INCREASING AVATLABILITY UNDER MUTUAL EXCLUSION
CONSTRAINTS WITH DYNAMIC VOTE REASSIGNMENT

Daniel Barbara
Hector Garcia-Molina
Annemarie Spauster

CS-TR-056-86

November 1986

Increasing Availability under Mutual Exclusion
Constraints with Dynamic Vote Reassignment

Daniel Barbara

Universidad Simon Bolivar
Departamento de Matematicas y Ciencia de la Computacion
Caracas, Venezuela

Hector Garcia-Molina
Annemarie Spauster

Computer Science Department
Princeton University
Princeton, NJ 08540

ABSTRACT

Voting is used commonly to enforce mutual exclusion in distributed sys-
tems. FEach node is assigned a number of votes and only the group with a
majority of votes is allowed to perform a restricted operation. This paper
describes techniques for dynamically reassigning votes upon node or link failure,
in an attempt to make the system more resilient-to future failures. We focus on
autonomous methods for achieving this, i.e., methods that allow the nodes to
make independent choices about changing their votes and picking new vote
values, rather than group consensus techniques that require tight coordination
among the remaining nodes. Protocols are given which allow nodes to install
new vote values while still maintaining mutual exclusion requirements. The
lemmas and theorems to validate the protocols are presented. A simple example
shows how to apply the method to a database object-locking scheme; the proto-
cols, however, are versatile and can be used for any application requiring
mutual exclusion. In addition, policies are presented that allow nodes to auto-
nomously select their new vote values. Simulation results are presented compar-
ing the autonomous methods to static vote assignments and to group consensus
strategies. These results demonstrate that under high failure rates, dynamic
vote reassignment shows great improvement over a static assignment of votes in
terms of availability. In addition, many autonomous methods for determining a
new vote assignment yield almost as much availability as a group consensus
method and at the same time are faster and more flexible.

November 3, 1986

Increasing Availability under Mutual Exclusion
Constraints with Dynamic Vote Reassignment

Danzel Barbara

Universidad Simon Bolivar
Departamento de Matematicas y Ciencia de la Computacion
Caracas, Venezuela

Hector Garcia-Molina
Annemarie Spauster

Computer Science Department
Princeton University
Princeton, NJ 08540

1. INTRODUCTION

In distributed systems, the mutual exclusion problem is solved by ensuring that two or
more nodes or subsets of the nodes are not performing a restricted operation concurrently. Some
applications that require a mutual exclusion mechanism are, for instance, database transaction
commit [Gray78], coordinator election [Garc82a] and n-modular redundant computation.
Another use of mutual exclusion occurs in replicated data management, where it can be used to

provide consistency among copies[Bern81,Davi85].

Aside from ensuring mutual exclusion for the application at hand, a technique for imple-
menting mutual exclusion may have other critical objectives. For example, it may be important
that it work in a partitioned network. At the same time, it is generally desirable for the
method to provide high system availability. In other words, the system should be able to per-
form the restricted operations as much of the time as possible. For instance, when applied to
replicated data management, it is during partitioning that mutual exclusion is crucial: if two
noncommunicating groups of nodes both perform updates on the database, the data copies will

diverge. Not desirable, however, is a method that too often leaves all nodes unable to perform

This work has been supported by NSF Grants DMC-8351616 and DMC-8505194, New Jersey Governor’s Com-
mission on Science and Technology Contract 85-990660-6, and grants from DEC, IBM, NCR, and Concurrent
Computer corporations.

updates. Ideally, we would like a mutual exclusion mechanism that achieves our secondary

goals as well.
1.1 Solution

Voting is one well-studied technique for providing mutual exclusion in a distributed sys-
tem. [Giff79,Thom79,Barb84| In its simplest form, each node is assigned a number of votes and
only a node or group of nodes that can collect a majority of votes is allowed to perform the res-
tricted operation. When the vote assignment is kept static, it is not difficult to see that mutual
exclusion can be guaranteed. Further, voting is resilient to partitions. As an example of this
method, consider the four node system illustrated in Figure 1. (We ignore the connectivity of
the network; for the purposes of the example it is irrelevant). In this system, each node has
been assigned one vote, except. for node d which has received 2 votes. Now assume the system is
partitioned into two groups, one with nodes {a, b} and the second with nodes {¢, d}. The nodes
in the second group have a majority of votes (3 out of 5) and are allowed.to perform a res-
tricted operation, since they are assured that no other group is concurrently in the same situa-

tion.

be ecC

Figure 1

Notice that certain partitions can make it impossible for any group to perform the res-

tricted operation. In our example, if three groups are formed, {a, b}, {c}, and {d}, then no

group has a majority. In this case we say the system has halted. The network does not neces-
sarily have to partition to produce a halted state. If nodes with a majority of votes fail and the
available nodes cannot accurately detect this, the system is rendered inoperative since it is

impossible to collect votes from the nodes that are down.

Stated simply, under voting work cannot be done if a majority of votes cannot be col-
lected. To achieve higher availability without compromising mutual exclusion, we need to
minimize the likelihood of these undesirable halted states. To accomplish this, we can initially
assign the votes intelligently (e.g., give the nodes that are more reliable or better interconnected
more votes), as suggested in [Barb84]. For a simple instance, in our example, it was more sensi-
ble to assign one of the nodes two votes instead of giving all four nodes just one vote. (With just
a total of four votes in the system, at least three nodes are needed to form a majority. If
instead one node has two votes then two nodes form a majority if one of them is the node with
the extra vote. In addition, it is still true that any three nodes form a majority. It is in general
always better for the total number of votes in the system to be odd rather than even.) In addi-
tion to a good initial assignment, we propose tro dynamically reassign the votes in the presence of
failures in order to make the current majority group more resilient to future failures. As an
example of this technique, consider once again the system of Figure 1, with its vote assignment:
v, = v, = v, = 1 and vy = 2, where v; represents the number of votes of node ¢. Assume that a
partition separates node d from nodes ¢, b and ¢. Nodes ¢, b and ¢ can still collect a majority
of votes while d cannot. However, if a second partition occurs, separating node ¢ from ¢ and b,
the system will be halted; no transactions may be processed. However, we can reduce the likeli-
hood of halting if we increase the votes of group {a, b, ¢} before the second partition occurs.
That is, after any failure, the majority group (if any) dynamically reassigns the votes in order

to increase its voting power and increase the system’s chances of surviving subsequent failures.
In our example, nodes a, b and ¢ may opt for reconfiguring the votes during the first parti-
tion. For instance, a new vote assignment could be v, = v; = v, = 5. Node d is unaware of the

change and remains with v; = 2 votes. (As a matter of fact, since d is not in the majority

group, it cannot change its votes.) In this way, the second partition will find nodes e and b with
10 votes out of 17, forming a majority group and the system will not be halted. After the
second partition, the new majority group of {a, b} could reassign itself new votes of v, = 15 and
v, = 5 in order to tolerate even a third partition. We refer to this method as dynamic vote reas-

stgnment.
1.2 Basic Methodologies
We categorize dynamic vote reassignment by two general methods.

° Group Consensus: The nodes in the active (majority) group agree upon the new vote
assignment using either a distributed algorithm or by electing a coordinator to perform

the task. Nodes outside the majority group do not receive any votes.

° Autonomous Reassignment: Each node makes it own decision about changing its votes
and picking a new vote value, without regarding the rest of the nodes. Before the change

is made final, though, the node must collect a majority of votes.

The tradeoff between these two is accuracy versus time and information requirements.
Group consensus relies on the nodes collecting information about the current system topology
and using it to decide on a new global vote assignment. Because the new assignment reflects the
state of the system, it is an "intelligent" one that is more resilient to future failures. Coming up
with this new assignment, though, requires a complicated algorithm. In addition, the topologi-
cal information must be accurate to achieve a good assignment. Autonomous reassignment, on
the other hand, simply requires that each node decide independently when it is the right time to
change its own votes and what its new vote value should be. The node then attempts to get the
recognition of the majority in much the same way it would for any other event requiring a
majority. Each node uses its own view of the system to decide on its new vote value, with its
primary goal being to claim for itself all or part of the voting power of a node (or nodes) that
have been separated from the majority group. Because the view at each node may be different
and because each node operates independently, the global vote assignment may not be as good

as under group consensus. However, this method is quicker, simpler and more flexible.

