RECOVERY IN A TRIPLE MODULAR
REDUNDANT DATABASE SYSTEM

Frank Pittelli
Hector Garcia-Molina

CS-TR-076-87

January 1987

Recovery in a Triple Modular Redundant
Database System

Frank Pittells

Computer Science Department
United States Naval Academy
Annapolis, MD 21402-5002

Hector Garcia-Molina

Department of Computer Science
Princeton University
Princeton, N.J. 08544

ABSTRACT

In a Triple Modular Redundant (TMR) database system the
database is fully replicated at three computers. All transactions
are executed at all nodes in the same relative order. The system
can tolerate the arbitrary failure of a single computer since the
correct data can be obtained from the two operating copies. After
a failure, it is important to repair the computer so that the system
can tolerate additional future failures. Repair in this case involves
getting a correct and up to date copy of the database, without
halting the two operational nodes. In this paper we analyze this
database recovery problem. We describe a solution that has been
implemented on an experimental TMR system running on SUN-
2/120 workstations. We also present performance results that
illustrate the cost of recovery.

This work has been supported by NSF Grants DMC-8351616 and DMC-8505194,
New Jersey Governor’s Commission on Science and Technology Contract 85-
990660-6, and grants from DEC, IBM, NCR, and Concurrent Computer corpora-
tions.

December 5, 1986

Recovery in a Triple Modular Redundant
Database System

Frank Pittells

Computer Science Department
United States Naval Academy
Annapolis, MD 21402-5002

Hector Garcia-Molina

Department of Computer Science
Princeton University

Princeton, N.J. 08544

1. INTRODUCTION

Triple Modular Redundancy (TMR) is a strategy for protecting against
arbitrary hardware failures. Given a task, a TMR system will execute it three
times, in parallel, on independent hardware elements. The results of the three
executions are compared by a voter. If two or three of the results agree, they
are taken to be the correct output for the task. TMR provides a high degree of
reliability because it can tolerate an arbitrary failure of one of the processing

elements.

Typically, TMR has been used at the component level, where each process-
ing element is a chip or a bus [Siew82]. The voting is done by a hardware voter
that is assumed not to fail. Furthermore, the inputs for the task (e.g., the sig-

nals that go to each chip) are also distributed by error-free hardware.

More recently, it has been suggested that TMR can be used at the applica-
tion level directly, with all coordination between processing elements done
entirely by software [Lamp84a, Schn82, Garc86]. In a database application, for

example, each processing element would be a complete computer with a copy of

the entire database. Input transactions would be distributed to all computers
by a software agreement protocol so that they all execute the same sequence of
transactions. The outputs of each execution would be sent to the users, who

would then take the majority result as the correct one.

Such an approach has several advantages. Off-the-shelf computers can be
utilized, as opposed to the special purpose circuitry required by component level
TMR. Communication costs can be reduced since only short, high level transac-
tions (and their results) are exchanged, as opposed to every single signal that a
chip uses. Given the reduced communications, it is easier to physically isolate
the processing elements. This makes it less likely to have a failure of two or
more elements due to physical problems (i.e., power failure, fire, etc.). Of
course, both component and application level TMR require triple hardware, but

that is the price to pay for such a high degree of reliability.

When used for database processing, application level TMR has complica-
tions that component TMR does not. In database processing there is a substan-
tial state (mainly the database) that has to be maintained from one task to the
next. When a computer fails, all or part of its database can be destroyed. At
recovery time, the lost data, including any data modified by the operational
nodes during the failure, must be copied from the other nodes. Clearly, if the
operational nodes simply halt processing during this ‘“‘exchange period” no use-
ful work will be accomplished by the TMR system. Consequently, the other
nodes must continue processing new transactions. So how can the recovering
node obtain a valid copy of this “moving target”? Furthermore, even if it éan
acquire a consistent copy, how much degradation will be caused by the recover-
ing node? That is, how much extra load is placed on the other nodes when all
or part of the database is transferred over the network? There is also an
interaction between the fraction of the database that can be lost and the relia-
bility provided by the system. As the fraction grows, the recovery tim.e also
grows. The longer this period, the more vulnerable the system will be to a
second failure that can cripple the entire system. What exactly is the relation-

ship between these and other system parameters?

