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Abstract

We show that finding weak components, finding an Eulerian path, and
testing 2-colorability of two-dimensional doubly periodic graphs can be done
in polynomial time with respect to the size of the static graph.

1. Introduction

A k-dimensional dynamic graph is obtained by repeating a basic cell in
a k-dimensional orthogonal grid. The nodes in each cell are connected to a
finite number of nodes in other cells, and, furthermore, the pattern of the
inter-cell connections is the same for each cell. Thus, a dynamic graph is a
finitely described infinite graph, with a periodic structure. In this paper we
study the following problems for two-dimensional dynamic graphs: finding
weakly connected components, deciding whether there is an ( undirected or
directed ) Eulerian path, and testing 2-colorability.

A two-dimensional dynamic graph can be represented by a finite graph
with two-dimensional labels on each edge, which is called a static graph.
From the definition, every two-dimensional dynamic graph is doubly
periodic, locally finite, and infinite. Note that a graph is said to be doubly
periodic if its automorphism group has two non-parallel translations, and an
infinite graph is said to be locally finite if all vertices have finite valencies.
We will show that the class of two-dimensional dynamic graphs is the same
as the class of doubly periodic graphs.

Two-dimensional dynamic graphs arise naturally in the study of regu-
lar VLSI circuits, such as systolic arrays and VLSI signal processing arrays
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(Cappello and Steiglitz 1981; Iwano and Steiglitz 1986b). In these applica-
tions, the graphs associated with the circuits can be regarded as subgraphs
of two-dimensional dynamic graphs. Orlin (1984) pointed out that many
problems in transportation planning, communications, and operations
management can be modeled by one-dimensional dynamic graphs. Doubly-
weighted digraphs, which can be regarded as static graphs of two-
dimensional dynamic graphs, have also been well studied. For example,
Dantzig, Blatter, and Rao (1967) and Lawler (1967) studied optimal cycles
with minimum ratio of two labels; Reiter (1968) studied these graphs for
scheduling parallel computation. Orlin (1984) investigated various prob-
lems for one-dimensional dynamic graphs, such as finding weak or strong
components, finding an Eulerian path, and testing 2-colorability. The
authors studied the acyclicity problem (Iwano and Steiglitz 1986a, 1987)
and planarity testing for two-dimensional dynamic graphs (Iwano and
Steiglitz 1986¢).

The regularity of dynamic graphs may lead us to efficient solutions of
certain problems because we may be able to restrict problems to finite
graphs which adequately represent them. We will show that finding weak
components, finding an Eulerian path, and testing 2-colorability of two-
dimensional dynamic graphs can be solved efficiently using this idea. Our
algorithms also solve the problems of finding weak components and testing
2-colorability for one-dimensional dynamic graphs which are discussed by
Orlin (1984).

2. Graph terminology

In this section, we review basic graph terminology (See Harary 1969;
Christofides 1975) and define a dynamic graph as an infinite graph induced
by a finite graph.

Definition 2.1: Given a digraph G = (V, E ), a path P in G is a sequence
of vertices

P =vg,vy,..., 0
where

e =(vj_1, ;) €EE for 1 sVi=<]



and
v; €V for 0 =sVi <.

If all vertices vg, vy, ..., v;—1 are distinct, a path P is simple. A path P
such that vy = v is called a cycle. A path P is a trail if all edges in P are
distinct. A chain P in G is a sequence of vertices

P:UQ,UI,...,Ug

where

IA

v; €V for 0 =Vi=<]
and either
e; =(vi_1,v;)€Eore = (v, vi-1)€E for 1=VYis=<1lL

A digraph G is said to be weakly connected or weak if there is at least one
chain joining every pair of distinct vertices. []

Definition 2.2: A countable graph is one in which both the vertex set and
the edge set are finite or countably infinite. A graph is locally finite if the
valence of every vertex is finite. []

Definition 2.3: Let G® = (V?, E¥ ) be a finite directed graph with
VVe=dpy. BoiyaisBal
Let
Tk .EY > Z*
be a k-dimensional labeling of E° such that
T*(e) ={eqw, ea,..., en } € ZF
for every e € E”. For each x € Z*, we call v; x the X-th copy of v; € V0 and
Ve={viz: Vo5, ¢::s Upxl
the x-th copy of V°. Then we can define the k-dimensional dynamic graph
G* = (V*, E*, T* ) induced by G? as follows:

Vi u Wy
x€Z*

Ek:{(vi,x,vj’y)|(ui,vj)EE'0,y—-x:Tk((vi, v; ) )ik @)
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We call G° the static graph of G*. The edge with the T*( e )-label is called
the T*( e )-edge. []

Note that G* is an infinite graph and is locally finite. Moreover, we have
the following theorem, which is easy to prove.