Implementing either form of dynamic vote reassignment requires solving two main prob-
lems. The first is one of policy. The policy is the mechanism for selecting a new vote value.
After a new value is picked, the node must "install" it, making sure it is in a majority group
that is allowed to change its votes. We refer to this algorithm as the protocol. Within the pro-
tocol, we must ensure that nodes with a majority of the "old" votes are informed of each
change. When deciding if a majority exists, the algorithm must not get confused between the
"old" and the "new" votes. We will see that it is the protocol that ensures mutual exclusion, the

chosen policy is an attempt to get as good a new assignment as possible.

To clarify this distinction, we refer again to our previous example. During the first parti-
tion, nodes a, b and ¢ decide to take on 4 more votes, increasing their vote values to 5. This is
a policy decision: the nodes take on twice the number of votes of the disconnected node. Node
d may in fact also implement the policy and decide on a good new vote value for itself. This is
where the protocol is important. Only nodes @, b and ¢ should be able to install the change;

node d’s attempt should fail.

In this paper we concentrate on the autonomous method for dynamic vote reassignment.
The group consensus method does not require new study in great detail. Techniques for deter-
mining a vote assignment given a topology have been studied [Barb84| as have algorithms for
achieving agreement [Garc82a,Garc82b]. We return to the group consensus approach in Section
5 where we present simulation results comparing autonomous methods to group consensus and
to a static assignment of votes. These results demonstrate that autonomous methods do yield
almost as much availability as the group consensus approach. In light of this and the speed and
simplicity which autonomous methods offer, we believe autonomous vote reassignment is a viable

alternative to group consensus which deserves the further attention we give it here.
1.8 Assumptions and Other Work
An important feature of our method is that it makes no assumptions about how quickly or

accurately nodes must detect failures or partitions. We assume each node has its own view of

the state of the network (this view indicates which nodes are up and which are down). Among

the nodes, however, these views may be inconsistent. In other words, we allow the possibility
that a node (or nodes) is incorrect about the state of a link or other node. With our protocols,
such inconsistencies may lead to suboptimal assignments, but at no point is mutual exclusion
compromised. In addition, we allow for lost messages and for out-of-order messages. We do not,
however, tolerate Byzantine failures, i.e., nodes cannot be insane, all failures are fail-stop. It is
perhaps unreasonable to expect any mutual exclusion mechanism to tolerate such behavior,
since an insane node can simply violate mutual exclusion on its own. By the same token, we
assume that messages that do arrive at their destinations are intact, not garbled. We also

assume that each node has available some non-volatile storage.

Two recent papers [Davc85, Abba86] also address increasing availability under mutual
exclusion requirements. Their techniques attempt to change the required majority needed to
perform restricted operations when the state of the network changes, instead of changing the
actual votes assigned to the nodes. In [Dave85], the authors rely on accurate views of the
current network state. This in essence means that when a failure or recovery of a node or link
occurs, every node recognizes it instantaneously. In [Abba86], the algorithm relies on coordinat-
ing a consistent view among the nodes. Also, in [Abba86] the algorithm is specific to the appli-
cation of improving replicated database reliability. In contrast, our protocols provide a flexible
method for increasing system availability in any application requiring mutual exclusion, without

requiring the system to have special features that coordinate status information continually.

In this paper, we examine in detail dynamic vote reassignment and its effect on availabil-
ity, focusing on the autonomous method. The next section is devoted to two sets of protocols
and proofs of correctness. In Section 3, we demonstrate the applicability of autonomous reas-
signment to a simple replicated database object-locking scheme which shows the ease with
which the method can be used for any problem requiring mutual exclusion. In Section 4, we
present various policies to be used in conjunction with the protocols. In addition, in Section 5,
we discuss simulation results that demonstrate the increased availability provided by dynamic

vote reassignment over a static assignment. We also compare the performance of autonomous

-7
methods to a group consensus technique. We end in Section 6 with some conclusions.

2. THE PROTOCOLS

The protocols for autonomous vote réassignment are what guarantee mutual exclusion.
Once a node picks a new vote value, a vote changing protocol is invoked to install the change.
The vote changing protocol uses the vote collecting protocol to ensure that enough votes have
been collected to validate the change. In addition, the vote collecting protocol is used for all

other events requiring majority approval.

Here we present two sets of vote changing and vote collecting protocols, corresponding to
two different scenarios. Under Scenario One, nodes are only allowed to increase their votes.
Under Scenario Two, nodes can autonomously increase or decrease their votes. The implications
of these two scenarios will be evident when we discuss policies in Section 4. For each scenario,

we include a proof of correctness.
2.1 Scenario One

For Scenario One there are two protocols, one for vote collecting and one for vote increas-
ing. To utilize them, we must establish (in stable storage) at-each node ¢ the vector.V; where. .
V;[s] indicates the number of votes of node j according to node 7. This vector represents what
node ¢ believes the current global vote assignment to be. We use the notation v; to indicate the

votes of a node k as determined upon vote collecting.

Protocol P1. Vote Collecting

Assume node 1 is collecting votes to decide upon an event. Each node j that can communi-
cate with ¢ will send its voting vector. Let G be the set of nodes from which ¢ has received votes

(including 7 itself). Node ¢ decides upon the votes of node k (v) using the following rules:

a) If ¢ received the vector Vi from k, then v = Vi[k]. Also, if Vi[k] > Vi[k], then i should

modify its entry Vi[k] to be equal to Vi[k]. (The reason for this last step will be clear later.)

b) If i does not receive V; within a certain time period (perhaps k cannot communicate with ?),

then v, = n}ea,é((V;[k]). In this way, k is considered to have the largest number of votes recorded
J

among the nodes that have voted. In addition, ¢ modifies its entry V;[k] to be equal to v;. This

way, the largest value of v gets propagated.

Using the v, values, node 7 can determine if it has a majority of votes. That is, the total
number of votes will be computed by ¢ as

TOT = E (/3
all k

and the votes received will be

Y v

JEG
If this last sum represents a majority in TOT, then node ¢ has a majority. O
We now describe the protocol for vote increasing. Essentially, it is nothing more than a
commit protocol to change the number of votes that a node has. It must ensure that a group of
nodes with a majority of votes agree with this change and record it. In fact, any commit proto-
col that uses two or three phases will serve this purpose. However, there are two facts that

allow us to simplify this protocol:

° No negative acknowledgments will be produced. That is, no node is to vote against the

increase of votes of another node.

e Assume that a node increasing its votes becomes separated from the participants on the
protocol, and these participants registered the change before it committed. This situation
does not become dangerous, since the worst that can happen is the participants consider

themselves to not have a majority in a future event.

These two observations allow us to reduce the protocol to a one phase protocol in which a node
indicates to the rest of the sites its intention of increasing its votes and waits for the ack-
nowledgments. The initiator only makes the change effective when it receives acknowledgments
from nodes with a majority of votes, but the rest of the nodes record the change immediately.

The protocol is as follows:

Protocol P2. Vote increasing.
The initiator (node <)
a) Send the change to the rest of the nodes with which node ¢ can communicate.

b) Wait for a majority of acknowledgments to arrive (whether or not a majority of votes has
been received by node ¢ is determined by following protocol PI), and then make the change per-

manent in the local voting vector, that is update V{[t].
The participants

Upon receiving the change, register it in the local voting vector (update V}[¢]) and send ack-

nowledgment to the initiator in the manner described in Protocol P1. O

The algorithm for the initiator can be optimized for the case in which ¢ is not connected to
a group of nodes with a majority of votes. By timing out the responses, the node may cancel
the vote increase if it does not receive enough votes after a certain time period. Note that this
is not essential, since the node will not make the change permanent in its local vector until
enough votes are received and therefore it will keep voting with its old number of votes. (For
simplicity, we will not explicitly deal with cancelled increases in our proofs. However, the proofs
are still valid since a cancelled increase logically has no effect. Successful increases will continue

to be valid in spite of the cancellation.)

