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Abstract.

The ordered binary decision diagram is a canonical representation for Boolean func-
tions, presented by Bryant as a compact representation for a broad class of interesting
functions derived from circuits. However, the size of the diagram is very sensitive to the
choice of ordering on the variables; hence for some applications, such as Differential Cas-
code Voltage Switch (DCVS) trees, it becomes extremely important to find the ordering
leading to the most compact representation. We present an algorithm for this problem

with time complexity O(n?3"), an improvement over the previous best, which required
O(n!2").
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1 Introduction

We begin by describing binary decision trees, binary decision diagrams, and ordered

binary decision diagrams.

A binary decision tree representing the boolean function f(zi,zs,z3,z4) = z122 + 2324
is depicted in Fig. 1. To evaluate the function at a vector b = (b1b9b3bs), we begin at the
root and descend through the tree until hitting a leaf (or terminal). In particular, when at
a node labeled 7, we go to the left son if b; = 0 and the right son otherwise. This process

ends at a terminal labeled with the value f(b).

Unfortunately, this representation for boolean functions is no more concise than a
complete truth table, since a tree representing a function of n variables has 2"*! —1 nodes.
However we can collapse the tree in such a way that the function can still be evaluated
in the same manner, yet the resulting acyclic digraph (called a binary decision diagram)
may be much smaller (see Fig. 2). Binary decision diagrams were introduced in [Le| and
further popularized by [Ak|; much work on binary decision diagrams and their applications

(including logic synthesis, verification and test generation) has been reported (e.g. [Mo),

[AR)).

Note that in the particular decision tree of Fig. 1, regardless of the path that we
take (i.e. regardless of the value of b), we will be evaluating the bits in the same order
(namely, bs,b4,b1,b2). Therefore, at each level of the tree, all nodes have the same label
(for example, at level 1 all nodes are labeled 2). Call such a tree an ordered decision
tree. Then we define (following [B2]) an ordered binary decision diagram as the binary

decision diagram resulting from starting with an ordered decision tree and applying the

two collapsing operations, described below, until they no longer apply.

+ Although defined as the result of the collapsing process started on an entire decision
tree, it can be usually computed more quickly (given a particular ordering) by starting
with a concise boolean expression for the function and building up the diagram in pieces,

as described in [Br].
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In order to describe these collapsing operations, we make use of the following definition.

Two nodes of a decision diagram are equivalent if they are either
(1) both terminals with the same value (TRUE or FALSE), or

(2) both internal nodes having the same label and their left sons are equivalent

and their right sons are equivalent.

There are two operations for collapsing (called “reducing” in [B2)):

(i) If the two sons of a node a are equivalent then delete node a and direct all

of its incoming edges to its left son.

(ii) If nodes a and b are equivalent then delete node b and direct all of its incoming

edges to a.

Thus, the first operation avoids the testing of variables on which the function does not
depend; the second gets rid of nodes representing functions already represented by another

node in the diagram.

As observed in [B2], the resulting diagram does not depend on which of the nodes
(there may be many possibilities) is eliminated at each step of the collapsing process (thus
it is well-defined). In other words, the ordered binary decision diagram is a canonical rep-
resentation for a given boolean function, given an ordering on its variables. Henceforth,
all binary decision diagrams referred to in this paper will be ordered (unless others speci-
fied), and we call them simply BDDs. Thus we define BDD(f,7) as the BDD representing
function f, given ordering 7 on its variables. As examples, BDD(z1z5 + 324, (2,1,4,3))

and BDD(z12; + 374, (2,4,1,3)) are illustrated in Fig. 2 and 3, respectively. t

Bryant [B2] discusses the advantages of constraining binary decision diagrams to this
ordered variety, arguing essentially as follows. This representation facilitates many of the

most useful operations on functions (such as AND, OR, NOT, testing for equivalence, and

+ We denote the ith value of an ordering (that is, permutation) m by =[s]; thus if

7 = (2,1,4,3) then n[1] = 2, 7[2] = 1 and so forth.
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testing for satisfiability). The disadvantage of this constraint is that there exist functions
whose smallest — measured by number of nodes — ordered diagram is strictly larger than
its smallest (unordered) diagram. However, this phenomenon seldom occurs (or when it
does, the difference is small) for most functions arising in circuit design. Indeed most

useful circuits seem to have small (say, of size polynomial in n) BDDs.

However, the size of the BDD for a given function is extremely sensitive to the choice
of an ordering on the variables; for example, a circuit representing the carry-out of an
adder has size O(n) under some orderings and O(2™/2) under others. This leaves open the
question of how to find the best such ordering (i.e. leading to the smallest BDD) for a given
function. Bryant [B2] leaves this task to the human user; however for many applications

such intervention may not be practical.