Theorem 2.1: The class of two-dimensional dynamic graphs is the same as
the class of doubly periodic graphs. []

We use 0 to represent the origin in Z*: that is,0 = (0,0,..., 0). We
now define the basic cell of G* as follows:

Definition 2.4: For x, y € Z*, let
Ery ={(vix,0j5) €E*}.
When x # y, we call E; y the connecting edges. We call
Cx =(Vx, Exx)
the x-th cell of G*. In particular, we call Cq the basic cell of G*. O

From this definition, we can regard G* as the union of cells and con-
necting edges. When we regard each cell of G* as a point, we have another
dynamic graph that we call the cell-dynamic graph G*. We call the static
graph of G* the cell-static graph G?. Fig. 1c shows our notation: the super-
script k of G indicates a k-dimensional dynamic graph, while the superscript
0 indicates a static graph. The subscript ¢ of G° (resp. G*) indicates a cell-
static (resp. cell-dynamic) graph. We now define G and G¥ formally as fol-
lows:

Definition 2.5: Let G* be a dynamic graph defined in Eq. (2.1). Then the
cell-static graph GY is the following multidigraph:

G¢ = (V¢, E2, T¢)



where
Ve ={v}
Bl ={e=(o,v0)]ecEY T(e) =0} (2.2)
Tk(e') = T*(e) for Ye' € EL.
The cell-dynamic graph
Gy =1V, By, 1%
is the dynamic graph induced by G2 and described as follows:

VE = 25
Ef:‘.{(xry)]x:yevgsa(vi,x:!vj,y)eEx,yaxzy}-

From now on, we assume that every vertex of the cell-dynamic graph
GF is located at an integer lattice point of the Euclidean plane Z*, and we
sometimes use x € Z* to represent the vertex of G* which is located at x.

In Fig. la, the two-dimensional dynamic graph G? is induced by a
static graph G°, while in Fig. 1b, the cell-dynamic graph G?2 is induced by
the cell-static graph G?. The cell-dynamic graph G2 represents the intercon-
nection between cells in the dynamic graph G2, and the cell-static graph G?
consists of edges with non-0 labels in G°.

3. Weak connectivity

In this section, we will investigate the problem of finding the number of
weakly connected components in a two-dimensional dynamic graph.

If the basic cell is not connected, the associated dynamic graph is also
not connected. Thus without loss of generality, we can assume the following:

1) The basic cell Cy is connected.

Since we are concerned with weak connectivity, each connected cell can be
regarded as a point. Therefore, we can assume the following 1°) instead of 1).

1) The basic cell C; consists of one point; that is, G2 = G2. In other
words, the dynamic graph is the same graph as its cell-dynamic graph.
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Hence we can assume the following static graph G° = (V°, E®, T2 ) which
induces the two-dimensional dynamic graph G2 = (V?2, E2, T2 ).

VO ={v}
E° ={eq,e9,..., en } where ¢, = (v, v) (3.1)
T2(e)=e€ = (2,5 )€ZXZ for i =1,2,..., m.

Definition 3.1: Let Iy be the set of two-dimensional integer vectors. Let
fi, fy € I5. Then we denote the parallelogram formed by 0, f;, f3, and
fl + f2 byP(fl, fz) D

Definition 3.2: Let ¢; = (x;, ;) €Iy for i =1, 2,..., m. Define e; O ey
and Ogcd in the following way:

e; O ey = x1y9 — ¥1X9
and
Oged {ej,€3,...,em}=gcd{ | e Oe |, 1=i<j=m}
]

Note that the area of parallelogram P( ey, ez )is | e; O eg |.

Definition 3.3: Let ey, €3, ..., ey € Iy. Then we denote the set of linear
combinations of e, €3, ..., ez by (€, €9,..., en ). []

We sometimes use e to represent the point (x, vy ) in the plane when
e =(x y).

Theorem 3.1: Let G2 = (V2 E2 T?) be a two-dimensional dynamic
graph. Then G? is weakly connected if and only if

Oged {e1,es,...,ent =1 3.2

where the e; are defined in (3.1).

Proof: Suppose G2 is weakly connected. Then (1, 0) and (0, 1) can be
expressed by linear combinations of the e;. Thus there exist some a;, b; € Z



such that

(1,0) = Sae, (0,1) = 3 be;. (3.3)
i=1 Jj=1

Note that (1, 0) O (0, 1) = 1. Therefore, from (3.3),

( Eaiei)O( Ebjej)
i=1 i=1
= ( Eaixi)( Ebjyj)_( D oay ) D bx; )
i=1 ji=1 f o= 1 je=1
= > a;b;(x;y; — yixj ) = > a;bj(e; O e) = 1.
1sijsm l=ij=m

Therefore, (3.2) holds.
Conversely, suppose (3.2) holds. Then there exist ¢; € Z for

1 = i,j < m such that

2 cij( e; O g ) = 1. (3.4)

1<ij=m

Therefore, we have

> (e —cji)xy; = L (3.5)
l1=sij=m
Let
m m
Xi= 2 (e —ci)yp Yy= 2 (ej —ci) x, (3.6)
i=l i=1
and
m m
f: = 3 Xie, £y = 3, Ve (3.7)
i=1 j=1

