ALTRUISTIC LOCKING: A STRATEGY FOR
COPING WITH LONG LIVED TRANSACTIONS
Kenneth Salem
Hector Garcia-Molina
Rafael Alonso
CS-TR-087-87

April 1987

ALTRUISTIC LOCKING: A STRATEGY FOR
COPING WITH LONG LIVED TRANSACTIONS

Kenneth Salem
Hector Gareia-Molina
Rafael Alonso

Department of Computer Science
Princeton University
Princeton N.J. 08544

ABSTRACT

Long lived transactions (LLTs) hold on to database resources for
relatively long periods of time, significantly delaying the completion of
shorter and more common transactions. To alleviate these problems we
propose an extension to two-phase locking, called altruistic locking,
whereby LLTs can release their locks early. Transactions that access
this released but uncommitted data run in the wake of the LLT and
must follow special locking and commit rules. Additional performance
improvements can be obtained if the LLT predeclares its access set (this
is only an option). Altruistic locking guarantees serializability and
allows transactions to access the database in any order. In addition to
presenting the protocol, we discuss how LLTs can be automatically
analyzed in order to extract the access pattern information used by
altruistic locking.

ALTRUISTIC LOCKING: A STRATEGY FOR
COPING WITH LONG LIVED TRANSACTIONS

Kenneth Salem
Hector Garecia-Molina
Rafael Alonso

Department of Computer Science
Princeton University
Princeton N.J. 08544

1. Introduction

A long lived transaction (LLT) has a long duration compared to the majority of
other transactions because it accesses many database objects, it has lengthy computa-
tions, it pauses for inputs from users, or because of a combination of these
factors [Gray8la|. For example, in a shipping company, a transaction to schedule and
lay out the routes for next day’s deliveries (based on today’s received orders) can easily
take several hours. Similarly, a transaction that scans a large file, say to reorganize
the index of an indexed-sequential file or to add a field to all records of a given type,
will again take a substantial amount of time. Other examples of LLTs include transac-
tions to process purchase orders, to process insurance claims, print monthly account
statements at a bank, and so on.

In most cases LLTs present serious performance problems. To execute the LLT as
an atomic action, the system usually locks the objects accessed until the transaction
commits, and this usually occurs at the end of the transaction. Other transactions
wishing to access the same objects must face substantial delays. In addition, the likeli-
hood that a transaction (LLT or not) has to be aborted is higher than usual when LLTs
are present precisely because of their long duration, i.e., LLTs are more likely to be
involved in a deadlock or a failure.

In this paper we propose a strategy for ameliorating the adverse effects of LLTs.
The basic idea is to allow LLTs to release their locks early, once it is determined that
the data the locks protect will no longer be accessed. Unlike other approaches (which
will be surveyed shortly), our strategy still guarantees serializable executions and places
no restrictions on the way data must be accessed (e.g., transactions are not forced to
scan the database sequentially or to traverse it down a tree).

To illustrate our approach, consider a set of transactions executing without con-
currency control against a database. Figure la is a depiction of the access pattern of
four such hypothetical transactions. Each data object is represented along the vertical
axis, and the horizontal axis represents time. Each transaction is represented by a solid
line. A transaction 7; accesses a data object z at time t; if the line for T, passes

s

through a black dot at the point (#,z). For example, transaction T, accesses data
object e at time ¢ in the Figure. Note that the execution schedule represented in the
Figure is serializable. By inspection we can see that the schedule is equivalent to the
serial execution of transactions in the order T, T} Ty Te.

data

objects

time

Figure 1a - Transaction Data Access Patterns

Consider what happens if the same execution schedule is attempted under a two-
phase locking concurrency control manager that has no knowledge of the access pat-
terns of the transactions. Since nothing is known in advance about the transactions’
behavior, locks must be held until transactions are finished (committed). Figure 1b
shows the same execution schedule, with the data objects that would be locked by T}
boxed for the duration of the lock. From the Figure we can see that, while 7} and T,
could run concurrently, Tp and Ty would be forced to wait on the locks of 7 until T}
completed. If T, were a LLT, this delay could be lengthy.

The concurrency control manager could do better if it was provided with some
information about the access pattern of Tj. Access pattern information is any informa-
tion that describes a transaction’s interaction with the database. For example, it may
be information like: “"during its lifetime, transaction 7 will access database objects in

data
objects

time

Figure 1b - Transaction Data Access Patterns Showing Locks of T7,

the set {a,b,c,d,e}.”" Or it might be information like: "if T accesses data object a once,
it will not access a again."

We will distinguish between two general types of access pattern information, posi-
tive and negative. Negative access pattern information about a transaction T describes
objects that will not be accessed by T. Conversely, positive information describes
objects that will be accessed. This distinction will be useful in our discussion; we do not
intend these to be rigorously defined classes of information.

If we assume that 77, is known never to access data objects more than once (nega-
tive access pattern information), the concurrency control manager can execute Tj
without delay since it remains entirely within the wake of T;,. The wake of a transac-
tion is the set of data objects that it has locked (and accessed) that it will not access
again. Since Tp remains in the wake of Ty, it can appear after 7, in a serialization of
the execution schedule.

Similarly, if the concurrency control manager knows the complete access set’ of T},
(the set of database objects that will be accessed by 77), it can allow T¢ to run without
delay as well. Although 7, does not remain in the wake of T}, neither does it access

sl

any data which 7;, will later require. So T, can appear after T} in a serialization. Of
course, we must guarantee that no other transaction sees the results of T, and makes
them available to T;. As we shall see, a simple way of doing this is to let T, perform
certain actions on behalf of Ty,

With our strategy transactions can optionally predefine their access sets or allow
other transactions in their wake. These actions do not benefit the transaction directly,
but may reduce the delays of other transactions. Hence we call our protocol altruistic
locking. Of course, altruistic locking is most effective if the altruistic transaction is a
LLT that would otherwise cause very long delays.