To prove these protocols correct, a first approach might be to totally order the vote incre-
ments and show that each increment occurs fully aware of all those that preceded it. This
would simply guarantee that each time a majority of votes is collected, the node collecting votes
is aware of the latest vote value at every other node. Protocols PI and P2, however, allow two
or more vote increases to occur concurrently. Since running the protocol can be affected by such
things as network transmission delays and load factors, we cannot guarantee that two vote
increases, one at node a initiated before one at node b, will finish in the same order as they are
started. We cannot even pick the one that starts first (or the one that ends first) and claim that

all those that start (end) later are aware of the first.

- 10 -

Node votes on votes on votes on votes on
(z) 1 I at 2 I at z
2 I, at z Iy at
3 I, at z I at z
(y) 4 Iat z Iy aty
5 Iy at z Laty
6 Iat z Isaty
7 IS at Yy Il at z
8 I;at y I at 2
(3) 9 I, at y I, at 2
Time --->
Figure 2

To illustrate this situation consider the following example of the vote increasing process.
Assume we have a nine node system where each node initially has 1 vote. (We leave aside the
relevant connectivity.) Distinguish nodes 1, 4 and 9 as z, y and z, respectively. Say node z ini-
tiates vote increment I; to 3 votes and nodes 1, 2 and 3 record the vote change in their vote
vectors and vote on it (by sending votes to z) with 1 vote each. Then, node z initiates a vote
increment I, to 3 votes and receives votes from nodes 2, 3, 4, 5, 6 and itself, each with 1 vote.
Note that I, is aware of I, since nodes 1, 2 and 3 each passed their vote vectors and node =
incorporated this information in accordance with the protocols. (We will use the notation I; --
> I, for this occurrence and say I, sees I;. We will give a more precise definition of "-->"
later.) Now, node z assumes z has 3 votes. Node z determines it has 6 votes out of 11, a major-
ity, and I, is complete. Meanwhile, I; is still pending. Now node y initiates increment I3 and
receives votes from 5, 6, 7, 8, 9 and its own, at 1 vote each. So, I, --> I3 via nodes 4, 5, 6; y

assumes z has 3 votes and determines it has a majority of 6 votes out of 11. I3 is completed.

- 11 -

Finally, nodes 7 and 8 vote on 2z’s increment I;. I3 —-> I; via nodes 7, 8 and 9, so z assumes ¥
has 3 votes and determines it needs 6 votes out of 11, which it gets, and I; is approved. (See
Figures 2 and 3.) Note that for this example, even though I; finished last, it wasn’t aware of I,.
In addition, I3 did not see J; and I, did not see [5. It is thus not possible to totally order these
vote increments. A total ordering could be guaranteed by protocols with higher overhead (such
as a group consensus technique) but is unnecessary. In fact, Protocols P1 and P2 allow for a
vote increment to occur even though the node’s view of the vote assignment may be incorrect.
We will show, however, that this is not dangerous. We can prove that vote increments occur
with enough knowledge of each other so that any increment that is approved is safe, safe in

terms of guaranteeing mutual exclusion.

node view votes node view votes node view votes
rec’d rec’d rec’d

& 00 =3 O Ut WD
[T N
@00 ~1I OO D =
el e el =
© 00~ U WD
O T o T O P N

1

|

(a) (b) (<)

Figure 3: View and votes received when vote change completes
(a) at = when I, completes;
(b) at y when I3 completes;
(¢) at z when I; completes.

To proceed with the proofs, we will order the vote increments according to the global time
at which they are initiated. The timing of the increments is actually irrelevant and serves
solely as a notational convenience. For two increments that are initiated at the same time, one

is chosen arbitrarily to precede the other. We refer, then, to vote increment j as I;, where jis a

- 12 -

positive integer. Increment I; occurs at node node(l;) and represents a change of votes to new
vote value v(I;). The node initiating the successful increase I; does so by collecting a majority
of votes from a group of nodes which we call MAJGIj. This is group G in Protocol P1. The sum
of the votes obtained from MAJGy; is called MAJV}.. In addition,-we often refer to the nodes
that were not in the voting group and call them ming,, with vote total minv;j. The total mim);}
is determined as in step (b) of Protocol P1. It does not necessarily accurately reflect the vote
values of nodes in mz’ng;j. Note that for any such increment I MAJG;}. N mz'ng[j = () and

MAJVy; > minvy; as prescribed by Protocol P1.

In addition, for an increment I; we distinguish between the previous vote increments that
I; uses as votes to collect a majority and those I; is aware of but does not necessarily use. Say
I, changes the votes of node node(I;) = z to v(l;). When I; collects votes using Protocol P1, it

determines v,, the number of votes to use for node z
if v, > v(f) then [—> I; and we say I; sees I,
if v, = () and z € MAJGy; then I, => I; and we say I; uses ;.

Note that [, => I; implies I, --> I;. Also, notice that for [=> I; it is not necessary that k <
. If I; was initiated before I but I, finished first and then voted on I;, then I => I; but k>
By Protocol P2, however, I, must have completed before it was used for I;. Also, since votes
only increase, the latest vote value at a node implicitly represents all the previous increments at
that node. Consider two increments I; and I; such that node(l;) = node(l;) and I; and I occur
one right after the other at that node. Then, I; => I and Iy --> I, (I,, at any node) implies I;
> Iy

We establish a graphical representation for the set of vote increases occurring in the sys-
tem. As an example, let I signify the original assignment. If I; uses only the original assign-
ment, then Iy => I;. Also, I --> I;, but for convenience we omit these redundant arcs. If I, is
subsequently used for I, along with some original votes, then this is depicted as in Figure 4(a).

Also, I; and I, may be used for I; as in Figure 4(b). We also indicate in Figure 4(b) that I3 has

-13 -

IO => Il =>> Iz

(a)

10@13

(b)

Figure 4

seen the original assignment, that is Iy --> I3. Any set of increments can be represented by
such a directed graph with source Iy and two types of arcs. It is sometimes convenient to just
consider the "uses" (=>>) arcs and say they constitute a path to a vote increment I if there is a
path from I, to I; consisting of "uses" ares. We define the length of such a path to be the

number of increments on it (excluding J;), which is simply the number of "uses” arcs.

With this machinery we can prove that Protocols PI and P2 have a property that is
sufficient to guarantee mutual exclusion. We have already stated that we cannot simply say I
--> I => Iy > ... where I; occurs before I, I, before I3, etc. We can prove, however, that I;
--> I, or I, --> I; for all pairs of vote increments I; and . (In the example of Figures 2 and 3,
I, => I, Iy --> Iy and I3 --> I,.) Intuitively, we are stating that between any pair of vote
increases at least one knows of the other. For an application requiring mutual exclusion this
property extends to any vote collecting event. In this way, no node will perform an action that
conflicts with another since for two conflicting actions at least one node will know of the

conflict.

We now present the lemmas and theorems concerning Scenario One. First we prove an

important property of the directed graphs.

- 14 -

Lemma 2.1.1: If we exclude the "sees" (-->) arcs between increments, the resulting graph (the

directed graph representing the set of paths leading to an increment) is acyclic.

Proof: The proof is by contradiction. First note that [, => I, implies that I; finished collect-
ing votes using Protocol P2 before I, collected a majority using Protocol P2. Hence, I finished
executing P2 before I, finished executing P2. Now, suppose there exists a cycle in the graph, I
=> I, => ... => I, => I;. This implies that I, finished before I,..., before I,, before I;, an

impossibility. O

Next we prove three properties of the vote increments.
Lemma 2.1.2: If I, -> [; and I; => ..=>..=>1I, then [, -> .
Proof: The proof is obvious by the properties of Protocol P1. If I, --> I, then further uses of
I; are given the I, information, in particular, I; receives information about I,. In effect, I, -->
L. O
Lemma 2.1.3: If two vote increments I; and Iy occur such that MAJG;, N MAJGy, # (J, then
either I; --> I or I —> I;.
Proof: The lemma is obvious by the properties of Protocol P1. Say z is the node MAJG), and
MAJG;, have in common. If z votes on I; first then I; --> I; via node z. Similarly, if z votes on
I, first then I --> I; via node z. Node z must do one or the other first, so the lemma is true. O

Lemma 2.1.4: If two increments I; and I occur such that I; has seen the vote increments i

uses to collect a majority and I has seen the vote increments I; uses to collect a majority, then
MAJG;; N MAJG), # .