Then we have fy = (1, 0) and fy = (0, 1) as follows. From (3.5), we have

1 m

2 Xixi = 1, E ijj = 1. (3.8)
i=1 i=1
We also have
m
D Xiyi= X (ej—ci)yyj =0
i=1 1<ij=m
) (3.9

m
2 ijj = 2 {CU - Cji ) xixj = 0
j=1 l1=ij=m

!
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Therefore, we have f; = (1, 0) and fy, = (0, 1), and thus G? is weakly
connected. []

Corollary 3.1: The weak connectivity of G2 can be tested in
O( m? log epax )
steps where m is the number of edges in the static graph and

emax:max{lxilalyil|ei=(xi!yi)EE0 for ]_<_:Vi_.<..m},

Proof: Euclid’s algorithm computes ged(a, b) in < 2log N = O(log N )
iterations for 0 < ¢ < b < N (Lipson 1981, 208). We need m?2 ged computa-
tions. []

We have a stronger result than Theorem 3.1 as follows:

Theorem 3.2: The number of weakly connected components of G2 is

Oged {e1, €e,..., ey |

Before proving Theorem 3.2, we need the following lemmas:

Lemma 3.1: Let g, f;, fs € Iy be such that g is properly contained in
P( fl: fg ) Then

0<max{|gOf|,|g0Of |} <f Ofy.

Proof: Trivial. []

Lemma 3.2: Let
€1, €9, ..., em,fEIZ
be such that

fe(ey,es,..., €y ).

Then

Oged{f, e1,es,...,en} = Ogcd{ey, es,..., €x } (3.10)
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m
Proof: Let p be the right-hand-side of (3.10). Let f = > a;e;. Then for any

i=1
1<j=<m,
fOe = daie;Oe).
i=1
Thus, p divides f O e;. Therefore,
p = Oged{f,e;, e, ..., enl
U
Lemma 3.3: Let eq, €3, ..., ey € I9 be such that
p = Oged{e;,es,..., eq }
Suppose there exist
fi,fa€(e,e9,...,€n)
such that
f, Ofy =p.
If g € I is properly contained in P( f, f3 ), then
gd (e, e, ..., €y ).
Proof: Suppose
g€(eq,€9,..., €n ).
Then from Lemma 3.2,
p = Oged{ g, f1,fs,e1,e9, ..., €m |

Therefore, p divides g O f;. However, from Lemma 3.1,
0<|gOf1 | <f;0f; =p.

This is a contradiction. []

Corollary 3.2: Let p, f;, f3 be defined as above in Lemma 3.3. If two
different vectors g, gs € I9 are properly contained in P( f,, fy ), then

gs — g1 € (e, e,..., ey ).
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Proof: If go — g; is properly contained in P( f;, fs ), Corollary 3.2 holds by
Lemma 3.3. If not, there exists a rational number 0 < r < 1 such that

gy — g1 = rf; or rfs.
Suppose
rfj €(eq,ea, ..., en ).
Then, p divides rf; O e; = rp < p, which is a contradiction. Thus,
go — g1 9 (e, e9,...,en)

H

Lemma 3.4: Let p, f;, f3 be defined as above in Lemma 3.3. Then for any
g € I, there exists a vector g' € P( f;, f3 ) such that

g_"g’E(el,ez,...,em).

Proof: Let R, be the translated parallelogram formed by
af; + bfy, (a +1)f; + bfs,
(@ +1Df; + (b+1)fy, and af; + (b +1)f,.
Then there exists some R,, which contains g. Let

g =g — (afy + bfy).

Then
g eP(f, fy)
and
g—g =af] +bfy € (f1,f3)C(eq,e,...,en).
[
Lemma 3.5: Let
p = Oged{ ey, e,..., €y |
Then there exist two vectors
fi.fg €(ey, @3, ..., 09 )

such that
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(f1,f3) =(eq,e3,..., €y ).

Therefore,

| f1 0 f2 | = p.

Proof: Suppose not. Let
fi,fa €(ej,e9,...,€n)
be such that
f10f =min{g1 Oga | g1,82€ (e, €z,..., en),
g10¢gs >0} (3.11)

Since we assumed f; O f3 # p, there exists an integer £ > 1 such that

f, O fy = kp.
Note that
Jdg€{e, e, ..., ent st gd(f, fy), (3.12)

because otherwise,

(o1, @8, ..., )C (5, &)
and then

kp = Oged {fy, fa} = f; O fy
can divide

Oged {e1,e2,..., en} = p.
This contradicts £ > 1.
From (3.12) and Lemma 3.4,

_g' €P(f1,fg) s.t. g—g' € fl,fg ).
From Lemma 3.1,
0< max{ | g Ofy |, | ngfg | }<f10f2. (3.13)

Note that since

g,fl,fg6{81,92,...,em},g'G(g,fl,fg),

we have

g €(eq,e9,...,€n )
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Therefore, (3.13) contradicts the definition of f; O fy in (3.11). []

We now prove Theorem 3.2.

Proof of Theorem 3.2: From Lemma 3.5,
Jf;,fs €{e;,e9,..., ey}
such that
fi Ofy = Oged{ ey, es,...,en} = p.