Before presenting the details of altruistic locking, it is worthwhile to briefly review
the alternate solutions that have been proposed. These solutions tend to fall into two
broad categories. In the first are solutions that relax the serial consistency requirement
of atomic transactions [GarcSBa,Lyn083a,Giﬂ85a,Garc87a]. Intuitively, the idea here
is to split up LLTs into shorter steps that are executed as individual transactions.
After each step, locks can be released, and other transactions can then access the
resources used by the LLT. The price paid is that transactions no longer observe data
that could have been produced by a serial schedule. This may be a reasonable price to
pay in some applications but not in others. Altruistic locking is different from these
protocols because it does guarantee serializability.

In the second category are solutions that restrict the way transactions can access
the database [Kede80a,Baye87a,Ahuj87a]. If transactions access the database in a
known way, e.g., a sequential scan or down a tree, then it is possible to allow other
transactions to see parts of the data accessed by a LLT before its completion, and at
the same time guarantee serializability. (Some of these protocols were not explicitly
developed for LLTSs, but they can be helpful nonetheless.)

For example, in non-two-phase locking protocols [Kede80a] the database is
modeled as a tree or as a directed acyclic graph. Transactions must access the data-
base entities in the order imposed by the graph. Because of this, transactions can
release locks before commit time without endangering serializability.

Similarly, a random-batch LLT [Baye87a] scans the entire database examining
each entity once. The entities can be examined in any random order, so that the order
can be specified by the system. This flexibility lets the system in essence add any object
to the wake of the LLT. Hence, short transactions can all execute within the wake. (If
the short transaction wants to access an entity not currently in the wake, the system
forces the LLT to process the entity first, making it part of the wake.) In altruistic
locking we also use the idea of running within the wake of a LLT, but we do not restrict
ourselves to random-batch LLTs.

t Knowledge of the complete access set provides both positive and negative access pattern information
since objects in the complement of the set will not be accessed.

u B

Of the proposed concurrency control mechanisms, the one that is most similar to
ours is one by Lafortune and Wong [Lafo84a]. Their protocol makes use of access pat-
tern information which is obtained through the use of a declare operation. Declare
operations are used in addition to the normal lock and unlock operations. Before lock-
ing a database entity, a transaction must declare it. The system decides whether to
grant declare and lock requests based on a transaction precedence graph that it main-
tains. Transactions are allowed to begin releasing locks once they have finished declar-
ing entities, a weaker restriction than the normal two-phase requirement. The major
difference between that protocol and those presented here is that altruistic locking does
not require all transactions to provide access pattern information to the concurrency
control manager. Instead, transactions need only provide access information if it is
likely to allow greater concurrency (as is the case with LLTs). In addition, altruistic
locking does away with the precedence graph of [Lafo84a| and instead requires some
transactions to acquire locks on behalf of other transactions.

We wish to emphasize that altruistic locking should not be viewed as a new con-
currency control mechanism. It is simply an extension to two-phase locking. However,
we feel that this is its greatest strength. Any transaction, at any time, can run under
the conventional two-phase locking rules, without having to perform any special opera-
tion and with exactly the same locking overhead if would have had in a conventional
system. Thus, if a transaction performed well under two-phase locking, it can continue
with the same protocol. Only LLTs and short transactions that have performance
problems need to concern themselves with the extended locking rules.

In Section 2 we present the details of altruistic locking. In Section 3 we study its
performance and give some guidelines for its use. Crash recovery issues are discussed in
Section 4. In discussing altruistic locking we will assume that the appropriate access
pattern information is available to the system’s concurrency manager. In Section 5 we
discuss how this information might be obtained and made available.

2. Altruistic Locking

We will first describe the basic altruistic protocol, which takes advantage of nega-
tive access pattern information. In particular, it is able to take advantage of the
knowledge that a transaction no longer needs access to a data object that it has locked.
We say that that data object can be released (as opposed to "unlocked") by the transac-
tion. A release operation can be thought of as a conditional unlock operation. Other
transactions will be permitted to access the data, but by doing so they in effect agree to
abide by certain restrictions that ensure that all transactions see a consistent database
state.

We will then discuss three extensions to the protocol. The first allows transactions
to release data objects that they have not first locked. The second extension makes use
of positive access pattern information (i.e. knowledge of what objects will be accessed

s B =

during a transaction’s lifetime). The last extension is for hierarchical locking. Here
access pattern information can be defined at different granularities, e.g., we can release
an entire relation in a single operation. We only deal with exclusive locks in this paper.
The extension to shared and exclusive locks is presented in [Sale87a).

For clarity of discussion, we will consider a transaction to be a sequence of opera-
tions of one of three types, L (lock), R (release), or A (access). (We will not use explicit
unlock operations. A transaction will be assumed to unlock all locks after its last
operation.) Database entities are represented by lower case letters, e.g. a. Each opera-
tion operates on a database entity. All operations of all transactions are totally
ordered by an execution schedule S which describes when each operation occurs.

A transaction T; is well-formed in S if it accesses no database entity without first
locking it, it accesses no database entities it has already released, and it releases no
entities that it has not first locked. A schedule is said to be simply, or basically,
altruistically locked (BAL) if it has the following properties:

1) No two transactions hold locks on the same data object simultaneously unless one
of the transactions locked and released the object before the other locked it. In
this case, we say that the later lock-holder is in the wake of the releasing transac-
tion.

2) If a transaction is in the wake of another transaction, it must be completely in the
wake of that transaction. In other words, if T, locks a which has been released by
T,, then anything currently locked by 7, must have been released by T, before it
was locked by T,. (This requirement is relaxed once T, finishes.)

