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Abstract

This paper describes an efficient way to test the VAP-free (Vertex Accumula-
tion Point free) planarity of one- and two-dimensional dynamic graphs. Dynamic
graphs are infinite graphs consisting of an infinite number of basic cells connected
regularly according to labels in a finite graph called a static graph. Dynamic
graphs arize in the design of highly regular VLSI circuits, such as systolic arrays
and digital signal processing chips.

We show that VAP-free planarity testing of dynamic graphs can be done
efficiently by making use of their regularity. First, we will establish necessary
conditions for VAP-free planarity of dynamic graphs. Then we show the existence
of a finite graph which is planar if and only if the original dynamic graph is VAP-
free planar. From this it follows that VAP-free planarity testing of one- and two-
dimensional dynamic graphs is asymptotically no more difficult than planarity
testing of finite graphs, and thus can be done in linear time.

1. Introduction

Given a finite digraph G° = ( VO EO), called a static graph, and a k-
dimensional labeling of edges T*, we can define the k-dimensional dynamic graph
Gt = (Vk E* T*) as follows: Let Vv ={vy,vg,..., v, } For each x € Zk,
we call v; x the x-th copy of v; € V% ond Vi = {01 e ®hgsos « 5 Unx } he Xtk
copy of V. The vertex set V4 can be regarded as a copy of V0 at the integer lat-
tice point x and V¥ is the union of all points; that is,

VE= U Vg
x ¢ Z*
Two vertices vy and wy in G* are connected by a copy of an edge (v, w ) in GO
whose label is the same as the distance between these two vertices (y — x ) in &-
dimensional space; that is, the edge set E* is defined as

Ek={(vx,wy)|vxEVx,waVy,(v,w)EEO,y—szk((v,w))}.
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DAAG29-85-K-0191, DARPA Contract N00014-82-K-0549, and IBM-Japan.



.92

Hence the dynamic graph is a locally finite infinite graph consisting of an infinite
number of repetitions of the basic cell.

Orlin (1984) pointed out that many problems in transportation planning, com-
munications, and operations management can be modeled by one-dimensional
dynamic graphs. He investigated various problems for one-dimensional dynamic
graphs, such as finding weak or strong components, finding an Eulerian path, and
determining whether they are 2-colorable or not.

Two-dimensional dynamic graphs arise naturally in the study of regular VLSI
circuits, such as systolic arrays and VLSI signal processing arrays (Cappello and
Steiglitz 1981; Iwano and Steiglitz 1986b). In these applications, the graphs associ-
ated with the circuits can be regarded as subgraphs of two-dimensional dynamic
graphs. Doubly-weighted digraphs, which can be regarded as static graphs of
two-dimensional dynamic graphs, have also been well studied. For example,
Dantzig, Blatter, and Rao (1967) and Lawler (1967) studied optimal cycles with
minimum ratio of two labels; Reiter (1968) studied these graphs for problems of
scheduling parallel computation. The authors studied the acyclicity problem
(Iwano and Steiglitz 1986a) and various other problems for two-dimensional
dynamic graphs (Iwano and Steiglitz 1986¢).

The regularity of dynamic graphs may lead us to efficient solutions of certain
problems because we may be able to restrict problems to finite graphs which ade-
quately represent them. We will show that VAP-free planarity testing of dynamic
graphs can be solved efficiently using this idea. The planarity problem of infinite
graphs in general has been extensively studied (Dirac and Schuster 1954;
Griinbaum and Shephard 1978, 1981; Halin 1966; Thomassen 1977, 1980, 1983).
There are efficient planarity testing algorithms for finite graphs (Hopcroft and
Tarjan 1974; Lempel, Even, and Lederbaum 1967). An infinite planar graph is
VAP-free planar if there is no vertex accumulation point in any finite bounded
region. In VLSI applications, since each cell occupies at least some constant area,
the associated dynamic graph is VAP-free planar if it is planar. Hence we will con-
sider only VAP-free planarity of dynamic graphs.

First, we will find necessary conditions for VAP-free planarity of dynamic
graphs. Then we will show the existence of a finite graph which is no larger than
a constant multiple times the size of a basic cell and which is planar if and only if
the original dynamic graph is VAP-free planar. From this it follows that VAP-free
planarity testing can be done in O( n ) time where n is the number of vertices in
the basic cell.