Corollary 3.2 implies that any two distinct vectors g;, gg € P( f;, f3 ) can-
not be connected by linear combinations of ey, e3,...,en. Thus g; and gy
are in two different weakly connected components. Therefore, there exist at
least p components. Lemma 3.4 implies that there exist at most p com-
ponents. []

Note that each weakly connected component of G? corresponds to an
element of the quotient ring

(ZXZ)/(el,ez,...,em).

Orlin (1984) computed the number of weakly connected components in a
one-dimensional dynamic graph. We can obtain the same result from
Theorem 3.2 as follows:

Theorem 3.3: Let G = (V1 El, T!) be a connected one-dimensional
dynamic graph induced by a static graph

GO = ( VO7 EG, Tl )
with

E0={€1,82,---,~€m}’

T e)=x€Z for 1 =Vi < m.

Then the number of weakly connected components of G is

ng( xl: xz: 8 & oy xm )
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Proof: We can assume that the basic cell of G? is connected, as we assumed
for G2. As we discussed in the beginning of this section, we can also
assume that V° consists of only one vertex. We now define a two dimen-
sional dynamic graph G2 = ( V2, E%, T? ) induced by the following static
graph 8® = (V, E, T? ).

VYeVW=i{v}
{E=E%U{ey=(v,v)}
ei = (TYe)0) if1<Vi<=m

2 s
T™(ei) =1ey =(0,1) it =

Fig. 2 illustrates examples of G' and G2.

Let VI ={v, |x€Z} and V2 = {vey | x, y € Z} where v, denotes
the xth node in G' and v, denotes the (x, y )-th node in G%. Let
v, <> v denote that v, and v, are connected by a chain; that is, v, and v,
are in the same weakly connected component. We use the same notation for
G2, namely vg, < v.q.

If vgp < Ueq, then v,y < vy <> vy, because v,y and vy, are con-
nected by (d — b ) copies of ey edges. Therefore, v, «— v..

Conversely, if v, «<— v, then
Ugp <> Ueq for Vb, d € Z.

This is because vy, <> vgg by (d — b ) copies of ey edge and vyg < vq.
Suppose G! is located horizontally along with the x-axis as shown in Fig. 2.
Then

Ugh < Ugd < Ucd.

Therefore, the number of weakly connected components in G! is the same as
in G%. Thus, from Theorem 3.2, the number of weakly connected com-
ponents of G2 is

Oged{eg, e1,..., em } = gcd(x1, X9, ..., Xy ).

[]

4. Eulerian path

In this section, we will show that a two-dimensional connected cell-
dynamic graph is Eulerian and that two-dimensional dynamic graph is
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Eulerian if and only if its static graph is Eulerian. Except when otherwise
stated, all graphs discussed are undirected.

The following are well known facts about finite Eulerian graphs:

Theorem 4.1: (See Harary 1969) A connected finite graph G is Eulerian if
and only if every vertex has even valency. []

Corollary 4.1: (See Harary 1969) Let G be a connected finite graph with
exactly 2n odd vertices, n > 0. Then the set of edges of G can be partitioned
into n open trails. []

Before introducing an extension of Theorem 4.1 to infinite graphs, we
need the following definition:

Definition 4.1: Let S be a finite set of edges in an infinite graph G. Denote
by | G |» the number of infinite components in G, and by G/S the graph
obtained by deleting S from G. A connected infinite graph G is said to be
k-separable for a positive integer k, if there is a finite set S of edges in G
such that | G/S |« = k. [J

Erdbs, Grinwald and Véazsonyi (1938) extended the above theorem to
infinite graphs as follows: ( See Thomassen 1983)

Theorem 4.2: (Erdds, Grinwald and Vazsonyi 1938) A connected multi-
graph has a 2-way infinite Eulerian trail if and only if

1) E(G) is countably infinite;
2) all vertices have even or infinite valency;
3) G is not 3-separable;

4) there is no finite Eulerian subgraph whose edge-deletion leaves more
than one infinite component. []

We have the following theorem about the separability of connected two-
dimensional cell-dynamic graphs.
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Theorem 4.3: Let G2 be a connected cell-dynamic graph. Then G2 is not 2-
separable.

Proof: We can assume that every vertex of G2 is located at an integer lat-
tice point in the Euclidean plane. Let Sy be an arbitrary finite set of edges
in G?,. Without loss of generality, we can assume that

SoCIO,RIXI[O,R 1
Then let

SIZ U E

xy € [O,RIXIO,R] Y

Note that E, y is the set of connecting edges between the x-th and y-th cells
as defined in Definition 2.4. Then

| GIS1 |= = | GISy |e.