BAL schedules are serializable. This is proved for the more general case of both
shared and exclusive locks in [Sale87a]. We next develop a simple locking protocol for
well-formed transactions that results in BAL schedules. We will assume in doing so
that the system maintains information about database entities and transactions. In
particular, for each database entity a the system maintains:

e L(a): the set of transactions that have locked «

® R(a): the set of transactions that have released a (note that if transactions are
well-formed, R(a) C L(a))

For each active transaction T, the system maintains:

® has-lock(T,): a boolean set true when 7, obtains its first lock

e wake(T,): the set of transactions in whose wake T, is running

® 5(T,): the set of database entities that have been locked by T,

This information is updated when transactions begin and end, and when they
release or lock database entities. When transaction T, begins, has-lock(T,) is set false
and wake(T,) and §7,) are emptied. When 7, completes all of its operations, its
unlocks and un-releases are performed (using §(7,)), and it is removed from wake(T,) of
each active T,. (The commit point may occur later. See Section 4.) To release an

i

entity a, T, simply adds itself to R(a). When T, requests a lock on q, the protocol in

Figure 2a is followed.

wait for wait for
change in change in
L(a) or R(a) R(a) or wake(T;)

L(a) C R(a) ?

wake(T;) = R(a) ?

wake(T;)—
wake(T;)| J R(a)

has-lock(T;)~TRUE

L(a) « L(a) U (T%)
§Ts) — §T:) U (a)

@

Figure 2a - BAL protocol

The test "L(a) C R(a)?" in Figure 2a ensures that T, does not lock an entity that
has been locked but not released by some other transaction (first property of BAL
schedules). The tests "has-lock(T,)?" and "wake(T,) = R(a)?" ensure that T, remains
either completely inside of or completely outside of the wakes of other active transac-
tions (second property of BAL schedules).

An appealing aspect of this protocol is that it is fully compatible with two-phase
locking. 2PL and BAL transactions can coexist in the same system provided that 2PL

w2

transactions do not take advantage of releases made by altruistic BAL transactions. In
Figure 2a, this means that a 2PL transaction that failed the test "7, € L(a)?" when
requesting a lock on a would proceed directly to a wait state without checking whether
a’s locks had been released. A 2PL transaction Top; need not have wake(T5p,) main-
tained for it at all, since it will never enter the wake of another transaction. Further-
more, the cost of updating the wake list is paid only by those BAL transactions that
release entities or that lock released entities. Thus short BAL transactions that do no
releases of their own only pay extra concurrency control costs if they have a possibility
of increased concurrency.

As an example of the use of the BAL protocol, consider a hypothetical banking
database that contains a (large) relation ACCOUNTS. T, is a long-lived transaction
that is accessing a large number of entities (e.g. tuples, pages) from ACCOUNTS. Sup-
pose that since T}, needs to access each entity only once, so that as it finishes with each
entity it releases (R) it.

Now consider a short update transaction T that accesses a single database entity,
~an entity in ACCOUNTS. 1If a is not-locked by T}, Ts can access it without restriction.
If a is locked by Tj, Ts must wait until the lock is removed or until the tuple is released
by T, (by the first BAL restriction). T; releases a as soon as it is finished using it, possi-
bly long before it would have released &« under two-phase locking. Once a has been
released, Ts may immediately access it. By doing so, Ts enters the wake of T;. Had T
desired to make additional database accesses, they could be made without delay, pro-
vided that they too lie in the wake of Ty.

Incidentally, note that altruistic locking reduces the likelihood of blocking, but it is
still possible for short transactions to block for long periods of time waiting for a LLT.
If these short blocked transactions hold other locks, it may be best to abort them. (A
timeout mechanism on locks could be used.) This allows other short transactions that
do not require data locked by the LLT but do need the data held by the short transac-
tion to proceed. (The same is true in conventional two-phase locking.) We will not pur-
sue this idea further in this paper.

2.1. Extending the Protocol

Allowing access to the wake of LLTs is most likely to be beneficial to simple tran-
sactions with few database accesses. Transactions with more complicated access
requirements are less likely to remain in the wake of the LLT. Several extensions to
BAL are possible if greater concurrency is required by the application. In the following
discussion we consider three possible extensions.

2.1.1. Enlarging the Wake

Our definition of well-formed transactions requires that a transaction hold a lock
on a database entity before it can release that entity. Thus a transaction’s wake is
limited to entities it has itself locked. In fact, this restriction is not needed to maintain
the serializability of a BAL schedule.

We can relax our definition of "well-formed" so that transactions need not lock an
entity before releasing it. Transactions are permitted to release any entity, even if it is
currently locked (or released) by another transaction, provided that they have first
locked at least one (any) database entity. We will refer to such releases without lock-
ing as extended releases. Note that a well-formed transaction still may not access any
entity that it has released or that it has not locked.

Consider once again our hypothetical banking database. Assume that the database
contains another relation NAME_TO_NUMBER (used to map customer names to
account numbers) in addition to ACCOUNTS. Since our LLT T, uses only the
ACCOUNTS relation, it could release (R) (without locking) entities in
NAME_TO_NUMBER even if those entities are locked by other transactions. By doing
so T, can expand its wake substantially. Now our short transaction Tj, after accessing
a, is free' to access any other entities in 7}’s wake, including the released entities in
NAME_TO_NUMBER. We can implement such a change by making one small
modification to the BAL protocol (Figure 2a). With extended releases, a transaction
that passes the first test ("L(a) = @J?") must proceed next to the test "has-lock(T,)?"
instead of immediately obtaining the lock. In addition, 7, must ensure that has-
lock(T,) is true before it makes any extended releases.

These two changes ensure that released but not locked entities are included in a
transaction’s wake. Unfortunately, an expanded wake may make it more difficult for
other transactions to run outside the wake. This is not a problem when the wake is res-
tricted to entities that have already been locked by the releasing transaction. These
entities would be inaccessible to other transactions anyways (because they are locked),
so releasing them can only be beneficial. In Section 3, we present a simple performance
model and discuss in more detail the issue of when enlarging the wake will be beneficial.