Proof: Say MJG’;J, N MAJGy, = (4. Then, MAJG,J. C ming;, and MAJG;, C mingfj. For a
node z € ming,vj and z € MAJGy,, the vote value for node z that I; sees is greater than or equal
to the value that I uses, since I; has seen what [; uses and votes only increase. This implies
minvy, > MAJVy,. Certainly MAJVy, > minvy; for I; to have occurred, so MAJVy > minv, >
MAJVy,. We can argue similarly for a node y, y € ming;, and y € MAJG],, yielding MAJVy, >

minvy, > MAJVy.. But now we have reached a contradiction, so MAJG;, N MAJGy, # (5.0

= TE =

Theorem 2.1.1: For all pairs of vote increments, I;, I, either I; --> I or I --> I; (or both).
Proof: The proof uses a double induction.
Induction One is on the number of vote increments, ¢
Basis: 1 vote increment.
Obviously, [; sees its own increment, so {; --> [;.
Inductive Hypothesis One.
Assume the theorem is true for a set of ¢ increments.
Show true for a set of i+1 vote tncrements.
There are three steps.
1). If we consider the directed graph formed by the i+1 increments, it is acyclic by
Lemma 2.1.1. Therefore, it has one vertex with no outgoing edges (by the properties of
directed acyclic graphs), corresponding to one increment that has not been used by any

of the other ¢ increments. Call one such unused increment I;. We first prove the fol-

lowing fact.

Fact: If a vote increase, I;, of § votes occurs at node node(I;), but no other
node uses I; to increase its own votes, then we can remove I; from the set of
increments without preventing any of the remaining vote increases.

Proof: Consider another vote increase I, that doesn’t use I;. If I, doesn’t
see I; either, then I, has no knowledge of I; and acts as though I; never
occurred, so the lemma is true immediately. If I; --> I, then there are two
cases. Case 1: node(l;) € mingy. Certainly MAJV} > minv, for I to
increase its votes. If we remove increment I; then minvy, is decreased by §,
minvy,' = miny;, - § but still MAJV;, > minvy,' so still I, occurs. Case 2:
node(I;) € MAJGy,. Then, I; had not been installed at node(l;) when node (1))
voted on I. node(l;) voted with an older vote value; v,(;) at node(l) is com-

puted to be the older value. If I; is removed, Va(1y) does not change, so neither

- 16 -

does the vote total at node(l;). O

With this fact, we can remove I; from the set of i+1 vote increments without prevent-
ing any of the other vote increases. By Inductive Hypothesis One, for all the remaining
¢ increments the theorem is true. It remains then to show that either I, --> I; or I; --

> I,, where I, is any one of the remaining ¢ increments.

2). Order the remaining ¢ increments by the length of the longest path from the origi-

nal vote assignment to the increment.

3). Show that for I,, with a longest path of length p, either I,, --> I; or I; --> I, by

Induction Two on the path length, p.
Basis: mazimum path length = 1.

Let I,, be an increment with maximum path length 1. Then, I, uses only the
original assignment (I, => I,). By Inductive Hypothesis One, for any vote
increase I;+ on a path to I, either [;+« --> I, or I, > L;s. If I, > I;+ for
some Ijs, then I, > I; by Lemma 2.1.2 and we are done. Else, Iy« > I, for
all such I;+«. Certainly I; has seen the original assignment. Thus, both I, and
I; have seen the increments that the other is using, so the basis is true by

Lemmas 2.1.3 and 2.1.4.

Inductive Hypothesis Two.

Assume true for maximum path length p.
Show true for mazimum path length p+1.

Let I, be an increment with a maximum path length p+1. Once again we
know by Inductive Hypothesis One that for any vote increase I;+ on a path to
I;, either I;» --> I, or I, --> I;+. We know by Inductive Hypothesis Two that
for all I+ on this path to I, either I+ —-> I; or I; --> I,,». Once again, if for
any I;+ on the paths to I, I, --> I;+ then I, --> I; by Lemma 2.1.2 and we

are done. Similarly, if for one of I, I; --> I+ then I; -> I, by Lemma 2.1.2

-17 -

and we are done. Otherwise, I,,» --> I; for each such I,+» and I;« --> I, for
each such I;+. But here again, both I; and I,, have seen the increments that

the other is using. So, the proposition of step 3 is true by Lemmas 2.1.3 and

2.14.
Since the proposition is true for [, of any path length, the theorem is true. O

By Theorem 2.1.1, we have a "weak" property for dynamic vote reassignment using Proto-

cols P1 and P2. Immediately, we have the following corollary:

Corollary 2.1.1: Let ¢ be the time when increment I; receives a majority of votes. Then any

increment [; that initiates Protocol P2 after time ¢ will see [;, i.e., [; =-> I. O

By Corollary 2.1.1, once an increment I; "commits", we can be sure that all other increments
that completely follow it will see [;. However, we cannot say anything like this about con-
current increments. It is these concurrent increments that prevent us from applying a total ord-
ering to the vote increments. We show in Section 3 that when the protocols are used for an
application the weak property is sufficient and we can allow these concurrent vote increasing

events without compromising mutual exclusion.

Finally, there is one more issue we need to address concerning Scenario One and Protocols
P17 and P2 Some dynamic vote reassignment protocols can run into a type of deadlock ano-
maly. It occurs when two nodes in the majority group concurrently attempt to increase their
votes, but are unable to get a majority of confirming votes. As an example, we return to Figure
1 and the original vote assignment

Vie]l =1, Vi[b] =1,V [c] =1,V d] =2

Assume that nodes ¢ and b are trying to increase their votes from 1 to 5. Both nodes may have
communicated their intentions to the rest of the nodes, but they may be waiting for ack-
nowledgments from nodes with a majority of votes to make the change permanent. At this

point, each node has a view of the votes in the system that looks like this:

For node aq,

- 18-

Vala] = 1,V [b] =5,V [¢] = 1,V,[d] = 2
For node b,

Vila] = 5,V,[b] = 1,Vy[e] = 1,V [d] = 2

In this situation, both nodes determine that there are a total of 9 votes throughout the system.
Both will proceed to acknowledge the vote increment of the other, sending with its acknowledg-
ment its current number of votes. For instance, ¢ may send an acknowledgment to & with 1
vote. When b counts the number of votes received in the acknowledgments, it will have received
3 votes (one from a, b and ¢) out of a total of 9 and not be able to proceed. The same situation
may occur meanwhile at a. If the counting of votes is not done carefully, both nodes will be

precluded from changing votes even though they have the potential to do so.

The algorithms we have developed handle the counting of votes received in order to avoid
this "deadlock” anomaly. By rule (b) of Protocol P2 a node does not make a vote change per- -
manent until it has been acknowledged with a majority of votes. In our example, both a and b
will send their vote values under the current (pre-change) vote assignment. Furthermore, by
rule (a) of Protocol P1, node ¢ will use v, = V;[b] and node b will use v, = V,[a] as the vote
values for b and g, respectively. The majority will be calculated using the old assignment and

both nodes will determine that they have a majority and can increase their votes.

It is not hard to see that the deadlock anomaly can be avoided for any number of con-
currently executing vote increases. More important, this feature of the vote collecting protocol
benefits the application which uses autonomous vote reassignment. When a node is collecting
votes to approve any action that requires mutual exclusion, concurrently executing vote

increases will not prevent it from collecting a majority of votes.
2.2 Scenarto Two

We now consider Scenario Two, where votes can increase or decrease. As expected, includ-
ing the capability to decrease votes adds complexity to the protocols. Under Scenario One,
when a node y collected votes, if a node z did not vote, y could determine an appropriate vote

value for z by looking at the largest value for z among the voting nodes. This largest value was

19 -

always the most recent among the group. Now that votes can decrease, this is no longer true.
Instead, we must include new information with vector V; to represent the age of a vote value.
In addition, the nodes must do more work to guarantee that vote changes are propagated prop-
erly through the system. The new age information and vector V; must be passed along with
requests for votes to install a vote increase and with indication of a vote decrease. We will see,
though, that unlike vote increasing, decreasing votes does not require approval by a group of
nodes with a majority of votes. Instead, a node decreasing its votes simply informs other nodes
of its decision. This should seem intuitive, since a decrease in votes means a node is giving up

power and thus is not endangering mutual exclusion.
Protocol P3. Vote collecting.