Therefore, without loss of generality, we can assume that S; = S;. See
Fig. 3 for the following discussion. Suppose | G/Sg |» = 2. Since G2 is

weakly connected, from Section 3, there exist a;, b; € Zfori =1,2,..., m
such that
m m
a;e; — (1,0), 2 biei =(0,1) 4.1)
i=1 i=1
where
Eg:{el,62:---:em}9T?‘(ei):ei:(xiayij-
Let
m I
M=max{ > |al||lxl| X lallyl (4.2)
i=1 i=1
m I
2o [l | 2 16 [y |}
i=1 i=1
Since we assume that | G/Sy |» = 2, there exist two points s = ( sy, sy )

and ¢ = (i, ty ) that lie in two different infinite components and
s, t4[-M,R + M1 X[—-M,R + M) (4.3)

Let v «— w denote that two points v and w in G are connected by a chain
that uses no edges in S;. Then from (4.1), (4.2), and (4.3),

s<«<—>s +(1,0)
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by a chain consisting of a; copies of e; for each 1 =i = m. In the same
way, we have

s =(8y,8y) <> 5+(1,0) «— - «— (R +2M,s,)
and
(R +2M,s)) «— (R +2M,5,)+(0,1) «— - - - «— (R +2M,R +2M).
Therefore, we have
s «— (R +2M,R +2M). (4.4)
In the same way, we have
t «<—> (R +2M,R +2M). (4.5)

Therefore, from (4.4) and (4.5), we have s «— ¢, which is a contradiction.
Thus, | G/Sy |« = 1. [J

Corollary 4.2: A connected two dimensional dynamic graph G? is not 2-
separable.

Proof: Suppose we delete a finite set of edges S; in G2. Instead of deleting
S 1, we delete all edges in cells which have endpoints of edges in S;. Let Sy
be the set of all edges in deleted cells. Then the number of infinite com-
ponents, | G2/Sg |., is the same as | G2/S; |». Since the cell-dynamic
graph G?2 is connected, from Theorem 4.3,

| G2/8; |« = | G218 |- = 1.
]

Theorem 4.4: A connected cell-dynamic graph is Eulerian.

Proof: The four properties in Theorem 4.2 are satisfied as follows: By
definition, dynamic graphs are countable. Since there are the same number
of outgoing and incoming edges in every cell, all vertices have even valency.
From Theorem 4.3, 3) and 4) are immediate. []

Theorem 4.5: A connected two-dimensional dynamic graph G2 is Eulerian
if and only if its static graph G° is Eulerian.
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Proof: The "only if" part is immediate. From Theorem 4.2, all vertices in
G? have even valency, and this implies that every vertex in G° also has
even valency. Therefore, a connected finite graph G° is Eulerian from
Theorem 4.1.

We now prove the "if" part. If the static graph G° is Eulerian, then
every vertex in G° has even valency. Let vy be the x-th copy of v € V° for
X € Z X Z. Then vy has the same valency as v. Therefore, every vertex in
G2 also has even valency. From Corollary 4.2, properties 3) and 4) in
Theorem 4.2) are satisfied. []

We can show that an Eulerian path P in G2 can be obtained from an
Eulerian path P, in G2 as follows: Every cell of G2 has 2k edges connecting
to other cells. Therefore, from Corollary 4.1, the set of edges in each cell
can be partitioned into k open trails. Thus, P is obtained by attaching these
k open trails to P, at each cell.

From now on, we will study directed Eulerian paths in two-dimensional
dynamic graphs. A directed Eulerian path is an Eulerian path which is
directed. Nash-Williams (1966) showed the following necessary and
sufficient conditions for the existence of directed Eulerian paths in a
directed infinite graph. We use p* (v ) (resp. p~ (v )) to represent the out-
valency (resp. in-valency) of vertex v.

Theorem 4.6: (Nash-Williams 1966) A connected multigraph G has a 2-
way infinite directed Eulerian path if and only if

1) E( G ) is countable;

2) the valencies satisfy pT(v) =p (v)forallv € V(G );

3) any set of vertices with infinitely many out-going edges must have
infinitely many in-coming edges;

4) @ is not 3-separable;

5) If G is 2-separable, G possesses a set of vertices X such that X has a

finite number ( say n,, ) of out-going edges and a finite number ( say
n;i, ) of in-coming edges and n,,; = n;, + 1. [
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Then we have the following theorem which corresponds to Theorem 4.5.

Theorem 4.7: A connected two-dimensional dynamic graph G? is directed
Eulerian if and only if its static graph is directed Eulerian.

Proof: The proof is similar to that of Theorem 4.5. Note that a directed
Eulerian static graph G° implies 2). []

Corollary 4.3: The existence of an ( undirected or directed ) Eulerian path
in a two-dimensional dynamic graph G2 can be tested in linear time with
respect to the number of edges in the static graph.

Proof: We have to test only whether there exists an ( undirected or directed
) Eulerian path in the static graph. []

5. 2-colorability

We now deal with the 2-colorability of dynamic graphs. We have two
basic theorems about k-colorability as follows:

Theorem 5.1: (De Bruijn and Erdds 1951) A ( finite or infinite ) graph is k-
colorable if and only if every finite subgraph is. []

Theorem 5.2: (Kbnig 1936) A graph G is 2-colorable if and only if there is
no odd cycle. []

We assume, without loss of generality, that two-dimensional dynamic
graphs G? are connected. For, otherwise, we can consider the components
separately. We can also assume that if G is the static graph corresponding
to a two-dimensional dynamic graph G2, then G° has an arborescence
whose labels are all (0,0), because the following two-dimensional labeling
T% induces the same dynamic graph and the desired arborescence (Orlin
1984). Let S be a spanning tree of G° with root vg. Let A( z ) for u € V° be
the distance in S from v, to u. Then we can define a two-dimensional label-
ing T% by
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T%(e)=T%e)+ Alu)— A(v) for Ve = (u, v) € EC.