2. Graph terminology

We will need the following definitions related to the planarity of infinite
graphs (Grunbaum and Shephard 1981; Thomassen 1977).

Definition 2.1. A graph G = (V, E ) is called a plane graph if all vertices and
edges lie in a plane . In this case, the points of the plane not on G are partitioned
into open sets called faces, or regions. A graph G is said to be planar, have a plane
representation, or be embeddable in the plane if it is isomorphic to a plane graph.
The plane graph is called a plane representation of G. []

Definition 2.2. Given a digraph G = (V, E ), a path P in G is a sequence of ver-
tices P = vg, vy, ..., U] where ¢; = (v;_1,v;) € E and v; € V. If all vertices
vo, U1, ..., Uj_1 are distinct, a path P is simple. A path P such that vy = v; is
called a cycle. []

Definition 2.3. A countable graph is one in which both the vertex set and the
edge set are finite or countably infinite. A graph is locally finite if the valence of
every vertex is finite. A point P in an infinite plane graph G is called a vertex
accumulation point (resp. edge accumulation point) if there are infinitely many
vertices (resp. edges) of G of Euclidean distance < & from P for every positive real
number . A vertex accumulation point (resp. edge accumulation point) is abbre-
viated VAP (resp. EAP). A two-way infinite path, abbreviated by 2— path, is an
infinite sequence of distinct edges of the form

T ( [ R ), T ( UV_1,VUp )s (U(]avl )5 Y (Ur—lsur )7 £

]

Definition 2.4. A plane graph is straight and has a straight-line representation if
all of its edges are straight line segments. A straight plane graph is convex if all of
its bounded regions are convex plane sets and its unbounded regions are either
convex or complements of convex sets. A plane graph G is said to be a triangula-
tion if the boundary of every region is 3-cycle. A plane graph G is said to be a
polygonal arc representation if the edges of G are polygonal arcs. []

We define a dynamic graph as an infinite graph induced by a finite graph.
Definition 2.5. Let G° = (V% E®) be a finite directed graph with

VY ={vy, v9,..., Un} Let T*:E° — Z* be a k-dimensional labeling of E°
such that T*(e) = { ey, e, ..., e; } € Z* for every e € E°. For each x € Z* we
call v; x the x-th copy of v; € V9 and Vg = {v1x, Uaxs - -« Unx | the X-th copy of

V? Then we can define the k-dimensional dynamic graph G* = ( VE E* ,_Tk )
induced by G as follows:



VE= U Vs
X € Z*
E* = {(viz,vjy) | (vi,v;) €E% y —x =Tk (v;,v;))}

We call G the static graph of G*. The edge with the T*( e ) label is called the
T*( e )-edge. []

Note that G* is an infinite graph and is locally finite. We use 0 to represent the
origin in ZFk: that is, 0 = (0, 0,..., 0). We now define the basic cell of G* as
follows:

Definition 2.6. For x, y € Z*, let Exy ={(vix, v5y) € E%}. When x # y, we
call Exy the connecting edges. We call Cx = (Vx, Exx ) the x-th cell of G*. In
particular, we call Cq the basic cell of G*. When we regard each cell as a point,
we have an infinite graph GF = (V% EX T*) such that VE = Z*% and
E{ = U Eyy. Wecall G* the cell graph of G*. [J
X2y
The graph G% is obtained by regarding every cell of G* as a point; G* can be
regarded as the union of cells and connecting edges.

Definition 2.7. Let G* = (V% EX T%*) be the cell graph of a k-dimensional
dynamic graph G*. Then we define the cell static graph G = (v, E}, T ) as
follows:

Ve =1{v}
Ed={e=(v,v)|e€E T(e)=0}
Tk = {Tk(e)| e € EL}.

[

This cell static graph G is the static graph which induces G%. In Fig. 1a, the
two-dimensional dynamic graph G? is induced by a static graph G, while in Fig.
1b, the cell graph G2 is induced by the cell static graph G?. The cell graph G2
represents the interconnection between cells in the dynamic graph G2, and the cell
static graph G consists of edges with non-0 labels in G°. We use the notations
illustrated in Fig. lc. That is, the superscript k of G indicates a k-dimensional
dynamic graph, while the superscript 0 indicates a static graph. The subscript ¢ of
G or G* indicates a cell graph.