2.1.2. Marking

A second way to boost concurrency is to make use of positive access pattern infor-
mation, ie., advance knowledge of which entities will be accessed by a transaction.
With such information we can often allow short transactions in a LLT’s wake to access
data outside the wake without jeopardizing serializability. In addition, transactions
outside of the wake can be allowed to enter it under certain conditions. These events
will still involve expanding the LLT’s wake, but the expansion will be done "on demand"

1 As always, T's must first obtain a lock on any entity it accesses.

-10 -

from short transactions. The wake can be expanded to include only those entities that
are needed by the short transaction, thus minimizing conflicts with transactions running
outside the wake.

To take advantage of positive access pattern information, we define a fourth tran-
saction operation, the mark (M). Like other operations, a mark operates on a single
database entity. Like release (R) operations, marks do not conflict, i.e., different tran-
sactions can simultaneously hold marks on the same entity. Transactions are not
required to use mark operations. Those that do will be termed marking transactions.

To be well-formed, a marking transaction must meet our original criteria for well-
formed transactions. In addition, a well-formed marking transaction must satisfy two
additional criteria:

1) A well-formed marking transaction may not lock (L) any entity without first
marking (M) it.

2) Once a well-formed marking transaction has released (R) any entity, it may no
longer mark.

In schedules we will term XAL (for "extended altruistic locking"), interactions
among non-marking transactions are the same as in BAL schedules: a transaction must
be either completely within another’s wake, or completely outside of it (while both tran-
sactions are unfinished). However, transactions are allowed to be both inside and out-
side the wakes of marking transactions under certain conditions. These conditions can
be stated informally as follows:

1) A transaction 7, in the wake of a marking transaction T, may access an entity a
outside of the wake of T, provided that a has not been marked by 7,,, and that T,
first releases (R) a on behalf of T, i.e., as if T, had released a itself.

2) A transaction T, outside the wake of a marking transaction T, can access an
entity a in T,’s wake provided that three conditions are met. First, 7, must not
hold locks on any entities marked by T,. Second, 7, must not have released (R)
any entities itself. And finally, 7, must first release on behalf of T, all entities on
which it currently has locks if they are not already so released.

Thus, when a transaction attempts to leave the wake of a marking transaction, it
really expands the wake of the marking transaction (by releasing on its behalf) instead.
When a transaction enters a marking transaction’s wake, it expands the wake to
include all of its locked data.

XAL schedules are serializable [Sale87a]. As we did for BAL schedules, we will
next develop a protocol that produces XAL schedules. The protocol will employ the
same information used by the BAL protocol. In addition it will make use of a list M(a)
for each entity « and a boolean has-release(7,) for each transaction T,. M(a) is a list of
transactions that have marked a, while has-release(7,) indicates whether T, has made
its first release.

.

Transactions begin, end, and release entities on their own behalf just as they did
under the BAL protocol. Under XAL, M(a) is cleared and has-release(T,) is set false
when T, begins. T, marks a by adding itself to M(a). T, can release e on behalf of T,
by adding T, to R(a). T, follows the protocol in Figure 2b if it wishes to lock a. Note
that the XAL protocol is an extension of the BAL protocol, and so Figure 2b is an
extension of Figure 2a. The dashed steps in Figure 2b correspond to steps in Figure 2a.

Figure 2b makes use of a shorthand notation for two lists of transactions, A(z,a)
and B(z,a). A(za) represents "wake(T,) — wake(T,) N R(a)", ie., those transactions in
whose wake T, is running that have not released a. For T, to lock a it must first release
a on behalf of transactions in A(z,qa) to satisfy the first condition on XAL schedules.
B(z,a) represents "R(a) — wake(T,) N R(a)". These are transactions that have released a
but in whose wake T, is not (yet) running, i.e., T, will enter the wakes of transactions in
B(z,a) by locking a. Before locking a, T, must first satisfy the second condition on XAL
schedules.

The extended segment of the protocol calls for 7, to first check whether it is
attempting to move outside any wakes ("A(z,a) = @?"). If so the wakes are expanded if
possible to satisfy the first condition on XAL schedules. If this can be accomplished T,
then checks whether it is attempting to enter any new wakes ("B(z,a) = @?"). If so and
T, has not already made releases of its own, entities already locked by T, must first be
brought into the new wakes as prescribed by the second condition on XAL schedules.

In our banking example, the short update transaction Ts would have more freedom
of access if T, was a marking transaction. In our original example, Ts would not have
been able to access an entity n in NAME_TO_NUMBER if it had already accessed an
entity a released by T, in ACCOUNTS, and vice versa. Under XAL, Ty is free to access
both n and a by first releasing » on behalf of T,,.

2.1.3. Hierarchical Releases and Marks

For simplicity we have assumed so far that each entity is individually locked,
released, or marked by a transaction. Along the lines of hierarchical locking [Gray76al,
1t is relatively easy to extend releasing and marking to hierarchies.

Due to space limitations, we will restrict ourselves to illustrating the basic idea on
a two level hierarchy, say records and files. Even with two levels, there are a number
of possible variations; we will only describe the simplest.

For lock releases, suppose that every record z has a parent file file(z) = y. Record
z has a lock, L(z), that can be in one of two states, free or locked. If L(z) is locked,
then T(z) is the transaction that has locked it. File y also has a lock, L(y), and it can
be in states free or released. If L(y) is released, then S(y) is the set of transactions that
have released it.

If L(y) is free, then record « is simply locked or free, according to L(z). If L(y) is
released, then all its records are released. That is, if L(z) is locked, then record z has

s 1.2

:__—__wEiffér___"'
| change in I
I 1
o PRSI .

< 5 l:as—lock(T,) ‘; h i E
N
M) NA(za) =7 1
R(a) =R(a) U A(z,a)
< L4 %-@ ?
[T Sl insie a
: L(a) + L(a) U(Ty) :
1 HT) —HTHU(a)
P - | Y

has-release(T,) ?

D +— §T;)

@+ @ny Tenmber
of D

\ N
M(e) N Blz,a) = !

R(c) = R(a) U B(z,4a)
D«+—D-—(qg

>

Figure 2b - XAL protocol

been locked are released. If L(z) is free, then record z has been released without being
locked, as discussed in Section 2.1.1.