Without loss of generality, we can also assume that the basic cell is 2-
colorable. For, otherwise, a dynamic graph which includes a basic cell as a
subgraph cannot be 2-colorable. Orlin (1984) solved the problem of deter-
mining the 2-colorability of one-dimensional dynamic graphs. We, however,
will give another 2-colorability test and then extend our approach to two-
dimensional dynamic graphs.

Before describing our 2-colorability test, we need some definitions. Let
Ago be an arborescence of G° with root vy such that all edge labels are
(0,0). Let

Ven = {v € VO | the distance from v to v is even. }

and let V,3; be defined similarly. Let vy be the root of an arborescence in
the static graph and use vy to indicate the x-th copy of vy. We can now
define what we call the constraint graph

Hgo = (V(Hgo ), E(Hgo ))
of G? and a two-dimensional edge labeling Ty as follows:
V(HGO ) = {as b}
E(Hgo ) ={e' | e € E%, T?%(e;) #(0,0)}
where e;" and their labels are defined as follows:

! (a, a) if e; € Vggen X Vepen U Viogg X Vodd
S (a, b) if € € Veven X Vodd U Vadd X Veuen <)

and

Tg(e')€{0,1}x{0,1}
is defined by

Ty(e') = T?(e; ) ( mod 2).

For example, in Fig. 4a, the static graph G induces a constraint graph
Heo.

Suppose we use two colors red and black. If v is colored by red (resp.
black), we call the cell Cy the red type (resp. black type). Let R (resp. B)
represent a red (resp. black) type cell. Then we have the following lemma:
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Lemma 5.1: Let G2 be a bipartite dynamic graph and let G° be its static
graph. Let f € E( Hgo ) and Cy, Cy be two cells in G? such that

Tag(f)=f=y — x(mod 2).

If f={(a, a), then the two cells Cx and Cy are different types. On the
other hand, if f = (a, b ), then the two cells Cy and Cy are the same type.

Proof: Suppose f = ( a, a ). Then there exists an edge e € E° with
T%(e)=e=(0,0)
which induces an edge f = (@, a ) in Hge and
e =f(mod 2).

Since G? is connected, there are two closed chains Pyqiand Py in G° such
that vy € Py 1, P1 ¢ and

T2(Py1) =(0,1), T2(Py1p) =(1,0).
Since

y—-x=f=e(mod 2),

there are some p, ¢ € Z such that

2pT2(Pgy ) + 2qT%(P1p) +e=y — x.

This means that there is an odd length chain from vy to vy which con-
sists of 2| p | copies of Py ; and 2| g | copies of Py o and a copy of the edge
e. Therefore, vgx and vgy are colored differently, which implies that the
two cells Cx and Cy are different types. The other case is handled in the
same way. [ ]

Lemma 5.2: Let G' be a connected bipartite one-dimensional dynamic
graph. Then, as illustrated in Fig. 4b, the pattern of cell types of G is
either one of the following:

(RR): Every cell has the same cell type (say R).

(RB). Two different cell types appear alternately.

Proof: Since G'! is connected, there is a path P between vg,x and vg .4 for
Y x € Z where v, is the root of an arborescence of the x-th cell. If P is an
even length path, v, and vy, +; should be colored the same. Therefore, the
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two cells C, and C, ;; are the same type (say R) for Vx € Z. If P is an odd
length path, the two cells C, and C, ;, are different types. Therefore, two
different types appear alternately. []

We have a similar lemma for two-dimensional dynamic graphs.

Lemma 5.3: Let G2 be a connected bipartite two-dimensional dynamic
graph. Then the pattern of cell types in G2 is one of the following four pat-
terns as illustrated in Fig. 4c.

RR
RR I Every cell has the same cell type ( say R ).

RR:
se | Two one-dimensional patterns (RR) and (BB) appear alternately in

the y-axis direction.

RB
| RrB | Two one-dimensional patterns (RR) and (BB) appear alternately in

the x-axis direction.

RB]
BRI Two one-dimensional patterns (RB) and (BR) appear alternately in

both i:he x-axis and y-axis directions.

Proof: Since G? is connected, there exist some a; b €Z * U {0} such that

(0,1)= 3 ae;, (L,0)= 3 bies.
i =1 =1

If

i

a; = 0 (mod 2), all cells with the same x-coordinates are the same
1

Il Pz

type; that is, RR- or BB-type. On the other hand, if D a; = 1 ( mod 2 ), all
i =1

cells with the same x-coordinates are colored alternately; that is, RB-type.

In the same way, all cells with the same y-coordinates have RR-, BB-, or

RB-type. Therefore, we have four possible two-dimensional patterns. Note
RR

that there cannot be a pattern of type RB

, because an (RR)- ( resp. (RB)-

) pattern in the x-axis direction implies the existence of an even (resp. odd)
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length path from vgx to vgx4(0,1) for VX € Z X Z. Then, from Theorem
5.2, G? could not be 2-colorable, which is a contradiction. [I

We now have the following necessary and sufficient conditions for 2-
colorability of dynamic graphs.