Certain heuristics for finding a good, but not necessarily optimal, ordering are pre-

sented in [NB].

The current paper contains an algorithm for finding an optimal ordering, running
in O(n?3"™) time, an improvement over the (essentially brute-force) O(n!2") optimizing
algorithm reported in [NB]. Although the function n?3" grows very quickly with n, it does
so dramatically more slowly than does n!2"™. For example, compare them for the following

values of n:

n n?3" nl 2"
8 419,904 ~ 10, 000, 000
10 ~ 5,900,000 ~ 3,700, 000, 000

12 ~ 76,000,000  ~ 2,000, 000,000,000

Thus for a certain range of n (say 5 through 8) our algorithm is much faster than the
brute-force, and for the next few values (say 9 through 13) our algorithm is feasible whereas

the brute-force is not. The synthesis of Differential Cascode Voltage Switch (DCVS)
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trees (see [HG], [YH], [NB]) so as to minimize the number of transistors turns out to

be essentially one of finding the best ordering for a BDD. Our algorithm is particularly

well-suited for this application, for two reasons:
(1) In this application, BDDs are directly realized as hardware; hence finding
the optimum BDD is particularly important.
and
(2) Functions of about 11 or fewer variables are typical in this application; hence

our algorithm would enable one to actually find the optimum rather than

resorting to heuristics.

Other applications utilizing BDDs are reported in [B1]| and [SF].

2 Preliminaries
In the following definitions and in the Lemma, f denotes a boolean function over vari-
ables T1; 2oy vy Tns

(1) If b € {0,1} and 1 < 7 < n, then f|;,—; denotes the boolean function of n variables

such that for all z1,z9,...,2Zg,
f |z,-=b(xl:x2s' . 'smn) = f(I],. - -sxi—lsbsx‘i+11 4 & sIn)'

Extend this concept of the restriction of f as follows: if by, bs,...,b, € {0,1} and ¢1,13,...,1,

are distinct members of {1,2,...,n} then inductively define

f|$£1=51, oy Tip=br (f|1i1=b1, o zi,._1=br—1)|zif=bf

In other words, an expression for f |3i1 =by, ..., z;,=b, Cal be derived from an expression for

f by replacing each occurrence of i, by the constant b; for each 1 < j <r.

(2) If IC{1,2,...,n} then define II(I) as the set of orderings on {1,2,...,n} whose
first |I| members constitute I, that is

II(I) = {x : 7 is an ordering on {1,2,...,n} and {x[1],7[2],...,x[|I|]} = I}
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(3) If v € {1,2,...,n} and 7 is an ordering on {1,2,...,n} then costy(f,m) denotes
the number of nodes labelled v in the diagram

BDD(f, 7). Thus, our problem is to find a 7 that minimizes
n
> costy(f,7) -
g=1

Our algorithm depends heavily on the following result:

Lemma: Let 1 C{1,2,...,n}, k = |I|, and v € I. Then there is a constant ¢ such that for

each 7 € II([) satisfying [k] = v we have

costy(f,7) = ¢

Proof: Let € II(I) be such that n[k] = v. Let J = {é1,%2,...,8p—k} = {1,2,...,n} — I.
Then for each b = (b1,b2,...,bn—) € {0, 1}“"‘ a node representing the restricted function

f=F |z;1=b1, vy @i, _, =bn-, TOUSt appear in BDD(f, 7). Note that theset S ={f; : b€

{0,1}* %} remains constant over all = € II(I), since J depends only on I. Furthermore,
there is exactly one node of BDD(f, w) corresponding to each member of S, because of
collapsing operation (ii) (see Introduction). Now, the node corresponding to a given fj
is the root of BDD(f;, '), where n' = (w[1],7[2],...,7[k]). Clearly, if a node labelled v
appears in this diagram, it must be at the root. In particular, the only nodes labelled v
correspond to those functions in S that depend on z,, because of collapsing operation (i).
Thus, for any 7 € II(I), the number of nodes labelled v is equal to the number of functions
in S that depend on z,, which is determined only by I and v. This number then is the

constant ¢ required by the Lemma. H
3 The algorithm

Our algorithm, shown in Fig. 4, is based on dynamic programming. We process each
subset of the variables’ indices 1 C{1,2,...,n} in ascending order of their cardinalities

k = |I|. In particular, we compute the following three values for each I
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(1) MinCost;, which is the minimum of Y ,c;costy(f,7) over all # € II(I).
Initially, we set MinCosty = 0.