< 18-

The locking rules are exactly as before, except that an entire file can be released
in a single operation (L(y) is set to released). The releasing overhead can clearly be
reduced substantially. Furthermore, the storage cost of the release information is also
much less. For example, if a LLT has released a large portion of the database we only
need to store a release set S(y) for each file and not each record.

Hierarchical marking could be done in a similar fashion. A marking transaction
could mark the files it will access. During the locking protocol, if another transaction
wishes to see if a record is marked, it simply checks if the file it belongs to is marked.
(A variation would be to mark at both levels. Then a record would be marked if it or
its file are marked.) The advantages of hierarchical marking are similar to those of
hierarchical releasing.

3. A Simple Performance Model

As mentioned earlier, releasing a locked entity can only be beneficial. However,
extended releases and marking could be counterproductive in some cases. That is,
extending a LLT wake can benefit some transactions but can slow down others. If more
transactions are hurt than are helped, then extended releases and marking may not
improve performance at all. In order to understand the tradeoffs involved, in this sec-
tion we will explore a simple performance model. The objective is not to accurately
predict the performance of altruistic locking; rather, the goal is to understand the
situations in which extended releases and marking can be helpful.

We start with extended releases. Suppose that we look at the database at a given
instant of time and determine the number of entities that are locked or released by a
given LLT. In particular, let

k = the number of entities locked by the LLT

r = the number of entities locked and released by the LLT

s = the number of entities released but not locked by the LLT
(extended releases)

n = number of objects not accessed by the LLT in any way

The situation is illustrated in Figure 3a.

Figure 3a

Consider now a short transaction T that accesses two random entities. If T

-14 -

accesses one of the s extended release entities and one of the n entities not accessed by
the LLT, then T will be blocked (it cannot run partially in and out of the wake). This
would not have occurred if the LLT had not done extended releases. In that case, both
entities would not have been accessed by the LLT and T would proceed unaffected. The
probability that this undersirable blocking occurs, P, is

§ n

Ppag =2 :
s (k+r+s+n) (k+r+s+n)

On the other hand, if T accesses one of the r locked and released entities and one of the
s extended release entities, then it will not be blocked. If the LLT had not done the
extended releases, then 7 would have blocked. The probability of this desired event is

r §
(k+r+s+n) (k+r+s+n)’

Paaad= 2

Note that all other types of accesses by T would have identical outcomes regard-
less of whether extended releases were used or not. For instance, if T accesses two of
the s objects, then it will not block in either case. Similarly, if it accesses any of the k
locked objects it will block. This implies that the two probabilities given above define
the desirability of extended releases. If P,,,q > Pyy then short transactions like 7 are
more likely than not to proceed in parallel to the LLT. If the reverse is true, then
extended releases are counterproductive.

From the equations, it is clear that P,,, will be greater than P,,; when r > n.
This means that a LLT should only perform extended releases after it has normally
released more data than what remains untouched in the database. At that point the
wake is large enough that it pays to make it even larger so that more transaction can
execute in it.

Of course, since our model is very simple, this must be taken as a very general rule
of thumb. In particular situations where the access pattern of short transactions is
known to be non-random, it may pay off do do extended releases earlier. For example,
suppose that a LLT has locked half a relation and will no longer need any portion of it.
It may be better to release both halves (a simple operation with hierarchical releases) if
it is likely that a short transaction that accesses one half will access the other.

A similar analysis can be performed for marking. Suppose that at a given instant

the situation is as follows:

m = number of objects that are marked by a marking LLT

n = number of objects that are NOT marked

k = number of objects currently locked by the marking LLT

r = number of objects that have been relased by the marking LLT

s = number of objects that have been released on behalf

of the LLT by short transactions.

Graphically, the situation is as shown in Figure 3b. (The @ and b points will be
explained in a moment.)

« 15 =

<-—- Kk —=><=== p —==> €=-=-= g -=-=>
| = THE --- DATADBAG SE -=-------cmmmmmm
i kR m ————=====— e = P T n ———=—=—=———--
a a
b b
Figure 3b

Consider again the short transaction T that accesses two random entities. If T
accesses entities at points a in the diagram, it will be blocked (the marked entity can-
not be added to the wake). This would not have occurred if 7 had not been a marking
transaction. The probability that this undesirable blocking occurs is
m—r—k 8
(m4n) (m4n)’

Pyy=2

On the other hand, if T accesses entities at points b in the diagram, T will proceed, and
this would not have happened without marking. This desirable event occurs with pro-
bability

Poood = 2— .
poek (m+n) (m+n)

Once again, these are the only two situations where the marking protocol makes a
difference. Thus, marking will be beneficial if P,,,4 > Py,

There are several situations where P,,,4 > Py,4. For example, the condition is true
if m<n and r>s. This occurs when the LLT marks less than half of the database and
when releases on its behalf are less than its own releases. This last condition is reason-
able because the likelihood that a short transaction releases on behalf of T is propor-
tional to r.

A second, possibly more important case where Pg,,q > Py, occurs when the LLT
progresses at a uniform rate. During the first half of the LLT’s life the factor m —r—Fk in
Pyeq will be greater than the factor r in P, However, during the second half, the
opposite is true. Since the additional factor n in P,,,, will always be greater than the
corresponding s factor in P;,4, the overall contribution of marking will be positive. To
see the magnitude of the positive contribution, assume that there is a time variable ¢
that goes from 0 to 1 during the lifetime of the LLT. Say that k = 0 (worst case),
r=mt and s = nt (also pessimistic). Then the top factor of P, is 2mnt and of Py, is
2mnt(1 — t). Clearly, P,,,q will always be greater than P,,, (except at ¢ = 0), and as time

= 16 =

progresses the difference becomes more significant.

As with the extended release case, there could be additional situations where
marking pays off if transactions have non-random patterns.