Assume node 1 is collecting votes to decide upon an event. In this case, each voting node j
will send 7 two vectors, the voting vector V; and a version vector N;. The entries Njlk] represent
the version number for the value V[k].

a) If ireceived Vi, then v, = Vi[k]. Also, change Vi[k] to Vi[k] and N;[k] to Ni[k] if either of
the following two conditions apply:

Vilk] > Vil#] or

Vilk] < Vifk] and Ny[k] > Ni[k].

The first condition is simply that of Scenario One. Vi[k] > V;[k] indicates that k has

increased its votes since ¢ last determined Vi[k]. The version number is irrelevant in this

case since it provides no additional information. In the second case, Vi[k] < Vi[k| indi-
cates that either k has decreased its votes or an increase at k has not yet been approved
or has been timed out. (Node ¢ has been informed of the increase.) If an increase at k has
not been approved, k must send Vi[k] < V;[k] (see Protocols P4 and P5), but ¢ should not
alter Vi[k] since K’s increase may be approved at a future time. If, however, Ni[k] > Ni[k]
then Vi[k] reflects a later decrease of votes at k or a failed vote increase attempt and this

new information should be recorded.

- 90 -

b) If ¢ does not receive Vj, then v, = Vik] for j such that N;[k] = I?é"é‘(me) That is, ¢
assumes the newest value among the voting group for the vote value of node £. In addi-
tion, ¢ modifies its entry Vi[k| to equal v, and Ni[k] to equal N;[k|. O

Protocol P4. Vote increasing.
The same as P2, except that:

° The initiator sends V; and N; along with its vote increase. Upon successfully collecting a

majority of votes, the initiator increases N;[i] by one.

o The participants register N;[i] as N;[¢] plus one and update their vectors V; and N; as
necessary. O

Protocol P5. Vote decreasing.

The initiator (node 1)

Update its own entry, V;[¢], to the new value. Add one to N;[¢]. Send the vectors V;, N; to

the participants.
The participants

Upon receiving the vectors, update the resident vectors V; and N; as necessary. O

Before presenting the proofs for Scenario Two, we define some terms and make some
changes in notation. We refer to a vote increase as I;, a decrease as D; and a vote change
(increase or decrease) simply as ;. Once again, for an increment [; we distinguish between the
previous operations that I; uses to collect a majority and those I; is aware of but does not
necessarily use. Say 0, changes the votes of node node(f;) = z to v(f)) with version number
n(f;). When I collects votes using Protocol P3, it determines v,, the number of votes to use for

node z and n, the version number for that vote:
if n, > n(0) then #; --> I; and we say I; sees 0,

if n,=n(0)and z € MAJGy, then 0, => I; and we say I; uses 0.

-91 -

The only difference with Scenario One is that if 8, --> I;, I; may see a vote value larger or
smaller than that installed by ¢). In the previous scenario, the value seen by I; would always be

larger or equal.

Vote decrements do not see or use other operations in the same sense that vote increments
do. (This is simply because decrements do not require vote collecting.) As a matter of fact, the
only relationship we have to keep track of for vote decrements is immediate precedence. Let D;
be a decrement that installed version number n(D;) at node(D;). Operation #; immediately pre-
cedes Dj, 0 ~~> D; , if 6 installed version (8;) = n(D;) — 1 at node(D;).

In our proofs it will be convenient to group together each increment I; with all the decre-
ments at node(I;) that it precedes and that occur before the next increment at node(l;). If I;
~~> Dy ~~> L ~~> D, (and there is no D4y such that D, ~~> D,), we call VS; =
{I;, Dy, ..., Dy} the vote set of I;. We also extend our "uses” relationship to vote sets. We say

increment I uses VS; if I, uses any of I, Dy, ... D,,. Similarly, we say that VS, uses VS; if [,

the increment in VS, uses VS;.

It will also be convenient to refer to all the operations that occur at a given node after
some specific vote change 0; takes place. We will represent this set by post(f;). Note that all

operations in post(0;) occur at node(f;) and have version numbers greater than n(6;).

In our directed graph representation for vote changes, we represent vote sets as ovals
enclosing the operations involved. "Uses" relationships involving vote sets are represented by
"uses" arrows (=>) to or from the ovals. Within ovals, the ~~>> "immediately precedes” nota-
tion (~~>) applies. In addition, "sees" arcs (-->) can occur between increments as before. As
mentioned earlier, the only relationship relevant to vote decrements is immediate precedence, so
we do not include "sees" arcs from increments to decrements; however, we do include "sees" arcs
from decrements to increments. So, for example, if the initial assignment is used for I; and then
node(I,) decreases its votes just twice this is depicted as in Figure 5. Here we have five nodes,
Iy, I, Dy, Dy and I, and three vote sets, VIS, ViS; and VS;. One of I}, Dy or Dy in VS5 is

being used for another vote increase, I;. Finally, we still define the length of a path to an

- 99

increment to be the number of increments on it. That is, a path consists of "uses" and "pre-
cedes" arcs, but only "uses" arcs are counted in the length. For example, in Figure 5 the path

length to I is two.

Figure 5

With these changes, we can now prove that under Scenario Two, for all pairs of vote
increases I;, I, either I; --> I or Iy —> I; using the definition of --> for Scenario Two. (We
will henceforth use the Scenario Two definition.) The following four lemmas correspond to those

used for the proof of Scenario One. First we present a stronger version of Lemma 2.1.1.

Lemma 2.2.1: Under Scenario Two, if we exclude the "sees" arcs between increments, the
resulting graph (the directed graph representing the various relationships between vote opera-
tions) is acyclic.

Proof: As before, I, => I, implies that I "committed" before I,. Since decrements are com-
mitted unilaterally by the originating node, Dy => I, or D; > I, implies that D; committed
before I,. Finally, 6 ~~> D, means that at node(f}), f; completed before D,. Since there are

no cycles in the committed relationship, the graph can have no cycles. O
In addition, we make the following extension to Lemma 2.1.2.
Lemma 2.2.2: If I, -> [; and VS; => ... => ..=> [then [, --> ;.
Proof: By Protocol P3, a voting node must send its vectors V and N. In addition, a local vec-
tor is updated only upon notification (via other vectors) of a more recent value at some node.

Hence, every vote set in the chain from VS; => ... => .. => I, sees I, explicitly or sees some

post(L,),so I, -> [. O

- 923 -

Lemma 2.1.3 comes over directly. We present it here as Lemma 2.2.3 without proof.

Lemma 2.2.3: Under Scenario Two, if two vote increments I; and I occur such that MAJG,

N MAJG;, # (&, then either I; —> I, or I, —> I,.

Lemma 2.2.4 makes a weaker statement than Lemma 2.1.4 but is sufficient for the proof of

Theorem 2.2.1.

Lemma 2.2.4: If two increments I; and I; occur such that I; sees the vote increments in the
vote sets that I is using and I sees the vote increments in the vote sets that I; is using, then ;
~> Iyor I --> I.

Proof: If MAJG;, N MAJG), # (J, then Lemma 2.2.3 applies and [; --> I or I --> I;. There-
fore, assume that MAJG;J. N MAJG, = . If for every node z € MAJG,, v, at node(I;) < v, at
node(I;), and for every y € MAJGy,, v, at node(l}) < v, at node(I;), then the proof of Lemma
2.1.4 carries over and we have a contradiction. Therefore, we must have at least one node

where this does not hold. Say it is an z € MAJG); where v, at node(I;) > v, at node(I;).

The situation at this point is as follows (See Figure 6). At node z some vote set, VS5,, has
been used by I;. Let 0, be the specific operation used, i.e., 4 € V5S4 and 0, => I;. (04 could be
I,, the increment in VS, or one of the decrements.) When z receives the request for votes from
node(I;) the version number at z is n(f,). The new votes for I; and their version numbers are
recorded at z at this time. Hence, whenever z informs other nodes of an operation in post(f,), it

will also inform them of I;. That is, if 6 —-> I, and 0p € post(fy), then I; --> I.