In this paper we address these questions. We start, in Section 2, with a

brief overview of our TMR database system and its operation during no-failure
periods. (Due to space limitations, a number of simplifications will be made. A
detailed description of normal operation can be found in [Pitt86], while the
theory of TMR database processing is presented in [Garc86].) Then, in Section
3, we describe a strategy for recovering from arbitrary failures in a TMR data-
base system and study its performance during recovery periods (Section 4).
Both the design and results presented here are based on an experimental data-
base TMR system implemented at Princeton on a collection of SUN-2/120

workstations.

Note that the TMR recovery algorithms we will present can be generalized
easily to N-Modular Redundancy. However, we will restrict our discussion to
TMR both because it is the most likely in practice and because our experimen-

tal results are for such a level of replication.

2. NORMAL OPERATION

One important advantage of a TMR system is that it makes a simple
design feasible. All nodes perform the same functions and maintain the same
data. Furthermore, normal processing at each node breaks down naturally into
three quite independent processes: transaction scheduling, transaction process-

ing, and failure detection.

To describe the operation of these components we trace the execution of a
single transaction through the system. Figure 1 illustrates this process, with
each column representing the processes within a single node. A user submits a
transaction from his own process, possibly running on a computer not involved
in the TMR system. The transaction arrives at one of the three scheduling
processes (step 1 in Figure 1). The scheduler forwards the transaction to its
cohorts on the other nodes (step 2), following a Byzentine Agreement synchroni-
zation protocol [Peas80, Dole82, Lamp82, Lync82, Iisc83, Cris84]. This protocol
generates, at every non-failed node, the same sequence of transactions,
L yp dgy "RE with corresponding timestamps, ¢,, {5, - - (The synchronization
protocol uses physical clocks that are synchronized within some maximum toler-

ance. Algorithms that perform such clock synchronization are described in

[Lund84, Lamp84b, Dole84].)

It can be shown that the transaction scheduling protocol operates correctly
in the face of a single, arbitrary node failure (a communication failure can be
viewed as a node failure). The non-failed nodes will produce exactly the same
transaction schedule. Furthermore, T; will be added to the schedules before

time tz-.

As each scheduler generates the sequence of transactions it is sent to the
transaction scheduler which executes each transaction in the order given (step
3). When the transaction manager executes a transaction, it uses a conven-
tional, single-node database management system. There is no need to request
remote locks or do any further distributed synchronization. The only non-
conventional aspect is that transactions must be committed in the pre-agreed

upon order.

Once the transaction completes, the results are sent to the user and a
database “signature” is sent to the failure detection processes (or voters) in
step 4. (We will discuss signatures further in the next section.) Each voter is in
charge of comparing the databases in an attempt to determine if its own tran-
saction manager has produced a result that differs from the majority. If this
happens, some type of failure has occurred and the local recovery process is ini-
tiated. (Note, the voter does not care what caused the failure, only that a
failure has occurred.) Keep in mind, in a TMR environment each node must be
responsible for detecting its own failure, because the other nodes can never be

fully trusted.

3. RECOVERY

The design of any recovery algorithm begins with an understanding of the
types of failures which are possible. However, in the environment that we have
chosen, any type of behavior is possible, therefore, we can not list all the
failures. Rather, we must define failures in terms of their effect on the local
database copy. That is, if a given database page is different from that main-
tained by the majority of nodes, then one or more failures have occurred locally.

No matter what the cause, the page is considered corrupted and must be

replaced.

Clearly, during an arbitrary ‘failure period”, a given node may never
detect that is has corrupted its own database. In this case, the node will con-
tinue to execute transactions based on incorrect data which may corrupt other
parts of the database. Unfortunately, there are no mechanisms to prevent such
destructive behavior during a failure. We must hope that, at some point, the
node repents and begins to function properly. That is, the node begins to exe-
cute its algorithms correctly and detects the inconsistency of its own database.
When that point is reached, the failure period ends and the ‘“‘recovery period”

begins.