4. Crash Recovery Issues

If a short transaction runs in the wake of a LLT, it may see uncommitted updates.
Note that if a LLT releases only objects that it has read, and no objects that it has
written, this is not a problem. Thus LLTs can permit some access to their wake
without jeopardizing their own atomicity. An extreme example is a read-only LLT,
which could provide complete access to its wake without atomicity problems. However,
in some cases it may be desirable for a LLT to release its updates. This means that a
short transaction that sees the such an update cannot commit until the LLT commits.
If the LLT aborts, then any transaction that ran in its wake must be aborted.

Achieving this is not difficult. (It may, however, be inconvenient to the end users;
see below). For each transaction T the system maintains a list commit(T) that includes
all transactions that ran in the wake of T, finished all their actions, and will commit
together with . When a transaction T, finishes all its actions, its wake(T,) lists all the
active transactions in whose wake it has run. If wake(T,) is not empty, then T, will
commit with one of the transactions in wake(T,). That is, let T, be any transaction in
wake(T,). When T, finishes, it adds itself and all transactions in its own commit(T,) to
commit(T,). In addition, 7, unlocks (and un-releases) all objects it accessed and
removes itsell from any wake(T,) sets it may be in. On the other hand, if wake(T,) is
empty, then 7, and all transactions in commit(T,) commit at once. As in the other
case, T, also unlocks (and un-releases) all its objects and removes itself from any
wake(T,).

To illustrate this mechanism, consider a LLT T, with two transactions T, and T,
running in its wake. Suppose in addition that T, runs in the wake of T,. That is,
wake(Ty) is empty, wake(T,) is {71}, and wake(Ty) is {Ty, T;}. If T, finishes its actions,
it adds itself to commit(T;) and makes wake(T,) equal to {T,}. Note that at this point
T, unlocks all its data even though it has not committed. This is possible because all of
Ty’s data is entirely within the wake of T;. Hence, any other transaction that looks at
the data will still know it is uncommitted. Continuing with the example, if 7, finishes
before Ty, it also adds itself to commit(T;). When T}, finishes, it commits all three tran-
sactions. On the other hand, if 7} finishes ahead of Ty, it only commits itself and T,.
Transaction T, continues running with wake(7T5) empty.

If a transaction T, must be aborted, any transaction in commit(T,), any transac-
tion T, in the wake of T, (i.e., T, € wake(T,)), plus any transactions in commit(T,) must
all be aborted. The database updates performed by these transactions must be undone,
so that the database reflects the initial value seen by T,.

s 1T =

Delayed commits have two disadvantages in the context of LLTs. First, the users
who submit short transactions may not know whether their transaction was successful
or not for some time. Second, if there is a LLT abort, the cascading rollbacks will
make an already difficult task even more painful. Fortunately, there is a solution that
we believe is feasible for many types of LLTs.

The basic idea is to insert a sequence of save points into the LLT such that at
each of these points the partial results of the LLT are committed. At each save point,
the short transactions that are waiting to commit can be committed. A similar sugges-
tion is made for "random batch" LLTs in [Baye87a).

To be able to commit the partial LLT results at each save point, we must guaran-
tee that the results will not be undone due to (1) a voluntary abort, (2) a deadlock, or
(3) a hardware failure. The first of these guarantees can be enforced by prohibiting
voluntary transaction aborts after the first save point. (It is still possible for a transac-
tion to voluntarily undo all changes up to the last save point. In this case, other tran-
sactions in its commit set would be aborted as described above.) This does not seem
like a harsh restriction because in any case a LLT should perform all checks that could
indicate an inability to complete (e.g., insufficient funds for a transfer) as soon as possi-
ble to avoid waisting large amounts of effort.

For the second guarantee, we must ensure that a LLT is never aborted due to a
deadlock. The simplest way to achieve this is to run a single LLT at a time. Any time
a deadlock is detected, the short transactions would be aborted. A second way to
achieve the guarantee is to make marks by different transactions incompatible. In this
case, marking would ensure that each LLT preclaims all the data it will need, eliminat-
ing the possibility of a deadlock with another LLT.

Finally, for the third guarantee, the system must save the LLT’s state information
on stable storage [Lamp79a] at each save point. This makes it possible to restart the
LLT at the save point after a hardware failure [Gray78a). At the time the stable
storage record for T is made for the save point, all transactions in commit(Ty) can be
committed. (Because of our deadlock avoidance rule, wake(T}) should be empty.)

Save points can reduce the problems of cascading rollbacks and transaction delays,
but at the expense of sacrificing the atomicity of the LLT. Another solution, which also
does away with cascading rollbacks and delays yet does not require savepoints, is to use
compensating transactions. A compensating transaction is used to "semantically undo"
the effects of an aborted LLT. The database is returned to a consistent state which
may not be the same as the state that existed before the LLT started, but which is rea-

sonable in terms of the semantics of the application.

When compensating transactions are used, short transactions that see the updates
of an aborted LLT are not themselves aborted. For some types of LLT’s in some appli-
cations this is not a problem. For example, if the LLT and short transactions are both
making seat reservations in an airline database, it may not be critical that the LLT be

< .

undone, as long as any reservations it made are canceled instead. The difference is that
short transactions that have made reservations on the same plane in the meantime can
be allowed to keep them. Compensating transactions are explored in more detail
in [Garc87a,Garc83a) and we will not pursue the topic further here.

5. Obtaining Access Pattern Information

We have seen that access pattern information can be used to boost the con-
currency of long-lived transactions. But how do we obtain such information, and how
do we make it available for use? We will address these questions in this section.

Transactions can take many forms. Their database interactions can occur
through an abstract, high level interface (e.g., the relational algebra), or through a
lower level interface. Similarly, concurrency controls can be implemented at various
levels of abstraction. Lockable entities might be individual records or more abstract
entities such as predicates on the database.