Hence, to complete our proof, all we have to do is show that there is such a f3. By our
hypothesis, I > I; (I, is the increment of ViS,). This means that I, has seen at least through
n(l,). However, the value v, actually used by I, was smaller than that produced by 0. There-

fore, I, must have also seen some 05 € post(f,), and by our argument above [; -> [;. O
Next is our main theorem.

Theorem 2.2.1: Under Scenario Two, for all pairs of vote increments, I, I, either [; --> It or

I, --> I; (or both).

- 924 -

Iy

Activity at a Iy ~e> 0y ~>

Figure 6

Proof: The proof of Theorem 2.2.1 proceeds in much the same way as that of Theorem 2.1.1.

There are only two significant changes: The first is in the induction step of the outer induction.

Here we have a graph with ¢+1 increments and we want to reduce it to one with ¢ increments.
To do this we use Lemma 2.2.1. The lemma tells us that there must either be a decrement node
with no outgoing ares or an increment node with only outgoing "seen by" arcs. If it.is a decre-
ment, then it was not seen or used by any operation, so it is safe to remove it. We continue to
remove such decrements until we have an increment with only outgoing “seen by" arcs. The
fact shown in the proof of Theorem 2.1.1 then tells us that this increment can be safely

removed. The removed increment becomes the I; for the rest of the proof.

The second change is in the inner induction. Here we use Lemmas 2.2.2 and 2.2.4, but do
not need Lemma 2.2.3. Also, as mentioned earlier, the path length ignores decrements. To illus-

trate the changes, we prove the induction step in the new scenario.

We wish to show that an increment I,,, on a path of length p+1 from the original assign-
ment, has been seen by or sees the removed increment I;. By the first inductive hypothesis we
know that for any increase I;* on the paths to I, either [;* —> I, or I, -> I;*. By inductive
hypothesis two, for all I,,* on the paths to I, I,* --> Iy or Iy --> L,*. If for any Lire L2 Ip%

then by Lemma 2.2.2 I, --> I; and we are done. Similarly, if for any I,*, Iy > I,* then I; >

- 95 -

I, (Lemma 2.2.2) and we are done. Otherwise, I,* —> I; for each such I,* and I;* --> I, for
each such I;*. This means that I; has seen all the increments in all the vote sets I, is using, and
I, has seen all the increments in all the vote sets Iy is using. Therefore, by Lemmas 2.2.3 and

2.2.4, either I,, -> Lyor I[; --> I,,. O

Finally, it is easy to see that the deadlock anomaly can be avoided using Protocols P3, P4

and P5 for Scenario Two.

3. A SIMPLE APPLICATION

In Section 2, we proved a weak property of the protocols for Scenarios One and Two.
Here, we claim that it is enough to provide mutual exclusion in a distributed system; that is,
any application that uses static votes can use dynamic voting instead. We will not prove this
general claim; however, we will.show that mutual exclusion is preserved in a simple example. It

is easy to use the same ideas for other applications.

The application we consider is locking objects in a database system for mutually exclusive
access. The goal of locking is as follows. Say an object z exists in the system. Transaction T
performs lock(z). When lock(z) is complete, T has exclusive access to «. T performs unlock(z)

to release the lock.

First we consider how lock and unlock can be implemented in the case of a static vote
assignment. Please keep in mind that this is just a simple description that adheres well to our
model. Much more efficient implementations exist but are not discussed here. For each object
in the system, each node has a local "lock” implemented as a log. A granfed (T) entry in the log
records the fact that the local lock was granted to transaction 7. (Transactions are identified
by a timestamp and the id of the node where the lock(z) action initiated.) Similarly, a
released(T) entry indicates that the lock has been released. If every granted entry has a match-
ing released entry, then the local lock for z is available. Otherwise, the lock is held by the tran-
saction with the unmatched granted. For simplicity, let us assume that logs are stored on stable

storage.

- 96 -

When a transaction T at node a wants to perform a lock(z), it sends lock—request(x) mes-
sages to all nodes. Each receiving node b checks the request against its lock log. (Node a also
acts as a receiving node.) If the lock can be granted at b, b enters granted(T) in its log and
replies yes with its assigned number of votes. If the initiator a receives a majority of votes, the

lock(z) is successful and transaction T has a systemwide lock on object z.

If the log for z at node b indicates that the local lock is not available, then node b replies
no. Node b also forwards the log for z to node a, to insure that node a is informed of the pend-
ing lock. When node a fails to receive a majority of votes, or when it receives a no message, it
aborts the request. In this case a performs unlock(z) by sending unlock—request(x) messages to
all nodes. It is not necessary to collect votes for unlock(z). (As the nodes receive these mes-
sages, they add released(T) entries to their logs.) If node a received logs from other nodes, it
merges them with its own, to have an up to date view of what is locked. (Duplicate entries are

removed in the merge process.)

If T accomplished lock(z), when T no longer needs object z, T' proceeds as in the abort
case. To ensure that all nodes eventually unlock, we can assume that a node periodically
checks if a lock has been granted for a "long" period of time. If so, it can ask the initiator if it

missed an unlock—request(z).

We refer to the above method as the one-phase locking protocol. In the case of static votes
it is easy to see that the protocol ensures mutual exclusion. Suppose both T; and T; have ini-
tiated lock(z) requests and neither has initiated a release(z) operation. If both transactions get
a majority of votes, then there must be one node that replied yes to both requests. (All major-
ity groups intersect in a static vote assignment.) Since this is not possible, then at most one of
the requests could have been successful. Note that if we represent the lock operations by L; and
L;, then we can say that either L; sees L; (in which case T; is aborted), L; sees L; (T; is
aborted), or both see each other (both transactions are aborted). Using our earlier notation, we

have that either L; --> L; or L; --> L; (or both).

T

Although the mechanism we have described guarantees mutual exclusion, it of course has
drawbacks. It may lead to starvation and blocking. Local locks are implemented inefficiently.
However, we have chosen it to illustrate simply how a protocol can be extended to operate with
dynamic vote reassignment. (The technique for making the transition to dynamic voting which
we are about to present would also work for a more efficient locking protocol, but the proofs

would not be as obvious.)

As one might expect, we have to do some extra work to enjoy the benefits of dynamic vot-
ing. Lock information must be propagated as the voting power shifts. Consider the following
simple scenario, using again Figure 1 and initial vote assignment V,[a] = V,[b] = V,[¢] = 1 and
V4[d] = 2. Say that node c initiates transaction T, that requires a lock on object z. Node ¢
sends lock—request(x) messages to all other nodes. Assume that nodes ¢ and d approve the
request immediately, so ¢ gets 3 votes out of 5, anq the lock(z) is successful. Let us also assume
that node a never receives the lock request message from ¢. Now say that node «, for some rea-
son, successfully increases its votes to V,[e] = 100 and no other nodes increase their votes.
Now, of course, a in effect has all the voting power in the system. Next a partition occurs, and
2 becomes isolated. Node a now can act independently, granting itself any locks available at a
since it has 100 votes out of 104. Nodes b, ¢ and d cannot collect a majority and are left to
work only with locks they have already obtained. T, then can continue to use object z. (T, has
not performed unlock(z) yet.) Node a, however, has no knowledge of the lock(z) at ¢ (remember
- the lock—request(zr) message sent to @ was lost) and can now lock(z) independently. Say a
transaction T, does just that. Now there are two locks concurrently held on the same object,
certainly an undesirable situation. To avoid this, when node a increased its votes, it should
have received the lock logs of the voting nodes, thus propagating the lock information.

The procedure for dynamic voting, then, is as follows. When a node a initiates Protocol
P2 to increase its votes, an acknowledging node, b, must send its lock log along with its votes.
Node a, then, must integrate the lock information with its own, adding any locks or unlocks it

has missed. The one-phase commit protocol for the static case can be used to obtain locks,

- 928 -

except that votes are counted using Protocol P1 (or P3). Note that the integration step may
make it appear to a node that two (or more) locks are held on the same object by transactions
at different nodes. This is due to the nature of the one-phase locking protocol. This does not
mean that two different transactions have performed a successful lock() on the same object con-

currently. At most one such lock() is approved, at least one will be backed out.
We can now prove the following corollary.