3.1. A Recovery Model

The actions required to recover from a node failure can be generalized by a
recovery model. At this point, we simply present our model followed by a dis-
cussion concerning the implementation that we have chosen. (A more detailed

examination of various implementation issues can be found in [Pitt86].)

Figure 2 shows the recovery model as a sequence of actions. The cycle
begins when one of the nodes corrupts its local database copy (Failure). Then,
by examining the database copies of the other nodes, the failed node can detect
its own failure and can begin its recovery strategy (Detection). Remember, any
number of transactions can be executed in between failure and detection, and
the inconsistency may be corrected before it is even detected. Once a failure is
detected, the node must construct any consistent copy, called the snapshot, and
execute all transactions scheduled after that point. We emphasize the phrase
“any consistent copy’, because the node may choose it from the past, present,

or future. (One of the many alternatives will be discussed shortly.)

In general, snapshot acquisition is a two-phase operation. First, the recov-
ering node must request some information from the other nodes to guarantee
consistency (Snapshot Request). Once the information is received, that node
can install the consistent database copy (Snapshot Installation). At that point,
the recovering node can begin processing all the transactions which have times-

tamps greater than the snapshot.

-6-

At this time we should stress a fundamental difference between the Detec-
tion and Snapshot Request phases. The Detection phase must be executed
periodically to guarantee consistency. Furthermore, the amount of time
between these periodic checks directly affects the probability that the entire
TMR system will fail. That is, a single node failure must be detected and
corrected before another node fails, otherwise all database copies may become
inconsistent. Therefore, detection must be accurate enough to catch most
failures, frequent enough to safeguard the system, and simple enough so as not
to degrade normal transaction processing. On the other hand, the Snapshot
Request phase is executed only when a failure has occurred and it must acquire
enough information to reconstruct a consistent snapshot. That is, snapshot
processing is driven by the frequency of failures and must do substantially more

work than detection.

Now, our attention turns to some practical details associated with different

implementations of this recovery model.

3.2. Database Signatures

Implementation of the Detection and Snapshot Request phases is facili-
tated by the use of database signatures. We define a signature to be any data
item which “summarizes”’ the database. For example, a conventional redo log
can be used as a database signature because it reflects all of the changes made
to some version of the database. Such signatures can be used to detect failures
(during the Detection phase) and/or to determine the set of corrupted pages
(during the Snapshot Request phase). As usual, database signatures can be
constructed in many ways, each with their own advantages and disadvantages
[Lipt84, Fuch86, Park83, Metz83]. These methods vary mainly in the amount of
storage, CPU, and network resources used, but they all have the same goal: to

compare two databases as efficiently as possible.

In our implementation, failure detection is accomplished using a four-byte
checksum for the entire database. This checksum is easily maintained in
memory and is the only information exchanged with the other nodes, thereby

keeping network traffic low. The detection checksum itself is constructed from

a set of four-byte checksums for each page. During the Snapshot Request
phase, the nodes exchange this larger set of checksums to pin-point those pages
that have been corrupted and must, therefore, be exchanged during the
Snapshot Installation phase. Naturally, the set of checksums can be exchanged

iteratively, using a tree of checksums, to determine the corrupted pages.

3.3. The Care and Feeding of Snapshots

If the Detection and Snapshot Request phases are performed separately (as
in our implementation), the selection of an appropriate snapshot time becomes
important. If it is chosen in the past, for any node, that node must maintain
multiple versions of its local database copy. Fortunately, there are techniques
which can be used to satisfy this goal, trading off storage and CPU costs
[Adib80, Lind86]. However, this approach places most of the burden on the
non-recovering nodes. That is, the nodes which didn’t fail must either maintain
old versions or reconstruct them when requested. On the other hand, if the
snapshot time is chosen in the future, for all nodes, then they can simply wait
until the designated time and ‘“‘freeze” a single copy of the database. As
before, conventional techniques exist to perform this act efficiently, while allow-
ing the nodes to continue transaction processing [Lind86]. In either case, all
nodes must “agree” on the snapshot time during the Snapshot Request phase.
This time must be selected far enough into the future so that each node can
store the snapshot before executing any transactions with later timestamps.
Furthermore, it must be early enough so as to assure quick recovery from the
failure. (Recall, all nodes execute the same sequence of transactions, but they
proceed at their own rate. Consequently, each node never really knows what

transactions have already been executed by the other nodes.)