To simplify our discussion we will postpone consideration of high level interfaces
until the end of this section. For now we will consider low level interfaces. In particu-
lar, we will assume that the database interface consists of a small of collection of primi-
tives such as READ(pathID), WRITE(pathID), READ_NEXT(setID), and
READ_FIRST(setID). The primitives with pathID arguments are used for associative
accesses. The pathID is the unique identifier of a path to a particular (low level) data-
base entity. For example, pathID could be a key for a specific index into a database
table, or it might simply be a physical or logical pointer to a record or a tuple. A setID
argument identifies an ordered collections of data, e.g. a linked list of tuples. Opera-
tions FIRST and NEXT are used to scan such sets.

Access pattern information for the concurrency controller is supplied through vari-
ous RELEASE and MARK primitives. For now we will assume that these primitives
have arguments similar to those of the access primitives, i.e., either pathID or setID.
For example, the actual primitives might look like RELEASE(pathID) or
MARK_CURRENT(setID). The question to be discussed in this section now becomes:
Given a transaction, where (if anywhere) should the new primitives be included, and
who should include them?

The simplest way (from the system’s point of view) to acquire access pattern infor-
mation is to ask the application programmer to provide it. This means that
RELEASE and MARK primitives would be put by the application programmer into
the transaction when it was written. The placement of primitives would be determined
by the programmers knowledge of the access behavior of the transaction. Note that
incorrect placement by the programmer will not endanger consistency; it can only hurt
performance (e.g., the system will abort any transaction that tries to access data it pre-
viously released).

=19 -

Another possibility is for application programmers to categorize transactions into
"access pattern classes”. This may mean less work for the programmers than explicitly
placing access pattern primitives. The classifications (together with the transactions
themselves) could be used by the system to generate positive or negative access pattern
information, or both. For example, to obtain positive information, transactions might
be classified into an application-dependent set of classes according to the data they
access. The system would then insert the appropriate MARK operations into the tran-
saction code. This kind of scheme is used in SDD-1 [Bern80a| (although in that system
the information is used to determine transaction conflicts, rather than to generate
MARKSs.) Transaction classes could also be used to produce negative access pattern
information. For example, there might be a class of transactions known as "sweep tran-
sactions” that access a collection of entities in a single pass. For transactions in this
class, the system could place a RELEASE operation after each database access.

The system might also attempt to generate access pattern information itself
(without involving the application programmer) by analyzing transactions. Such an
analysis would require knowledge of the control structure of the transaction, and the
semantics of the database access primitives. For example, consider the transaction
shown in Figure 5a, which might be run against our hypothetical banking database.

GET_FIRST(ACCOUNTS)

compute summary information

WHILE there are more accounts DO
GET_NEXT(ACCOUNTS)
compute summary information

ENDWHILE

write summary information
Figure 5a - Hypothetical Banking Transaction

We assume that ACCOUNTS uniquely identifies a set in the database (in this
case, the table of accounts) which can be scanned in some order. This is an extremely
simplified (and not terribly realistic) transaction, but it serves to illustrate our points.
The WHILE loop (control structure) and the semantics of the GET-FIRST and
GET_NEXT primitives dictate that each entity in ACCOUNTS will be accessed once
by the transaction. Thus a RELEASE_CURRENT operation could be included after
the GET_FIRST and GET_NEXT operations. If positive access pattern information
was desired as well, the system could also insert code at the beginning of the transac-
tion to mark entities in ACCOUNTS, using MARK_FIRST(ACCOUNTS) and
MARK_NEXT(ACCOUNTS). (If the summary information is being written to the
database, the summary record would also be marked using MARK.)

« 90 =

Such an analysis is more complicated if the transaction accesses database entities
from more than one set. The analysis would then require information about the struc-
ture of the database to determine whether or not a particular entity was being accessed
once or more than once. Structural information describes the relationships among
database sets. For example, it would be necessary to determine whether any of the sets
being accessed overlap (share records).

The analysis is also made more complicated if the parameters of the database
access primitives are not constants, as they were in our example. For example, in
READ(pathID), pathID might be a function of input parameters of the transaction, or
of the results of previous database accesses. The latter case is particularly difficult.
While it may be possible to obtain useful access pattern information, such an analysis
would require some knowledge of the semantics of the data. We will not discuss such
transactions further here.

If the values of parameters of access primitives are dependent on transaction input
parameters, we cannot add access pattern primitives to the transaction as we did in
the previous example. However, in many cases, primitives can be added conditionally,
l.e. the primitive is to be executed only if certain conditions are satisfied when the tran-
saction is run. For example, consider a transaction with only two access primitives
READ(pathA) and READ(pathB), where pathA and pathB are supplied directly as tran-
saction parameters. At compile-time, the conditional statement

IF pathA#pathB THEN RELEASE(pathA)

can be inserted after READ(pathA) (along with a similar statement after
READ(pathB)).

There are two difficulties with this method. First, the parameters of the access
primitives may be arbitrary functions of the transaction parameters. The identity
function used in our example is the simplest case. Second, there may be a large number
of parameterized access primitives in the transaction. Both of these difficulties increase
the complexity of the condition that must be evaluated at run time to determine
whether or not the RELEASE or MARK operation should be executed. Thus, as
transactions get more complex, the cost of including access pattern information
increases. At some point, the concurrency benefits provided by the access pattern infor-
mation will be outweighed by this additional cost. The exact point at which this occurs
1s highly transaction and database dependent.

One way to reduce the complexity of a transaction analysis is to use access primi-
tives whose arguments are larger granules than records or tuples. For example, the sys-
tem might have available a RELEASE(setID) primitive, which releases an entire set or
relation, in addition to the RELEASE_NNEXT(setID) primitive we have already con-
sidered. Using larger granules allows the analysis to ignore the details of how the

% B

transaction accesses the various components of the large granule. The entire granule is
released at once when the transaction is completely finished accessing it.

The price paid for using larger granules is that (for RELEASE operations) some
parts of the large granule may not be released as quickly as they would have been had
smaller granules been used. However, large granules reduce the overhead of locking,
since fewer primitives need to be executed. They may also be able provide some access

pattern information for transactions whose analysis proves to complex at a lower level.

