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Abstract

Computational geometry as a field deals with the algorithmic aspects of all
geometric problems. But the majority of the results obtained heretofore have
been focused on objects defined with straight lines and flat faces, in part
because a computational geometry of curved objects seemed significantly more
complex. The major result of this dissertation is to show that curved objects

can indeed be processed efficiently.

We extend the results of straight-edged computational geometry into the
curved world by defining a pair of new geometric objects, the splinegon and the
splinehedron, as curved generalizations of the polygon and polyhedron. We
identify three distinet techniques for extending polygon algorithms to spline-
gons: the carrier polygon approach, the bounding polygon approach, and the
direct approach. By these methods, large groups of algorithms for polygons can
be extended as a class to encompass these new objects. In general, if the origi-
nal polygon algorithm has time complexity O(f(n)), the comparable splinegon
algorithm has time complexity at worst O(KJf(n)) where K represents a con-
stant number of calls to a series of primitive procedures on individual curved
edges. These techniques apply also to splinehedra. In addition to presenting
the general methods, we state and prove a series of specific theorems. Problem
areas include convex hull computation, diameter computation, intersection
detection and computation, kernel computation, monotonicity testing, and

monotone decomposition, among others.
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Introduction

1.1. The Need for Algorithms on Cur

inear Objects

Computational geome

as a lield focuses on the algorithmic aspects of
geometric problems. Thus the span of the field should include algorithms for all
objects definable in any geometry. Despite the breadth of the field as it has
been defined, the majority of the results obtained heretofore have been res-
tricted to a small class of geometric objects: points, lines, line segments,
polygons, planes, and polyhedra. This narrowness of focus stems in part from
the beliel that a ecomputational geometry of curved objects would be
significantly more complex. The major result of this dissertation is to show that

curved objects can indeed be processed efficiently.

In the early stages of computational geometry, work on problems involving
two and three-dimensional objects focused primarily on convex objects defined
with straight lines. The discrepancy between the results provided by the
researchers in computational geometry and the problems faced by its practition-
ers prompted the development of decomposition algorithms. Decomposition
algorithms provide eflicient methods for splitting arbitrary polygons into shapes
which are better understood and thus are more easily handled, such as convex,
monotone, or triangular pieces. Although it would be preferable for algorithms
to process diverse objects directly, the combination of decomposition algorithms

with the extensive results on the restricted class of objects has produced a

- Iutroduetion

sophisticated algoritl wwork for the ¢ [
polygons.

As com ional geom matures, it is necessary Lo broaden the locus
further, ce despite this extensive body of algorithms and algoritl tech-
niques for objects defined on straight edges, lew of its results apply directly Lo

problems of the real world. Graphics implementors, roboties researchers, VLSI
designers and pattern recognition researchers all work with objects that are nei-

ther convex nor flat. For example, solid mode

systems build objects by
patching together surface patches that are defined via bicubic splines or qua-
dratic splines [Re]. Motion planning problems that need to be solved for the
advancement of robotics typically involve motion of curved objects through bar-
riers having curved shapes [HK]. In addition, modern font design systems rely
upon conic and cubic spline curves [Pa,Pr,{n|. Both Smith and Forrest spoke
fervently at the recent Computational Geometry Symposium of the need for
eflicient algorithms for processing curved objects directly [Sm, Fo].

Little progress has been made in this area. With the exception of a few
algorithms for regular curved objects such as circles and spheres, only recently
have algorithms begun to appear that treat curved objects directly [SV,
HMRT]. Instead, the way to tackle arbitrary real objects has been to approxi-
mate them first as polygons or polyhedra of a sufficient number of vertices for
the particular application. This process is generally quite unsatisfactory [Sm,
Fol.

In this dissertation, we take a significant step towards remedying this
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sults are aoset of recipes Lhat can be used o determine it
convex world can apply in the carvilinear world and il so

ing the result. We supplement this with

rous applica ¢, s new

are developed for le Lo state 1 for

ralght objects, it will off

curved objects with no extra macl

ions will aid both pro-

ducers and consumers ol geometric algorithms.

1.2. Organization of the Dissertation

In the dissertation, we develop a computational geometry for processing
curvilinear objects cleanly and eficiently. In Chapter 2, we begin by defining a
new geometric object, which we call a splinegon. In defining the splinegon, we
aim to retain the accuracy of a continuous description of an object and to
encompass as many different shapes as possible. At the same time, the spline-
gon must capture enough discrete properties so that the techniques used in
polygon algorithms can be applied to splinegons as well. In addition, the strue-

ture of the splinegon must allow analysis of algorithm performance to be clean.

Our definition allows almost every closed curve to be formulated as a
splinegon, and the splinegon is amenable to a variety of computational tech-
niques. Throughout the dissertation, we demonstrate that large groups of algo-
rithms for polygons can be extended as a class to encompass these new objects.
In general, if the original polygon algorithm has time complexity O(/f(n)), the
comparable splinegon algorithm has time complexity at worst O(K[f(n)) where

K represents a constant number of calls to a series of primitive procedures on

- - lntroducti

individual curved edges,

ting groups ol algorithms lor

We ide

fy three general met

linear objects to algorit

wegons, In Chapter 3, we present the car

n s a polygon all of whose «

ygon roneli,

v poly

chords of the splinegon,

ormation

about the behavior of the splinegon that the number of direet computations on

the curved edges themselves ean be reduced. Algorithms ean focus on the ear-
rier polygon, computing specific information about the behavior of the splinegon
only when necessary. Algorithms extended by the carrier polygon approach
include line-convex polygon intersection computation, convex polygon-polygon

intersection detection, point inclusion testing, and area computation.

In Chapter 4, we present the bounding polygon approach. The bounding
polygon is a polygon each of whose edges is tangent to an edge of the splinegon.
The bounding polygon approximates the contour of a splinegon better than does
the carrier polygon. Algorithms extended by the bounding polygon approach
include eonvex polygon diameter computation, monotonicity testing, kernel com-

putation, and computation of the convex hull of a simple polygon.

Chapter 5 covers the direct approach. Often edge-based algorithms can be
translated to splinegons merely by updating the mmm:_:vzozm‘mvoﬁ possible
behavior of edges. Algorithms extended by this approach, either by the author
or by others, include convex polygon-polygon intersection computation, horizon-
tal visibility computation, simplicity testing, monotone decomposition, and com-

putation of the convex hull of a simple polygon.
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s, provided

can he

m_._:_ convex n_ﬁﬁau:

ition may require a linear number of new vertices. Thus

the number of triangles or convex pieces may prevent the ellicient extension of

polygon algorithms dependent on these decompositions. The extent to which

monotone decomposition or other stratagems may compensate in algorithm

development for awkward convex decomposition and triangulation remains

unclear.

Three-dimensional curved geometric objects, named splinehedra, are defined
and described in Chapter 7. It is interesting to note that while the splinegon
emerged as the natural generalization of the polygon, there are two natural gen-
eralizations of the polyhedron which could be chosen as the definition of a
splinehedron. We describe both and discuss the advantages and limitations of

each.

Chapter 8 reviews the contributions of this work and deseribes the many

directions in which extensions are possible.

o ff

Chapter 2

The Splinegon and its Properties

2.1. Introduction

The extension of algorithims designed Tor the world of straight-edged
objects into the world of curved objects requires the definition of a new abstract

object which can mediate between these two worlds. We call this new object a

splinegon. rst, we give a formal de ion of the objeet as a curved extension
of a straight-edged polygon. The formal definition, however, is of limited use-
fulness. In practice, we do not need to create new curved objecls [rom
polygons. Instead, we are given a curved object and need to process it. Thus,
in the following section, we describe the process of structuring an arbitrary
curved object as a splinegon, choosing vertices which relate the splinegon to an

inferred polygon. We also isolate the few curved objects which cannot be formu-

lated as splinegons.

As we show in subsequent chapters, algorithms for polygons can be
extended to algorithms for splinegons with the same asymptotic time complexity
except for the increased complexity of the primitive procedures. Primitive pro-
cedures on splinegons are more complicated than primitive procedures on
polygons. Determining the intersection of two line segments, for example, is a

well understood, and often implemented, process requiring constant time.! The

1 As Forrest _m.n; and others remind us, however, in a world where round-off error exists,
even line segment intersection is not a solved problem. We ignore such questions here.
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2.2, Formal Definitions

A splinegon S can be [ormed from a polygon P on n verlices, vy, va,..

by replacing each

e segm

and v;4; and which satisfies the following condition: the region S-seg; bounded
by the curve e; and the line segment 70,4, must be convex.? The new edge
need not be smooth; a suflicient condition is that the there exists a left-hand
and a right-hand derivative at each point p on the splinegon. If S-seg;CS, then

we say that the edge e; is concave-in. Otherwise, we say that the edge e; is

concave-out. The polygon P is called the carrier polygon of the splinegon S.

Splinegons can be categorized much as polygons are. If the only edge inter-
sections are those between two adjacent edges at their common vertex, then the
splinegon is said to be simple. If other edge intersections exist, then the spline-
gon is called non-simple. A splinegon may be classified as a monotone splinegon
in some distinguished direction 7 if it satisfies the following criterion: let m
(resp. M) represent the point on the splinegon having the smallest (resp. largest)
component in the 2 direction; the points m and M split the splinegon into two
monotone chains such that in traversing either chain from m to M the Z com-

ponent strictly increases. A starshaped splinegon contains at least one point w

2 Subscripts are always interpreted modulo n.
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interior so that each

n o Lo a poinl on the b

the splinegon lies w the splinegon, collection of all sueh points w is

called the kernel of the

inegon. The earrier polygons for splinegons in Lhese

four categories may or may not be simple (see IMg. 1).

FIGURE 1. a) A simple splinegon with a simple carrier polygen; b) A non-simple
splinegon; ¢) A monotone splinegon in the z-direction with a non-simple carrier po-
lygon; d) A starshaped splinegon and its kernel.

A convex splinegon S has a convex carrier polygon P and encloses a convex
region. We define a friangle to be a simple splinegon of three vertices. Since we

have made no restriction that edges of splinegons be smooth, any arbitrary con-

vex polygon of n vertices may be considered a splinegonal triangle. Although in
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S b) )

FIGURE 2. a) A convex splinegon; b) A convex triangle; ¢) A non-convex triangle.

2.3. Restructuring Closed Planar Curves m.m Splinegons

We have defined the process of creating a splinegon from an arbitrary
polygon. Before describing the reverse process, we must decide which closed
curves can be considered splinegons and which cannot. The following three seg-
ments define a closed curve which bounds a simple region, but the curve cannot
be considered a splinegon (see Fig. 3a):

y =z sin(1/z) for x € (0, 2/7);
y=2/mfor x € (0, 2/7];
z=0{ory €[0, 2/7.

The first segment has an infinite number of inflection points, all lying on the -
axis. Each of them would have to be added as a vertex of the carrier polygon

in order to satisfy the convexity eriterion. To be a splinegon a curve must have

s PProperties

te nwinber of

inflection p those points which separate a coneave-in

seetion of curve from a conecave-oul seetion and those points at which two
coneave-in (resp. concave-out) sections form an interior (resp. exterior) reflex

angle.

a)

FIGURE 3. Closed curves which are not splinegons.

The following four segments also define a closed curve which bounds a sim-
ple region, but again the curve cannot be considered a splinegon (see Fig. 3b):
r=1 [ 8for 8 € [2m,+0c0);
r=1 [ (0+x) for 0 € [27,+o0);
§=0for r € [1/3m, 1/27);
(r,6) = (0,0).

Both the first and second segments wind around each other an infinite number
of times. Despite the fact that the curve has only two inflection points, the
infinite winding prevents any finite collection of vertices from decomposing the
curve into a collection of nE..<aa segments which, together with the line seg-

ments joining their endpoints, bound convex regions.
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nar curves defin

We can now categorize the sel ol |

le as splinegons:

Lemma. Auy closed | rocurve N ¢

that the lollowing two e are sn

inllection points; and any 1 ab most a linite iber

of points or line segments.

Proof. To determine a carrier polygon for a curve S, we begin by creating a
candidate carrier polygon [ trace about the curve in counter-clockwise order,
inserting all inflection points as vertices. We now describe two methods for
choosing additional vertices for the carrier polygon within each e;. In both
[

cases, let N,l_.. (resp. ) represent the line tangent to e; ab v; (resp. viyy ).

The first method requires less computation, but adds a greater number of
vertices. Trace S in counter-clockwise order, moving from vertex to vertex. At
every edge ¢, add as a vertex of P each single point and the endpoints of any
line segments of the intersection of the line m.l_v with e, If wy is the last such
vertex added, then add each single point and the endpoints of any line segments
of the intersection of the line m_lmv with the portion of e; between w; and wv;4;.
Add all new vertices to P in the order in which they are encountered on tracing
e; from v; to v;yy. This method guarantees that each S-seg is indeed convex,
but it adds more vertices than necessary and yields an unwieldy carrier polygon,

with many collinear edges (see Fig. 4a).
The second method requires more computation, but adds fewer vertices and

vields a more manageable carrier polygon. Trace S in counter-clockwise order,

4+
moving from vertex to vertex. Stop at each edge e;. If the line /;; intersects e;

- 12 - The S cpon and its Properties

m ooy Lo vy into the vertex list for 17, ma

it the next vert

splitting nt edge into two

i

s in elockwise order s

1g each edge

b)

FIGURE 4. An edge ¢; of S when its carrier polygon P contains only inflection
points. a) The vertices added by method 1. b) the vertices added by method 2.

2.4. Primitive Operations on Splinegons

For any closed planar curve S which has a finite number of inflection
points and which intersects each infinite line in a finite number of components,
a carrier polygon can be found which transforms S into a splinegon. This spline-
gon has far fewer vertices, in general, than any polygon which would adequately

approximate the curve. This is an advantage in object description, especially in
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i be done based on the strue

alions where some ca

r polygon.

Calculations on splinegons, however, n more comp

on polygons.  When designing geometric algorithms for linear objed we

assume the existence of certain primitive procedures, such as determi the

intersection of two line segments or [ ng a line which supports a pair of adja-
cent edges al their shared vertex. These procedures can be performed in con-
stant time. As the splinegon model places no restrictions on the complexity of
the description of curved edges, manipulation of curved edges could become
arbitrarily complicated. One route to take (e.g. [SV]) is to assume that in each
instance there exists a bound on the complexity of each curved edge. Then
each primitive operation can be considered to require constant time. For exam-
ple, if each edge is described by a polynomial of bounded degree, then a primi-
tive operation will require time dependent on that degree. Note, however, that
the intersection of two polynomial curves of degree 5, for example, is not solv-
able in closed form. Thus the constant associated with this primitive procedure

must represent the time required by the chosen approximation algorithm, accu-

rate to some requisite number of bits.

Rather than ignore the time spent on individual primitive operations, how-
ever, we prefer to emulate the technique used by computational geometers
studying collections of N points in d-dimensional space. Although d could be
viewed as a constant and ignored, analyses of algorithm complexity are reported
as functions of both N and d. The complexity of primitive operations on spline-

gon edges, however, cannot be easily parametrized by a single variable, as edges

- - The Splinegon and its 'roperties

need not be polynomials but may be defined in countless dilferent ways. Our

nee ol a family of procedures, or oracles, which

in the design of

algorithms. To

1 of these procedures, or es, we assign a able re

iing the time

required to provide the requested re

Ay (Aa) compute the intersection of two curved edges (faces) or the
maximum and minimum separation between them.

B, (B)) compute the intersection of a line with a curved edge (face).

1 (Ca) given a curved edge (face) and either a direction or a point,
report both the point and the direction of a line (plane) which
supports the edge (face) at that point.

D, (D,) determine the line (plane) which supports a pair of curved

edges (faces).
E, (E,) compute the intersection of a plane with a curved edge (face).

Fy (Fa) compute the area (volume) bounded by a curved edge (face)
and by the corresponding edge (face) of the carrier polygon

(polyhedron).
This set of oracles is suflicient to generate the results which follow, but also
includes a redundancy which facilitates the analysis of the curvilinear algo-
rithms, allowing the isolation of those ‘‘non-linear' computations involved.
Note that the oracles A and D (resp. Ao and D;) have the greatest complex-
ity as they operate on a pair of curved edges (resp. faces). Our analyses of

algorithm complexity are given both in terms of operations and calls to oracles



complexity of each
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When choosing a splinegonal representation of a closed planar curve,

implementor will note a tradeoll. An A-sided convex polygon can be considered

angle, but the pr ive operation ol determining whether an “edge” of one

intersects

v “edge” of another will be slow (see Iig. 4b). On the other hand,

each algorithm I have a constant number of iterations. An algorithm for an

N-sided polygon ean run very slowly when N is very large, but the primitive
operations will take constant time. This type of dichotomy has produced a

class of efficient hierarchical algorithms [Ki, DIC2], which we discuss further in

Section 3.5.

- 16 -
Chapter 3

Algorithms Focusing on the Carrier Polygon

3.1. Carrier Polygon Approach

In the field of computational geometry, of all classes ol polygons, convex
polygons have received the greatest amount of study and are the best under-
stood [LP3, PS1]. We begin with the delinition of convexity and show how this
and some key related properties have contributed to algorithm development.
‘We then propose a technique which uses these properties for extending polygon

algorithms to splinegon algorithms.

A set S is deflined as being convex if and only if whenever both x and y
belong to S then so does Az + (1 — N)y, for all X such that 0 <X < 1. From a
geometric standpoint, an object S is convex if and only if the line segment zy
joining any two points of S, = and y, lies completely within S. From this

definition, two key properties are derived.

First is the separation property. That is, given any point z on the boun-
dary of a planar convex object S, there exists a line [ through z which divides
the plane into two half-planes: a closed half-plane containing all of S; and an
open half-plane containing no point of S. The intersection of [ and § consists
either of the single point z or else of a single closed line segment containing z.
Such a line [is called a supporting line for S at z (see Fig. 5). If Sis a polygon
of n vertices, then the set of n lines formed by extending each of the n edges of

S is sufficient to supply a supporting line for S at each point on its boundary.
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es at given points. The line

The second property is the supporting line property. Given any direction
in the plane, there exists a pair of lines m; and m, in that direction such that
both m; and m, are supporting lines for S and the region bounded by m,; and
mo completely contains S (see Fig. 6). If Sis a polygon of n vertices, then the
intersection of both m, and ms with S must include at least one of the n ver-

tices.

For a convex splinegon S with at least one curved edge, no finite set of
lines can include a line of support for S at each point on its boundary. More-
over, no finite set of points on the boundary of S includes a point lying on each
line of support for S. The necessary points and lines will have to be determined
on an individual basis by calling an oracle. Note that this differs from the
situation with convex polygons P where the lines of support of the edges cover

the boundary of P, and every line of support of P passes through a vertex.

One of our goals, however, is to minimize the number of oracle calls. As

the curved edges on splinegons become more complex, the time associated with

- 18- Carr
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FIGURE 6. A planar convex object enclosed by a pair of supporting lines of given
direction.

each oracle call increases. Wherever possible, we would like to develop algo-
rithms which require asymptotically fewer oracle calls than they do simple
operations. In other words, we prefer that the running time of an algorithm

depend more on the number of edges than on the complexity of those edges.