(2) mr, which is a member of II(I) achieving the minimum described above. The
key fact (a consequence of the Lemma) on which the algorithm is built is that
the cost of the variables on the first k levels depends only on their ordering,
i.e. it does not depend on the ordering of the remaining n — k variables. In
particular, each ordering 7 such that #[¢] = 7 [d] for all 1 <7 < k satisfies

> costy(f,7) = MinCostr .
vel
Initially, my = (), the empty sequence. Thus, our problem is to find m; .3,

which yields a BDD having MinCosty; ) internal nodes.

(3) TABLE;, which is the truth table for a mapping from {0,1}" % to those
nodes of BDD(f, ) that either are terminals (the nodes TRUE or FALSE)

or are internal nodes labelled with members of I. Note that there are

MinCost; such internal nodes, and hence precisely MinCosty+2 distinct
values in the table; we identify the internal nodes with integers between 1
and MinCost;. The interpretation of the mapping is as follows: each el-
ement b = (b1,bs,...,b,—k) of the domain represents a truth assignment
to the variables with indices 11,%9,...15,_ & I, and it is mapped to the

node of BDD(f, ) that corresponds to the function f |9,‘.1 =,

vosy z,—n_k=bn_k-
Thus initially, TABLEj is the full truth table for f, mapping {0,1}" to
{TRUE, FALSE}.

To compute MinCosty, 77 and TABLE7, we look at each v € I and compute costy(f, 7)
for some 7 € TI(I) such that n[k] = v, i.e. some ordering with v at position k and the
other members of I at the lower positions. As a consequence of the Lemma, it does not
matter which such 7 we use; cost,(f,7) will be the same. Therefore for convenience, we

use the ordering (v,7_(,)) as this 7, since we have already computed TABLE_ (.
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In particular, to compute cost,(f, (v, 7 I_{,,})) we do a folding operation on the truth
table TABLE; (3. We call it “folding” because it involves comparing the correspond-
ing elements of two halves of the truth table to arrive at another truth table (stored
as TempTable) with half the number of lines. In particular, if 7,%9,...,%,—f are the
elements of {1,2,...,n} — I, then for each length n — k binary vector b we compare
TABLEp (y)(zs, = b1, ..., Zi,_, =bp_k, Ty =0) (which we store as to) to
TABJEJ:UI__{u}(.7:,;1 =by, ..., z;_, = bp—g, Zo = 1) (which we store as ¢;). By this no-
tation, we mean the value of TABLE;_(,, obtained by assigning b; to variable z;, for

j=1,2,...,n —k and assign 0 to variable z,. In other words, this gives us an identifier

for the restricted function

flz,- =b1, .oy By, ,=bp_k, Ty=0 -
1 n—k

For each such pair (tp,%;) we determine whether we need a new node labelled v in

BDD(f, {v,71_{y})), using the following three criteria:

(1) If ¢y = ¢; then we do not create a new node since its left son and right
son links would point to the same node (see collapsing operation (i) in the

Introduction).

(2) If 1d(to,t1) is non-nil then it holds some node m labelled v and having the
same left and right sons that the new node would have; thus we do not create
a new node since it would be equivalent to m (see collapsing operation (ii)

in the Introduction).

(3) If 4d(ty,t;) = nil then we create a new node named with the next available
node number; this is achieved by incrementing count and assigning its value
to ¢d(to,t1)-
Thus, in the first case, we assign to TempTable(z; = b1, ..., z;,_, = by_) the value to;

in either of the other two cases we assign it 7d(to,1).
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After the folding operation (i.e. after examining each b), we have

count = ) _ costy(f, (v, T1_fo})) -
vel

If this is less than the current minimum then we save count as MinCost f, (v, WI_{v}) as

w1, and TempTable as TABLE].

Thus, after examining each v in this way, we set

MinCosty « 151Ei}1(cost,, +MinCostz_gy}) -

We let 71 be the ordering (v, 7;_(,}) that achieves this minimum, and we let TABLET be

the truth table corresponding to BDD(f, 7).
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FORkEk+1TOn DO
FOR each k-element subset 1 C{1,2,...,n}

[[ Compute 77, TABLE and MinCosty |]

BEGIN
MinCosty + o0 ;

FOR eachve I DO
BEGIN

[[ Evaluate costy with the ordering (77_(,},v) ]]
{*) 1d(tp,t1) + nil, for each pair (¢g,%1) ;
count « MinCosty_(y3 ;
Let 21,2,...,%n—k denote the elements of {1,...,n} — 1T ;
FOR each b € {0,1}** DO

BEGIN
tg — TA.BL.:I_":'I_{u}(Ii1 =by, ..., i, _, = By fon W == O) :

t1 + TABLE; () (zs; = b1, .oy Zi,_ = bpg, Ty =1);
IF t, = t;
THEN TempTable(z;, = b1, ..., z; _, =by_) «— to