So far in our discussion we have assumed that transactions use a fairly low-level
database interface. What can be done if a higher level interface is used? For example,

what if the interface supports relational algebra operations like JOIN?

If both the database interface and concurrency controls are implemented at a high
level, then the situation is similar to that we have just considered. In fact, as long as
the entities recognized by the concurrency control primitives are the same as those
recognized by the database access primitives, all of the techniques we have already
mentioned can apply. The principal difference between the high level and low level
cases is the difficulty of determining whether lockable entities conflict.

In some cases the concurrency controls may be implemented at a lower level than
the database interface. For example, System R [Astr76a] supports a high level rela-
tional interface for transactions, while concurrency control is implemented at the
tuple/record level below the relational interface. In such systems it is not possible for
application programmers to supply access pattern information unless some mechanism
is provided to translate from the high level entities known to the programmers to the
lower level entities used for concurrency control. Unless such a translator is provided,
access pattern information must be obtained through transaction analysis. The
analysis can be accomplished once the transaction has been converted to a lower level
form by the query processing component of the system.

6. Conclusions

In this paper we have presented an extension to two-phase locking that allows long
lived transactions to release their resources earlier, freeing up other shorter transac-
tions. We by no means claim that our solution is the best among the proposed solutions
for coping with LLTs. Each of the proposed solutions has its own strengths and
weaknesses that make it appropriate in certain circumstances. However, we do claim
that our proposal has certain important advantages that make it worthy of considera-
tion:

(a) Altruistic locking does guarantee serializable executions.

(b) Transactions can access the database in any order.

(¢c) Declaration of access set (MARKing) is optional.

929 .

(d) The protocol is fully compatible with two-phase locking; transactions that do not
wish to participate in the extended protocol perform (almost) as well as they

would under conventional two-phase locking with essentially no additional over-
head.

(e) Altruistic locking improves performance by early release of LLT locks. It is
difficult to quantify the improvements in general, but at least it is clear that in
some representative scenarios it does help.

The major disadvantages are:

(1) The performance improvements are probably not as great as those achievable
under strategies, such as sagas [Garc87al, that do not guarantee serializable exe-
cutions for LLTs.

(2) The access pattern of the LLTs must be analyzed, either automatically or manu-
ally, in order to achieve the performance improvements.

(3) The mechanism is not as simple as two-phase locking (neither are all of the other
proposed solutions).

References

Ahuj87a.
Ahuja, Mohan L. and J. C. Brown, “Concurrency Control by Pre-Ordering Entities
in Databases with Multi-Versioned Entities,” Proc. Int’l Conf. on Data Engineering,
pp. 312-321, Los Angeles, CA, February, 1987.

Astr76a.
et al, Astrahan, M. M., “System R: A Relational Approach to Database Manage-

ment,” ACM Transactions on Database Systems, vol. 1, no. 2, pp. 97-137, June,
1976.

Baye87a.
Bayer, Rudolf, “Consistency of Transactions and Random Batch,” ACM Transac-
tions on Database Systems, Jan., 1987.

Bern80a.
Bernstein, Philip A., David W. Shipman, and James B. Rothnie, Jr., “Concurrency
Control in a System for Distributed Databases (SDD-1),” ACM Transactions on
Database Systems, vol. 5, no. 1, pp. 18-51, March, 1980.

Garc83a.
Garcia-Molina, Hector, “Using Semantic Knowledge for Transaction Processing in
a Distributed Database,” ACM Transactions on Database Systems, vol. 8, no. 2, pp.
186-213, June 1983.

Garc87a.
Garcia-Molina, Hector and Kenneth Salem, “Sagas,” Proc. ACM SIGMOD Annual
Conference, pp. 249-259, San Francisco, CA, May, 1987.

=08

Giff85a.
Gifford, David K. and James E. Donahue, “Coordinating Independent Atomic
Actions,” Proceedings of IEEE COMPCON, San Francisco, CA, February, 1985.

Gray78a.
Gray, Jim, “Notes on Data Base Operating Systems,” in Operating Systems: An
Advanced Course, ed. G. Seegmiiller, pp. 393-481, Springer-Verlag, 1978.

Gray8la.
Gray, Jim, “The Transaction Concept: Virtues and Limitations,” Proceedings of
the Seventh Int’l. Conference on Very Large Databases, pp. 144-154, IEEE, Cannes,
France, Sept., 1981.

Gray76a.
Gray, J. N, R, A. Lorie, G. R. Putzolu, and I. L. Traiger, “Granularity of Locks
and Degrees of Consistency in a Shared Data Base,” in Modeling in Data Base
Management Systems, ed. G. M. Nijssen, pp. 365-394, North Holland Publishing
Company, 1976.

Kede80a.
Kedem, Zvi and Abraham Silberschatz, “Non-Two-Phase Locking Protocols With
Shared and Exclusive Locks,” Proceedings of the Conference on Very Large Data-
bases, pp. 309-317, IEEE, Montreal, Canada, Oct., 1980.

Lafo84a.
Lafortune, S. and E. Wong, “A New Locking Protocol that Achieves All Serializ-
able Executions,” Memorandum No. UCB/ERL M84/77, Elec. Research Lab., Univ.
of California, Berkeley, CA, September, 1984.

Lamp79a.
Lampson, Butler W. and Howard E. Sturgis, Crash Recovery in a Distributed Data
Storage System, Xerox Palo Alto Research Center, Palo Alto, California, April,
1979.

Lync83a.
Lynch, Nancy, “Multilevel Atomicity - A New Correctness Criterion for Database

Concurrency Control,” ACM Transactions on Database Systems, vol. 8, no. 4, pp.
484-502, December, 1983.

Sale87a.
Salem, K. and H. Garcia-Molina, “The Correctness of Two Locking Protocols for

Long-Lived Transactions,” unpublished report, Dept. of Computer Science, Prince-
ton University, July, 1987.