In our implementation, we rely on the schedulers to determine the earliest
possible snapshot time, and use a simple versioning scheme for the snapshots
themselves. Figure 3 shows the steps taken by all nodes during the Snapshot
Request and Installation phases. To start the process, the voter informs the
local recovery manager of a failure (Step 1). In turn, the recovery manager sub-
mits a snapshot transaction to the local scheduler (Step 2). The snapshot tran-

saction, like any other, is assigned a position in the global schedule and is

eventually processed by the transaction managers on all nodes (Steps 3 and 4).
(Note, if the recovering node doesn’t schedule the snapshot transaction, or can’t
execute it, it isn’t ready to recover anyway.) When a snapshot transaction is
executed, the transaction manager stores a snapshot of the local database. Of
course, these snapshots are taken at different physical times, but they represent
the database seen by each node after the same transaction. Once the snapshot
has been taken, each transaction manager informs the local recovery manager
and resumes normal transaction processing (Step 5). (Actually, the transaction
manager on the recovering node may have to postpone processing. More on this
shortly.) At this point, the failed recovery manager sends it’s signature to both
of the non-recovering nodes, who independently determine which snapshot pages
should be sent to the recovering node (Step 6). The recovering node compares
corresponding pages as they are received and installs them in the local database
if they agree. When the other nodes have finished sending pages, the recovery
manager allows the local transaction manager to resume transaction processing
(Step 7).

Why do both non-recovering nodes send the necessary database pages dur-
ing a recovery? After all, if we are assuming that only one failure can occur at
a time, can’t the recovering node “trust” a single node to send the correct infor-
mation? The recovery algorithm would, in fact, work properly if only one non-
recovering node participated. However, by comparing the pages from two
nodes, we have added an extra level of protection. That is, if a second failure
had already occﬁrred, the recovering node would detect this, and could halt
before additional problems were generated. However, since it is outside this
paper’s scope we will not address this issue further. Suffice it to say that, even
if we assume certain properties for the system, it may be beneficial to periodi-

cally guarantee that those properties hold.

Finally, transaction timestamps are used to simplify snapshot generation.
In particular, every page in the database is marked with its most recent update
time. At any time, each page has exactly one “‘snapshot copy”, which is never
modified, and possibly a “work copy”. The snapshot copy has a timestamp less
than or equal to the current snapshot time, while the work copy has a times-

tamp greater than the snapshot time. If no work copy exists when a

transaction needs to access it, one is created by copying the snapshot copy. In
this way, multiple copies only exist for those pages accessed since the last
snapshot. Furthermore, when a new snapshot is requested it can be generated
simply by advancing the snapshot time. When eventually accessed, the old

work copies will become the new snapshot copies, and the old snapshot copies
will be deleted.

For example, suppose that one page copy exists with a timestamp of 0900
and that the current snapshot time is 0930. If a transaction with timestamp
0945 attempts to access that page, a new work copy, with timestamp 0945, will
be created. Any number of transactions can access this work copy, each of
which advances the work copy’s timestamp. Assuming that another snapshot is
requested at time 1100, it is accomplished simply by advancing the current
snapshot time. Now, if a transaction accesses the page, it will find two copies,
both with timestamps less than the current snapshot time. In this case, the
page with the oldest timestamp is deemed the snapshot copy and is copied into

the older page, which becomes the new work copy.

3.4. Transaction Processing During a Recovery

Given that the Snapshot Request and Installation phases take some
amount of time, we must discuss how transaction processing is affected during
that period. As stated before, once the non-recovering transaction managers
have created their snapshots and informed their local recovery managers, they
are free to continue normal processing. The recovery managers are responsible
for exchanging the necessary signatures and pages. With that in mind, the only
impact on the non-recovering nodes is the work required to execute the
snapshot transaction itself and the overall degradation caused by the recovery

manager’s work.