Theorem 5.3: Let G! be a connected one-dimensional dynamic graph. Then
G' is 2-colorable if and only if the two-dimensional labeling of the con-
straint graph Hgo satisfies the following table.

cell pattern | Ty((a, a)) | Tg((a, b))

(RR) none(*) 0,1
(RB) 1 0

* means that there is no ( a, a ) edge.

Proof: Suppose G' is 2-colorable. Then from Lemma 5.2, the cell pattern is
either (RR) or (RB). From Lemma 5.1, an edge with the label ( a, a ) (resp.
(a, b)) connects the two cells which are different (resp. the same) types.
Therefore, the above table is correct.

Conversely, let us suppose the two-dimensional labeling T satisfies the
above table.

First, suppose also that there are only (@, & ) edges in E( Hgo ). Then
there exists a 2-coloring which colors all vy, by the same color as follows:
Let e = (v;x, vj, ) in G! be an arbitrary connecting edge which is the x-th
copy of the edge e = (v;, v;) € E® with T%(e ) = y — x. Since there are
only (a, b) edges in Hgo, from (5.1), v; and v; are colored differently in the
static graph. Since we color all roots of the arborescence of cells by the
same color, v;, and v;, are colored differently. Therefore, the edge e, does
not violate 2-colorability. Thus, this results the (RR)-type bipartite graph.

Secondly, suppose we only have (a, a ) edges of label 1 and (a, b )
edges of label 0. The following shows an (RB)-type 2-coloring which colors
the roots of arborescences of cells alternately by different colors. Let
ex = (vjy, vjy ) in G' be an arbitrary connecting edge which is the z-th
copy of the edge e = (uv;v;)E€ E' with TXe)=y —x If
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y —x =0(mod 2), then e induces an (a, b) edge in Hgo from the
assumption. This implies that v; and v; are colored differently in the static
graph. Note that we color vy, and vy, by the same color, since y — x is
even. Therefore, v;, and v;, are colored differently. Thus the connecting
edge e, does not violate 2-colorability. If y — x = 1 ( mod 2 ), then e
induces an (a, a ) edge in Hgo from the assumption. This implies that v;
and v; are colored by the same color in the static graph. Note that we color
vo,x and v,y by different colors, since y — x is odd. Therefore, v; , and v;,
are colored differently. Thus the connecting edge e, does not violate 2-
colorability. Hence we have the (RB)-type bipartite graph. []

Theorem 5.4: Let G2 be a connected two-dimensional dynamic graph. Then

G? is 2-colorable if and only if the constraint graph Hgo satisfies the fol-
lowing table.

cell pattern | Tg((a, a)) =(x, y) | Tg((a, b)) =(x, y)

RR)

RR none(*) anything(**)

RR)

BB y=1 y=0

e

RB ¥ = 4 x =0

RB

* means that there is no ( a, a ) edge.
means that any edge of this type is allowable.

Hoke

Proof: This can be proved in the same way as was Theorem 5.3. []

For an example, the constraint graph Hgo in Fig. 4a satisfies the conditions
RR

above, and thus the static graph G° induces an BB

-type bipartite dynamic

graph as illustrated in Fig. 4d.
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Corollary 5.1: The 2-colorability of a two-dimensional dynamic graph G2
can be tested in linear time with respect to the number of edges in the static
graph G.

Proof: It takes O( | E° | ) time to construct the constraint graph Hgo. []

Note that our approach uses the fact that in a connected bipartite graph
a coloring of one vertex determines the coloring of the whole graph. This
fact does not hold for k-coloring, and suggest that our approach cannot be
extended to £(=3)-coloring in a straightforward way.

6. Conclusions

We investigated the problems of finding weak components, finding an
Eulerian path, and testing 2-colorability for two-dimensional dynamic
graphs and showed that they are done in polynomial time with respect to
the size of the associated finite static graphs. We also showed that our algo-
rithms for the problems of finding weak components and testing 2-
colorability can be applied to one-dimensional dynamic graphs. The acycli-
city problem and planarity testing for two-dimensional dynamic graphs are
treated in (Iwano and Steiglitz 1986a, 1986¢, 1987).

References

1. Aho, A. V., J. H. Hopcroft, and J. D. Ullman 1974. The Design and
Analysis of Computer Algorithms, Addison-Wesley, Reading, MA.

2. Cappello, P. R. and K. Steiglitz 1981. “Digital Signal Processing
Applications of Systolic Algorithms,” CMU Conference on VLSI Systems
and Computations, H. T. Kung, Bob Sproull, and Guy Steele (eds.),
Computer Science Press, Rockville, Md.

3.  Christofides, N. 1975. Graph Theory: An Algorithmic Approach,
Academic Press, Orlando, Florida.

4. Dantzig, G. B.,, W. O. Blattner, and M. R. Rao 1967. “Finding a cycle in
a graph with minimum cost to time ratio with application to a ship

routing problem,” in Int. Symp. on Theory of Graphs, 77-83, see Rosen-
tiehl 1967.