ELSE BEGIN
IF id(to, ;) = nil THEN BEGIN

[ the pair (to,%1) is new ||
count <+ count 4 1
©d(to,t1) « count ;
END ;
TempTablels; = b1, <oy 2, = by ) tdfly, i)
END
END || for each b ] ;

IF count < MinCost; THEN BEGIN
MinCost; « count ;
xp — (0, 71_(o}) 5
TABLEy < TempTable
END
END || for each v ||
END || for each I ]| ;

Return 719, a} -

Figure 4
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4 Complexity analyses

We first analyze the time required by the algorithm. For each k from 1 to n, we process

each of the (2) sets I of cardinality k. For each of the k indices v in each such I, we do

a folding operation on TABLEj (,}. Processing each of the 2" % table entries requires
two lookups in TABLE;_y,} and one lookup in ¢d. Lookups in TABLE [ (,; are easily
performed in O(n — k + 1) time. We could implement ¢d as a balanced tree (such as an
AVL tree [AH]) and do insertions and lookups in time proportional to the logarithm of its
maximum number of entries. Thus, instead of initializing ¢d to nil explicitly for each pair
(to,t1) as is suggested in line (*), we simply initialize ¢d to the empty set. Since at most
one entry is made into ¢d for each b € {0, 1}"'_", the insertions and lookups in ¢d also can

be performed in O(log(2" **1)) = O(n — k + 1) time. Thus the total time complexity of

the algorithm is of order

Zn: (:) k2" Fn—k+1) = i (Z) k2" *(n — k) + i (Z) Lon—*

e k=1 k=1
Lo ) () B G )
= n(n—1)2*"! :2;:: (n L 2) (%)k +n2""! :;: (n; 1) G)k

_ B i 1 n—2 .1 1 n—1
= n(n —1)2 1+§ + n2 1—|—§

To analyze the space complexity, first note that at iteration k£ of the main loop the only
TABLE lookups are in TABLESs computed at the previous (i.e. the (k — 1)st) iteration.
Hence, at any time, we need only store the TABLEs from two consecutive iterations

(actually, since we employ the order notation, we need consider only the storage required
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at one iteration). The storage required then, is

max | )2nk
0<k<n \ k ’
We will show that the maximum is attained at k = |n/3], yielding an O(3"/+/n) bound.

Letting f(k) = (:)2"’“", the function to be maximized, we first show that for all

1<k <n-1, we have:

fE+1) 1)
B S Fk-1

<= flk+1)f(k—1) < f(k)f(k)

n! zn—k—l n! 2nwk+1

T EI D (n—k-1! G-Dl(n—k+1)

n!2n—k n!2n—k
SHn_k)! k(n—Fk)

= kl(n—k)k(n—k)!<(k+1)!(n—k—1)!(k—1)!(n—k+1)!
<> n—k)-k<(k+1)-(n—k+1)

—0<n+1

which is true. That is, as k increases, the ratio between consecutive f(k) decreases. Fur-

thermore, we have f(1)/f(0) = %, while f(n)/f(n — 1) = 5=; so as k goes from 1 to n,

f(k)/f(k—1) starts out greater than 1, is strictly decreasing, and ends up less than 1. That
is, f(k) increases, attains a maximum when —ﬂ‘%% >1 3> i S,k;:l , and finally decreases.
Thus, we are looking for the greatest k such that f(k) > f(k — 1), that is:

n! 2n—k n! 2n—k+1
MR~ k-1l (n—k+1)

: 1> 2
.e. - —
' E™ n—k+1

or simply n >3k .
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Thus, the maximum is at k = |

Js

Finally, we compute f([5]). We assume, for simplicity, that n is a multiple of three;

w3

otherwise, we may easily add one or two dummy variables without increasing the asymp-

totic complexity. Thus,

7 n n! 211./3
1(3) = ()" = ey

\/%(n/ )a 92n/3
(\/27rn/3 ”/3) (\/47rn/3 3—“)2n/3)

(using Stirling’s formula)

6 \/H n® . (1/e)n . 92n/3

— nn”'/?’ (Lyn/3 (] )n/3) (\/ﬁnQn/.‘i( 1y2n/3 (1y2n/3 22n/3)
_ 1/ )n . 92n/3

=0 (n nn - 1/3 -(1/e)n - 22n/3)

5 Remarks

Perhaps the most practical way to implement the set ¢d, however, by store its distinct
values in a hash table. The time required would then be O(n3") (typically) and space
requirements would be less but asymptotically the same. Furthermore, this would be far

easier to implement than a balanced tree scheme.

Multi-valued logic can be represented by decision diagrams whose terminals have values
from {0,1,...,k} where k may be an arbitrary integer. Our algorithm generalizes in a very

straightforward way to handle this case.
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