On the other hand, the transaction manager on the recovering node should
postpone transaction processing until the end of the Snapshot Installation phase
to prevent transactions from accessing corrupted pages. Consequently, it will
“lag behind” the other nodes for a period of time, known as the catch-up time.

(Actually, the recovering node can continue to process transactions but the

= 10=

recovery algorithm becomes too complex to discuss here.) That is, the recover-
ing node will be sending results to the user and detection signatures to the voter
some time after the other two nodes. As long as no other node fails, this
catch-up period doesn’t really affect the voters or the user. Rather, they will
see a majority of results from the first two nodes and will simply ignore the
third when it arrives. On the other hand, when another node fails, the user and
the voters will suffer a delay while the previously recovered node catches up.
Keep in mind, the TMR system can cope with a failure “any time” after
Snapshot Installation, it’s just that the recovering node has to finish its backlog

of transactions before it can take the next snapshot.

4. PERFORMANCE DURING RECOVERY

One of the major advantages of a TMR design is that the system can con-
tinue transaction processing while a single node is recovering from a failure.
However, since the non-failed nodes must help in the recovery process, it is
important to understand the load imposed by snapshot processing. To study
this issue we designed a set of experiments on an experimental TMR database
system. The system consisted of three Sun-2/120 workstations running Sun’s
version 2.0 of UNIX (based on Berkeley 4.2BSD UNIX), connected.by a 10
Mbit /sec ethernet. Each workstation contained two disks, one supporting the
operating system and one supporting the database. Interprocess communication
was performed using the UDP /IP facilities of Sun UNIX. Finally, all user tran-
sactions originated from a fourth SUN workstation. This workstation generated
new transactions at a steady input rate I ranging from 5 to 17 transactions per
second. Each TMR processing node received a third of these transactions for

scheduling.

For experimental purposes a number of simplifications were made to the
database system. In particular, transactions were synthetically generated using
probability distribution functions, not by “‘real” applications. Also, the com-
puters were interconnected using an ethernet, not direct connections (its the
only network we had available). Finally, to study performance during recovery,
one of the transaction managers was modified to periodically report an artificial

failure. The recovery managers, in turn, exchanged a fixed number of pages,

A

from 0 to 50, known as the ezchange size, during snapshot processing. Keep in
mind, despite these simplifications all the TMR scheduling, failure detection,
and failure recovery algorithms were carefully implemented, so we believe the
performance results are realistic. For example, even though we had an ether-
net, which is a single point of failure, our design did not utilize the broadcast
capability of the ethernet. Hence, we believe that a different network would

not change our performance results significantly.

Throughout our experiments, four measurements were of interest. First,
the average transaction response time during a recovery was measured. In par-
ticular, the response time for every transaction executed after a failure was
reported, and before the recovering node had fully caught-up, was averaged.
The second parameter was the time between the initial snapshot request and
the completion of the snapshot installation, known as the recovery response
time. Lastly, the number of transactions postponed by the transaction manager
(the queue size) and the amount of time to empty that queue (the catch-up time)
were monitored. This cycle of failure, recovery and catch-up was continued

until a sufficient confidence level was achieved.

4.1. Results

Examination of the average transaction response time provides a good idea
of how snapshot processing degrades the overall system. Figure 4 shows this
measurement for normal processing and for recoveries involving exchange sizes
of 0, 2, 10, 20, and 50. It is evident that snapshot transactions affect the sys-
tem, even when no pages are exchanged (e0). The response of the normal sys-
tem is never more than 200 ms, while the snapshot curves are rarely lower than
300 ms. We conclude that the number of messages exchanged during the
recovery algorithm (recall Figure 3) hinders the system’s ability to process tran-

sactions efficiently.