When processing convex splinegons, we avoid many of the direct manipula-
tions of the curved edges by focusing on the carrier polygon instead. The car-

rier polygon for a convex splinegon is convex. The line defined by two adjacent
. e . - .
vertices, v;v;4,, divides the plane into two half-planes: the “outside’ half-plane

contains the convex region S-seg;; the “inside” half-plane contains a splinegon

S; = 8§ — S-seg;. S; can be considered a convex polygon which is supported by

—— 2
vvy41 along an edge (see Fig. 7).

Furthermore, we can show that the convexity of S dictates that S-seg; be

2 3 % . A ———
enclosed by the triangle S-fri; determined by the three lines vviyy, v;_yv;, and

—— . = = P el
Uiy1Vizo. Assume otherwise. Then a point z of S-seg; lies outside both viviy,
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FIGURE 7. A convex splinegon S divided into S; and S-seg;.

— i
and v;_;v. But the line segments vz, v;4,7, and v,_;v;4; must all belong to

S, and so must the triangle these segments define. This triangle, however, con-
tains v; in its interior, contradicting the fact that v; lies on the boundary of S

(see Tig. 8).

—
FIGURE 8. A demonstration that all points of S-seg; must lie inside both v;_;v; and

A—p
Vig1 Vigae

Without any direct manipulation of curved edges, the behavior of S can be

reasonably approximated. The techniques used in a polygon algorithm can be

- 20 -

applied to the ¢

s polygon of

ol S-seq;

ion of Then we

| Lo some o ren line, T

gent Lo oe; and

"B

tangent line separates tl into two | lanes, one containing the s

gon, and one not. The splinegon can then be viewed as a convex polygon sup-

ported by the line at a vertex. The corresponding step in the polygon algo

can then be applied directly to the splinegon.

3.2. Computing the Intersection of a Line with a Convex Splinegon

As a first example of the utility of the carrier polygon approach, we discuss
the process of computing the intersection of a line with a convex splinegon.
Assuming that the vertices of the polygon are already stored in random access
memory, Chazelle and Dobkin [CD] have shown that the intersection of a line
and a convex polygon of NNV vertices can be computed in O(log n) time. In the
case of no intersection, their algorithm reports the vertex of the polygon which
lies closest to the line. Using the carrier polygon approach, we extend their
result, also assuming that the vertices of the splinegon are stored in random
access memory, with each vertex pointing to a description of the curve which
joins it to its neighbor:

Theorem 1. The intersection of a line with a convex splinegon of /N vertices

can be computed in O(B,+ log N) operations (see Fig. 9).

Proof. To compute the intersection of a line ! with a convex splinegon S, first
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run the Chazelle-Dobkin polygon algorithm |[CD] gon P If

is no

HSeC

, Lhat algorithm will report the vertex polygon

which is closest to L Although [ does not interseet. P, it | interseel one
B '

of S-seg;_y or S-seg;. (The convexity of S dietates that { eannot interseet both.)

Consequently, we use oracle 13 Lo test [ against e;_; and ¢;. In the case that

the intersection of { with P consists of a single vertex v;, again { may also inter-

sect either S-seg;_, or S-seg;. Testing the line against both ¢;_; and ¢; is
sufficient to determine the splinegon-line intersection. If the polygon algorithm
reports the intersection as vvi4;, an entire edge of P, or as v;v;, a diagonal of
P, then the intersection of ! and S also consists exactly of that segment. If the
polygon algorithm reports the intersection as a line segment with endpoints on
two different edges of the carrier polygon, 3, and vv;4y, testing the line
against the corresponding curved edges e; and e; determines the mb&.vognw of
the segment forming the splinegon-line intersection. After running the polygon
algorithm in O(log N) time, the subsequent special cases each require at most

two calls to oracle B;. Thus the entire process requires O(B;+ log N) time,

using asymptotically fewer oracle calls than simple operations. O

Corollary. The inclusion of a point within a convex splinegon of N vertices

can be decided in O(B,+ log INV) operations.

Proof. To decide whether a point z lies within the splinegon P, choose an arbi-
trary line L which passes through = and determine the intersection of L and P.

Constant time then suffices to check whether z lies within that intersection. O

In the examples given here, the carrier polygon provides sufficient con-
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a) b)

FIGURE 9. Examples of Theorem 1.

straints on the behavior of the splinegon that running the original algorithm
unchanged on the carrier polygon precisely locates the two S—segs which decide

the solution. A single primitive procedure on each produces the answer.

3.3. Detecting the Intersection of two Convex Splinegons

By definition, a polygon P of N <m_.3n.am which is monotone in the 3
direction can be split at the points having maximum and minimum gcoordinate
into a left and a right monotone chain, P, and Pp. Assuming that the vertices
of the polygon are already stored in random access memory, this splitting pro-
cess requires O(log N) ordinary operations [CD]. A point p having y-coordinate
yp belongs to P if and only if it lies to the right of the unique edge of P, which
intersects the line ¥y =y, and to the left of the unique edge of Pr which inter-
sects the same line. Alternatively, we can let the monotone chains P, and Pp
represent semi-infinite polygons which open infinitely to the left and right,

respectively. Then we can say that p belongs to P if and only if p belongs to Py,
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and p

ongs to .

Dobkin and Kirkpa

ek [DIS]

1e to develop an algorithm

deteeting the tion of two convex | of al most N vertices in

Oflog Nt

e. They proved that two convex polygons I’ and @ interseet if and

y il Py intersects Qp and Py also intersects Q. They tl I an algo-

rithm for detecting the section of a left semi-infinite polygon L with a right

©finite polygon K.

We use a similar approach to develop an algorithin for detecting the inter-
section of two convex splinegons. To rewrite a convex splinegon S of at most N
vertices as the intersection of two semi-infinite open w_u::mmo:m S and Sp, we
first determine the pair of vertices of maximum and minimum y-coordinate, vy
and v, using O(log N) time. Unlike the polygon case, these vertices rarely
represent the extreme points of the splinegon. Let vy represent the point of
maximum y-coordinate lying on either ey or ey_;. Likewise, let v,* represent
the point of minimum g-coordinate lying on either e, or ¢,_;. The two points
vy and v, are inserted as vertices into the ordered list for S, and then they

become the splitting points to form S, and Sk (see Fig. 10). The entire process

takes O(C+ log N) time.

Given the problem of detecting the intersection of two convex splinegons P
and @ of at most NN vertices each, we expect that each splinegon is given as a
list of vertices in a random access memory with each vertex pointing to a
description of the curve which adjoins it to its neighbor. We do no preprocess-

ing of this description. The output should consist either of a point in the inter-
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FIGURE 10. A splinegon 5 split into §;, and Sp.

section or of a line which supports one of the splinegons and separates it from

the other.

Once P and @ have both been rewritten as the intersection of two semi-
infinite splinegons, Pr, N Pr and Qp N Qp respectively, we need an algorithm
which detects the intersection of a left semi-infinite splinegon with a right
semi-infinite splinegon. Before giving details, we introduce the necessary nota-
tion. L (resp. R) is a semi-infinite splinegon opening to the left (resp. right) and
having the n (resp. m) vertices [y,ly, = ,l, (resp. ry,re, + - ,ry). Let
= T:\m._ and j = _.Z\w.*. R; (resp. Lj) represents the line defined by the pair
of vertices r;, riyy (resp. [j, lj4;). Our results rely upon the subdivision of the
plane induced by the lines L; and R;.

In general, four regions are produced as shown in Fig. 11. In each of these
regions, there are limitations on the involvement of each splinegon. Together

the R-region (resp. L-region) and the LR-region contain all of R (resp. L) except
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for f-seg; (vesp. L-seg;). Together (Drregion

region) contain all of #-seq; (resp. L-segp). 1R and

joare pa 1wy divide

no Li-region exists. 10 R, s

left of Lj;, no (Fregion

Ls. 5, the L-vegion (R-region) lies the

furthest to the left (right). If the Lf-region and the

ion co-exist, then one

lies above the other, as determined by the angles which £2; and L; form with the

horizontal.

LR-region

L-region R-region

Ly {Z-region R

FIGURE 11. The subdivision of the plane induced by R; and L;.
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Lemma LIy and ryyp both border the Lit-region and if vy separates [

and {4, then rigy is a witness to the intersection of L and R (see IPig. 12).
Proof. The point 1y lies to the left of the curved edge from {; to 14, on the

left semi

ite splinegon L. Thus r;y) € L. O

L N

LR-region

L-region

R

R-region

FIGURE 12. Example of Lemma 1.

The basis for the inner loop of our algorithm is established by the sequence
of lemmas we present below. In the statement of those lemmas, we define
above, below and separation with respect to e.n.ooamnmgm" p lies above
(resp. below) ¢ if the y-coordinate of p is larger (resp. smaller) than that of ¢
and, r separates p and ¢ if its y-coordinate lies between the other two y-
coordinates. In addition, we assume that the LR-region lies above the (/-

region. Should the converse hold, symmetric lemmas can be easily stated. We

Lemma 2. If #; lies below 1,41, 4, and l;;, then L and R intersect if and only
if L intersects the splinegon formed by deleting the vertices of R lying below r;
(see Fig. 13).

Proof. Suppose that r; borders the (ZFregion. Then the R-region completely
contains the portion of R lying below r;. The only portion of L which can enter
the R-region is L-seg;. But L-seg; lies strictly between [; and [, and thus lies
strictly above r;. Consequently, the portion of R lying below r; cannot play any

part in the intersection of L and R (see Fig. 13a).
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Suppose Lhat I interse I

LI-region, s

v fe-

at a point z which lies below r. As no part of L below [; can enter

ie in the Li-region. By convexity, both the LR-region and L

region, z mus

contain the

s segment Iz But as [

s below 1y, ﬂ.lu must
intersect the ray originating at »; and extending infinitely to the right, a ray
which is contained within 2. We conclude that the portion of R lying strictly
below r; cannot completely contain the intersection of L and R. As we are

searching for a single point witnessing the intersection rather than the entire

intersection area, the portion of R strictly below r; can be deleted (see Fig. 13b).

a

LR-region / LR-region

L-region R-region

R-region

{)-region

(#-region

a) b)

FIGURE 13. Examples of Lemma 2.
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Proofl. Suppose that L intersects 1 al a poinl z of B lying above ri . As no

musl

part of L above {jy ean enter the R-region, n the Li-reg

Loy

convexity, hoth | 1.

L R-region o

n the line segment Tz But as [y

lies below riyy |z lies sbointerseel the

ove rigg, Dz

ri+1 and extending infinitely ht, a ray contained within 2. The por-

tion of R lying strictly above r;y cannot com ly contain the intersection of

L and R, so it can be deleted. O

L-region R-region

-region

FIGURE 14. Example of Lemma 3.

Lemma 3. If r;4; and [;;; both border the LR-region, and r;4, lies above ry, I},
and [j;;, then L and R intersect if and only if L intersects the splinegon formed

by deleting the vertices of R lying above r;; (see Fig. 14).

Lemma 4. If {;;; borders the LR-region, and r;,7,4, and [; all border the (7
region, then L and R intersect if and only il L intersects the splinegon formed
by deleting the vertices of R lying below r; (see Fig. 15).

Proof. Suppose that L intersects R below 7; at a point z Since the portion of
R below r; belongs strictly to the R-region, z also belongs to the R region. By

convexity, both the R-region and L contain the line segment [; 7z But as {;,
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lies above r; and z lies below r, [z must intersect the ray originaling al r

and extending infinitely to the right, a ray contained within . The portion of

R lying st v below 1y eannot completely contain the intersection of L and R,

and thus tl

[ 1 st

portion tly below r; can be deleted. O

LR-region

L

R-region

{Z-region

FIGURE 15. Example of Lemma 4.

Our algorithm to detect the intersection of a right semi-infinite splinegon R
and a left semi-infinite splinegon L relies on these lemmas. If R and L do not
satisfy the conditions for Lemma 1 or for either of its two symmetric versions,
then at least one of Lemmas 2-4 or their symmetric versions will reduce the size
of at least one of L or R by at least a half using only constant time. Thus, we
may iteratively apply the lemmas until one of the following occurs: either a
point in the intersection is determined, or one semi-infinite splinegon, say L, has
at most three vertices remaining. In the former case, we are done. In the latter
case, decompose L into two two-vertex left semi-infinite splinegons to test in

succession against R.

-30- Carrier Polygon Approach
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The problem rem to detect the intersection of a two-vertex left

nfinite splinegon L against a right semi-inlinite splinegon R of m vertices.
We begin by again applying Lemmas 1-4 and their symmetrie versions, hoping
cither to locate a point in the intersection or to reduece the size of R by a half.
If the only lemmas which apply, however, dictate that some portion of L be
deleted, no progress has been made. Thus we neced other lemmas to cover this
possibility.

Lemma 5. If L has precisely two vertices, both of which border the (7-region,
and if iy, lies above [y, then L and R intersect if and only if L intersects the
splinegon formed by deleting the vertices of R lying above riy (see Fig. 16).
Proof. Since L has only two vertices, those two vertices exactly define the y-

extent of L. Consequently, any portion of R lying strictly above [;;; plays no

part in the intersection. O

Lemma 6. If L has precisely two vertices, both of which border the (ZFregion,
and if I} < r; < rjyy <lg, then let I' represent a point on the edge from ; to
Iy where a line parallel to R; supports L. If I’ lies above r; (resp. below ri4),
then L intersects R if and only if it intersects the splinegon formed by deleting

the vertices of R lying below r; (resp. above r;4;) (see Fig. 17).

Proof. Suppose that L intersects R at a point z lying below r; (resp. above
riy1). Then z € R-region. But no point of L can belong to the E-region unless

I also belongs to the R-region. Consequently, by convexity, both the R-region
and L contain the line segment I'z. But as {7 lies above r; (resp. below r;4;) and

z lies below r; (resp. above riyy), I"z must intersect the ray originating at r;
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L-region LR-region Fieopion

i {A-region R.

FIGURE 18. Example of Lemma 5.
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L-region LR-region

R-region

FIGURE 17. Examples of Lemma 6.

(resp. r;4;) and extending infinitely to the right, a ray contained within R. We
conclude that the portion of R lying strictly below 1; (resp. above ;,,) cannot
completely contain the intersection of L and R, and thus the portion of R

strictly below r; (resp. above r;,;) can be deleted. O

Theorem 2. O(A;+ C; log N) operations suffice to detect the intersection of a

right and a left convex semi-infinite splinegon of at most N vertices each.

Proof: These lemmas provide the basic steps for our algorithm. Whenever the
hypothesis of a lemma is satisfied, either an intersection point is found or the
size of one splinegon is divided in half. We repeatedly apply Lemmas 1-4 until
one splinegon has at most 3 vertices. We split that splinegon into two spline-
gons of only two vertices each. For each two-vertex splinegon, we repeatedly
apply Lemmas 1-5 until its second splinegon has been reduced to 3 vertices or

until reaching an instance where not one of these five lemmas applies,

specifically where I} < r; < ;4 < Iy and all four points border the Jregion.

In the latter case, we can apply Lemma 6.

Eventually the second splinegon is reduced to only 3 vertices. All edges
remaining from one of the original splinegons can be tested for intersection
against all edges remaining from the other. If an intersection point is found, it
is reported. Otherwise determine the pair of points, one from each splinegon, at
minimum distance from each other. Each splinegon has a supporting line at the
respective point separating it from the other splinegon. O(A;+ Cp) time will
detect any intersection among the remaining semi-infinite splinegons and deter-
mine a point eommon to both of the original splinegons or a line supporting one

and separating it from the other.

In the process described above, each lemma is applied at most a loga-

rithmic number of times. Lemmas 1-5, and their symmetric versions, each
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require only constant time. Lemma 6, however, calls an oracle and thus uses

time €. Conscquently, the rc ing stage of the algorithm

1y use Lime

0(C, log N). Deter

1 Lhe intersection among the remaining edges requi

O(A}) time, I there is intersection, deter

ing the supporting separating

lines requires O(C') time. O
Theorem 3. The intersection of two convex splinegons of at most N vertices

can be detected in O(A+ B+ C,log N) operations.

Proof: Given the convex splinegons, we begin by splitting them into semi-
infinite splinegons, using O(C 4+ log N) time. Then, using O(A;+ C; log N)
time, we apply the algorithm of the previous theorem twice: once for Pp and
Qr; and once for P, and Qp. If either iteration reports no intersection, then P
and @ do not intersect. The supporting separating lines reported also support
and separate P and @. If both iterations report an intersection point, then P
and @ do intersect. We test each point for inclusion in @, using time
O(B1+ log N). If either point tests positive, we are done. But it is possible

that neither point belongs to P N Q.

Suppose that two points of one splinegon, say P, were reported: p; belongs
to Pr N Qg and p, belongs to Pp N Q. Since p; belongs to Pr N Qg, p; lies
to the right of the left boundary of @, but since it does not belong to @, it must

also lie to the right of the right boundary of Q. Similarly, p; lies to the left of

both boundaries of @. Consequently, the line segment pyp;, which by convexity
lies within P, must intersect both boundaries of @. Thus a point in P N @ can

be found in O(B+ log N) time (see Fig. 18).

8-

oach

r Polygon A

FIGURE 18. Two points of P were reported.

Suppose that one point of each splinegon were reported, say p; from P
and ¢; from Q. Test a horizontal line through p, (resp. ¢;) for intersection
with both P and @, using O(B;) time. If either iteration reports interleaving
segments, then report a point in P N @. If not, the segment of Q lies to the left
(resp. right) of the segment of P. Consequently, a line segment joining the two
segments of @ must cross any line segment joining the two segments of P, and

the intersection point belongs to P N @ (see Fig. 19). O

In the general case, this algorithm runs in time O(A,;+ B+ Cilog N).
Lemma 6, however, was the only one reequiring any curve manipulations. Thus
a logarithmic number of curve manipulations are necessary only if there exist
N* edges of one splinegon, for € > 0, within the y-extent of a single edge of the

second splinegon.

We can make our time estimates more exact. Find the smallest index m;

and the largest index M; such that ry, 4y,...,mag4 all lie within the g-extent
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FIGURE 19. One poir

of P and one of @ were reported.

defined by /; and l;4;. Let s; represent the index such that the slope of L; lies
between the slopes of By_y and R,. Let h; (resp. kj) represent the smallest
(resp. largest) index such that the line m__: (resp. .w»..u has inverse slope larger
than (resp. smaller than or equal to) L; and intersects L; below {; (resp. above
lj+1) or not at all. If no index h; (resp. k;) satisfies these criteria, then set
hi=s;+1 (resp. k;=s;—1) Finally, set A =min(k;M;) and
k = max(kj,m;). If in the course of the algorithm, /; and [;;, should define an
extant two-vertex splinegon, then only for ¢ such that k;<i<h; would Lemma 6

be invoked. Define dj, = max (h;j—k;). Perform the symmetric calculations for
i=1,..,n

hmnnmmmzmma".prQ..lF.u.rmnmﬂamiah.&mu.Hrmcﬂra._am_.mmnﬂo:
1=1,...,m

detection algorithm runs in time O(A,+ B,+ C,log d+ log N).
At each stage in the polygon algorithm, the lines R; and L; divide the

plane into four regions which rigidly constrain the behavior of L and R. L and
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R can overlap only in the LE-region; the remainder of L lies in the L-region; the

remainder ol I |

in the R-region; and the (Jregion contains no portion of

either semi-i ¢ polygon ior. These constraints mean that at each
iteration the current edge of one semi-infinite polygon as well as all of the edges
ol that polygon on one side of the current edge can be deleted. Thus, a con-
stant amount of work removes at least half of the edges of one polygon from

further consideration.