Corollary 2.2: Mutual exclusion under the lock scenario is preserved using Protocols PI and

P2 no two nodes can concurrently hold a lock on the same object.

Proof: Note that a successful lock(z) event, L;, and a successful vote incrementing every, I; are
very similar. Both use the same vote collecting protocol and propagate vote and lock informa-
tion. Thus, we can now speak of a general event E, where E is a lock or a vote increment

action. Using our earlier notation we can define the "has used" and "has seen" relationships:
if I; => Ej, then Ej has used vote increment
if E; -> Ej, then E; has seen event Ej.

Using basically the proof of Theorem 2.1.1 (or 2.2.1) we can show that either E; --> Ej or Ej --
> E; for all pairs of events Ej, E;. The rest of the proof proceeds by simple contradiction. Say
two nodes hold locks on the same object concurrently, corresponding to events E, and E; and
say E, —> E, (E, —> E, works analogously). Then, the node initiating event E}, knew of the
conflicting lock granted for event E,. Ej, then, could not have been approved under the one-

phase commit protocol described above. O

In summary, when using dynamic voting for a particular application, information that
must endure partitions (e.g., the fact that an object is locked or the values that a committed
transaction has installed in the database) must be given to a node that is increasing its votes.
This ensures that any node collecting a majority in the future will obtain the same information
from the node with more votes than it would have obtained directly from the nodes that partici-

pated in the vote increase.

-929 -

4. POLICIES

Now that we know how a node can install a vote change, we need a systematic way for
the node to pick a new vote value. In this section we describe various policies which can be
used to make this decision. It is important to keep in mind that the protocols guarantee mutual
exclusion. The policies are merely attempting to get a good assignment for the system that is
resilient to future failures. It is possible that at times the nodes will not adhere strictly to the
chosen policy because of misinformation about the state of the network. This may lead to-a
poor assignment. It will not, however, endanger mutual exclusion. We consider first vote

increasing policies which are divided into two basic strategies:

® Alliance techniques. After a failure (or group of failures), all the nodes in the active

group increase their votes.

® Overthrow techniques. After a failure (or group of failures), one node in the active

group takes on more votes.
4.1 The Overthrow Technique

Vote increasing under the overthrow technique is straightforward. Consider a system in
which node z has gone down, while the rest of the nodes are still up. (This can be considered as
a partition of the system into two groups, with z in one group and the rest of the nodes in the
other.) Let v, be the number of votes that node z has. Let TOT be the total number of votes
in the system and MAJ the majority of votes. Assuming TOT is odd, MAJ = (TOoT+1)/2. If
node a is the node supplanting z, the new number of votes for a, v,' will have to be such that it
covers the voting power that a had before (v,), plus the voting power of z, plus the increase in
the total number of votes. If a increases its votes by 2v,, the total number of votes will be
TOT' = TOT + 2v, and MAJ' = MAJ + v,. It can be shown that all the majority groups that

used r can be formed using ¢ instead:

s If a group G had Vg votes and contained ¢ and z, the group G' = G — {z}, will have
Vg = Vg + 20, — v, > MAJ + v, = MAJ'. Therefore, G' is a majority group under the

new vote assignment.

=B =

° If a group @ had Vg votes and contained z, but not a, the group G' = G U {a} — {z} will

have Vg' = Vg + v, + v, > MAJ'.

Of course, any other group in which = does not participate may suffer loss of voting power and
need the help of node e to complete the majority, but the basic goal of supplanting z is

achieved.

Deciding which node should increase its votes for the node(s) that are no longer in the
active group can be accomplished, for example, by using a priority mechanism. The nodes can
be initially ranked and the node in the majority group with the highest priority can increase its
votes. Instead, a token passing mechanism can be used, where the node with the token increases
its votes. In any case, the method does not need to be foolproof. If problems such as communi-
cation delays arise and nodes pick a vote value that is not accurate or several nodes supplant
an excluded node, the worst that can happen is the new assignment is not as good as it could

be. It will not lead to more than one active group.
4.2 The Alliance Technique

There are many variations of the alliance technique. We describe three here. In general,
we want to give each node a fraction of the voting power of a node that has been excluded from
the majority group. As in the overthrow technique, we want to be sure to give out at least 2w,
votes in the majority group, enough to counteract those votes that node z holds plus the number
of votes node z could have contributed if it were in the active group. Of course, we can always
assign a surplus of votes to each node. One possibility is to assign 2v, votes to every member of
the active group; or, we can assign v, votes to each member of the active group, and assign 2v,

votes when there is just one node left. Another possibility is to spread the 2v, votes out. Say N

= the number of nodes in the majority group. Then, give each node in the active group [2'0,/ N1

votes (henceforth referred to simply as 2v,/N). If need be, N can be estimated by the nodes.
This may not be as good as possible in terms of resilience to failures, but is certainly not
dangerous. No matter what the strategy, we have to be careful when there are only 2 nodes left

in the majority group. In that situation, it is senseless to give each node the same number of

- 9 =

votes, since if they lose communication with each other, their extra votes will only cancel each
other out and no group may have a majority. Instead, it is better to pick one node and give it

29, votes. We can use a priority mechanism to handle this case.
4.8 Ezamples

We illustrate these techniques with an example. Consider again the.system of Figure 1,
but with initial vote assignment v, = 6, vy = v, = v; = 5. Assume that node ¢ gets disconnected
from the rest, leaving {b,c,d} as the active group. Using the overthrow techniques, if we say
node b is of lowest rank or has the token (depending on the strategy used), the new vote assign-
ment will be

v, =06, v, =17, v, = vg3 = 5.
since we give node b 2v, votes.
Now consider the three alliance techniques. If we give each node 2v, votes we have-

v, =06, v =9 =1vy=17.
If we give each node v, votes we have

v, =6, v =v,=19;=11.
If we give each node 2v,/ N votes, N = the number of nodes in the majority group, we have the
assignment

v, =6, v, =v,=v;=09.

There are obvious differences between these assignments. For instance, the first two have
node(s) with a higher number of votes than the last two. In general, the size of the votes will
grow much faster using the first two techniques than in the last two. We will discuss how to
handle this problem shortly. Also, the first assignment gave much power to one node, which can
be a disadvantage if this node fails. Also important is the amount of message traffic these
assignments incurred. Since only one node got votes in the overthrow case, this technique
required fewér messages. But just looking at the assignments tells us little about their relative
performance. This is just one 4-node system and set of failures, certainly not representative. A

later presentation of simulation results will give us a better means of comparison.

-32-

4.4 Balance of Power

Of course, whenever a node is excluded from the majority and other nodes increase their
votes, the balance of voting power is disturbed. What we need are techniques for maintaining

the original vote distribution of the system. - There are two possibilities:

(1) A node that has been out of the active group can "catch up" when it returns to the active

group, in other words, increase its votes.

(2) When a node that has been out of the active group returns, the node(s) that increased

their votes because of its absence can relinquish them, i.e., decrease their votes.

These two strategies are directly related to the two scenarios discussed in the Protocols
section. Method (1) requires only the vote collecting and increasing protocols of Scenario One.
Method (2) necessitates the added capability to decrease votes as in Scenario Two. Another
factor in choosing between catching up and decreasing votes is the effect of each on availability.
This is discussed in the section on simulation results. In addition, the policy chosen for increas-

ing votes affects which of these two is preferable, as we shall see.
4.4.1 Catch up Sirategies

When a node z is separated from the active group each node in the active group takes on
more votes, depending on the policy chosen for vote increasing and the value v,. When node z
returns to the active group it should increase its votes by at least as many as other nodes did
when z was initially excluded. In addition, node z can keep track of the last majority group that
it participated in. When it becomes part of an active group again, it can determine which
nodes were in the previous majority group with z, but are not in the present majority group.
These nodes caused vote increases since the last active group that included node z. Node z can
then increase its votes as if it were present when those nodes were initially excluded. This
allows node z to pick up most (but maybe not all) of the vote changes that occurred while it
was excluded from the active group. It may not, for example, increase its votes for a node, y,

that has failed after z failed, but repaired before z repaired.