It is interesting to note that the response times for €0 and e2 decrease at
first, as the input rate increases. This effect is caused by the “efficiency” of
recovering from small failures. In particular, at low input rates the system is

under-utilized and snapshots are performed quickly. Therefore, only a few

-12 -

transactions are processed during the recovery and they are delayed heavily by
the snapshot transaction itself. As the input rate increases, more transactions
are processed by the system during the recovery. The first few of these experi-
ence large delays due to the snapshot transaction, while the others experience
short delays caused by snapshot installation. Consequently, the ‘“average”
delay for a transaction is smaller, until a point at which the response times

begin to increase again because of the effects of a high input rate.

We should also note that the response curves for exchange sizes of 20 and
50 (¢20 and e50) are roughly the same. In other words, when the time for
snapshot installation greatly exceeds that for the snmapshot transaction, the
average transaction response time is degraded ‘“‘only so much”. Transactions
processed during the exchange of database pages are delayed by a constant
amount, caused by the additional network traffic. If more pages are exchanged,
more transactions are processed, but each experiences the same increase in

response time.

The increasing snapshot installation times (i.e., recovery response times)
mentioned in the previous discussion are shown in Figure 5, which plots it for a
number of exchange sizes. The curve for an exchange size of 0 (e0) shows the
time required to schedule and execute a snapshot transaction itself. Comparing
it to curve e50, we see that snapshot installation can easily require more time
than snapshot transaction processing. Furthermore, if we plot the recovery
response time versus the exchange size, for a given input rate, we would see a
straight line. That is, snapshot installation is a linear function of the number
of pages exchanged and, as shown in Figure 5, relatively independent of the

input rate.

Turning now to the queue size, shown in Figure 6, we see that it increases
as the input rate increases, but is affected most by an increase in the exchange
size. Quite simply, the greater the number of pages exchanged, the greater the
number of transactions that must be postponed. This concept is neither new,

nor unusual, and will not be discussed further.

Finally, we must answer an important question; does it take longer to

install a consistent database snapshot or to catch-up to the other nodes after

=18 s

such an installation? The answer is shown in Figure 7, which plots the average
catch-up time for various exchange sizes and input rates. We see that for low
input rates, a recovering node can always catch-up faster than it can exchange
the database pages (compare Figures 5 and 7.) Even for high input rates the

catch-up time is comparable to the recovery response time.

In fact, the catch-up time (C), id seconds, can be predicted using a simple
formula based on the transaction manager’s maximum throughput (M), in tran-
sactions per second, the input rate (I), in transactions per second, and the

queue size (@), in transactions. In particular, we have

C=._.._Q_-

M-I
That is, the catch-up time equals the number of transactions queued divided by
the excess processing power available (M—I) For example, given an exchange
size of 20 pages and an input rate I = 10 transactions per second, we see from
Figure 6 that Q = 15 transactions. Furthermore, other TMR experiments (not
discussed in this paper) showed that the transaction manager can process at

most M = 40 transactions per second. According to our formula, we have

0 15
M—I 40—10

C = = 0.5 seconds
As a check, this value corresponds to the catch-up time shown in Figure 7 for
the given exchange size and input rate. (A similar formula can be derived

which predicts the queue size when the exchange size is known.)

4.2 Discussion

The results of Figures 4 through 7 illustrate the relationship among the
various system parameters. The next question to consider is how to use this
information to design a system that gives users the reliability and performance
they expect.

Before addressing this question, we make one clarification. Our perfor-
mance experiments studied fully disjoint recoveries. That is, we assumed that a

node had fully recovered from a failure (snapshot and catch-up completed)

-14 -

before the next failure hit. In reality, the TMR system can tolerate a failure
during the catch-up period, because after a recovering node successfully com-

pletes a snapshot request, it does not have to rely on the other nodes.

Evaluating performance during 2 joint failure of this type is more complex
because the failures interact in a subtle way. For example, suppose that node
number 1, recovering from a failure, has just completed its snapshot installation
and is beginning to process a backlog of 10 transactions. Now say that node 2
detects a failure that happened during the execution of the first transaction
after the node 1 snapshot transaction. Naturally, node 2 cannot detect that
failure until the corresponding signature from node 1 is received. When node 1
starts its catch-up, it sends the required signature and node 2 then requests its
snapshot. Unfortunately, node 1 will not get to this snapshot request until after
it completes its own catch-up. Hence, the recovery of node 2 will take longer
and more transactions than usual will be queued up. This may in turn delay a
third recovery even longer, and so on. Since these joint failures are harder to
study, and since they occur much less frequently, we did not study them in our

experiments.