10.

11.

11.

12.

13.

14.

15.

16.

<25 -

De Bruijn, N. G. and P. Erd8s. 1951. “A colour problem for infinite
graphs and a problem in the theory of relations,” Indag. Math. 13
(1951), 369-73; MR13,763g.

Erd8s, P, T. Grinwald and E. Vazsonyi 1938. “Uber Euler-Linien
unendlicher Graphen,” J. Math. Phys. Mass. Inst. Techn. 17 (1938),
59-75

Euler, L. 1736. “Solutio problematis ad geometriam situs pertinentis,”
Comment. Academiae Sci. I. Petropolitanae” 8 (1736), 128-40. Opera
Omnia Series 1-7 (1766), 1-10

Harary, F. 1969. Graph Theory, Addison-Wesley, MA.

Iwano K. and K. Steiglitz 1986a. “A semiring on convex polygons and
zero-sum cycle problems,” Tech. Rep. CS-TR-053-86, Computer Science
Dept., Princeton Univ., Princeton, Nd.

. 1986b. “Optimization of one-bit full adders embedded in regu-
lar structures,” IEEE Transaction on Acoustics, Speech, and Signal Pro-
cessing, October.

. 1986¢. “Planarity testing of doubly periodic infinite graphs,”
Tech. Rep. CS-TR-066-86, Computer Science Dept., Princeton Univ.,
Princeton, NdJ.

. 1987. “Testing for cycles in infinite graphs with periodic struc-
ture,” Proc. 19th Annual ACM Symposium on Theory of Computing,
1987, to appear.

Kbnig, D. 1936. “Theorie der endlichen und unendlichen Graphen,”
Leipzig, 1936, Reprinted Chelsea, New York, 1950.

Lawler, E. L. 1967. “Optimal cycles in doubly weighted directed linear
graphs,” in Int. Symp. on Theory of Graphs, 209-13, see Rosentiehl
1967.

Lipson, J. D. 1981. Elements of algebra and algebraic computing,
Addison-Wesley, Reading, MA.

Nash-Williams, C. St. J. A. 1966. “Euler lines in infinite directed
graphs,” Canad. J. Math. 18 (1966), 692-714; MR34 #96.

. 1967. “Infinite graphs-a survey,” J. Combinatorial Theory 3
(1967), 286-301; MR35#5351.



1%

18.

19.

20.

21.

- 96 -

Orlin, J. 1984. “Some problems on dynamic/periodic graphs,” in Pro-
gress in Combinatorial Optimization, 273-93, see Pulleyblank 1984.

Pulleyblank, W. R. ed. 1984. Progress in Combinatorial Optimization,
Academic Press, Orlando, Florida.

Reiter, R. 1968. “Scheduling parallel computation,” Journal of ACM,
15, No. 4, October, 590-99.

Rosentiehl, P. ed. 1967. Int. Symp. on Theory of Graphs, Dunod, Paris,
Gordon and Breach, New York.

Thomassen, C. 1983. “Infinite Graphs,” in Selected Topics in Graph
Theory 2 edited by L. W. Beineke and R. J. Wilson, Academic Press,
New York, NY.



A staticgraph G0

| | AN
v v Ty
“® OO O«@

| L AN TN
v oy v \

The dynamic graph G2

Figure 1a. A static graph G0 shows how to connect the nodes in G2. The shaded
area shows the basic cell Cpg.
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The cell-static graph G°
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The cell-dynamic graph G

Figure 1b. The cell-dynamic graph G’ indicates the interconnection of cells in the
dynamic graph G?in Fig. 1a.



&9 Gk

( astaticgraph) ( the k-dim. dynamic graph)
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Figure 1c. The superscript 0 indicates a static graph, while the superscript k
indicates a k-dimensional dynamic graph. The subscript cindicates a cell graph.



G2

Figure 2. The 2-dimensional dynamic graph G2 is created by repeating G7 in the
direction of the y-axis. Note that the number of weakly connected components of
G1is the same as one of G2.
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t = (tx.r ty) (R + ZMI ty)
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(R+2M,s,)
S = (SxSy) (sx+1,5y) '

Figure 3. G/Sgpis not 2-separable. Any vertex s¢[-R,R + M] x [-R,R + M] is
connected to (R + 2M,R + 2M) by a chain in G/Sg. Thus, any two distinct vertices
s, t¢[-R,R + M] x [-R,R + M] is in the same weak components.



(0,0)

(a) A static graph GO. The arborescence Ago with labels (0,0) is illustrated by
wide solid lines. Veyen ={vg,v2} and Vogg = {v1,v3}.

(b) A constraint graph Hgois created from GO. The associated lines are indicated by
the same line type; For example, the edge (v3,vp) with the label (7,2) in G0induces

Figure 4a.
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(RR) type

Figure 4b. Two types appear in bipartite one-dimensional dynamic graphs.
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Figure 4d. A static graph G0in Fig. 4a inducesa BB t

ype bipartite dynamic

graph as illustrated above.