The situation in the splinegon case is more murky. The two splinegons
may c,.m_.._pﬁ in any of the four regions defined by R; and Lj. An intersection
occurring in the R-region (resp. L-region), however, must involve L-seg; (resp.
R-seg;). And an intersection occuring in the (%fregion involves both L-seg; and

R-seg;. Thus the current edge can never be deleted.

As described in Section 3.1, however, in a convex splinegon S, each S-seg; is
constrained to lie within a triangle S-iri; defined by edges of the carrier polygon
P. In the first stage of the algorithm, all edges to one side of the current edge of
one semi-infinite splinegon, say L, can often be determined to lie in the L-region
but out of the range of R-seg;. Thus these edges may all be deleted. Other-
wise, we can determine that for one splinegon, say R, to intersect any portion of
L to one side of the current edge, R would first have to intersect the remaining
portion. One of these two tests, requiring constant time each, allows at least
one less than half of the edges of one splinegon to be removed from further con-

sideration.

At the second stage of the algorithm, when one splinegon, say L, has only
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one edge, sometimes neither method applies. 1L is possible that all of the

remaining edges of I ice R at all; it may be necessary

to call a primitive procedure to further define the behavior of L-seg;. lHaving
done so, however, the size of I ean again be reduced by at least one less than

halfl of its edges.
The algorithm provided in this section merely detects the intersection of

two convex splinegons. In Section 5.2, we present an algorithm for computing

that intersection.

3.4. A Hierarchical Method for Testing Point Inclusion

In recent years, the hierarchical searching method has emerged as a potent
tool in the field of computational geometry [Ki, D2, DS]. Here, a geometric
problem is preprocessed to provide a coarse representation of the entire prob-
lem. Search queries upon the whole are then used to localize the region in
which the problem is to be solved. Queries of this type alternate with computa-
tions which yield continually finer descriptions of these continually smaller
regions. Efficient algorithms result from balancing the two processes of loealiz-
ing the search and of increasing the detail. Algorithmic efficiency is then bal-

anced against preprocessing time and storage space requirements.

The convex splinegon is an abstract object ideally suited for hierarchical
processing. As mentioned in Chapter 2, for all N, an N-sided convex polygon
can be considered a splinegonal triangle, but the primitive operations on the

“edges” will be slow. On the other hand, each algorithm will have a constant
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number of iterations. An algorithm for an N-sided polygon can run very slowly
when N is very large, but primitive operatlions on edges require only constant
time. We now exploit this dichotomy to develop an eflicient hierarchical algo-

rithm for point inclusion.

iiven a convex polygon P on N vertices, vy, va,..., vy, we develop a hierar-
chy of splinegons all having the same boundary as P, but having carrier
polygons of fewer vertices. We assume for ease of explanation that N HwﬁwJ
for some k. We recast P as a triangular splinegon S* with a carrier polygon P*

k

* vo¥,u5¥ are all original vertices of P. The vertices v¥

whose three vertices v;
are chosen so that N/3 — 1 of P's original vertices lie in the interior of each of

the three “curved” edges of S*.

To ereate a splinegon S*~! from a splinegon S* in the hierarchy, insert
each vertex e..... of § as a vertex of §". In addition, insert the median original
vertex 3»... lying in the interior of each edge m.q... of S'. After performing this pro-
cess k times, we achieve a splinegon S° which is identical to its carrier polygon

P? and to the original polygon P (see Fig. 20).

To test whether a point z lies within the convex polygon P, we begin by

determining in constant time whether « lies within the triangle P*. If it does,

DT

we are done. If not, then z must lie outside of at least one of the lines eu.wa».t .

If z lies outside of two of the lines, then by convexity it cannot belong to P, as

Tk

we demonstrated in section 3.1. Suppose that z lies outside of the line v; v;4,".

Then we can determine whether z lies in the carrier polygon PF~1 by testing

whether z belongs to the triangle De.q.f:...»:.q.i»_ which is identical to the trian-
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vex wegon.

wase Lhat a convex splinegon S has P as its carrier polygon.
& i

We define a

srarehy of splinegons all having the same boundary as S, but

with vertices chosen as desc

«d above. In this case, t

lowest-level splinegon

is identically equal to S, and its carrier polygon P? is exactly I At the final
stage of the algorithm, we know an index j sueh that x belongs to the original

carrier polygon P if and only if 2 belongs to the triangle Avjvi g vige. I x lies

. — —_— & y ’
outside both v;v;,; and v;,,v;40, then x does not belong to S. If z lies outside
1Vi+1 1+1 V542

- =T . . . - . -
Just vyvjey, then o belongs to Sif and only if it belongs to S-seg;. Similarly, if =

lies outside just v;ijv;i0, then z belongs to S if and only if it belongs to

S-segjyq (see Fig. 21).

NU
a) b) <)
FIGURE 20. a) A sample polygon P on 12 vertices; b) A splinegon S§'; ¢) A spline-
gon 2. .
gle Dew...»l_em.i_»\_eS.+m_ml_ defined by three adjacent vertices of P71,

At each stage in the algorithm, we either determine that z belongs to some
carrier polygon P', or that z lies outside of P, or select a triangular test which
will determine whether z belongs to P*~!. If we proceed through k stages
without terminating, we know an index 7 such that z belongs to the original

polygon P if and only if z belongs to the triangle Awvjviyvige. We conclude:

Theorem 4. The inclusion of a point in a convex polygon of N vertices can be

decided in O(log N) operations using the hierarchical method.

Proof. At each stage in the algorithm, the point is tested for inclusion in a tri-
angle. The first such test reduces the size of the problem by at least 2/3. Each

subsequent test divides the problem in half. O

This approach works equally well for testing a point for inclusion in a con-

FIGURE 21. a) A splinegon S on 12 vertices; b) §*; ¢ §2.

Corollary. The inclusion of a point in a convex splinegon of N vertices can be

decided in O(B;+ log N) operations using the hierarchical method.




- 41 - Jarrier Polygon Approach

Proof. As

eseribed above, O

These wide an ex

llent example both of the adaptability of

negons Lo hierarchical methods and of the eflicacy of the carrier polygon
approach. The desired hierarchy is readily available from the initial description
of the polygon or splinegon, so no preprocessing or additional space is necessary.

Al each stage, the carrier polygon under consideration provides a sufficient

approximation to the splinegon.

3.5. Determining the Area Enclosed by a Splinegon

In 1975, Shamos discussed the problem of determining the area of a planar
polygon P of N vertices vy,vs,...,vy in counter-clockwise order [Shl]. The
area of a non-simple planar polygon is defined as follows: the area of each sim-
ple bounded region should be added once for each time the boundary of the
polygon wraps around it in counter-clockwise order; the area should be sub-
tracted once for each time the boundary of the polygon wraps around it in
clockwise order. Thus, some areas may be counted a multiple number of times,

and some planar polygons may have negative area.

Shamos first cited a simple formula for the computation of the area:

N
B gi(gipr—vio1) | -

1
2 =1
Next he showed that the formula could be altered to reduce the number of mul-

tiplications. If Nis odd, the area is given by

1 N-1
W _ .N @..I&Z#@...ilemlpv_ ’

P=1

ier Polygon Approach

a computation requiring N—1 multiplications. If Nis even, the area is given by

R
H _.W.:T.u.l_|.~._:u.un|

o) + (egica—an )i —yai-a) |

a computation requiring N—2 multiplications.

Il the polygon is not simple, then the boundary of P divides the plane into
one infinite region and a number of finite regions. In traversing the boundary of
P once in the order dictated by the indices of the vertices, those finite regions
whose boundaries are traversed in counter-clockwise order are deemed to have
positive area. Those traversed in clockwise order have negative area. The area

of Pis defined as the sum of the areas of the finite regions.

Although the carrier polygon approach generally applies only to the exten-
sion of convex algorithms, it enables us to find the area of an arbitrary spline-
gon S of N vertices. First we calculate the area of the carrier polygon. Then we
add (resp. subtract) the area of each S-seg; for which ¢; was found to be

concave-right (resp. concave-left) during the counter-clockwise traversal of S.

This method works because we are performing arithmetie, rather than set
operations. There exist simple splinegons which are defined on non-simple car-
riers in such a way that no two of the S-segs are disjoint (see Fig. 22). The
areas of half of the S-segs, however, will be added, while the other half will be
subtracted. The algorithm will produce a correct value for the area, despite all

of the overlapping.

Theorem 5. The area of an arbitrary splinegon of N vertices can be computed

in N—1 multiplications and N calls to the procedure F; if Nis odd, and in N—2
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FIGURE 22. A simple splinegon S with a non-simple carrier polygon such that no
two of the S-segs are disjoint.

multications and N calls to the procedure F, if Nis even.

3.6. Discussion

The carrier polygon approach is particularly useful for processing convex
splinegons. For each convex splinegon S, the carrier polygon P is itself convex.
P C 8. 8 =P S-seq; where each S-seg; lies within a triangle S-tri; defined by

1

Vitiy1, Vi1 and vigyvipe. P U S-tri; forms a star-shaped polygon whose ker-
13

nel is P.

The carrier polygon imposes sufficient structure on a convex splinegon that
polygon algorithms can be extended to splinegons with the only meodification
being ad hoc procedures for the accommodation of the S-segs. The examples in

this chapter include line-splinegon intersection computation, splinegon-splinegon

Polygon Approach

intersection detection, and a hierarchical algorithm for point inclusion.

The final algorithm in t chapter, for area compulation, is somewhat of

an anomaly. The s

gon need nol be convex, nor even simple, but the ca
polygon approach enables the extension of Shamos’ algorithm. The suceess of
the extensien, however, is due more to ils dependence on arithmetie operations

instead of set operations than to the power of the carrier polygon.

As deseribed in Chapter 6, the carrier polygon can also be an important

tool in processing monotone splinegons, but only when it is simple.



Chapter 4

Algorithms I'ocusing on the Bounding Polygon

4.1. Bounding Polygon Approach

In standard form, a splinegon S is given as a circular list of vertices, which
completely deline its carrvier polygon P, and a pointer from each vertex to a
description of the edge joining that vertex to its neighbor. A second polygon @
can be used to approximate the splinegon S. @ contains all of the vertices of S,
which will be called fized vertices of S. In addition, for each edge e; of S which
is not a line segment, let ¢;° represent the point of intersection of the ray
tangent to e; at v; with the ray tangent to e; at v;4;. For some splinegon edges
the two tangent rays might not intersect in the plane. The rays would intersect,
however, if S were embedded on the surface of a sphere. We can allow the
point ¢;* to represent the corresponding point on the projective plane at infinity
(see Fig. 23a). Alternately, such splinegon edge can be broken into at most three
pieces by the insertion of two new fixed vertices so that for each new edge the

tangent rays will intersect at a point with finite coordinates (see Fig. 23b).

The point ¢;* is called a pseudo-vertez of S and is inserted into @ between
the fixed vertices v; and v;yy. The polygon Q is called the bounding polygon of
the splinegon S. An edge of @ which joins two fixed vertices is called a fized

edge. An edge joining a fixed vertex with a pseudo-vertex is called a pseudo-

edge. A pseudo-edge vie;" (resp. ¢ vi4) is considered loose if its only intersec-

tion with the curved edge e; is at the vertex v; (resp. v4q). If ve;® (resp.
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FIGURE 23. A pair of splinegons and their bounding polygons. One has an infinite
pseudo-vertex, whereas the other does not.

e;" vi41) intersects e; in a line segment, then the edge is considered tight.

The bounding polygon provides a useful tool for extending numerous algo-
rithms on simple polygons to splinegons, particularly those algorithms which are
vertex-based. The bounding polygon @ of a simple splinegon S of N vertices has
at most 2/V vertices iff we allow points at infinity, or at most 6N vertices other-

wise. In general, the edge e; of S can be viewed as a polygonal chain of an arbi-

trary number of vertices leading from v; to vy, whose first edge lies on vie”,
whose last edge lies on ¢ v;4, and which includes no reflex angles. During the
execution of a polygon algorithm on the bounding polygon, processing of a
pseudo-vertex ¢;* can include evaluation and insertion of pertinent information

about the associated curve e;.
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nfortunately, t ations of Lhe polygon @ arve nol readily available

from the given deseription of the splinegon S. Computling each edge of Q costs

O(C'y) time. As a consequence, only infrequently will we specify the bounding
polygon @ explicitly. Instead, each edge or vertex is computed as needed. We
demonstrate the usefulness of this approach in computing the diameter of a
convex splinegon, testing the monotonicity of a simple splinegon, computing the
kernel of a simple splinegon, and computing the convex hull of a simple spline-

gon.

4.2. Computing the Diameter of a Convex Splinegon

The diameter of a convex polygon is realized by a pair of antipodal ver-
tices. Shamos’ algorithm for finding the diameter [Shl] determines all such ver-
tex pairs, computes all of the distances, and keeps the maximum. The diameter
of a convex splinegon is also realized by a pair of antipodal points, but although
those points will lie on the boundary of the splinegon, they may not be vertices.
To find the diameter of a convex splinegon S of N vertices, we apply a modified
version of the Shamos algorithm to the bounding polygon. After determining all
antipodal vertex pairs for the bounding polygon, any pseudo-vertex can be
replaced by the appropriate point on its corresponding edge to yield the pairs of

antipodal points on the splinegon itself.

To run this algorithm, the entire bounding polygon must be computed,
using O(CN) time. Next, each edge of the bounding polygon is oriented as a
1

vector and translated in turn to the origin: pseudo-edges become vectors of the

e o e
form v;e;* and e v;,; and fixed edges become vectors of the form wv;v;4,. Due
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in non-decreasing order of polar

to the conv v ol S8, these veetors will be

angle.? The incl e sector from a veetor whose head is a lixed vertex v; to a

veelor whose tail is v; sponds to that fixed vertex. If the two vectors have

the same dire

, then the fixed vertex will correspond to a sector consisting
of a single ray. The sector strictly between a vector whose head is a pseudo-
vertex e;* and a vector whose tail is ¢ corresponds to that pseudo-vertex. A
pseudo-vertex e;" was added to the bounding polygon only if the edge ¢; was not
straight. Thus, each pseudo-vertex corresponds to a non-empty open sector (see

Fig. 24).

FIGURE 24. A splinegon and its bounding polygon and the corresponding vertex
sectors.

Pick a line [ passing through the origin, and in time O(log V) determine

the two sectors in which it lies. To find all antipodal pairs, rotate the line [

R —_— —
w__.nu.mvo::.n—wd..om,m._.mmz_oo;mawiw_.amx:...armunrmﬁnﬂcﬁn..L«._.wuae_n_

the same orientation.

have
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counter-clockwise. An M_:_k.__:z_,z_ pair changes only when [ enters a new sector.
Divide the vertex pairs reported into three groups: pairs having two lixed ver-
tices; pairs with one fixed vertex and one pscudo-vertex; and pairs having two
pseudo-vertices. The first group can be processed as in the original algorithm by
computing the distance between the two vertices. The next two groups require
the use of oracle A,. IFor the second group, determine the point on that curved
edge associated with the pseudo-vertex which lies at maximum distance from
the fixed vertex. For the last group, determine the pair of points, one per
curved edge, at maximum distance from each other. The maximum distance

over the three groups is the diameter.

Theorem 6. The diameter of a convex splinegon of N vertices can be com-
puted in O((4,+ C;) N) time.
Proof. Finding the bounding polygon and translating all vectors to the origin
requires O(CN) time. Since there are at most 2N sectors, there are at most
2N antipodal vertex pairs. By scanning sequentially, the corresponding pairs of
antipodal points on S and the distances between them can all be determined in
O(A|N) time. Thus, the entire algorithm runs in O((A,+ C;) N) time. O
Given that the object focused upon here is a convex splinegon S, one might
expect to apply the carrier polygon approach. But to determine the maximum
interior distance of S, we need to focus not on a polygon contained in S, but a

polygon containing S. The polygon defined by P U S-tri; is not convex, so it is
1

useless. But the bounding polygon @ of a convex splinegon P is always convex.

Running the original polygon algorithm on @ produces a list of antipodal pairs
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of vertices. At this point, the original algorithm would compute the Buelidean

distance defined by each pair of vertices and select the maximum. The s

ne-

ron algorithm provides spe involving pseudo-
B

vertices.

4.3. Determining the Monotonicity of a Simple Splinegon

. . . . . . —
A splinegon, like a polygon, is monotone in a direction Z'if

it can be decom-
posed into two chains each monotone in direction 2 But to determine il a
polygonal chain is monotone, it is not necessary to examine every edge. Suppose
that the points vy,p,pa, ..., Pn, vz form a convex polygonal chain M and that
the points v;,w,vy form an acute triangle such that p, lies on the line segment
vyw and p, lies on vow. Then the chain M is monotone in a direction Zif and
only if the chain H defined by v,,w,vy is also monotone in the direction Z (see
Fig. 25a). Similarly, a splinegon edge e, extending from v; to vy for which vjw
and vow are tight pseudo-edges is monotone in a direction Z'if and only if H is
monotone. If the pseudo-edge v, w (resp. vow) is loose, however, then in general

the monotonicity of e; coincides with the monotonicity of H. But e; is mono-

tone in the direction orthogonal to ¥ w (resp. vaw), and H is not (see Fig. 25b).

Consequently, if all edges of the bounding polygon @ associated with a

splinegon S are tight, then S is monotone in a direction 2 if and only if Q is

monotone in the same direction. But if @ is not monotone in any direction and

if vie;” (resp. e v;4;) is loose, then S could still be monotone in the direction

= At i
orthogonal to vie;* (resp. € v;4;). Thus to determine the monotonicity of a
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FIGURE 25. a) Convex polygonal chain inscribed in a triangle; b) Curved edge in-
seribed in a triangle.

simple splinegon, the Preparata-Supowit [PS] method can be applied to its

bounding polygon with the following modification. Instead of processing all of

. H * *
the directions from v;e;" to e v;;,, inclusive, as a group, process the directions

—_— - =
between the two vectors as a group and process the vectors vje;* and ¢ Vi1

separately according to whether the corresponding edges were tight or loose.

We describe the algorithm below.

As in the previous example, orient all edges of the bounding polygon as

. — _
vectors. Assign each fixed edge a key of 0. If pseudo-edge v;e;* (resp. e;* vy, is
tight, associate with it a key of 0; otherwise, assign it a key of 1. We calculate
the edges of the bounding polygon, one by one, and push the vectors as

translated to the origin, onto the queue L. After pushing all of the vectors,

push a second copy of the first. Creating the queue L costs O(C)N) time.

We process the list of at most 2V + 1 vectors one by one, retaining the

significant information in a new list M of vectors ordered by polar angle. Pop
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the first vector from L and insert it into the emptly list M along with its key and

with three tags all initialized to 0: » forward, the backward, and the self.

These Lags may assu s in the sel ?L.m Al a tag having a value of 2 is

“incremented”, it retains the value 2. The last vector inserted into M is called
the current vector.