As mentioned earlier, we must control the ways in which a failed node can
adversely affect the operational nodes. During a snapshot request, we cannot
control how many pages are exchanged, but we can limit the transaction input
rate. This in turn can limit the response time deterioration that transactions
will suffer during this period. For example, if we expect exchange sizes of 20 or
more and we would like to have an average response time of less than 500 ms,
then Figure 4 tells us that the maximum input rate during recovery should be

about 10 transactions per second.

Even if we can tolerate any increase in response time, it is necessary to
limit the input rate to give a recovering node enough spare canacity to catch-
up. As the simple empirical formula of the previous section indicztes, if there is
no spare capacity (M—I = 0), then the catch-up time will be unbounded. A
long catch-up increases the chances of back to back recoveries as described
above, which in turn delay the full recovery of the system and make it less reli-
able.

s 1B w

The experimental results can be useful in the selection of the appropriate
input rate. For example, suppose that we wish to limit the total recovery time
for a 50 page exchange size to 4 seconds. Since the exchange itself takes about
3 seconds (Figure 5), then we have to limit the catch-up to 1 second, or about 7

transactions per second (Figure 7).

5. CONCLUSIONS

In component-level TMR systems the recovery problem is simple because
there is almost no state to recover. However, when TMR is used at the applica-
tion level, recovery of the state, or database, is a significant problem. In this
paper we have shown how a recovering node can obtain a valid copy of the
database without halting the operational nodes. As we have seen, the process
consists of a snapshot transaction that copies the corrupted parts of the data-

base, followed by a catch-up process.

Our performance results are obviously not comprehensive since they are for
a particular type of computer and transaction profile. However, since they are
based on a real implementation of the algorithms, we believe they are illustra-
tive of the types of loads and delays that will be encountered in recovery pro-
cessing. They show that an application level TMR system does not mask out
failures in the same sense that a component level one. Specifically, in an appli-
cation level TMR system the recovery period will be ‘“‘visible” to the users
because of the reduced transaction input rates. This will have to be weighted

against the advantages of application level TMR discussed in the introduction.

We also believe that our performance results illustrate the methodology
required to evaluate TMR recovery. The results yield useful information for
limiting the transaction input rate. They recovery and catch-up times they give
can also be used in a probabilistic model to determine precisely the reliability of

the system.

- TB -

References

[Adibso0]

[Cris84]

[Dole82]

[Dole84]

[Fisc83]

[Fuch86]

[Garc86]

[Lamp82]

Adiba, M., and Lindsay, B., Database Snapshots, Proceedings 6th
International Conference on Very Large Data Bases, October 1980,
pp. 86-91.

Cristian, F., and Strong, R., Atomic broadeast: from Simple message
diffusion to Byzantine Agreement, Research Report RJ-4540, IBM

Research Laboratories, December 1984.

Dolev, D., and Strong, S., Polynomial Algorithms for Multiple Pro-
cessor Agreement, Proc. 14th ACM Symposium on Theory of Com-
puting, 1982, pp. 401-497.

Dolev, D., Halpern, J., Simons, B., and Strong, R., Fault-Tolerant
Clock Synchronization, PODC Symposium, August 1984.

Fischer, M. J., The Consensus Problem in Unreliable Distributed Sys-
tems (A Brief Survey), Technical Report YALEU/DCS/RR-273,

Department of Computer Science, Yale University, June 1983.

Fuchs, W., Wu, K., and Abraham, J., Low-Cost Comparison and
Diagnosis of Large Remotely Located Files, Proc. 5th Symposium on
Reliability in Distributed Software and Database Systems, January
1986, pp. 67-73.