From now on, we discuss dynamic graphs G* with & < 2.

Definition 2.8. To subdivide an edge e = ( x, y ) in a graph H, is to replace it by
a new vertex z, new edges e; = (x, z) and eg = (2, ¥ ). We say that the result-
ing graph G is obtained from H by subdividing e at z. A graph G is a subdivision
of H if there is a sequence of graphs



s =

Hy=H, H{,H,,..., H,=G
such that H; is obtained from H; _; by subdividing an edge in H; _; for 1 =i = n.
O
Thomassen (1983) summarized the current results about planarity of infinite

graphs. For example, Erdos extended Kuratowski’s theorem to countable graphs
(Dirac and Shuster 1954) as follows:

Theorem 2.1. A countable graph is planar if and only if it contains no subdivi-
sion of K5 or K3 3. []

As another example, Halin characterized locally finite graphs having VAP-
free representations:

Theorem 2.2. (Halin 1966) A locally finite graph has a VAP-free representation if
and only if it is countable and contains no subdivision of K5, K33, or any of the
graphs in Fig. 2. []

Fig. 3 shows two representations of a one-dimensional dynamic graph G!
induced by a static graph G® with two connecting edges with labels 2 and 3. Note
that Fig. 3a is not a plane graph, while Fig. 3b is a plane graph with a vertex
accumulation point. In fact, by using Theorem 2.2, we can show that this dynamic
graph does not have a plane representation without a vertex accumulation point.
The wide solid lines in Fig. 3¢ form one of Halin’s subgraphs, as shown in Fig. 3d.

Thomassen obtained the following results for straight-line representation and
a convex representation.

Theorem 2.3. (Thomassen 1977) Every planar graph has a straight-line represen-
tation, and every locally finite graph with a VAP-free representation has a VAP-
free straight-line representation. []

Theorem 2.4. (Thomassen 1980) Every locally finite 3-connected graph with a
VAP-free representation has a convex representation. []

From now on, we assume every edge in a dynamic or static graph is a simple
curve ( See Berge 1963 ). We will use Jordan’s theorem, which states that a sim-
ple closed curve in the plane divides the plane into precisely two regions.

3. Necessary conditions for VAP-free planarity of Gt

In this section, we will express necessary conditions for VAP-free planarity of
dynamic graphs in terms of the labels of edges. From now on we assume the fol-
lowing:

1) GP¥ is connected.
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2) The basic cell C is connected and planar.

These can be assumed without loss of generality. Note that G* is planar if and
only if every connected component of G* is planar. Hence if G* is not connected,
we only have to check the VAP-free planarity of each connected component. Thus
we can assume 1). Note that 1) implies that the static graph G° is connected,
because a non-connected static graph induces a non-connected dynamic graph. If
C is not planar, neither is G*, because C is a subgraph of G*. Since the static
graph is assumed to be connected, we can always choose a 2-dimensional labeling
which makes the basic cell C connected and does not change the dynamic graph
(Orlin 1984). Thus we can assume 2).

Theorem 3.1. The cell graph G¥ is planar (resp. VAP-free, convex), if the original
dynamic graph G* is planar (resp. VAP-free, convex).

Proof. Let G* be a planar ( VAP-free, or convex ) representation of itself. Then by
replacing each cell of G* by a point, we can get a planar ( VAP-free, or convex )
representation of G%. []

Thomassen showed the following about VAP-free, locally finite plane graphs.

Theorem 3.2. (Thomassen 1977) Let G be an infinite, locally finite, connected
VAP-free plane graph. Then there exists an infinite straight line triangulation A
of the plane such that G is isomorphic to a subgraph of A. []

Note that dynamic graphs are locally finite by definition. Thus we can apply
Theorem 3.2 to any connected VAP-free plane dynamic graph and show that its
vertex set can be chosen to be integer lattice points of the plane as follows:

Corollary 3.1. Let G2 be a connected, VAP-free, plane graph. Then G? is iso-
morphic to a subgraph of a plane graph I' = (I'y, I'g ) where I'y C Z4,