If the top vector of L deseribes the same polar angle as does the current
vector, compare their keys. If both vectors have the same key, delete the top
vector. Otherwise keep as the current vector whichever one has the larger key
and delete the other. Consider the angle from the current vector to the top
vector. If it belongs to the interval (0,7) (resp. (—m,0)), we shall move forward
(resp. backward) through M in order to insert the top vector. Begin by incre-
menting the forward (resp. backward) tag on the current vector. Increment the
self tag only if the current vector has a key of 1 or if this move does not
represent a change in direction. Then move forward (resp. backward) through
M, incrementing all three tags on every vector and deleting any vector having
three identical tags, until locating the position for the new vector. Pop it from L
and insert it into M, making the backward (forward) tag match the forward
(backward) tag of the vector preceding it, and the forward (backward) and self

tags match the backward (forward) tag of the vector ahead of it (see Fig. 26).

Each vector is inserted into M once, requiring constant time. Each subse-
quent time it is processed, all three of its tags are incremented using constant
time. But when all three tags on a vector equal 2, the vector is deleted. As

each of the O(N) vectors will be processed at most three times, the cost of
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FIGURE 26. a) A splinegon S and its bounding polygon Q. b) M after three inser-
tions, ¢) M after four insertions.

creating the list M is at most O(N).

At the termination of the above algorithm, we have the partition of the
polar range [0,2m) by O(N) vectors, each labeled with either a 1 or a 2, into
O(N) sectors which can identified as a 1 or a 2 by the forward and backward
tags on the vectors bounding it. Pick a pair of rays ry,7s which form a straight
angle at the origin. In O(log N) time, determine whether r; (ry) contains a
vector in M or lies in a sector between two vectors and assign it the appropriate
label. Rotate r; and r, in tandem counter-clockwise around the origin, chang-
ing the labels whenever either intersects a new vector or enters a new sector
and recording every polar-angle interval in which both rays are assigned a 1.
Since the labels change at most O(N) times, there are at most O(N) intervals
reported. Thus this process requires O(N) time. Whenever both rays are
assigned a 1, T is monotonic in the direction normal to the two rays. If there is

no angle at which both rays are assigned a 1, then T is not monotone.

- Bout
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Theorem 7. The directions in which a simple splinegon of N vertices is mono-
tone can all be determined in O(C' N) time.
Proof. As deseribed above, O

As noted at the beginning of this section, if all edges of the bounding
polygon @ associated with a splinegon S are tight, then S is monotone in a
direction Z'if and only if Q is monotone in the same direction. But for each loose
pseudo-edge, S could be monotone in the direction orthogonal to that edge, even
though @ is not. Thus, to determine the monotonicity of S, we run the original
polygon algorithm on @, but perform separate calculations on the at most 2N

directions determined by the loose pseudo-edges.

4.4, Computing the Kernel of a Simple Splinegon

To compute the kernel of a simple polygon of N vertices, Lee and
Preparata [LP2] developed a vertex-based algorithm which runs in O(N) time.
The Lee-Preparata algorithm assumes that the first vertex v, of the polygon P
is reflex, for if no vertex were reflex, the polygon would be convex and thus
serve as its own kernel. It also assumes that the vertices are numbered in coun-
terclockwise order around the boundary of P. The algorithm begins with the
first vertex and then moves from vertex to vertex. Upon reaching a vertex v,
the following information is available:

1) A doubly linked list of vertices which describes the boundary of the convex
region K which is visible to all edges from vy to v;. If K is unbounded, the

list is linear, and the vertices at the list tail and at the list head are both
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points in the projective plane at inlinity associated with a partieular ¢

tion. If K is bo

ed, then the list is circular and all of its vertices are

linite.

2) A pair of vertices I" and L from K at maximum distance from v; such that

——p — " . —_—
v /" and ;L both support K and such that the clockwise wedge from v to
= . . Al .
L contains K. If K is bounded, then F and L always represent finite

points in the plane. If K is unbounded, however, F (resp. L) may represent

the point at infinity at the tail (resp. head) of K's list.

The computation to be performed at a vertex v; depends upon whether that

vertex is reflex or convex.

Suppose that v; is reflex (resp. convex) and that F (resp. L) lies on or to the

— —
left of v;y;v; (resp. on or to the right of v;v;y;). Then trace the boundary of K

from F to L in the counterclockwise direction (resp. from L to F in the clockwise

—_ _—
direction). Stop upon finding a point k' where vy v; (resp. wvv4) intersects

the boundary of K. If no such point is found, then the kernel of P is null, so
the algorithm halts. Otherwise, insert £’ in the appropriate position as a vertex

of K.

Next, trace the boundary of K in the clockwise (resp. counterclockwise)

direction from k' until reaching a second point k" of the intersection of K and

v;41v; (resp. vivi4p). If we reach a point at infinity at the list tail without dis-

covering a point &”, then let £” be the point at infinity having direction wviyyv;

g, . 5 "o . s3m
(resp. v;v;+1). In either case, insert k" in the appropriate position as a vertex of

K, and set F' = k" (resp. L = k"). Delete all vertices of K between &' and £ in
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clockwise (resp. counterclockwise) order (see Iig. 27).

Vit
L Fo Vi
I

¥ Vv
Vi1 Uit Ui
\{J
S Vin Vi
: F
L L
Py
<) d)

FIGURE 27. a) 1; is reflex and F lies on or to the left of v;4yv. b) v; is convex and
—_— A —_

L lies on or to the right of v;v¢4;. ¢) v is reflex and F lies to the right of vy v d) v

is convex and L lies to the left of v;v;4;.

Suppose that v; is reflex (resp. convex) and that F (resp. L) lies to the right

e —, E- 2
of vi4 vy (resp. vv;+1). In this ease, K remains unchanged.

In all cases, before proceeding to the next vertex v, the algorithm per-
forms a final update on both L and F.* Trace the boundary of K counterclock-

wise beginning with L (resp. F) until finding a vertex k; such that either k;y,

4 In general, whenever one of F or L was set to k" above, this final update will leave
that value unchanged. The exception is the special case where v; is convex and the line

segment T;0;4; contains both ¥ and k. In this instance, L must be revised a second
time.
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lies to the left of (resp. on or to the right of) vy k; or such that &;

at inlinity at the

L head. Set L = kj (resp. F = kj).

Lee and Preparata show that the algorithm runs in linear time since all
but two of the edges traced in atlempting to revise K are always removed, since

I"and L move around K only in a counterclockwise direction, and since for each

i
vi4 for which there exists a p € K, X a; < 3m, where a; represents the interior
g=1

angle of the triangle Apvjvj,, at p.

We can compute the kernel of a simple splinegon S also in linear time by
applying a modified version of their algorithm to its bounding polygon Q. The
modifications necessary to accommodate pseudo-vertices and their related
curved edges are derived from the following observations. For a point within a
splinegon to be visible from an edge e; which is concave-out, the point must lie

within the wedge at the pseudo-vertex e;* defined by the extension of the rays
—_— —

vie;" and vyype” (see Fig. 28a). Thus, a concave-out curved edge from v; to

vi41 defines the same visible region as would the pair of straight pseudo-edges

vie;” and e v;. If the edge is concave in, then a visible point must lie within

. e _—
the convex region defined by the rays e;'v; and e v;4; and by the curved edge

¢; from v; to v,y (see Fig. 28b). Thus, a concave-in curved edge from v; to vy,

defines a somewhat smaller visible region than that determined by the pair of

straight pseudo-edges v;e;* and ¢;" v;.

The only required modifications to the algorithm pertain to convex pseudo-

vertices. The efficacy of those modifications depends on the following lemma:
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b)

FIGURE 28. a) Region visible [rom an edge ¢; which is concave-out. b) Region visi-
ble from an edge ¢; which is concave-in.

Lemma. Given a simple splinegon S, at most one segment of a curved edge ¢;
can lie on the boundary of the kernel of S.

Proof. Suppose that e;; and e;p are two distinct segments of e;, in counter-

clockwise order, both of which belong to the boundary of the kernel of S. The

two segments are joined by a convex chain of straight edges. Let Kk,
represent the straight edge which immediately follows e;;. The line m.t.m..i must
contain some vertex ¢ of the bounding polygon @ lying on a chain of edges

which extends in counterclockwise order from ;4 to v;.

1) Suppose that kjk; contains ¢ (see Fig. 29a). Then some chain of edges
must join v; to ¢. At best, ¢ lies nearly at the point at infinity and a single
edge connects v; and ¢. Thus w_lm is nearly parallel to mu..ﬁ.i. Even so, the

edge v;q prevents e;; from participating in the boundary of K.

2) Suppose instead that k;k;4, contains ¢ (see Fig. 29b). Then some chain of

edges joins v;4; to ¢. But for that chain of edges to permit e;; to partici-

pate in the boundary of K, ¢ must lie to the left of k;v;1;. Then, however,
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boundary of k. O

i e

a) b)

FIGURE 29. Examples for Lemma.

1)

We make the following three modifications to the Lee-Preparata algorithm:

Upon reaching a fixed vertex v; which precedes a convex pseudo-vertex e;*,
stop after revising K but before making final revisions to F and L. Perform
the following computation before continuing. Suppose that the current
value of L is kj. Test k; in constant time to determine whether it lies to
the right of ﬂ If not, then mark the curved edge e; in the representa-
tion of S as vacuous, for in no way can it participate in defining the kernel
of § (see Fig. 30a). If it does, then test k; in O(B;) time to determine
whether it lies either on or to the right of e;. If this second test fails, then
mark the curved edge ¢; in S as potent and assign it a pointer to the edge

@Amh..i in K. Also mark the edge m.,_.mh.i in K as the tail edge for e;. The

curved edge e; may or may not participate in defining the kernel of S, but

- 60 - Bounding Polygon Approach

a search begh 1 the counterclockwise direction will

ng al k; and moving

vield the answer (see IMig. 30h).

If the second Lest succeeds, trace the boundary of A in the clockwise direc-

tion from k; until discovering an edge E, %, which intersects either ¢; or

TR - IR
viviyy- I no such edge exists, then the kernel of S is null and we halt (see

Fig. 30c). If the reported edge crosses ﬂ but does not cross e;, then
mark ¢ in S as vacuous (see Fig. 30d). If the reported edge does cross ¢,
then mark e; in § as potent, and mark k%, in @ as the tail edge for ¢;
(see Fig. 30e). In either of these last two cases, delete all vertices of K
strictly between &; and k4, in the clockwise direction. If e; is vacuous,
then these edges would have been deleted anyway in the processing of

pseudo-vertex ¢;. If ¢; is potent, then e; prevents these edges from contri-

buting to the boundary of the kernel of S,

When reaching a fixed vertex vy, after having just processed a convex
pseudo-vertex e;*, determine whether e; in S has been marked potent. If
so, perform the following computation before proceeding with the algo-
rithm. Suppose that the current value of F is k;. Since e; has been
marked potent, k; must lie to the right of ﬂ Test kj in O(B;) time to
determine whether it lies either on or to the right of e;.
a) If not, then add an extra pointer in the representation of the curved
edge ¢; in S to the edge k;_1%; in K and label the edge ;% as the
head edge for e;. The curved edge ¢; may or may not participate in

defining the kernel of S, but a search beginning at the tail edge, mov-
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€)

FIGURE 30. The five possible scenarios after revising K at a fixed vertex which pre-
cedes a convex pseudo-vertex.
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a) b)

FIGURE 31. The two possible scenarios after processing a pseudo-vertex associated
with a potent curved edge of S.

ing in the counterclockwise direction, and ending at the head edge will

yield the answer (see Fig. 31a).

b) If so, trace the boundary of K in the counterclockwise direction from
k; until discovering an edge EmFm+1 which intersects e;. Such an edge
must exist. Add a pointer from e; in S to the edge Ky kn4; and also

mark Epkms: in @ as the head edge for ¢; (see Fig. 31b). In this case,

delete all vertices of K strictly between k; and k,, in the counterclock-
wise direction. The curved edge e; prevents these edges from contri-

buting to the boundary of the kernel of S.

Next, we must guarantee that, as K is repeatedly revised, labels and
pointers to tail edges and head edges of potent curved edges are updated.
Also, edges which become vacuous must be so identified. The only
instances in which these updates must be made are those in which the
deleted edges of K include some portion of either one or both of the tail

edge Kk and head edge Kk, for some curved edge e;.

a) Suppose the deleted portion runs in the counterclockwise direction
from a point k', which lies between k4, and &, and ends at a point
k", which lies between k., and k'. In other words, the tail edge and

the head edge and all intervening edges are all deleted. In this case,
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ing Polygo

1. 32a).

ns in the counterclockwise direction

h)  Suppose the deleted pe

from a point &', which lies between kg y; and kg, and ends at a point
A", which lies between kyyy and &', In other words, both the tail edge
and the head edge are deleted, but some of the intervening edges

remain. Test &'&” for intersection with e;. If the entire segment lies to

the right of ¢;, then the kernel of §is null. Otherwise, mark £7&" both
as the new head edge and as the new tail edge. Adjust the pointers at

¢; (see Fig. 32b).

Use as many of the following as pertain, if and only if neither of the above

cases apply.

e
c) Suppose the deleted portion runs in the counterclockwise (resp. elock- )
FIGURE 32. Examples of preserving accurate labels for curved edges and their tail

wise) direction from a point &', which lies between k; and k., (resp. and head edges.

ky and kyyy). In other words, the interior part of the tail edge (resp.

¢ Lkl tail (resp. head) edge. Update the pointer at e; (see Fig. 32d).
head edge) is deleted. In this case, mark k&' (resp. k'kj4;), the

Suppose the deleted ti fi int &' th h both k; and
remaining portion, as the new tail (resp. head) edge for e;. Update the ) PP RRCAERI s E R RO rough bo P

k resp. k; and & and ends at a point k£”. In other words, the
pointer at e; (see Fig. 32¢). t+1 (resp. ky 1) P! r words,

: ; . entire tail (resp. head) edge is deleted. Mark Fk" as the new tail
d) Suppose the deleted portion runs in the clockwise (resp. counterclock-

3 . . L (resp. head) edge and update the pointer at e; (see Fig. 32e).
wise) direction from a point &', which lies between k and k., (resp.

ky and ki), to a point k”. In other words, the exterior part of tail These three routines provide the basis for the following theorem:
edge (resp. head edge) is deleted. Test the point k' to determine Theorem 8. The kernel of a simple wvwmzmmo: P of N vertices can be deter-
whether it lies to the right of e;. If so, then mark Kk" as the new tail mined in O((B;+ C;) N) time.

(resp. head) edge. If not, then mark Ek,,, (resp. £'k;) as the new
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Proof. Delermining the hound polygon requires O(CyN) time. The ent

Lee-Preparata algorithm runs in Q(N) time. If no tracing is done, then
modilication #£1 requires constant time. If n edges are traced, then n—1 edges
are deleted. Thus the tracing and the deleting may be eharged to those edges,
and only O(#,) time needs be charged to mu.a_. call to modification #1. The
same argument applies to _:o&mnw:o:.%m. Whenever the original algorithm
revises K by deleting all vertices in a particular direction between k' and &, it
explicitly traces all of the intervening edges. Thus the information about the

relative positioning of head and tail edges can be computed at the same time

and all marks and pointers may be updated, incurring at most a constant
charge per edge. When the main algorithm is complete, we perform one final
trace around K. We test the edges between each tail-head pair for intersection

with the respective curved edge, and update K aceordingly. This single pass

around K and S requires O(B;N) time. O

The kernel of the bounding polygon is a subset of the kernel of the spline-
gon. A concave-out curved edge defines the same visible region as do the pair
of associated pseudo-edges, but a concave-in curved edge defines a somewhat
smaller visible region than that determined by the associated pseudo-edges. To
compute the kernel of a splinegon, therefore, we run the original algorithm on
the bounding polygon, but provide special processing for pseudo-vertices, and

the adjacent pseudo-edges, associated with concave-in splinegon edges.
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4.5. Computing the Convex Hull of a Simple Splinegon (revised 6/817)

Schifler and Van Wyk [SV] have already extended the Graham-Yao algo-
rithm for computing the convex hull of a simple polygon [GY] to process piece-
wise smooth Jordan curves. To do so, they first revise the Graham-Yao vertex-
based algorithm to run as an edge-based algorithm instead. Then they use the
direct approach described in the next chapter to extend the algorithm. Cw._sm.

the bounding polygon and special procedures for pseudo-vertices, we can extend

the vertex-based algorithm directly.

The Graham-Yao algorithm assumes that the vertices wvy,va, " " Up,
Uma1s ©* * vy of the simple polygon P are given in clockwise order around the
boundary, that v, is the vertex of minimum z-coordinate, and that v, is the
vertex of maximum z-coordinate. Define the path along P from v; to vy as a
pocket of P if no vertex along the path lies to the left of the directed line seg-
ment ﬂcﬁ call ﬂ:u the top of the pocket; say that a vertex lies inside (resp. out-
side) the pocket if it lies (resp. does not lie) in the closed region bounded by the
pocket and its top. Graham and Yao characterize the task of finding the con-
vex hull of P as that of identifying a circular list of vertices such that each con-
secutive pair delimits a pocket of P and such that the pocket tops and the ver-
tices form a convex polygon (see Fig. 33a). The set of vertices of the convex
hull must include both v; and v, and may not include any vertex lying inside a
_uoﬂw.oe of P, except for its endpoints. Thus the convex hull problem can be
divided into two symmetric pieces: compute the top hull (resp. bottom hull) of

P, which corresponds to the left hull of the oriented chain vy,%2,..Vp_1,m



(resp. Uy, Vppgry---Un, ).

The left hull algorithm maintains a stack Q of candidate hull vertices,
where gq (resp. q) represents the bottom (resp. top) element of the stack, with
the invariants that gg,qy, **-,q always form a convex polygon and for
2 <i <t gi—y,q always delimit a pocket of P. To find the top hull of P, the
algorithm begins by setting g9 = vy, ¢, = v;, and ¢5 to be the first vertex lying

- - — . .
to the left of the directed line segment vyv,. After pushing a vertex v; onto the
stack, the algorithm moves from vertex to vertex along the chain, searching for
the first vertex z outside the current convex polygon. If v;,, lies to the left of
— . - . 0
gi—1 g1, then it automatically becomes 2. Otherwise, the algorithm tests whether
vi4; belongs to the pocket with endpoints ¢,_; and g, If so (resp. not), then z
1 . —_— S
will be the first successor of v;4; to lie to the left of ¢,_,q; (resp. g;q0). Before
inserting 2 into the stack, as many vertices are popped from the stack as neces-
. . ———t - . -
sary so that z lies to the right of the new ¢;_,g;. The algorithm uses linear time
and space, as each vertex not rejected outright is inserted into the stack exactly

once and deleted at most once. At termination, the path from ¢ to ¢¢ along P
also forms a pocket, and thus Q deseribes the top hull of P.

The splinegon algorithm is nearly identical to the polygon algorithm, but it
must consider both the fixed vertices and the pseudo-vertices of the bounding
polvgon. In this application, however, we never compute the coordinates of the
pseudo-vertices explicitly; each pseudo-vertex merely points to a description of
the corresponding curved edge. Thus, we need to define what we mean by the

—
directed line segment vw where at least one of v and wis a pseudo-vertex:
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1) :ebed  line segment of maximwm  length which
extends from v; Lo a point y on_e; and which supports ¢; so that each point
of ¢; lies on or to the right of ve;*.