Garcia-Molina, H., Pittelli, F., and Davidson, S., Applications of
Byzantine Agreement in Database Systems, ACM Trans. on Data-
base Systems, Vol. 11, No. 1, March 1986, pp. 27-47.

Lamport, L., Shostak, R., and Pease, M., The Byzantine Generals
Problem, ACM Trans. on Prog. Lang. and Systems, Vol. 4, No. 3,
July 1982, pp. 382-401.

[Lamp84a] Lamport, L., Using Time Instead of Timeout for Fault-Tolerant Dis-

tributed Systems, ACM Transactions on Programming Languages and
Systems, Vol. 6, Num. 2, April 1984, pp. 254-280.

[Lamp84b] Lamport, L., and Melliar-Smith, P., Byzantine Clock Synchroniza-

[Linds6]

tion, PODC Symposium, August 1984.

Lindsay, B., et al, A Snapshot Differential Refresh Algorithm, Proc.

[Lipt84]

[Lund84]

[Lync82]

[Metz83]

[Park83|

[Peas80]

[Pitt86]

[Schn82]

[Siew82]

-17 -

SIGMOD Conference, May 1986, pp. 53-60.

Lipton, R., Invariant Fingerprints, unpublished memo, Princeton
University, 1984.

Lundelius, J., and Lynch, N., A New Fault Tolerant Algorithm for
Clock Synchronization, PODC Symposium, August 1984.

Lynch, N., Fischer, M., and Fowler, R., A Simple and Efficient
Byzantine Generals Algorithm, Proc. 2nd Symposium on Reliability in
Distributed Software and Database Systems, 1982.

Metzner, J., A Parity Structure for Large Remotely Located Repli-
cated Data Files, IEEE Transactions on Computers, Vol. C-32, No. 8,
August 1983, pp. 727-730.

Parker, D., et al, Detection of Mutual Inconsistency in Distributed
Systems, IEEE Transactions on Software Engineering, Vol. SE-9, No.
3, May 1983, pp. 240-247.

Pease, M., Shostak, R., and Lamport, L., Reaching Agreement in
the Presence of Faults, Journal of the ACM, Vol. 27, Num. 2, April
1980, pp. 228-234.

Pittelli, F., Experimental Analysis of a Triple Modular Redundant
Database System, Ph.D. Thesis, Princeton University, October, 1986.

Schneider, F., Synchronization in Distributed Programs, ACM Trans.
on Programming Languages and Systems, Vol. 4, Num. 2, April 1982,
pp. 125-148.

Siewiorek D., and Swarz, R., The Theory and Practice of Reliable
System Design, Digital Press, 1982.

(2) Request

(1) Request

(4) Output

(3) Trans

(3) Trans

Figure 1. Normal Transaction Processing

(3) Trans

Failure Detection Snapshot
Request
Figure 2. Recovery Model

(3) Snapshot Request

4) Snapshot
Trans

(S) Snapshot

(7) Resume

Recovering Node

Figure 3.

(2) Snapshot Request

(1) Failure

(4) Snapshot
Trans

(6) Snapshot

Perfect Node

(only one is shown,

same steps occur on the other)

Recovery Processing

Snapshot
Installation

800

700

600

500

Average
Response
Time

(ms) 400

300

200

100

Figure 4.

3000

2750

2500

2250

2000

1750

Recovery
Response
Time 1500

(ms)
1250
1000
750

500

250

| |

normy

al

6 8 10 12

Input Rate (trans/sec)

14

16

Impact of Exchange size on Transaction Processing

{)GSD

(Dezo

6 8 10 12

Input Rate (trans/sec)

Figure S.

3

Recovery Response Time

45

40

35

30

Number 25

of

Transactions
Queued

20

15

10

S

0

2200

2000

1800

1600

1400

Catch—uﬁr200
Time
(ms)
1000

800

600

400

200

e50

e20

elo_|

ez

ed _

Figure 6.

Input Rate

(trans/sec)

Impact of Exchange Size on Queue Size

e50

e20

elo

Figure 7.

Input Rate

Impact of Exchange

(trans/sec)

Size on Catch-up Time