Proof. Let A be an infinite straight line triangulation of the plane such that G is
isomorphic to a subgraph of A. Let popipg be a triangle of A. If necessary, we
can expand the triangle popipg so that it contains at least three integer points.
Let ggg1q2 be a triangle such that g, g1, and g9 are integer points in the trian-
gle pop1p2. We can then replace the triangle pop1pg by the triangle gogi1g2. By
repeating this operation, we can obtain a triangulation of the plane A’ whose ver-
tices are integer points. Thus G is isomorphic to a subgraph of A’. []

Let G! = (VL ELl T!) be the cell graph of a one-dimensional dynamic
graph G! and let G = (V?, E?, T!) be the cell static graph with



¥ ={v}
E? ={ei, es,..., en, } where

e, = (v, v) and Ti(e;) = x; such that (3.1)
| 0<|x1|=|x2|=-"=|2xn]|

Since we are concerned with planarity, without loss of generality, we can assume
that x; > 0 for 1 < i < m, and that the edge-labels of G? are distinct, so that

We have the following definition about 2—o paths induced by a p-edge ( that
is, an edge with label p ).

Definition 3.1. Let each vertex of V. be denoted by an integer. Suppose that
there is a p-edge in Gi. Then each p-edge in Gl induces a 2— path
P,y =(Vp;, Epi)forO0=i=p—1las follows:

Vpi={n | n=i(mod p)}

Ep,i={(n, n+p) | nGVin}.

[
That is, Pp; is a 2— path consisting of p-edges and the nodes which are equal to
i mod p. Note that V} is the disjoint union of { Vi |0=i=p -1}

From Theorem 3.1, VAP-free planarity of the cell graph G* is a necessary
condition for VAP-free planarity of dynamic graph G*. Therefore, we have the fol-
lowing necessary conditions for VAP-free planarity of one-dimensional dynamic
graphs:

Theorem 3.3. Let G! be a connected one-dimensional dynamic graph. Let G{ be
the cell static graph as defined in (3.1) and (3.2). Then Gl is VAP-free planar if
and only if one of the following two conditions is satisfied. ( See Fig. 4. )

1) m=1and x; = 1.
2) m=2,%; =1and xg = 2.
Before proving Theorem 3.3, we need the following lemmas:

Lemma 3.2. (Thomassen 1980) Let G be a VAP-free and EAP-free representation
of a 2—o path. Then G partitions the Euclidean plane precisely into two faces. []

Lemma 3.3. Let G be a locally finite VAP-free plane graph. Then G is EAP-free.

Proof. Suppose that G is not EAP-free. Then there exists a bounded closed area
containing infinitely many edges. However, since G is locally finite ( that is, every
vertex has a finite valence ), there are infinitely many vertices in this closed area,



which is a contradiction. []
Now we can prove Theorem 3.3.

Proof of Theorem 3.3. The "if" part is easy. As shown in Fig. 4, both cases have
VAP-free planar representations.

We can now prove the "only if' part. Suppose that Gl =(V,, E.T:)is 4
VAP-free planar representation. From Corollary 3.1, we can assume that the ver-
tex set V1 consists of integer lattice points in Z X Z.

Suppose that x; = 2. Since G; is connected, there exists some x; such that
J = 2 and x; is not a multiple of x;. Otherwise, node 0 and node 1 cannot be con-
nected, which is a contradiction. Let x; (resp. x;) be denoted by p (resp. ¢). Then
there exist some &, r € Z%1 such that ¢ = kp + r, 0 < r < p. From Lemma 3.2,
the set of 2— paths { P, ; } partitions the Euclidean plane into (g + 1) faces.

Note that the 2— path P, o connects nodes
0=>p—>2 —-->(g—-1)p—>aq

such that ip € Py ip(mod q) for 0 = i < q. Therefore, the (¢ + 1) faces created by
{ P,;} are arranged in the following order:

Pg o, Pgp, * Pokp> P,k +10p =Pg,p—r)» *

as shown in Fig. 5. Note that 0, p, and 2p are different from each other mod g,
and thus 2—o paths Py g, Py p, and Py 9p are different from each other. Now we
have the following two closed undirected cycles W, and Wy in Gl as illustrated by
the wide solid lines in Fig. 5:

Wi:0->p—>2p—>---—>qgp—>0
and
Wy:0—>—-qg—>@p—-9 —>2p—q) —>2p >p—0.
Note that Wy uses P, _g, Pg 95, Pp o, and Py . Note also that P, o connects
2p € Py 9p and gp € Py o through (g —1)p € Py, (g +1)p- Let
P;fp ={p+np|n€ZT}CP,,.