B

2) i vy represents the directed segment of maximum length which
extends from a point x on ¢ Lo v and which supports ¢; at z so that each
point of ¢; lies on or to the right of ¢;*v;.

St

3) e'e;’ represents the directed line segment which extends from a point x on

e; to a point y on e; and which supports e; at = and e; at y so that each
T 7 ) 8. 1 gl

point of either ¢; or ¢; lies on or to the right of e e;".

b) d) n

FIGURE 33. a,b) The convex hull of a simple polygon and a simple splinegon; ¢) the
polygon pocket test; d,e,l) the splinegon pocket test for convex, reflex and fixed .

Next, we augment our definitions of what it means for a vertex z to lie to the

left of vur

— B —
1) ej' lies to the left of vw if any portion of e¢; lies to the left of vw.
—2 — . -
2) If ve;* (resp. ¢;' w) intersects e; only at v;yy, we shall consider vy to lie to

the left of the respective directed line segment.

Given these augmented definitions, the convex hull of a simple splinegon P can
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now be identified by a circular subsequence of the vertices of the bounding
polygon Q such that each consecutive pair delimits a pocket and such that a
convex splinegon is formed by the pocket tops, the fixed vertices, and the por-
tions of those edges identifed by pseudo-vertices which join adjacent pocket
tops (see Fig. 33b).

As in the polygon case, the circular list of vertices is determined by two
applications of the left hull algorithm. However, we must first insert the points
of minimum and maximum a-coordinate as fixed vertices and renumber the ver-
tices accordingly. We must also define the test to determine whether a vertex v
immediately succeeding ¢; and lying on or to the right of g lies inside a
pocket delimited by ¢;_; and ¢;. In the polygon case, the pocket test is simple:
for g; = v;, vy lies inside (resp. outside) the pocket if it does (resp. does not)
lie to the left of the directed line segment g (see Fig. 33¢). In the splinegon
case, we have multiple cases. If ¢; is a reflex pseudo-vertex, then v belongs to
the pocket (see Fig. 33d). If ¢; is a convex pseudo-vertex, then v does not belong
to the pocket (see Fig. 33e). If ¢; is a fixed vertex v;, let w represent whichever
of v,y and v;;; lies closest to the line ! containing m“..ﬂ._ﬂm Find the intersection
with both e;_; and ¢; of the line passing through w parallel to I. The intersec-
tion either consists of one component from each edge, or of both w and a second
point from one edge and one component from the other. In the latter case, dis-
card w. Now, if the one component from e; is to the left (resp. ..mmw& of the one

component from e;_;, then v does (resp. does not) belong to the pocket (see Fig.

331).
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Theorem 9. The convex hull of a simple splinegon of N vertices can be com-
puted in time and space O((B;+ Cy+ D) N).
Proof. As modified, the Graham-Yao algorithm will provide a list of vertices
describing the left hull of each half of the splinegon. That list will include both
fixed vertices and pseudo-vertices. A single transversal of that final list ean
determine which portion of each of the curved edges associated with a listed
pseudo-vertex actually lies on the convex hull. Then the convex hull is formed
by linking fixed vertices and curved segments with straight segments. O

In this algorithm, the structure of the bounding polygon was used more
than the polygon itself. In fact, neither the pseudo-edges nor the pseudo-
vertices were ever explicitly determined, for the approximation they would have
provided for curved edges would not have been sufficiently accurate to decide
which edges participate in the convex hull. The vertex list for the bounding
polygon, however, did contain an entry for each non-straight edge of the spline-
gon. Thus we could apply the original polygon algorithm to the bounding
polygon and yield the convex hull of the splinegon merely by adding special pro-
cedures for processing those vertices which were really pointers to curves rather

than vertices.

4.6. Discussion
The bounding polygon approach is more versatile than the carrier polygon
approach. When computed explicitly, it provides a good approximation for the

splinegon. A convex splinegon has a convex bounding polygon. A splinegon is
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monotone if its bounding polygon is monotone. A splinegon has a kernel only il
the edges of its bounding polygon define a non-empty visible region. The
efficacy of the bounding polygon is due in large part to the fact that for many
calculations on polygons, or on splinegons, attention need be given only to ver-
tices at reflex angles, interior angles measuring more than 180 °. A splinegon
whose edges are all concave-in has reflex angles only at fixed vertices, and the
adjacent pseudo-edges accurately determine the angle at a fixed vertex. A
curved edge which is concave-out corresponds to a polygonal chain composed
entirely of reflex angles. The associated pseudo-vertex and the adjacent

pseudo-edges adequately approximate it.

As demonstrated in Section 4.5, the bounding polygon provides an alterna-
tive tool for expressing the splinegon itself. It allows a vertex-based polygon
algorithm to be extended to splinegons with its structure intact. It also allows
the creators of new algorithms to write them in a general format which encom-
passes splinegons, but with the more restricted polygon algorithm clearly visible
within. In either case, separate procedures exist for the processing of fixed ver-

tices and for the processing of pseudo-vertices.

It is important to note that the bounding polygon of a simple polygon need
not be simple. Nonetheless, algorithms on simple polygons extend to simple
splinegons using the bounding polygon technique, whether or not the bounding
polygon is simple. For example, we may compute the kernel of a simple
starshaped splinegon using a non-simple bounding polygon which clearly has no

kernel.

e, [

Chapter 5

Algorithms Featuring the Direct Approach

5.1. Direct Approach

In the previous two chapters, we have presented two distinet methods for
extending polygon algorithms. The carrier polygon approach primarily applies
to extensions of algorithms on convex polygons. The bounding polygon
approach has particular application in the extension of vertex-based algorithms.
In general, however, edge-based algorithms need neither the artifice of focusing
on the carrier polygon nor the artifice of focusing on the bounding polygon.
Where the original algorithm considered the line segment from v; to vy, the
revised algorithm considers the curved edge e; which joins v; to v;y;. All that is
needed is a revised procedure for processing the individual edges which accounts
for the greater freedom enjoyed by curves.

In this chapter, we show how this direct approach enables the computation:
of the intersection of two convex splinegons, the computation of the horizontal
visibility information for a simple splinegon, the decomposition of a simple
splinegon into monotone pieces, the detection of the intersection of two simple

splinegons, and the determination of the convex hull of a simple splinegon.

5.2. Computing the Intersection of two Convex Splinegons

As our first example of the success of the direct approach, we extend the

method of [Sh1] to compute the intersection of the two convex splinegons P and
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Q, each of at most N vertices. In the original algorithm, Shamos finds a point
in the interior of one polygon and develops separate procedures for the cases
where the point lies within the second polygon or lies in its exterior. To sim-
plify the algorithm, we first use the technique of section 3.3 to determine a
point in the intersection of the two splinegons. This process requires
O(Cilog N + A,+ B;) operations. In a constant number of additional opera-
tions, we can move this intersection point to get a point x which is interior to
both P and @ or we can determine that the splinegons are tangent and no such

point exists.

Let z be the origin of a polar coordinate system. Draw rays from z through
each of the vertices of P, dividing the plane into sectors. For each vertex of Q,
determine in which sector of P it lies. Although the first search may cost
O(log N) time, the entire process may be completed in O(N) time by proceeding
sequentially around Q. Once the sector in which a vertex lies has been

identified, O(B,) time determines whether the vertex is interior or exterior to P.

Scan around @ once, examining all pairs of consecutive vertices g;,qi4y. If
both vertices are in the same sector, then use A, time to test the arc joining
them for intersection with the bounding arc of P. The number of possible solu-
tions is unlimited by the convexity restraint, but must be bounded by O(4,).
If the vertices lie in different sectors, then the arc joining them must be tested
for intersection against the bounding arcs of all of the intervening sectors. Since
no backtracking is done, all intersection points can be determined in O(A;N)
time. The intersection consists of chains taken alternately from splinegons P

and @ with the intersection points in between.
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Theorem 10. The intersection of two convex splinegons of at most N vertices

each can be computed in O(A N + Cjlog N + B,) time.
Proof. As described above. O

Shamos’ original algorithm made many assumptions about the possible
intersections between edges. If a pair of consecutive vertices g¢;,¢;4+; lay in the
interior of P, he concluded that the edge joining them also belonged to the inte-
rior to P and could not intersect the boundary of P. If one vertex were inside P

and one were outside, but the two vertices lay in the same sector, then exactly

one intersection could occur between the edge g;¢;+; and the bounding edge of
the sector. If the two vertices lay in different sectors, then g¢;¢;4; would inter-
sect the boundary of P extending from one sector to the other exactly once. If

the two vertices both lay outside of P and in the same sector, then the edge

9i¢i+1 also lay outside of P. If the two vertices belonged to different sectors,
however, then the edge g;¢;;; could intersect the boundary of P extending from

one sector to the other up to two times.

All of these assumptions hold when edges are line segments, but cease to be
true when edges are allowed to be curves. Our modification of Shamos’ algo-
rithm consists of removing all of these assumptions and inserting additional
tests for the intersection of pairs of edges. Despite these additional tests, the

time required by the algorithm remains logarithmic in V.
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5.3. Computing the Horizontal Visibility Information for a Simple

Splinegon and Detecting the Simplicity of an Arbitrary Splinegon

Tarjan and Van Wyk [TV] give an O(Nlog log N)-time algorithm for com-
puting the internal horizontal vertex visibility information for a simple polygon
of IV vertices. The horizontal line segments which join a vertex to its visible
edge or edges define a partition of the polygon into trapezoids. Assuming that
no polygon vertices have the same y-coordinate, each trapezoid contains exactly
two polygon vertices: mbo on its top edge and one on its bottom edge. By using
their O(Nlog log N)-time algorithm to compute both the internal and the exter-
nal horizontal vertex visibility information for a polygon, they can detect
whether a polygon is simple in O(V) additional time. Both algorithms extend

to splinegons using the direct approach [TV].

In its original form, the horizontal visibility algorithm assumes that edges

possess the following two properties:
1) each edge crosses any horizontal line at most once;

2) if a set of edges crosses two horizontal lines, the order in which they cross

the horizontal lines is the same on both lines.

Splinegon edges will also satisfy these two properties provided that they are all
monotone in the g-direction. Thus, before applying the Tarjan-Van Wyk algo-
rithm, we trace around the splinegon, determining the maximum and minimum
point of each edge e; in the vertical direction. Whichever of these points is not
already a vertex of the splinegon must be inserted as a vertex in the appropri-

ate position. This modification requires O(CN) time, and at most 2N new ver-
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tices are added. Once this modification has been made, the algorithm runs
unchanged except for the fact that it computes the intersection of horizontal
lines with curved edges rather than straight edges and reports trapezoids
bounded by a pair of horizontal line segments and a pair of y-monotone curved

edges. The algorithm runs in O(Nlog log N + (B;+ C;)N) time.

The original algorithm for simplicity testing possesses a different assump-
tion about the behavior of edges: two edges intersect in their interiors if and
only if when the endpoints are ordered by y-coordinate the edges intersect the
horizontal lines through the middle two endpoints in different order. Although
this property holds when all edges are line segments, it is invalid for curved
edges. Tarjan and Van Wyk accommodate this discrepancy by adding a final
stage to the splinegon version. If the splinegon still appears to be simple after
running the original algorithm, they test the pair of curved side-edges from each
of the trapezoids reported in either iteration of visibility testing for intersection.
If no intersections are found, the splinegon is indeed simple. This revised algo-
rithm runs in O(N log log N + (A;+ B+ C;) N) time.

5.4. Decomposing a Simple Splinegon into Monotone Pieces®

Given the horizontal-vertex-visibility partition of a simple polygon, a
monotone decomposition of the polygon can be computed in linear time by
adding an edge between the polygon vertices of any trapezoid which has a

polygon vertex lying in the interior of one of the parallel sides. Such a vertex is

5 Joint work with D.P. Dobkin and C.J. Van Wyk [DSV].
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called a y-notch. In decomposing a simple splinegon into monotone pieces, we
must recognize that the two vertices we wish to join may not be visible to each

other.

Theorem 11. A simple splinegon of N vertices can be decomposed into the
union of monotone pieces with simple carriers in O(Nlog log N + (B;+ Cy)N)

time. The total number of vertices in the decomposition is O(N).

Proof. To decompose a simple splinegon S of N vertices into the union of
monotone pieces, we begin by picking a distinguished direction. Next, we adjust
the coordinate system so that the distinguished direction is the y-direction.
Applying the Tarjan & Van Wyk horizontal-visibility algorithm to S will then
yield trapezoids with curved side-edges. For each trapezoid containing a vertex
v of S identified as a y-notch, a new edge is added. As in the polygon case, we
add the line segment [ which connects the two vertices of S lying on the tra-
pezoid, provided that the interior of ! does not intersect either side-edge. Oth-
erwise, we determine the point z closest to v at which [ intersects a side-edge
and add the line segment vz. In the second instance, we add a new vertex to
the splinegon, but the total number of vertices added in this way is at most the

number of y-notches.

After this decomposition, each splinegonal region is monotone, but indivi-
dual carrier polygons need not be simple. To guarantee simplicity, trace each
splinegon, top to bottom, around both sides simultaneously. Whenever two
polygon edges cross each other, match the nearest vertex on one side with a ver-

tex of the same y-coordinate on the other side (see Fig. 34). O
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a) b)

FIGURE 84. The decomposition of a simple splinegon § into the union of monotone
pieces: a) one carrier polygon is non-simple; b) vertices have been added to make all
carrier polygons simple.

5.5. Detecting the Intersection of two Simple Splinegons®

Detecting area intersection can be an easier problem than detecting boun-
dary intersection. Chazelle and Dobkin showed that {YN) is a lower bound on
the time required to detect the boundary intersection of two convex polygons of
at most N vertices, even if preprocessing is allowed, making the Shamos algo-
rithm for computing the intersection optimal for boundary intersection detec-
tion as well. Area intersection detection, however, can be completed in
O(log N) time [CD2]. The algorithm presented in Section 5.2 will detect the

boundary intersection of two convex splinegons of at most N vertices in

O(A,;N + Cilog N + B;) time, while the algorithm presented in Section 3.3

6 Joint work with D.P. Dobkin and C.J. Van Wyk [DSV].
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detects area intersection in O(A |+ B+ C;log N) time.

Up until now, the best algorithm for detecting either the boundary inter-
section or the area intersection of N-sided simple polygons required O(N log N)
time [SH]. In this section, we present a new algorithm which detects the boun-
dary intersection of two N-sided polygons in O(N log log N) time and, more
generally, the boundary intersection of two N-sided splinegons K; and K3 in
O(Nloglog N+ (A;+ B+ C;) N) time. By adding a step which tests
whether one splinegon lies within the other, we detect area intersection in the

same amount of time.

Our approach is to create from K; and K, a merged splinegon M such
that the boundaries of K; and K, are disjoint if and only if M is simple.
Splinegon M consists of the edges of K; and K, together with a “bridge”
between them which is composed of a constant number of edges. One way to
find such a bridge was proposed by Hershberger [He]; it requires a linear-time
algorithm for computing the convex hull of a simple splinegon [SV], and uses
two cases depending on whether the convex hull of one splinegon contains the
other. Our method for finding a bridge uses linear-time Jordan sorting [HMRT],
an algorithm that plays a crucial role in the algorithms discussed in Section 5.3

for computing horizontal visibility information and for detecting simplicity.
Theorem 12. The boundary intersection of two N-sided simple splinegons can
be detected in O(Nlog log N + (A,+ B+ Cy) N) time.

Proof. Our algorithm begins by using O(C|N) time to determine the y-extent

(minimum and maximum g-coordinates of any point) of K, and Kj. If the ¥
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extents of K; and K, do not overlap, then K| and K, do not intersect. Other-
wise, let y., represent a value which lies within both g-extents. Without loss of
generality, we assume that each edge of K, and K, intersects the line y = y .y

in no more than two points.”

For each 7, we use O(B;N) time to compute the sequence of points (py;) at
which K; crosses y = y.; in the order in which they appear around the boun-
dary of K;. Next we use the linear-time Jordan sorting algorithm [HMRT] to
determine o;, the sequence (p;;) sorted in increasing order of s-coordinate. A
linear-time scan of o; in order of increasing z-coordinate allows us to label each
point: the label fouch; is assigned to the point py; if the boundary of K; does not
cross ¥ = Y at pyj; the label in; (resp. out;) means that the En.ﬁ.._o_. of K; lies
to the right (resp. left) of p;;.

Next, we merge o, and oy to form a single sorted sequence o. Let o
represent the sequence o with all points labelled touch; removed. We now per-
form a single scan of o and ¢'. If o' contains a sequence of the form
<ing,ing,out;,outy>>, then the boundaries of K; and K, must intersect. Oth-
erwise, we pick any consecutive pair of crossing points ¢; € K; and ¢y € Ko,
points that are labelled with different subscripts. Since y.,; belongs to the y-

extent of both splinegons, we are guaranteed that such a pair exists.

The following process creates a new splinegon M such that the boundaries

of K; and K, intersect if and only if M is not simple: pry each splinegon Kj

7 We can remove this assumption by keeping only the leftmost and rightmost points of
each connected component of the intersection. This technique is a generalization of
that used by Van Wyk [V].
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slightly open at g;, so that g; is split into two points ¢f and g7, with ¢} above

; form M by joining the “slightly opened” K, and K, with the two line seg-

ments qj g3 and ¢y gz. These edges do not cross each other, and they are

chosen so that they do not cross any edge of K, or K, (see Fig. 35).

FIGURE 385. Merging K, and K, to form a single splinegon.

Finally, we use the algorithm described in Section 5.3 to test the simplicity
of M in O(Nloglog N+ (A;+ By+ C1) N) time. This time represents the
dominating factor in the overall time complexity of the algorithm. O
Corollary. The area intersection of two N-sided simple splinegons can be
detected in O(Nlog log N + (A;+ B;+ C;) N) time.

Proof. Use the above algorithm to detect whether the boundaries of the two
splinegons intersect. If they do not, we can determine whether one splinegon

lies inside the other as follows. If the interiors of the two splinegons are
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disjoint, then o' must consist of repeated pairs of the form <in;out;>. If K,
lies inside Ko, then o' contains sequences of pairs of the form <liny,out;>
nested within pairs <ing,outy>. If K, lies inside K;, then o contains
sequences of pairs of the form <ling,outy> nested within pairs <lin,out,>.
These three cases exhaust the possible relationships between K; and Kj since

their boundaries are disjoint. O

5.8. Determining the Convex Hull of a Simple Splinegon

To extend the algorithm of Graham and Yao [GY] to compute the convex
hull of piecewise-smooth Jordan curves, a subset of the simple splinegons,
Schiffer and Van Wyk [SV] first revised the Graham-Yao vertex based algo-
rithm to run as an edge-based algorithm. Thus, instead of maintaining a stack
of vertices which belong to the convex hull, the Shaffer-Van Wyk algorithm
maintains a stack of edges which participate in the convex hull. The main cal-
culation on edges in the revised algorithm consists of computing a half-plane of
desired orientation which contains both edges and whose bounding line supports
both edges. All half-planes possessing the final two properties have bounding
lines defined by endpoints of the edges. In the curved world, however, deter-
mining the desired half-plane will require computing tangents to curves.
Nonetheless, this algorithm is extended directly to piecewise-smooth Jordan

curves by adapting the procedures for processing edges.




