreted
with one difference: Nodes are linked rather than combsned. There is no need to combine nodes
since the new definition of relaxed heap does not require a cleaning operation. Now we give the
details of the transformations.

The pasr transformation is a combination of transformations of Section 2. It is given two
singletons g, ¢’ of equal rank r. We use the same notation as Section 2— a and a’ have parents p
and p’ and grandparents g and ¢, respectively. There are three cases. The first is when ¢ and o' are
both last children. Then Figure 2 applies: Without loss of generality k(p) < k(p’). The transform
makes p’ the rank r child of p, and links a and 4’ to form a B,4; tree, whose root becomes the
rank r + 1 child of ¢’. This case of the pair transformation operates as desired: it does O(1) work
and decreases . Note this transformation is still correct if a or a is in a run. The only difference
is how the transform affects the run-singleton structure: When ¢ and a’ are singletons the only
change is a possible new run or singleton if the new child of ¢’ is bad. When a or o’ starts out in a
run that run also changes. The second case of the pair transform uses this first case, with ¢ or o’
possibly in a run.

The second case of the pair transform is when exactly one of & and o', say a, is not a last
child. Thus a has a rank r + 1 sibling s; since a is a singleton, s is good. Let ¢ be the last child of
s. If ¢ is bad Figure 5 applies: a first-case pair transform is done for a and ¢ (note ¢ may be in a
run). If ¢ is good Figure 3 applies: a cleaning operation makes a a last child. Now a first-case pair
transform applies to a and o’ (although & may enter a run in the cleaning operation, it leaves the
run in the pair transform).

The last case of the pair transform, when neither @ nor o' is last, is similar: The algorithm
processes a as above; if Figure 5 applies and a first-case pair transform is done (so o decreases) it
stops. Otherwise it processes a' similarly. If o still has not decreased, a first-case pair transform is
done for a and d'.

The second transformation is a run transformation. Let a be the largest rank child of the given
run. Let a have rank r, parent p, and rank r — 1 sibling t; ¢ must be active. The first case is if a is
a last child. Then Figure 4 applies: ¢ and p are linked, and then ¢ and a are linked. This decreases
a as desired. (The only possible change in the run-singleton structure involves the new child of g).

The last case is when a is not lsst. Then a has a rank r + 1 sibling a, which must be good (see
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Figure 7). Let d and ¢ be the rank r — 1 and rank r children of s, respectively. Children ¢, b, s, d
and ¢ are removed from their parents. Nodes d and ¢ are made the rank r — 1 and rank r children
of p, respectively. Since s was good, this does not increase a. Then ¢ and & are linked to form a
B, tree with root ¢; next ¢ and a are linked, and the new root is made the rank r + 1 child of p.
The result is that o decreases by one, so this transformation operates as desired. (The possible
changes in the run-singleton structure involve the new children of p of ranks r — 1 through r + 1,
and the remainder of a possible run initially containing d). This completes the description of the
run transformation.

Now we give the details of the run-singleton data structure. A bit is used to mark each active
node. Each rank r has a list S(r) of all rank r singletons. The pasr list is a list of ranks r with
|S(r)] 2 2. The run liet is a list of all active nodes that have the largest rank in a run. All lists are
double-linked, and each node points to its occurrence in a list (if any). In addition, the nodes of
the binomial trees have the same pointers as in Section 2.

The following procedure updates the run-singleton data structure when a node a becomes
active. Let a have rank r, with rank r + 1 sibling s and rank r — 1 sibling ¢ (# or ¢ may not exist).
Node a is marked active. Then the appropriate one of these three cases is executed:

(1) If neither s nor ¢ is active then a is a singleton. It is added to list S(r). If now [S(r)| = 2,
r is added to the pair list.

(2) If s is active then a is in a run. If s was previously a singleton it is removed from § (r+1)
and added to the run list. If this makes |S(r + 1)] = 1 then r + 1 is removed from the pair list.

(3) If s is not active but ¢ is, then ¢ is in a run. a is added to the run list. ¢ is removed from
the run list or S(r — 1); if in the latter case this makes |S(r — 1)| = 1 then r — 1 is removed from
the pair list.

This concludes the update algorithm.

To do decrease_key(z,v), k(z) is changed to v. If this makes z bad it is inserted into the
run-singleton structure, using the above update algorithm. The rest of the processing ensures
a < |logn): If the pair list is nonempty, a rank r is removed from it; a pair transformation is done
for the first two elements on S(r) (any necessary changes to the run-singleton structure are made);
if we still have |S(r)] 2 2, r is added to the pair list. Similarly, if the run list is nonempty a node
a is removed from it; a run transformation is done for the run ending at a (any necessary changes
to the run-singleton structure are made); if nodes are still left in the run previously containing a,
the largest node is added to the run list or a singleton list, as appropriate.
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The time for decrease key(z,v) is clearly O(1). Correctness follows from the fact that if z
becomes active and makes a > |logn] then two active nodes have the same rank. Hence the pair
list or run list is nonempty, so a transformation decreases a to a permissible value.