Since there is no vertex on W; and Wy which is also a vertex in P;, ps the 1—o
path P, must cross W, and W, to get from the inside of those cycles to the out-
side. Therefore, P;f p must remain inside W, and W3 in order to remain planar.
If p+q is insidle Wy, then P, is also inside W;. This implies a VAP in W,,
which is a contradiction. In the same way, p +q cannot be inside Wy. Therefore,
X1 = 1.

Suppose that x5 > 2. Since x; = 1, from Lemma 3.2, the 2—= path P;  par-
titions the plane into precisely two faces, say the upper face and the lower face.
Suppose P, o exists in the upper face, then Py, ; should exist in the lower face, as
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shown in Fig. 6. Note that node 2 is located in the closed region
Ci:0—>1—>(xg+1) > x5 =0,
while node (x4 +2) is located in the closed region
Ca:x9 > (xg+1) > (2x9+1) = 2x9 — x4.

Thus there is no way to connect node 2 and node (xy+2) without crossing Py, 1 or
P., o, which is a contradiction. Therefore, if m = 2, m should be 2 and
X1 = 1, X9 = 2. D

4. VAP-free planarity testing of G'

In this section we will show that VAP-free planarity testing of one-
dimensional dynamic graphs can be done in O( n ) time where n is the number of
vertices in the basic cell. We use a finite graph Gy instead of the infinite graph
G! to test VAP-free planarity of G!. The graph G associated with G' is defined
as follows:

Definition 4.1. Let G! = (V!, E}, T!) be a one-dimensional dynamic graph.
Let C, = (V,, E,, ) be the x-th cell of G! for x € Z where E,, is the set of con-
necting edges between the x-th and the y-th cell as in Definition 2.6. Then we can
define the finite graph Gy = ( Vy, Ef) as follows:

Vi=VoUViUVaUV3U{s, ¢}

Ef={E,, |0=si=j=3}U
{(s, w) | there exists somev s.t. (v, w) € Exy,x <0 =y =3} U
{(v, t) | there exists some w s.t. (v, w) € Eyy, 0 =x =3 <y} U
{(s, t)}

[
Fig. 7 shows an example of Gf. Note that the vertex s (resp. ¢) represents the cells
of Gt for i < O (resp.i > 3).

From Theorem 3.3, we can assume the following:

1) The cell graph of G! satisfies E;; = @ for | i —j | = 3 and E; ;41 # & for
i € Z ( that is, there is a 1-edge and no p-edge for p > 2).

2) The basic cell is connected and planar.
Then we have the following theorem:
Theorem 4.1. A one-dimensional dynamic graph G!, which satisfies the above

assumptions, has a VAP-free planar representation if and only if the associated
finite graph Gy is planar.
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Proof. Suppose that G is planar. Assume there is a 2-edge. ( If not, the following
proof can be easily modified. ) Since there is at least a 1-edge and since the basic
cell is connected, there is an undirected cycle

W:s>Cyp—2>C;>Cyg>C3—>t—>s

in Gy. Without loss of generality, we can assume that s, Cy, C1, Cg, C3, and ¢
are located in this order from the left as shown in Fig. 7. Otherwise we can
transform the graph to the desired form, without losing VAP-free planarity, by
expanding the edge (s, t ) and rotating the graph along with the cycle W. From
Theorem 2.5 ( Jordan’s theorem ), the cycle W partitions the plane into exactly two
regions. We call the inside (resp. outside) R;, (resp. R,,;). Note that the cycle W
corresponds to the 2—o path P, in G. Note also that all edges in E¢ g lie in
either R;, or R,,;, and the same is true for E, 3. If E¢y lies in Ry, (resp. Ryu),
E 13 should lie in R,y (resp. R;,). Let B be a closed region which contains only
C; and Cs, as shown by the shaded area in Fig. 7. Then we can obtain a VAP-free
representation of G! by infinitely repeating B, because we can maintain the same
sequence of 2-edges on the boundary of B.