- 83 - Direct Approach

5.7. Discussion

In this chapter, we have demonstrated that an edge-based polygon algo-
rithm can be extended directly to splinegons, without using the artifice either of
the carrier polygon or the bounding polygon. The generalization of the assump-
tions about the behavior of edges is the only modification necessary. Two edges
of a polygon intersect at most in a single point, or perhaps a single line seg-
ment, whereas two splinegon edges may intersect arbitrarily often. A line sup-
porting two edges of a polygon passes through at least one vertex of each edge,
whereas a line supporting two splinegon edges may contain just one interior
point from each edge. A polygon edge is always monotone in every direction
but one. Some splinegon edges are not monotone in any direction, but every
splinegon edge can be divided into at most three pieces such that each piece is
monotone in the chosen direction. Two non-horizontal polygon edges intersect
in their interiors if and only if, when the endpoints are ordered by y-coordinate,
the edges intersect the horizontal lines through the middle two endpoints in

different order. Even for y-monotone splinegon edges, this test proves nothing.

Revision of the assumptions about the behavior of edges does enable
polygon algorithms to be extended directly to splinegons. We began the chapter
by extending the Shamos algorithm for intersection computation. Next, we
cited the Tarjan-Van Wyk results in horizontal visibility computation and sim-
plicity testing, which apply both to polygons and to splinegons. In Section 5.4,
we extended the polygon algorithm to decompose simple splinegons into mono-
tone pieces. In Section 5.5, we presented a new, more efficient algorithm for

detecting the intersection of simple polygons and/or splinegons. Finally, we
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cited the work of Schaffer and Van Wyk in extending the Graham-Yao algo-
rithm for computing the convex hull of a simple polygon to piecewise smooth

Jordan curves.
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Chapter 6

Decomposition Algorithms and the Limitations ol Splinegons

6.1. Introduction

Many geometric algorithms begin by decomposing simple polygons into a
disjoint set of monotone picces, convex pieces, or triangles without adding any
new vertices. [Fournier and Montuno [FM] show that polygon decomposition into
the union of convex polygons, of star-shaped polygons, of monotone polygons,
and of triangles are all linear-time equivalent to solving the all vertex-edge visi-
bility problem. As discussed in Chapter 5, Tarjan and Van Wyk [TV] have
recently demonstrated that all horizontal-visibility information can be com-
puted in time O(Nlog log N). Thus, decomposition of a simple polygon into
convex polygons, starshaped polygons, monotone polygons, and triangles can all

be accomplished in O(Nlog log N) time.

In general, however, splinegons do not have the same flexibility. We can
determine whether a given simple splinegon is convex, star-shaped, or monotone
in O(N) time, as described in Chapters 3 and 4. The splinegon extensions of
the Tarjan-Van Wyk algorithms allow us either to decide whether a given
splinegon is simple or decompose a simple splinegon into the union of monotone
pieces all having simple carriers in O(Nlog log ) time, as discussed in Chapter
5. But some splinegons are inherently non-convex and can never be decomposed
as the union of convex pieces. In addition, many splinegons cannot be triangu-

lated without the addition of Steiner points.
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6.2, Decomposition into Convex Picces®

The problem of decomposing a simple polygon into

vex pieces has
reecived atlention in various forms for several years [I°I', LI'1, Se, CDI, IKS2].
The motivation for this decomposition is to solve problems on more complicated
general polygons by combining solutions to the problem on convex subpolygons,
so decomposition into an infinite number of convex pieces is not interesting.
Thus we use the term “convex decomposition” to mean a decomposition into a

finite number of convex pieces.

Any polygon can be decomposed into a union of convex pieces, U A; [FP,
1

LP1, Se, CD1, KS2]. Although as mentioned above, a polygon can be decom-
posed into a union of convex pieces in O(Nlog log V) time, convex decomposi-
tions which are optimal in some particular sense require more computation.
Decomposing a simple splinegon into the union of convex pieces, however, is
problematic. A splinegon with a single edge which is concave-out can never be
decomposed as a union of convex pieces. At best, such a splinegon could be
expressed as the union of the convex decomposition of the carrier polygon and
the union and difference, as appropriate, of the convex S-segs. This scheme has
several problems. First of all, the S-segs may not be disjoint. Thus the union
of the convex decomposition of the carrier polygon would have to be followed by
a carefully ordered chain of unions and differences of convex S-segs in order to
be accurate. Computing the order could be costly, the ordering prevents the

parallelization of algorithms using the decomposition, and the size of the

& Joint work with D.P. Dobkin and C.J. Van Wyk [DSV].
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wposition must be {N).

The second flaw, however, is more eri A polygon can be decomposed

as Lhe union of convex pieces il and « il it is simple, but carrier polygons for

simple splinegons need not be simple. Creating a simple carrvier for a splinegon
whose ecarrier polygon is non-simple may require quadratic time and space. We
demonstrate this fact by constructing an N-sided splinegon S whose smallest
simple carrier polygen has D?ZJ vertices.

We begin by constructing an equilateral, equiangular polygonal path € of k
segments, with vertices vg,vq,...,v_1, £ > 2, such that C together with the line

segment vpv;_; bounds a convex region. Let R be the (possibly infinite) open

region bounded by vgu;p_; and the lines that contain vov, and v_sv;_;, whose
intersection with C'is empty. Let k; be a point interior to the region bounded
by C and vyv;_; and ho be a point in region R; let H = hihs. Let p and g be
points in R such that pvy and gqui_; do not intersect H, but pg does intersect H.
The following lemma implies that we can construct a splinegon edge from p to ¢
that fits C ‘“very tightly” in that any inscribed path must contain at least k
segments:

Lemma. There exists a curve D that joins p and ¢ such that

1) D does not intersect H,

2) D U pq bounds a convex region, and

3) any polygonal path inscribed in D that does not intersect H U C contains

at least k segments.
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Proof. ISrect perpendi r bisectors to each of the segments of . Deline

points w; on Lhese perpendicular bisectors as follows: w_ = p; for 0 < ¢ < k—1,

let wy be the intersection of the line through w;,_y and v and the perpendicular
biscetor of the edge vviy;. Take D to be any convex curve belween p and ¢
that passes between each point w; and the corresponding segment of €.

The perpendicular bisectors containing the points w; define sectors with
respect to the center of the curve C. The key observation to the proof of the
lemma is that any inscribed path in edge D that does not cross H must have a
vertex in each of these sectors: any segment with endpoints on D that are not in
adjacent sectors must intersect € by the way that the points w; were chosen.
Since there are k sectors, any inscribed path in D that does not cross II has at

least k vertices (see IMig. 36). O

FIGURE 36. Any path inscribed in D that does not intersect either the polygonal
path vg,...,v, or the line segment H must contain at least 5 segments.




- 89 - Decomposition Algorithms

Notice

Diat lies between D and ¢ has the same inscribed-

I oany ¢t

t splinegon S is now clear: we pack

paths property as D. The way to cons

many cu

d edges between ¢ and 15 each edge adds y one vertex Lo S, but

adds at least & verlices to any simple carrier polygon.

To be more precise, pul k verlices on the line segment vop and k ve

on the line segment %_;g. Join vy to ki, and ¢ to hy with line segments. Con-
struct 2k+1 curved edges that complete the boundary of S by joining v, to p

so that

1) the boundary of S is simple;

2) each vertex of vgp, except for vg, is adjacent to two vertices on on v q;

3) each vertex of v;_; ¢, except for g, is adjacent to two vertices on on vgp.

Splinegon S has 3k-+4 vertices. Let P be a simple carrier polygon for S. By
the above lemma, P has at least k vertices on any curved edge of S, of which
k—2 are not original vertices of S. Since S has 2k+2 curved edges, P has at
least (2k + 2)(k — 2) + 3k + 4 = 2k + k vertices. This construction can obvi-
ously be modified to construct splinegons whose number of vertices when
divided by three leaves a remainder of 0 or 2. Thus we have the following

theorem:

Theorem 13. For any N, there exists a simple splinegon with a non-simple
carrier polygon of N vertices for which any simple carrier polygon has YN?)

vertices.

Proof. As described above. O
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Given a simple splinegon with a non ple earrier polygon, however, we

have another option. By adding O(n) vertices and edges, we ean decompose a
g Bes, I

Lo the

simple splinegon ion of a colleetion of simple, monotone splinegons all

defined on

e carrier polygons, as we demonstrated in Section 5.4, If convex
pieces are needed, then each of these splinegons can be expressed as the union
of the convex decomposition of the carrier polygon and the union and diflerence,

as appropriale of the convex S-segs.

Theorem 14. A simple splinegon of N vertices can be decomposed into the
union of the union and difference of a collection of convex pieces in
O(Nlog log N + (By+ C;)N) time.

Proof. Decomposition of a simple splinegon into the union of a collection of
monotone splinegons on simple carriers requires O(Nlog log N + (B)+ C1)N)

time, as demonstrated in Section 5.4. Determining a convex decomposition of a

simple polygon requires O(Nlog log N) time, as explained in Section 6.1. u]

This approach provides a convex decomposition for any simple splinegon,
but the size of the decomposition may be unnecessarily large. When a y-
monotone splinegon S with a simple carrier polygon P is decomposed naively by
forming a convex decomposition of P, then uniting it with the concave-in S-segs,
and then subtracting the conecave-out S-segs, the resulting decomposition has
size (Y N).

An alternative approach is to form a splinegon S’ by replacing each
concave-out edge of the y-monotone S by the corresponding edge of the carrier

polygon. The splinegon S’ can be efficiently decomposed into the smallest possi-
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number of convex pieces, opt(S').

vex pieces
[Gr, CDI1, KS].
Proof. The existing polygon algorithms all focus on reflex angles. Thus, the

ot

edges added to decompose the splinegon S’ are identical to the edges added to

decompose its bounding polygon @'. Consequently, opt(S’) = opt(Q'). O
Given the convex decomposition of §’, the concave-out S-segs can be sub-

tracted from the result to give a convex decomposition of S.

Corollary. A monotone splinegon S can be decomposed into the union of the
convex decomposition of S’ (as defined above) and the difference of the
concave-out S-segs. The number of pieces in the convex decomposition is

opt(S') + 1{S), where 1{S) is the number of concave-out S-segs in S.

6.3. Triangulation

Dividing an N-sided convex polygon P into triangles is a simple linear-time
procedure. By convexity, any diagonal, an open line segment joining two non-
adjacent vertices, lies in the interior of P. Any collection of N—2 non-
intersecting diagonals divides P into triangles. Triangulating a convex spline-
gon S is equally easy. Any collection of diagonals which triangulates P also tri-

angulates S, and each triangle in the decomposition is convex.

Triangulation of simple splinegons, however, is complicated. The splinego-

nal trapezoid depicted in Figure 37a can never be triangulated merely by
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adding straight edges between existing vertices. Nor will eurved edges without
inflection points between existing vertices suflice. The minimum-size triangula-

tion results from stretehing copies of the two longer curved edges toward each

oth

rountil they touch at a po t that point and the resulting lour

ved edges.

a) b) c) d)

FIGURE 37. The triangulation of trapezoids.

If triangulation requires the creation of new curved edges, then its useful-
ness becomes questionable. Each splinegon, however, can be triangulated using
a linear number of line segments and a linear number of new.vertices. Comput-
ing horizontal visibility information yields a decomposition of an arbitrary
splinegon into a linear number of trapezoids. Each y-notch produces at most
three new vertices in the trapezoidal decomposition; the other vertices each pro-
duce at most one. A trapezoid whose side-edges are both concave-in is convex
and can be triangulated by adding either diagonal; no new vertex is necessary

(see Fig. 37b). If one side-edge is concave-in and one is concave-out, determine
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the point on the concave-out edge which is closest to tl segment defined

by the vertices of the concave-in edge; ¢ segments from those verlices Lo
A g g

the new point (see IMig. 37¢). I both side-edges are concave-oul, add the points

of minimum separation on the two curved edges as vertices. Find a line sup-
porting one of the side-edges at its new vertex, and add the portion of that line
which conneets the top and bottom edge of the trapezoid. Add the two points
of contact with the trapezoid as vertices; finally, triangulate the interior

polygon formed by the new vertices (see Fig. 37d). At most four vertices are

added to triangulate any trapezoid.

In polygon algorithms, triangulation has two major selling points: all
regions can be triangulated without adding any new vertices; triangles are
always convex. A prime example of the usefulness of triangulation is
Kirkpatrick’s optimal algorithm for planar point location [Ki].® He begins by tri-
angulating every region of the given planar subdivision. A hierarchy is then
established by removing an independent set of vertices and retriangulating.
The efficiency of the algorithm depends on the fact that the number of vertices
constantly decreases, and for each vertex discarded, the number of triangles

decreases by 2. In the splinegon case, even allowing curved triangulations,

there is no such guarantee.

Suppose we wish to locate a query point within a planar collection of con-

vex objects. Using Kirkpatrick’s approach, we would first determine a rectangle

9 Lipton and Tarjan developed an optimal algorithm for this problem some years earlier
[LT1, LT2]. A significant theoretical achievement, their algorithm is much harder to
implement than Iirkpatrick’s.
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containing gulate each ol the
g

| of the given objects. Then we wou
g A

objeets, as well as the region inside s and outside all of the objeets.

wegons ean be triang ily ns convex polygons, bul the ree-

wex s|

tangular region with holes might require a linear number of new vertices. This

increase in the vertex set would be tolerable il it were a one-time expense.

Iowever, as verlices are disearded, we can still get arbitrarily complicated new
regions Lo triangulate. The retriangulation might well add more vertices than

had been disearded. Thus, this approach will not work.

Where the objects are convex, we do have another option. We can run the
intersection-detection algorithm on each pair of splinegons, determining a
supporting-separating line. Then using these lines, we can determine an enclos-
ing convex polygon for each of the splinegons (see Fig. 38). Then we can run
Kirkpatrick’s algorithm. Once it has been determined that a point lies within a
particular polygon, we can test it for inclusion in the associated splinegon. This

fix works only in this very restricted case.

6.4. Limitations of splinegons

Triangulation and convex decomposition are techniques which have been
used often to create efficient algorithms in the polygonal world. In the spline-
gon world, a convex decomposition can be obtained efficiently, provided that we
allow both union and difference. The decomposition will be expressed in the

form U(UA;—UB;j), where 4 ranges over the number of monotone splinegons
Jot 1

and the A’s and B's describe the decomposition of each individual monotone
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FIGURE 38. Example.

splinegon. As a linear number of vertices may be maama in the process, the size
of the minimum decomposition does not depend solely on the number of reflex
angles. Algorithms dependent on convex decompositions have been designed to
handle unions well. In many, difference can be easily accomodated. The res-
tricted ordering of the union and difference operations, however, raises questions

about the usefulness of this decomposition.

A splinegon can also be triangulated efficiently, but the triangles may not
be convex, and a linear number of new vertices may be required. Algorithms
dependent on triangulation often focus heavily on the convexity of the triangles.
Others (e.g. [Ki]) depend on the fact that each vertex discarded decreases the
number of triangles by 2. The lack of convexity and the potential size of the
new decomposition may prevent the efficient extension of polygon algorithms

dependent on triangulation.

Triangulation and convex decomposition represent a class of algorithms

which may not extend profitably to splinegons. In the graphies world the
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exten

n of polygon edges (resp. polyhedron faces) form a convex decompos

of the plane (resp. space). From any viewing point within one convex region,

the same edges (resp. faces) are visible. The list of visible edges (resp. faces)
need be updated only when the viewing point crosses a boundary. One tech-
nique used in motion planning entails unfolding polyhedral objects until they
are planar. A straight path can be chosen in the plane, and then wrapped back
along the surface of the polyhedron. Duality transformations which map lines
to points, or planes to points have become an increasingly powerful tool within

computational geometry. None of these methods extend easily into the curved

world.

Does the existence of methods which do not extend to the splinegon world
mean that there are a class of problems which require asymptotically more time
in the splinegon world than they do in the polygonal world? Not necessarily.
There is some indication that alternative methods can be substituted which
allow the asymptotic complexity to remain unchanged. Both Edelsbrunner, Gui-
bas and Stolfi [EGS] and Sarnak and Tarjan [ST] have provided optimal algo-
rithms for planar point location which do in fact extend to splinegons. Not only
do these algorithms equal the Lipton-Tarjan algorithm and the Kirkpatrick
algorithm in time and space complexity, but they surpass the older algorithms
in practicality. The Edelsbrunner et. al. result depends on monotone pieces
rather than triangles [EGS]. The monotone decomposition of splinegons is
efficient and clean. Consequently, their algorithm extends directly to splinegons,
as they expect. The Sarnak-Tarjan algorithm depends solely on the monotoni-

city of the individual edges.
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It is hard assess

for those methods which extend poorly from the straight world to the curved

world. It may he

, can make up for
whatever power convex decomposition and triangulation will lack and thus will
emerge as an increasingly powerful tool in the polygonal world as well as in the

splinegonal world. FFurther study is needed.
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Chapter 7

Splinehedra

7.1, Definition and Discussion of Features

The splinegon concept extends to three dimensions. We deline a
splinehedron S as a modification of a carrier polyhedron P. Lach face of P is
replaced by a curved surface bounded by the same vertices and edges. The ith
face f; of S enwasvo_. with the corresponding face p; of P must enclose a convex

region S-seg;. A convex splinchedron both encloses a convex region and has a

convex carrier polyhedron.

This splinehedron model allows direct extension of the three main splinego-
nal methods into the three-dimensional world. The carrier polyhedron approach
still works. Given a convex splinehedron S, the plane anm.zom by the ith face p;
of the earrier polyhedron P divides space into two half-spaces. The “ocutside”
half-space contains the convex region S-seg;, and the “inside” half-space con-
tains the convex splinehedron S; =S — S-seg;. S; can be considered a convex
polyhedron which is supported by the given plane along a face. Furthermore,
the convexity of § dictates that S-seg; is enclosed in the solid defined by the

11

“outside” half-space determined by p; of P and by the “inside” half-spaces
determined by the faces adjacent to p;. Consequently, without any direct mani-

pulation of curved faces, the behavior of S can be reasonably approximated.

This splinehedron model readily accommodates the bounding polyhedron

approach. Given an arbitrary splinehedron S, we create a bounding polyhedron
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Q.

ns all of the original vertices

1 1S nob a

lixed edges and [ixed vertices. FFor each triangu face f; of S wh

e polygon, let f;' rej > point of intersection of the three planes

cach of w s tangent to f; at an edge.!” As in the two-dimensional case, this

point may have flinite coordinates, or may represent a point al in

pyramid defined by p; and the pseudo-vertex f;* contains S-seg;. Insert the
pseudo-vertex f;* into @ along with pseudo-edges joining it to each of the fixed
vertices of f;. A face bounded only by fixed edges is called a fixed face. Other-
wise, it is a pseudo-face. A pseudo-face is considered loose if its only intersec-
tion with the curved face it supports is the fixed edge. If the intersection has

positive area, the pseudo-face is considered tight.