The delete_min routine is similar to Section 2. First the smallest node z is found. This involves
examining all tree roots and all active nodes. Singletons are found using the S lists; runs are found
by getting the largest node from the run list and following sibling pointers in the tree. Then z is
replaced by a node resulting from linking all of its former children. Various nodes that become
good are removed from the run-singleton structure. (The procedure for removing nodes from the
structure is similar to the above update routine). The definition of relaxed heap ensures that the
total time is O(logn).

The data structure can be extended to handle the operation snsert(z) in O(1) time. The
approach is similar to decrease key. Let 7 denote the number of trees in any collection of trees.
A run relaxed heap is now defined as a collection of relaxed binomial trees with a < |logn| and
7 < |log n) +1 (note « refers to the number of active nodes in the entire collection). The algorithm
keeps a pointer T'(r) to a binomial tree of rank r, for each r; the remaining trees are kept in the
tree list, a list of pairs of trees of the same rank.

The subroutine add_tree(z) puts a new binomial tree with root z into the structure: Letting
r = rank(z), if T(r) = nil then z becomes T'(r); otherwise 2 and T(r) are made into a pair which
is added to the tree list and T'(r) becomes nil. The operation insert(z) makes z into a By tree
and does add_tree(z). Then it decreases the mumber of trees, if possible: It removes the first pair
from the tree list, links the two trees to form a tree with root y, and does add_tree(y). The time
for inseri(z) is clearly O(1).

Correctness follows from the fact that if in nsert(z), addtree(z) makes r > |logn] + 1 then
the tree list is nonempty. Hence the second step of insert decreases 7 to a permissible value.

The new data structures have no effect on decrease_key, since the transformations and the run-
singleton data structure are independent of the arrangement of the trees. The reclaiming version
of delete_min creates new trees; it is modified to repeatedly link trees of equal rank, so the tree list
becomes empty. This does not change the time bound since O(log n) trees are involved.

Theorem 3.1. Run relaxed heaps correctly process decrease_key and snsert in O(1) time and
delete_min in O(log ) time. @

Many details of the run relaxed heap algorithms can be modified without changing the above
bounds. For instance the pair transform can be simplified if it is only done when there are no runs.
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Figure Captions.

Figure 1. Recursive definition of binomial tree B,4;.
Figure 2. Pair transformation.

Figure 3. Cleaning.

Figure 4. Active sibling transformation.

Figure 5. Good sibling transformation: ¢ active.
Figure 6. Rank relaxed heap algorithm.

Figure 7. Run transformation.
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procedure decrease _key(z,v);
begin k(z) +— v; promote(z) end ;

procedure promote(a);
begin
let @ have rank r, parent p, next larger sibling & and grandparent g;
{these variables are global for the transformations }
if k(a) < k(p) then
If o is the last child of p then begin
if A(r) = nil then A(r) « a else If A(r) # a then pasr_transform end
else if s is active then active_sibling_transform else good_sibling_transform

end ;

procedure combine(ay, a2, c);
begin {a; and a2 have equal rank & }
link ay and a3 to a rank k + 1 tree with root ¢ ; clean c;

end ;

procedure pair_transform;

begin

a¢' + A(r); A(r) — nil; let o’ have parent p’ and grandparent ¢’;
remove ¢ and o’ from their parents {a, o', p, p’ now have rank r } ;
wlog k(p) < k(p');

make p the rank r child of p;

combsne(a, da’, c); make ¢ the rank r + 1 child of ¢;

if A(r + 1) = ¢’ then A(r + 1) « c else promote(c);

end ;

procedure active_sibling_tranaform;

begin

remove a, 8, p from their parents {a and p now have rank r, and s has rank r+1} ; A(r+1) ~ nsl;
combine(p, s, a);

combine(a, s, c); make c the rank r + 2 child of g;

# A(r + 2) = p then A(r +2) «~ c else promote(c);
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end ;

procedure good_ssbling_transform;

begin

let ¢ be the last child of s;

if ¢ is active then pasr_transform

else begin clean p; {now c is good, a is a bad last child } ; promote(a) end end ;

procedure delete_min(z);
begin
z +~ the node of smallest key from among the root nodes of the queue and the A(r) values;
y « the root node of smallest rank;
remove y from its tree, creating rank(y) new roots with the smallest ranks in the queue;
if z # y then
begin
for each child ¢ of z in order of increasing rank do combine(y,c,y);
delete z from its tree and replace it by y;
let p be the parent of y;
Al(rank(y)) — if k(y) < k(p) then y else ni;
end end ;

Figure 6. Rank relaxed heap algorithm.
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