Conversely, suppose that G! is VAP-free planar. We can assume that Gl
itself is a VAP-free plane graph. It is clear that the subgraph consisting of
C_y, Cy, C1, Co, C3, and Cy is planar. Then Gy is obtained by contracting C_;
(resp. C ) to the point s (resp. #) and adding the edge (s, ¢ ). []

Corollary 4.1. VAP-free planarity testing can be done in O( n ) time for a one-

dimensional dynamic graph G' where n is the number of vertices in the basic cell
of GL.

Proof. We can use any planarity testing algorithm which runs in time linear in
the order of the vertex set (Hopcroft and Tarjan 1979; Lempel, Even, and Ceder-
baum 1967). []

5. Necessary conditions for VAP-free planarity of G2

We also have similar necessary conditions for VAP-free planarity of two-
dimensional dynamic graphs. Let G¢ = ( V¢, E?, T2 ) be the cell static graph
with

Ve ={v}
E?=]ej,e3,..., n}

T2(e;) =€ = (x5, ;) forl =i <m.
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As in Section 3, we can assume that x; > 0 for 1 =i < m and ¢; # ¢; for i # J.
Let G2 = ( V2, E2, T? ) be the cell graph of G2 with

Vel X 2

152 = U Eyy where
x,y€ZXZ, x=y

Ex,y:{ex,y|36E2,Tg(e):y_x}-

Theorem 5.1. The cell graph G2 is VAP-free planar if and only if one of the fol-
lowing two conditions is satisfied:

1) m =2 and | x;y9 — x9y1 | = 1; that is, every point p € Z X Z can be
expressed in the form of ae; +beg for some a, b € Z.

2) m =3, | X1Y92 — X9Y¥Y1 l = 1 and €3 = €; — €g,€3 — €1, Or €1 + eg; that is,
eg is a diagonal line of the parallelogram (0, e, ez, e; + €3 ).
Before proving Theorem 5.1, we need the following lemma:

Lemma 5.1. Let W be a cycle in G? such that

W:pp—>p1 =" = pm~*Po

for p; € V2. Suppose there exists a point g € V2 inside W and some e € E? such
that ¢ + ne # p; for any p; on W and for any n € Z. Then if G2 is planar, there
exists a vertex-accumulation point inside W.

Proof. Note that g and ¢ + e are connected by an edge ey, 4¢ of length e. Since
g + e is not on W, ¢ + e is either outside or inside W. If ¢ + e is outside W,
eq,q +e must cross W, a contradiction to the planarity of G?. Hence q + e is inside
W. For the same reason, {qg + ne | n € Z } must be contained inside W. This
implies the existence of a vertex-accumulation point in W. []

Lemma 5.2. Let e; = (x;,y;) €Z X Zfor i =1, 2. Every point p € Z X Z can
be expressed in the form ae; + bey for some o, b €Z if and only if

| x9y1 — %132 | = 1.

X1 X2
Proof. The matrix lyl yzl is non-singular if and only if there are some integers

[ 3)=[ea) )

Now we prove Theorem 5.1.

a, b, ¢, and d such that

O
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Proof of Theorem 5.1. The "if" part is trivial. The "only if" part is as follows: If
m =1, G2 cannot be connected. Therefore, m = 2. Suppose that there are no
edges ej,es € EY such that | x9y; — x1y2 | = 1. From Lemma 5.2, there is a
point p which cannot be expressed in the form of ce; + bey with a, b € Z. Note
that the plane is partitioned by disjoint rectangles { R, | @, b € Z } where R,
is the rectangle whose vertices are ae; + beg, (a-+1l)e; + bey,
(@ +1)e; + (b+1)eg, and ae; + (b +1)eg. Since p is in the plane, there exists a
rectangle R,, which contains p. Note that for any n € Z, p + ne; cannot be
expressed in the form ae; + beg with @, b € Z. Therefore, from Lemma 5.1, there
is a vertex-accumulation point in R, ,, which is a contradiction. Thus there are
two edges ej,es € EY such that | x3y; — x1y2 | = 1. Now every integer lattice
point in the plane is a vertex in some rectangle R,,. If m = 3, a diagonal line of
each rectangle R, ; is the only possible edge which keeps VAP-free planarity. []

6. VAP-free planarity testing of G2

In this section we will show that VAP-free planarity testing of two-
dimensional dynamic graphs can be done in O( n ) time where n is the number of
vertices in the basic cell. We use the same technique as the one used for VAP-free
planarity testing of G' in Section 4. That is, we can define the finite graph Gy
associated with the infinite graph G2 and show that Gy is planar if and only if G2
is VAP-free planar.