A face-based polyhedron algorithm can be extended to a face-based
splinehedron algorithm using the direct approach. A face of the splinehedron
resembles a face of a polyhedron in that it is bounded by a collection of vertices
and line segments. In extending a polyhedron algorithm, however, all assump-
tions based on the flatness of the faces (e.g. the monotonicity of faces, that the

intersection of two faces consists of a single component) must be updated.

10 If f; has more than three vertices, then the tangent planes defined by its edges may
not intersect in a single point. This irregularity does not present a problem. We still
insert a single pseudo-vertex f} into @, but f} will represent the collection of vertices
defined by the intersection of the tangent planes as well as the line segments which con-
nect them.
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7.2. Detecting the Intersection of two Convex Splinehedra using the

Jarrier Polyhedron Approach

s of [DK1] to the problem of detecting whether

Lwo convex sj intersect. The standard representation of a convex
splinehedron resembles that of a polyhedron: a vertex list, an edge list, and a
face list. The intersection-detection algorithm requires, however, that each
splinehedron be represented as a sequence of parallel splinegonal cross-sections,
one per vertex, and all their connecting faces and edges. Each cross-section of
the splinehedron forms a splinegon having the corresponding cross-section of the
carrier polyhedron as a carrier polygon. This alternative representation is
uneconomical. The conversion process may require O((E;+ Eq)n®) time and
the new format may require O(n?) space.!' Since the algorithm does not
presume that the two splinehedra share the same zyzcoordinate system, how-

ever, the conversion process for each splinehedron in a collection need be per-

formed only once.

Each pair of adjacent splinegenal cross-sections and all of their connecting
edges and faces describe a splinedrum whose side faces are curved patches. The
carrier polygons for these adjacent splinegonal cross-sections together with their
connecting edges and faces deseribe a carrier drum for the splinedrum (see Fig.
39). Thus a splinehedron can be viewed as a sequence of splinedrums. Each

splinedrum can be specified by a circular list of its side-edges, pointers to the

11 As mentioned in [DK1], special techniques may be applied to reduce the time and
space, but they are accompanied by a time penalty for retrieving information about the
individual cross-sections, faces and edges.
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description of the individual curved side-faces, and the planes containing the
top and bottom faces. The algorithm for detecting the intersection of two
splinehedra follows that of the polyhedron algorithm of [DK1] and centers
around detecting the intersection of the two middle splinedrums. In each
instance in which the two splinedrums do not intersect, half of one splinehedron

may be removed from future consideration.

1]

1]
[]
’

=

FIGURE 39. A splinedrum defined on two adjacent splinegonal cross-sections and
its carrier drum defined on two adjacent polygonal cross-sections.

Before proceeding to intersection detection for two splinedrums, we begin

by discussing splinegon-splinedrum intersection detection:

Theorem 16. Given a splinedrum and a splinegon, each of at most IV vertices,

O((C1+ Eg)log N + A+ B+ E;) operations suffice to compute either
(a) a point common to both, or

(b) =2 line supporting an edge of the splinegon or a plane supporting a face of

the splinedrum which separates the two objects.
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Proof. Let P be a splinegon lying in the plane T, and let J be a splinedrum.
Define @ as the cross-section of J determined by T. P and J intersect if and
only if P and @Q intersect. To determine @ explicitly would require a linear
number of operations, so an implicit representation of Q is preferable. If T
intersects the top (bottom) face of J, the intersection consists of a line segment,
possibly degenerate, with two endpoints v;,v; (v, v), not necessarily distinct,
lying on the boundary of the top (bottom) face of J. These endpoints can be
determined in O(log N + E;) time and all serve as vertices of the convex
splinegon @. The intersection of T with the edges between v; and v (v; and v)
provide the remaining vertices of @. Since each of these edges is straight, a
needed vertex can be found in constant time. Each edge of @ is computed when
needed in E, time as the intersection of T with a curved face of J (see Fig. 40).
The intersection of P and @ can be detected using the splinegon-splinegon algo-

rithm described in Section 3.3. O

To detect splinedrum-splinedrum intersections, we use an analog of the
two-dimensional splinegon-splinegon intersection approach described in Section
3.3. We decompose each splinedrum into left and right semi-infinite
splinedrums relative to a plane W orthogonal to the tops of both splinedrums.
We assume that each splinedrum J is represented by an edge list 7,,79,...,7n
ordered counterclockwise around its top face. Denote the half-space on one side
of the plane, the positive half-space; the other, the negative half-space. Con-
sider the positive half-space to lie to the right of the negative half-space. The
projections of the top and bottom faces of J onto W would form a pair of line

segments lying on parallel lines which we shall call Jy and Jp respectively and
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R xS

FIGURE 40. A splinedrum J intersects a plane T in a splinegon @.
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FIGURE 41. A splinedrum J and its projection onto a plane W orthogonal to the
top of J.

to which we assign an arbitrary orientation. The image of each j; would be a
line segment joining the lines Jy and Jp. Locate the edge ji (5;) with the max-
imum (minimum) projection relative to the orientation of Jr and Jg. Due to
the convexity of J, this task requires only logarithmic time. These edges may
not represent the side boundaries, however, of the projection of J onto W (see
Fig. 41). The face on either side of j; (resp. 7;) may have a curve whose projec-
tion forms the maximum (minimum) boundary. Determine which face, if any,
has this characteristic and insert a new pseudo-edge jjs (resp. jy,) to represent
that curve into the circular list for J. We do not compute the new pseudo-edge

explicitly, as it may even represent a non-planar curve.

The splinedrum J can now be split at the edges j,, and jp. The edges

from j,, to jau in clockwise (counter-clockwise) order, the curved faces which

join them, and every point lying to the right (left) of some face together form
the right (left) semi-infinite splinedrum Jg (J;). The boundary of Jp (J)
includes the edges and faces defined above as well as infinite end-faces extend-
ing from 7, and jj to 400 (—oc) and infinite top and bottom faces defined simi-
larly. This decomposition requires O(C;+ log V) time. The decomposition of a
splinedrum J into semi-infinite splinedrums J; and J; satisfies the following
conditions: J = JpNJ; and JCJg,Jp. Consequently, two splinedrums J and K

intersect if and only if Jp intersects Ky, and Jj, also intersects Kp.

Let L (resp. R) be a semi-infinite splinedrum opening toward the left (resp.
right) half-space defined by W and having its top and bottom faces contained in
the respective planes Ly and Lp (Rr and Rp). Any potential intersection of L
and R is confined to the infinite parallelepiped defined by the four planes Lg,

Rp, Ly, and Ry. Consequently, we restrict our search to that region. The first
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step of the algorithm consists of deleting all faces of R lying strictly below Lg
and strictly above Ly and all faces of L lying strictly below Rp and strictly
above Rp. Assume that L (resp. R) has n (resp. m) remaining side-edges
li,dgy..yly (r1,79,..y 1) and that the middle edges of L and R are [; and r;. Let
R; (resp. L;) represent the plane defined by the pair of segments r;,r;; (resp.
liylis1). The planes R; and L; divide the parallelepiped into three or four
regions comparable to those defined in the two-dimensional case: LR-region, L-
region, R-region, and (Zhregion. If R; intersects L; in a line, the projection of

that line onto Wis labelled Wj;.

In what follows, we say that the face ririy; (resp. edge r;) overlaps the
face ljlj4y (resp. edge 1;) if their projections onto W intersect. We say that a
face (resp. an edge) borders the LRE-region if some portion of it within the
parallelepiped defined by Lg, Rp, Ly, and Rp does. If no pair of edges, one
from rj,r;4; and one from I;,l;q, overlap, then the closest pair form the inner
edges; the remaining two are outer edges. In cases where ryr;y; overlaps il
but only in the (Zfregion, we call the pair of edges, one from ry,7i4 and one
from I;,l;4;, whose projections intersect nearest to the line Wy, the near edges;
the remaining two are far edges. The edges beyond r; (resp. ri41) consist of
T15..03Ti—1 (T€SP. Ti4gy..sTm). The terms overlap and beyond replace the terms
separate and above or below in the two-dimensional algorithm.

Lemma 1. If l;l;4; overlaps ryriy in the LR-region, then in constant time we
can determine either a point ! on the boundary of ljlj4; or a point r on the

boundary of r;r;y; Which is a witness to the intersection of £ and L.
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Proof. The projections of the faces ljl;; and rir;y; onto the plane Ware tra-
pezoids. Calculate the intersection of this pair of trapezoids in constant time,
and determine a point on the boundary of one of the trapezoids, say the tra-
pezoid associated with ririyy, which belongs to the intersection. Find the inter-
section of the line through that point and orthogonal to W with the boundary
of r;i41. The point reported lies directly to the left of I;l;4; and thus serves as

a witness to the intersection of L and R (see Fig. 42). O

LR-region

{H-region

FIGURE 42. Example of Lemma 1.

Lemmas 2-6 below state results in terms of R and its edges where a sym-
metric result can be stated for L and its edges.
Lemma 2. If #; (resp. ri4;) is an outer edge and if neither r; nor any edge
beyond r; (resp. ri4;) borders the LR-region, then L and R intersect if and only
if L intersects the splinedrum formed by deleting all edges of R beyond r; (resp.
Ti41)

Proof. If I and R intersect, either they intersect in the LR-region or L-seg;
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(resp. R-seg;) intersects R (resp. L). No part of R beyond r; borders the LR-
region, nor can L-seg; intersect any part of R beyond r;. Consequently, all

edges of R beyond r; can be removed from further consideration (see Fig. 43). O
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- . (ZJ-region

FIGURE 43. Example of Lemma 2.

LR-region

FIGURE 44. Example of Lemma 3.

Lemma 3. If 74 (resp. r;) is an outer edge and if r;4; (resp. r;) and both
inner edges border the LR-region, then L and R intersect if and only if L inter-

sects the splinedrum formed by deleting all edges of R beyond r;y; (resp. r;).

Proof. L may indeed intersect R beyond ry.y. If it does, however, it must also
intersect the semi-infinite rectangle extending from r;y; to +oo which lies within
R. Thus the portion of R lying strictly beyond r;,; cannot completely contain
the intersection of L and R. As we are searching for a single point witnessing
the intersection rather than the entire intersection area, the portion of R

beyond r;4; can be deleted (see Fig. 44). O

Lemma 4. If [;l;;, overlaps ryriyy only in the (Fregion, if [l;;, borders the

LR-region, and if r; (resp. r;4;) is a far edge, then L intersects R if and only if L

intersects the splinedrum formed by deleting all edges of R beyond r; (resp.
Tit1)-

Proof. L mn:.a_.mmnﬂ.m R beyond r; (resp. ri41) if and only if L-seg; penetrates the
R-region. If so, then L intersects the semi-infinite rectangle extending from r;

(resp. ri41) to +oo which lies within R (see Fig, 45). O

Lemma 5. If [;l;,; overlaps rirjyq only in the (Fregion, and neither [jl;,; nor
riri+y border the LR-region, let i represent a point on the face [;l;,; where a
plane parallel to R; supports the portion of the face [;/;;; which lies within the
parallelepiped. If ' lies within the R-region and beyond the far edge r; (resp.
ri4+1), then L intersects R if and only if L intersects the splinedrum formed by
deleting all edges of R beyond the near edge ryyy (resp. ry). If 1Y lies within the
R-region and between r; and rjy;, then I* is a witness to the intersection of L
and R. Otherwise, L intersects R if and only if L intersects the splinedrum

formed by deleting all edges of R beyond the far edge r; (resp. ri41).
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FIGURE 45. Example of Lemma 4.

LR-region

o Wy

(-region

FIGURE 46. Example of Lemma 5.

Proof. If l;l;,; overlaps rjriy; in the (Fregion, then L-seg; could intersect
R-seg; or could intersect R beyond r; or could intersect R beyond r;4q. In addi-
tion, the portions of L and R beyond the near edges could intersect in the LR-
region. Thus no part of either splinedrum may be deleted immediately. We
compute I, the extreme point on L in the direction orthogonal to R;. If I lies
in the R-region beyond the far edge r; (resp. r;4;), then L intersects R beyond
;41 (resp. r;) only if L also intersects the semi-infinite rectangle extending from
ri41 (resp. r;) to +oo which lies within R. If I' lies in the R-region between r;
and ri41, then [ lies directly to the right of a face of R and is thus a witness to
the intersection of L and R. If I' does not lie in the R-region, then L does not
intersect R beyond the far edge r; (resp. riyq). If I* lies in the R-region beyond
the near edge r;4; (resp. r;), then L intersects R beyond r; (resp. riyp) only if L
also intersects the semi-infinite rectangle extending from r; (resp. ri4;) to +oo

which lies within R (see Fig. 46). O

We apply Lemmas 1-5 and their symmetric versions repeatedly until either
a point in the intersection has been determined or until one semi-infinite drum,
say L, has only 3 edges. In the former case, we are done. In the latter case,
decompose L into two left semi-infinite splinedrums of only one face and two

edges each.

The problem remaining is to detect the intersection of a two-edge left
semi-infinite splinedrum L with a right semi-infinite splinedrum R of m edges.
It is possible, however, that the single face of L may be a special face created
by the process of splitting a finite splinedrum into two semi-infinite splinedrums.
Thus either /; or l, may not have been computed explicitly and may even
represent a non-planar curve. As a result, the plane L may not be well-defined.
Consequently, we apply 2 new lemma in order to reduce the size of R:

Lemma 8. If L has precisely two edges, let 1 represent a point on the face

ljlj4y where a plane parallel to R; supports the portion of the face Uil;41 which

lies within the parallelepiped. If {' lies beyond the edge 7; (resp. i), then L
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intersects R if and only if L intersects the splinedrum formed by deleting all
edges of R beyond the edge r;; (resp. r;). If [* lies between ry and riyy, then L
intersects 2 if and only if L intersects the splinedrum formed by deleting all

edges of R beyond the edge r;;; and all edges of R beyond r,.

Proof. The point {* represents the extreme point on L in the direction orthogo-
nal to R;. 1If I' lies beyond r; (resp. ris;), then L intersects R beyond ri1 (resp.
#;) only if L also intersects the semi-infinite rectangle extending from r;y; (resp.
r;) to 400 which lies within R. If {7 lies between r; and ri41, then either L-seg;
intersects R-seg; (or the flat face ryr;y; if R-seg; is null) or L and R do not

intersect (see Fig. 47). O

d.l/.mw.».. -
./.. \\\\\ LR-region
sita g . g
S . Wy
s ‘_ (7}-region
h‘\\hn.
b\\\m\m

FIGURE 47, Example of Lemma 6.

Repeated iterations of Lemma 6 will reduce the second splinedrum to at
most 3 edges. A constant number of oracle calls and constant additional time

will detect any intersection among the remaining splinedrums.

The algorithm is repeated twice: once for Jp and Kj; and once for Jp and

- 112 - Splinehedra

Kp. The results are merged, as in the two-dimensional case.

Theorem 17. Given two preprocessed splinedrums, O(Cylog N + A,) opera-

tions can determine either
(a) a point common to both, or

(b) a plane supporting a face or edge of one of the splinedrums which

separates it from the other.
Proof. As described above. O

The algorithm described above for the splinedrum-splinedrum intersection
problem must be expanded for the splinehedron-splinehedron intersection prob-
lem. We use the notation of [DK1] and call the middle splinedrum of a
splinehedron its waist. In addition, the cone of a splinedrum J of a splinehedron
P is formed by extending infinitely the trapezoid defined by the two side edges
of each face and determining the intersection of all of the half-spaces H; which
each contain all of J except for a curved J-seg;. The cone of a splinedrum is
the largest convex polyhedron which contains the straight-edged carrier of the
splinedrum as a cross-section. The cone of J includes all of P except for the
P-segs which participate in J. Finally, we define a new term. The ball of a
splinedrum J of a splinehedron P is the union of all of the half-spaces contain-
ing J defined by planes which support both a face or side-edge of J and the
corresponding face or edge of P. In general, there are an infinite number of
such half-spaces. Consequently, we do not compute the ball of J, but it remains
a useful abstract object. The ball of Jis the largest convex splinehedron which

contains J as a cross-section. The ball of Jincludes P.
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Theorem 18. The intersection of two preprocessed convex splinehedra of at
most N vertices each can be detected in O((Ag+ By) log N + (Ca+ Eg) log® N)

operations.

Proof. Let P and @ represent the two preprocessed convex splinehedra. Let J
(K) be the waist of P (Q); let C; (Ck) represent the cone of J (K); and let By
(Bg) represent the ball of J (K). Determine whether J and K intersect by fol-
lowing the algorithm of Theorem 17 and using O((C3y) log N + A3) operations.
If they intersect, the point returned by the algorithm is also a witness to the
intersection of P and Q. If not, the algorithm returns a supporting separating
plane. If possible, it chooses a plane T which separates J from K by supporting
both a face or side-edge of J (resp. K) and the corresponding face or edge of P
(resp. @). Otherwise, the algorithms reports a plane T which supports a top or

bottom face of J (resp. K).

Suppose that T supports a face or a side-edge of J. Then T also separates
P from K. Using O(log N) time, we can determine whether T intersects Ck
above K, below K, or not at all. If no intersection is found, then O(Ej) time
suffices to determine whether T intersects some Q-seg; above K, below K, or not
at all. If still no intersection is found, then T separates the two splinehedra.
Otherwise, either the bottom half or the top half of @ may be removed from

future consideration.
Suppose that T supports the top (resp. bottom) face of J, and thus K lies

“above" (“‘below™) J. Since T supports the top (resp. bottom) face of J, no

plane supporting a face or side-edge of J separates it from K. Thus, B; must
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interseet K above (resp. below) J, say at some point z Suppose that @ inter-
sects P at a point w which lies below (resp. above) J. By convexity, the line
segment wz must belong to Q. But since PCRBy, wz also belongs to B;. Conse-
quently, wz must intersect J and thus @ intersects J. Thus P and @ intersect if
and only if @ intersects the splinehedron formed by deleting all splinedrums of

P lying below (resp. above) J.

In either instance, half of the splinedrums of one splinehedron can be
removed from future consideration after O((Cqo+ Eg)log N + Ao+ B;) opera-

tions. O

7.3. An Alternative Splinehedron Model and its Features

A splinehedron is defined from its carrier polyhedron. The vertex list
remains unchanged. Each face entry is modified to contain an equation of the
surface in which the face lies. In the general case, each edge entry must be
modified to include an equation of the planar curve which joins its two vertex-
endpoints and which separates the two faces.> The i*" face of the splinehedron
S together with the corresponding face of the carrier polyhedron P and each
plane defined by a curved edge of S and the corresponding straight edge of P

bound a convex region S-seg;.

Allowing each face of P to be replaced by a curved surface containing the
vertices of the original face but having curved edges more adequately reflects

the real world. This model, however, dramatically alters the efficacy of the three

12 We restrict an edge to being a planar curve because a non-planar edge would
dramatically complicate the model.
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methods of polyhedron extension. A splinehedron in this model still has a car-
rier polyhedron, but it no longer approximates the splinehedron as well as it did
in the restricted model. Given a convex splinehedron S, the plane defined by
the 0 face p; of its carrier polyhedron P divides space into two half-spaces.
The “‘outside” half-space contains the convex region S-seg;, but also some por-
tion of each of the adjacent S-segs and possibly some part of an unlimited

number of other neighboring S-segs. The ‘“inside” half-space contains the
remainder, a convex splinehedron which cannot be defined explicitly without
specific calculations for each instance of S and 4. In addition, the solid defined
by the ‘“‘outside’ half-space determined by p; of P and by the “inside” half-
spaces determined by the faces adjacent to p; no longer contains S-seg;. When-

ever f; represents a curved face all of whose edges are curved, then each of

those edges as well as a neighboring region will be excluded from the solid.