Without loss of generality, we can assume the following:

1) m=23ande; =(0,1),es =(1,0),andeg =(1,1)if m = 3.
2) The basic cell is connected and planar.
The graph G associated with G? is defined as follows:

Definition 6.1. Let G2 = ( V2, E2) be a two-dimensional dynamic graph. Let
Cx =(Vyg, Exx) be the x-th cell of G2 for x € Z X Z. Then we can define
Gr= (Vg Ef) as follows:

Vf={vx|x€[—1,1]><[—1,1]}

Be={Bey | B ¥E] 1,1 1X[~1,11}

[

Theorem 6.1. A two-dimensional dynamic graph G?, which satisfies the condi-
tions above, is VAP-free planar if and only if the associated finite graph Gy is
planar.

Proof. Suppose that G2 is planar. Since Gy is a finite subgraph of G?, Gy is also
planar.
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Conversely, suppose that G is planar. Since every cell is connected, there is a
cycle W connecting C _3, 1, C1,—1, C1,1, and C ;. We can assume that Cg, is
located inside the cycle W. Let B be a rectangle which contains only Cgo as
shown in Fig. 8. Then a VAP-free representation of G? is obtained by repeating B
at each cell. []

Corollary 6.1 The VAP-free planarity testing can be done in O( n ) time for the
connected two-dimensional dynamic graph G2 where n is the number of vertices in
the basic cell of G2.

Proof. The planarity testing can be done in O( | V¢ | ) time (Hopcroft and Tarjan
1979; Lempel, Even, and Cederbaum 1967) and l Vr | = n). O

7. Conclusions

We investigated VAP-free planarity testing of one- and two-dimensional
dynamic graphs. First, we showed necessary conditions for VAP-free planarity of
dynamic graphs in terms of the edge labels. Then we showed that there is a finite
graph which is no larger then a constant multiple times the size of the basic cell
and is planar if and only if the original dynamic graph is VAP-free planar. There-
fore, VAP-free planarity testing of dynamic graphs can be done in O(n ) time
where n is the number of vertices in the basic cell.

Generally speaking, the regularity of dynamic graphs makes problems like
planarity-testing easier, because we can transform them to problems of static
graphs or sufficiently small finite graphs. Using this idea, the authors are now
investigating other problems for two-dimensional dynamic graphs, such as weak
connectivity, strong connectivity, Eulerian paths, 2-colorability, the graph thick-
ness problem, and the longest path problem. (Iwano and Steiglitz 1986c).
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Figure 1a. A static graph G shows how to connect the nodes in G2. The shaded area
shows the basic cell Cpg.
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The cell graph G’

Figure 1b. The cell graph G indicates the interconnection of cells in the dynamic
graph G2
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Figure 1c. The superscript 0 indicates a static graph, while the superscript k
indicates a k-dimensional dynamic graph. The subscript cindicates a cell graph.



Figure 2. A locally finite graph has a VAP-free representation if and only if it is
countable and contains no subdivision of K5, K3 3, or any of the above graphs. The
dotted lines denote one-way infinite paths.



Figure 3. These are representations of the one dimensional dynamic graph
with x7=2 and x2=3. Note that (a) is a non-plane graph and (b) is a plane
graph with a VAP.



(d)

Figure 3. (c) has a subgraph corresponding to one of Halin’s graphs as shown in (d).
Therefore G.' cannot have a VAP-free planar representation.



m=2,x1=1,x2=2

Figure 4. The two cases above are the VAP-free planar representations of G with
| xi|=2.



Pgp

Figure 5. In the case of 1<p<q, there is no VAP-free planar representation. P_ *
should existin w; or w;, but this implies a VAP. ’



closed region in C;

closed region in C;

Figure 6. There is no way to connect the node 2 and the node x;+2 without
crossing Px,,o or Py,,1 as indicated by the wide dotted lines above.



m=2,x=1,%X=2

Figure 7. The graph Gy is planar if and only if GT has a VAP-free planar
representation.



[
€2

C10

C.1,1 / Co,-1 / i1

Figure 8. This finite graph Gris planar if and only if the infinite graph G2 has a
VAP-free planar representation.