The bounding polyhedron approach is even more problematical. A bound-
ing polyhedron should contain all of the original vertices of a splinehedron as
well as a collection of pseudo-vertices which approximate the faces. The previ-
ous method of defining the bounding polyhedron is no longer valid. Once edges
are defined as curves, there no longer exists a single plane which supports a face
along an entire edge, approximating the face in the neighborhood of that edge.
Only one alternative method seems promising. For each triangular face f; of S
which is not a planar polygon, let f* represent the point of intersection of the
three planes each of which is tangent to f; at a vertex. The pseudo-vertices of
the form f;* only form a subset of the new vertices which must be inserted into

Q. Neighboring pyramids will interseet each other forming numerous new
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vertices and edges. The bounding polyhedron defined in this fashion could have
as many vertices as the sum of the number of faces of S with three times the

number of verlices.

The direct approach is also adversely aflected, but not to the same extent.
A face of a splinehedron under this model has a smaller resemblance to a face
of a polyhedron. Not only is the face not flat, it also does not have a planar
boundary, let alone a piecewise-straight planar boundary. The modifications

which must be made to a polyhedron algorithm become far more complicated.

7.4. The Effect of the Alternative Model on Intersection Detection

The process for converting a splinehedron into a sequence of splinedrums is
more complicated in the alternative model. In the original model, each cross-
section of the splinehedron formed a splinegon whose carrier polygon was the
corresponding cross-section of the carrier polyhedron. Each adjacent pair of
splinegonal cross-sections together with their carrier polygons defined a
splinedrum and its carrier drum. In the alternative model, a cross-section of
the polyhedron no longer serves as a carrier for a cross-section of the
splinehedron (see Fig. 48a). The carrier polygon for each individual cross-
section is determined by explicitly computing the vertices of the intersection of
the cutting plane with the curved edges of the splinehedron (see Fig. 48b). To
achieve a candidate carrier drum, two vertices of adjacent carrier polygons are
connected by a straight edge if the same points are connected by a curved edge
in the splinehedron. But the four vertices delimiting a face, two points from

each carrier polygon, may not be coplanar. In general, diagonal edges must be
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added to yield a convex carrier drum with triangular faces.

[ aiainiini it

T

1
1
1
1
!
]
]
i

i
]
1
L

- >
———

a) b)

FIGURE 48. a) The cross-sections S and T of a splinehedron and its carrier po-
lyhedron, respectively; b) The carrier polygon P for the splinegonal cross-section S.

Thus, in the alternative model, each splinehedron may still be viewed as a
sequence of splinedrums. These splinedrums, however, have different features.
The side faces of the splinedrums are triangular curved patches and the top and
bottom faces are splinegons. The side edges of the splinedrums will be planar
curves rather than line segments. Consequently, many of the presumptions in
the original algorithm do not hold.

Again, let L (resp. R) represent a semi-infinite splinedrum opening toward
the left (resp. right) half-space defined by W and having its top and bottom
faces contained in the respective planes Ly and Lp (resp. R and Rp). Here,
let 1y,l9,... 1y (resp. ry,ra, * ** ,ry) represent the side-edges of the carrier drum
for L (resp. R). Let Lj (resp. R;) represent the plane defined by the edges I;;4
(resp. r47i41). In the previous model, L; (resp. R;) divided the world into two

half-spaces: one containing L-seg; (resp. R-seg;), and the other containing
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L — L-seg; (resp. R — R-seg;). In this model, one half-space contains L-seg;
(resp. R-seg;) as well as portions of some number of contiguous L-segs (resp.
R-segs) on either side. It may require O(log V) time to determine the full range
of the L-segs (resp. R-segs) involved. Thus, the four regions defined by R; and
L; are far less useful than in the previous model, and it remains unclear how
best to define the inner loop of the algorithm to reduce the size of each semi-
infinite splinedrum. In any case, the new algorithm should be far more compli-
cated than the original and run much more slowly. Given the added complica-

tions of this alternative model, we have chosen to focus on the more restricted

model defined in Section 7.1.

7.5. Summary and Open Questions

In this chapter, we have defined a geometric object, the splinehedron.
Under the definition given in Section 7.1, each of the approaches for extending
polygonal algorithms to splinegons also applies to extending polyhedron algo-
rithms to splinehedra. We use the carrier polyhedron approach to prove that
the intersection of two preprocessed convex splinehedra of at most N vertices
each can be detected in time O((Ao+ By) log N + (Ca+ E3) log?N).

As computation in three dimensions is far more difficult than the
corresponding computation in two dimensions, far fewer three-dimensional algo-
rithms have been developed. As more polyhedron algorithms are developed,
however, analogs of Chapters 3, 4, and 5 of this thesis can be written, extending
those new algorithms to splinehedra. Alternately, generators of new algorithms

might ponder the extension principles presented here and develop directly
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general algorithms applicable both to polyhedra and splinehedra.

The definition of a splinehedron which we have currently chosen, however,
restricts us to a ‘“‘soccer ball” version of the world: every face of a three-
dimensional object is bounded by a planar polygon composed of a collection of
straight line segments. Although certainly more general than a polyhedron
itself, this splinehedron is hardly as general a model for the three-dimensional
world as the splinegon is for two dimensions. Even the alternative definition
which we suggest here provides at best an awkward framework in which to
model real-world objects which have saddle points. The question remains how
best to modify the definition of a splinehedron to enlarge the class of objects for
which it is an effective model but also to retain an adaptability for computa-

tion.
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Chapter 8

Conelusions and Future Work

In this dissertation, we have defined a new geometric object, the splinegon,
which enables the results of straight-edged computational geometry to be
extended into the curved world. The splinegon is a general enough object that
nearly every closed curve, and all closed curves of inherent practicality, can be
recast as splinegons. At the same time, the splinegon captures enough discrete

properties so that it is an effective computational tool.

We have presented three distinet techniques for extending polygon algo-
rithms to splinegons: the carrier polygon approach, the bounding polygon
approach, and the direct approach. The carrier polygon is a polygon whose
edges are all chords of the splinegon, often yielding sufficient information about
the behavior of the splinegon that direct curvilinear computations can be
reduced; specific information about the behavior of the splinegon is computed
only when necessary. The carrier polygon imposes sufficient structure on a con-
vex splinegon that polygon algorithms can be extended to splinegons with the

only modification being ad hoc procedures for the accommodation of the S-segs.

The bounding polygon is a polygon each of whose edges is tangent to an
edge of the splinegon. The bounding polygon approximates the contour of a
splinegon better than does the carrier polygon, and thus is more versatile.
‘When computed explicitly, it provides a good approximation for the splinegon.
Without actually computing its edges and vertices, however, it can still allow a

vertex-based polygon algorithm to be extended to splinegons with its structure
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intact. It also allows the creators of new algorithms to write them in a general
format which encompasses splinegons, but with the more restricted polygon
algorithm clearly visible within. In either case, separate procedures exist for the

processing of fixed vertices and for the processing of pseudo-vertices.

TABLE OF RESULTS

Problem Approach Time Complexity
Intersection detection of a line with a convex splinegon Carrier O(By + log N)
Intersection detection of two convex splinegons Carrier O(Ay+ By+ Clog N)
Intersection detection of convex splinegon and splinedrum Carrier O((Cy+ Egllog N + A+ B+ Ey)
Intersection detection of two convex splinedrums Carrier O(Cqlog N + Ag)
Intersection detection of two convex splinehedra Carrier O((Aa+ By)log N + (Cot Eg)log®N)
Testing point inclusion for & convex polygon using hierarchy | Carrier O(log N)
Testing point inclusion for a convex splinegon Carrier O(By+ log N)
Area computation for an arbitrary splinegon Carrier O(F1N)
Diameter computation for a convex splinegon Bounding | O({A,+ C1) N)
Monotonicity determination for a simple splinegon Bounding | O(C1N)
Kernel computation for a simple splinegon Bounding | O((B1+ C))N)
Convex hull computation for a simple splinegon Bounding | O{(Bot+ €1+ D1)N)
Intersection computation for a convex splinegon Direct O(A1N + Chlog N + By)
Horizontal visibility computation for a simple splinegon [TV] | Direct O(Nloglog N + (B,+ C1)N)
Simplicity testing for an arbitrary splinegon [TV] Direct. O(Nloglog N + (A 1+ B+ C1)N)
M d position of a simple splinegon [DSV] Direct O(Moglog N + (By+ C)N)
Intersection detection for two simple splinegons [DSV] Direct O(Moglog N + (A+ By+ C1)N)

Often edge-based algorithms can be translated to splinegons merely by
updating the assumptions about possible behavior of edges. We call this type of
extension the direct approach. All three types of extension presented allow

polygon algorithms to be extended to splinegon algorithms of the same asymp-

-122 - Conclusions and Future Work

totic time complexity, except for the more complicated primitive procedures (see

Table).

Despite the success of these three methods, some tools of straight-line
geometry project poorly into the curvilinear world. As shown in Chapter 6,
whether either convex decomposition or triangulation of splinegons can be used
to produce efficient algorithms remains uncertain. Splinegons can be efficiently
decomposed into convex pieces, but only into the union and difference of convex
pieces under a restrictive ordering. Splinegons can also be triangulated, but the
process may require a linear number of new vertices and the resulting triangles

may not be convex.

Triangulation and convex decomposition represent a class of algorithms
which may not extend profitably to splinegons. In graphics, one often extends
object edges or faces to form a convex decomposition of the plane or of space,
respectively. In motion planning, one may unfold a two or ‘three dimensional
object until it is linear or planar. Neither of these techniques extend readily to
curved objects. Likewise, duality transformations which map lines to points, or
planes to points, have no obvious counterpart in the curved world.

Although in the planar point location example, monotonicity proved to be
an equally powerful tool as triangulation, it is hard to assess the degree to
which alternative methods can compensate for those methods which extend
poorly from the straight world to the curvilinear world. Further study is

needed.

Finally, in Chapter 7, we define and describe three-dimensional curved
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geometric objects, named splinehedra. It is interesting to note that while the
splinegon emerged as the natural generalization of the polygon, there are two
natural generalizations of the polyhedron which could be chosen as the
definition of a splinehedron. One serves as a better model of real objects, while
the other has more computational power. Neither is capable of modelling
three-dimensional objects with saddle points. More work in three dimensions is
needed.

This dissertation differs from the standard model in that the major contri-
bution is a collection of methods, rather than a few distinet results. As such,
this contribution should have ongoing impact, allowing algorithm designers of

the future to extend their new results easily to the curved world.

[cn

[DE]
[DK1]
[DK2]
[DM]

[Ds]

[DsV]

[EGS]

[FP)

[FvD]

[Fo]

- 124 -

REFERENCES

Bentley, J. and Ottmann,T., Algorithms for reporting and counting
geometric intersections, Carnegie-Mellon University, August 1978.

Brown, K. Q., Geometric transforms for fast geometric algorithms.
Rep. CMU-CS-80-101, Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, PA, 1980.

Chazelle, B., and Dobkin, D., Optimal convex decompositions, Machine
Intelligence and Pattern Recognition 2: Computational Geometry, G.T.
Toussaint, ed., Elsevier Science Publishers, North Holland, 1985, pp.
63-133.

Chazelle, B., and Dobkin, D., Intersection of convex objects in two and
three dimensions, Journal of the ACM, to appear. A preliminary ver-
sion of this paper, entitled ‘Detection is easier than computation,”
appeared in the proceedings of the ACM Symposium on Theory of
Computing, Los Angeles, Ca, May, 1980, 146-153.

Chazelle, B., and Incerpi, J., Triangulation and shape-complexity,
ACM Transactions on Graphics, 8, 1984, pp. 185-52.

Dobkin, D. and Edelsbrunner, H. Space searching for intersecting
objects, IEEE FOCS, Singer Island, Fla, October, 1984.

Dobkin, D. and Kirkpatrick, D., Fast detection of polyhedral intersec-
tions, Theoretical Computer Science, 27, 1983, 241-253.

Dobkin, D. and Kirkpatrick, D., A linear algorithm for determining the
separation of convex polyhedra, Journal of Algorithms, 6, 1985, 381-92.

Dobkin, D. and Munro, J. L., Efficient uses of the past, Journal of Algo-
rithms, 6, 1985, 455-65.

Dobkin, D. and Souvaine, D., Computational Geometry -- A User’s
Guide, Advences in Robotics 1: Algorithmic and Geomelry Aspects of
Roboties, J. T. Schwartz and C. K. Yap, eds., Lawrence Erlbaum Asso-
ciates, 1986, pp. 43-93.

Dobkin, D., Souvaine, D., and Van Wyk, C., Decomposition and inter-
section of simple splinegons, submitted for publication.

Edelsbrunner, H., Guibas, L. J., and Stolfi, J., Optimal point location
in a monotone subdivision, DEC System Research System Report,
October, 1984.

Feng, H. and Pavlidis, T., Decomposition of polygons into simpler com-
ponents: feature generation for syntactic pattern recognition, IEEE
Transactions on Computing C-24, 1975, pp.636-50.

Foley, J. D. and van Dam, A., Fundamentals of Interacltive Computer
Graphics, Addison-Wesley, Reading, MA, 1982.

Forrest, A.R., Invited talk on computational geometry and software
engineering, Second Annual Symposium on Computational Geometry,
Yorktown Heights, New York, June, 1986.



(™)
(Y]

[Gr]

[He]

- 125 -

Fournier, A. and Montuno, D. Y., Triangulating simple polygons and
equivalent problems, ACM T'ransactions on Graphics, 3, 1984, 153-74.
Graham, R. L. and Yao, F. F., Finding the convex hull of a simple
polygon, Journal of Algorithms, 4, 1983, 324-31.

Greene, D. H., The decomposition of polygons into convex parts,
Advances in Computing Research, F. Preparata, ed., JAI Press, 1984,
PP.235-59.

Hershberger, J., private communication.

[HMRT] Hoffman, K., Melhorn, K., Rosensthiehl, P., and Tarjan, R., Sorting

[HK]

[KS1]

[ie]

(KS2]

[LP2]
[LP3]

[LT1]

[LT2]

Jordan sequences in linear time using level-linked search trees, Infor-
mation and Control, 68, 1986, 170-84.

Hoperoft, J. and Kraft, D., The challenge of robotics, Advances in
Robotics 1: Algorithmic and Geometry Aspects of Robotics, J. T.
Schwartz and C. K. Yap, eds., Lawrence Erlbaum Associates, 1986.

Kedem, K. and Sharir, M., An eflicient algorithm for planning
collision-free translational motion of a convex polygonal object in 2-
dimensional space amidst polygonal obstacles, Computational
Geometry Conference, Baltimore, Md., June, 1985, pp. 75-80.

Keil, J. M., Decomposing a polygon into simpler components, SIAM
Journal of Computing, 14, 1985, pp. 799-817.

Keil, J. M. and Sack, J. R., Minimum decompositions of polygonal
objects, Machine Intelligence and Pattern Recognition 2: Computational
Geometry, G. T. Toussaint, ed., Elsevier Science Publishers, North Hol-
land, 1985, pp. 197-216.

Kirkpatrick, D., Optimal search in planar subdivisions, Siam Journal
on Computing 12, 1, 1983, pp. 28-35.

Knuth, D., Computers and Typeseiting, Vol. C: The METAFONTbook,
Addison-Wesley, Reading, MA, 1986.

Lee, D. T. and Preparata, F., Location of a point in a planar subdivi-
sion and its applications, SIAM Journal of Computing, 6, 3, 1077, pp.
594-606.

Lee, D. T. and Preparata, F., An optimal algorithms for finding the
kernel of a polygon, Journal of the ACM, 26, 1979, 415-21.

Lee, D. T. and Preparata, F., Computational geometry--a survey, IEEE
Transactions on Computers, C-33, 1984, pp. 1072-1101.

Lipton, R. and Tarjan, R., A separator theorem for planar graphs,
SIAM Journal of Applied Mathematics 36, 1979, 177-89. A preliminary
version of this paper was presented at the Waterloo conference on
theoretical computer science, Waterloo, Ontario, August, 1977.

Lipton, R. and Tarjan, R., Applications of a planar separator theorem,

IEEE FOCS Conference, Providence, Rhode Island, October, 1977, pp.
162-170.

[Lo]

0]
[ovL]
[Pa]
(Pr]
[Ps1]
[PS2]
[Re]
[sT]

(SB]

(Se]

[8V]
[Sh1]
[She)
(SH]

[Sm]

(TV]

[Va]

- 126 -

Lozano-Perez, T., Invited talk on robotics, Second Annual Symposium
on Computational Geometry, Yorktown Heights, New York, June,
1986.

Overmars, M. H., Searching in the past, Parts I and II, University of
Utrecht Technical Reports, 1981.

Overmars, M. H., and van Leeuwen, J., Maintenance of configurations
in the plane, JCSS, 23, 2, 1981, pp. 166-204.

Pavlidis, T., Curve fitting with conic splines, ACM Transactions on
Graphies, 2,1,1985, pp.1-31.

Pratt, V., Techniques for conic splines, Computer Graphics, 19,3, 1985,
pp. 151-9.

Preparata, F. and Shamos, M. 1., Computational Geometry: An Intro-
duetion, Springer-Verlag, 1985.

Preparata, F. and Supowit, K., Testing a simple polygon for monotoni-
city, Information Processing Letters, 12, 4, 1981, pp. 161-64.

Requicha, A., Representations for rigid solids: theory, methods and sys-
tems, Computing Surveys, 12,4,1980, pp. 437-464.

Sarnak, N. and Tarjan, R. E., Planar point location using persistent
search trees, Commaunicatlions of the ACM, 29, 1986, 669-79.

Saxe, J. B. and Bentley, J. L., Decomposable searching problems, I.
Static-to-dynamic transformation, Journal of Algorithms, 1, 4, 1980,
pp- 301-358.

Schacter, B. Decomposition of polygons into convex sets, IEEE Tran-
sactions on Computers, C-27, 1978, pp. 1078-82,

Schafler, A. A. and Van Wyk, C. J., Convex hulls of piecewise-smooth
Jordan curves, Journal of Algorithms, to appear.

Shamos, M., Geometric complexity, ACM Symposium on Theory of
Computing, Albuquerque, New Mexico, May, 1975.

Shamos, M., Computational geometry, PhD Thesis, Yale University,
May, 1978.

Shamos, M., and Hoey, D., Geometric intersection problems, IEEE
FOCS Conference, Houston, Texas, October, 1976.

Smith, A. R., Invited talk on the complexity of images in the movies,
Second Annual Symposium on Computational Geometry, Yorktown
Heights, New York, June, 1986.

Tarjan, R. E., and Van Wyk, C. J., An O(nloglog n)time algorithm
for triangulating simple polygons, SIAM Journal of Computing, submit-
ted.

Van Wyk, C. J., Clipping to the boundary of a circular-are polygon,
Computer Vision, Graphics, and Image Processing, 25, 1984, pp. 383-92.