-33-

For example, referring again to Figure 1, suppose we have the initial vote assignment
v, =6, v, =v, =v; =5. Assume we are using the 2v, alliance technique with catch up. Say
once again that node a goes down and nodes b, ¢, d get 17 votes each as in the example of Sec-
tion 4.3. Then, say node b fails and nodes ¢ and d take on 34 more votes each yielding the
assignment

v, =6, v, =17, v, = vg = 51.

Now, node a returns and wishes to catch up. It takes 2 times its own votes automatically.
Then, it checks to see who is in the active group and notes that node b is not. Since node b was
in the last active group a was in, b must have become excluded in the interim. So, node a takes
2Xv, votes as well, which it has learned from node ¢ (or d) is 17. So, node a gains 46 votes for a
total of 52. The final assignment is

v, =52, v, =17, v, = vy = 51.
and node ¢ has caught up.

Clearly, this technique is not relevant to overthrow methods. If only one node is taking on
votes for a disconnected node, then a returning node does little to rebalance the voting power
by catching up to just one node. A second consideration is that we can not let votes increase
forever. Eventually the nodes must decide to decrease their votes. After some node hits a
predefined threshold vote value it can attempt to initiate some consensus technique to bring all
the votes back down to their original values. This may require that all nodes be in the active
group and that other processing wait until the votes are reset. This is not too severe, though,

since this reconfiguration should not need to be done too often.
4.4.2 Decrease Strategies

Decreasing votes avoids the problem of votes getting too big. To implement this, each
node must keep track of how many votes it took on when some other node became excluded.
When the node returns to the active group, the nodes can decrease their votes by the appropri-
ate amount. This requires that each site maintain a table with an entry for each other node

indicating the vote change. This method applies to either overthrow or alliance techniques.

-34-

In the next section we present performance results for the techniques described along with

an analysis of the advantages and disadvantages of each method.

5. PERFORMANCE RESULTS

As discovered in the last section we have many policies to choose from for an implementa-
tion of dynamic vote reassignment. The next step is to determine their usefulness. Several
questions require our attention: Is dynamic vote reassignment much better than retaining a
static assignment? Is group consensus much more resilient than the autonomous techniques? Is
one autonomous technique better than the rest? Is the topology of the network relevant? In an

attempt to answer these questions we simulated the policies of the previous section.
5.1 Methods

Each experiment uses an event driven simulator where the events consist of node and link
failures, and repairs. Times between failures (and repairs) are exponentially distributed. The
failure rates are assumed to be very high in order to focus our attention on how well the system
adapts. In other words, if we choose typical failure rates (e.g., each component is down 1% of
the time), the system will halt rarely and the vote reassignment policy will have little effect on
average reliability measures. However, our goal is to minimize disruptions during failures, so
instead we zero in on a failure period when the system is unstable, by selecting high failure

rates.

To simplify the simulation we assume that the vote reassignment is done instantaneously.
In other words, if an event causes a new vote assignment, the vote changes occur before the next
event does. This approach will yield worst case results for autonomous reconfiguration tech-
niques as compared to group consensus since we presume that group consensus vote increases

take much longer in practice than autonomous ones.

The topology and the connectivity of the communication network play an important role
in dynamic vote reassignment. Of course, we must limit the number of networks studied, and

Figure 7 presents the six 5-node systems for which we give results in this paper. The networks

-35-

represent a spectrum of connectivity.

R5 Il 12
13 I4 Cs
Figure 7

All results obtained a 95% confidence interval with a width of 10 percentage points. Each
policy was simulated for 200 time units for the six network topologies shown in Figure 7. Three

different failure and repair scenarios were considered:
(1) Nodes and links fail and repair at a rate of 20.
(2) Nodes fail and repair at a rate of 20; links don’t fail.
(3) Links fail and repair at a rate of 20; nodes don’t fail.

Nine strategies were simulated:

- 36 -

(1). Alliance: 2v, votes with vote catchup

(2). Alliance: v, votes with vote catchup

(3). Alliance: 2v,/ N votes with vote decreasing

(4). Alliance: 2v, votes with vote decreasing

(5). Alliance: v, votes with vote decreasing

(6). Overthrow: ranking with vote decreasing

(7). Overthrow: token passing with vote decreasing
(8). Group consensus

(9). Static Vote Assignment

The overthrow technique combined with vote catch up was not implemented. As men-
tioned earlier, under the overthrow method, votes are not evenly distributed when a node is
excluded, hence a node catching up catches up to one other node and does little to reestablish
the initial vote assignment. Vote catch up was not implemented for the alliance technique with
2v, /N votes either, since it would be difficult in practice for the returning node to know how

many nodes were in the active group when it was excluded.

For each strategy, the nodes start off with an initial assignment-determined by the topol--
ogy of the network. Votes are distributed according to the number of links incident to a node:
If need be, an extra vote is added to the node with the largest number of incident edges to make
the total number of votes odd. See [Barb84] for the details and rationale of this technique. The
static vote assignment strategy retains this same assignment throughout a run. The group con-

sensus technique readjusts the votes after each failure according to this algorithm.

The strategies are compared on the basis of mean percent uptime, the average over all
runs of the percentage of time that some group in the system could perform operations. For
purposes of illustration, this is displayed graphically in Graphs 1, 2 and 3 for the three
scenarios, even though the connectivity axis is not continuous. (Note that up times are rela-

tively low, but remember that we are looking at a failure period only.)
5.2. Analysis

Consider first Graph 1, indicating results for both node and link failures and repairs. Cer-
tainly, any of the reconfiguration strategies proved more effective at keeping the system opera-

tive than retaining a static assignment. Group consensus showed a slight gain over the auto-

-37-

100 %
60

50 ==

%

up
time -1

30 -
alliance overthrow
G 41 ranking —.-.—
20 -+
Vi vegweress tokens —_—
p. Y,
15 =k group consensus 4 catchup *
§ l | staticass't x decrease wm
1 1 g i i i
R5 Tl T2 I3 I4 C5
connectivity
Graph 1

Both nodes and links fail.

100
80

70

60

%

up
time

50

40

35

W

-38-

alliance overthrow
25 ranking —.-.—
Ninissiaeiss tokens =
2v, /N

group consensus 4 catchup *®
staticass't x decrease g

~
= W | |
R5 i I2 I3 I4 C5
connectivity
Graph 2

Only nodes fail

100 —
90
80 —
%
up
time .
i -
] alliance overthrow
20w ranking —.-.—
Vi woviawvss tokens =
60 —
2v, /N
group consensus 4 catchup ®
staticass't x decrease m
55

|] - | . |
R5 I1 I2 I3 I4 €5
connectivity
Graph 3

Only links fail

- 40 -

nomous techniques in all cases. Among the alliance techniques, assigning 2v, votes with catch-
ing up yielded the best results, especially in the intermediate cases, although 2v, with vote
decreasing worked as well for graphs R5 and I1. In general, though, catching up yielded better
results than its decreasing counterpart for higher connectivity graphs. Alliance 2v, performed
better than v, under the same balancing strategy. Use of the alliance policy with 2v,/N votes

showed relative improvement as the connectivity increased.

Overthrow using token passing did not work as well as the other reconfiguration stra-
tegies. This is not surprising since when the token ends up with some node not in the majority,
no node gets extra votes. Overthrow using ranking, however, performed well. It was in fact
slightly better than the alliance techniques for graphs R5 and I1, but worse for the 12, I3, I4 and
C5 graphs. This is not surprising in light of work done in [Barb84] on static assignment, which
asserts that vote distribution is not as advisable for rings and other low connectivity networks;
a singleton assignment is preferable. But higher connectivity graphs perform better under vote

distribution. Otherwise, 2v, with decreasing appears to be a good choice.

As expected, all strategies yielded higher percent uptimes for the case of no edge failures
(Graph 2). The gain to be had from any type of reconfiguring was less than that of the previous
case, but still substantial. Once again, we see that of the alliance techniques, 2v, with catching
up gave a slight improvement over the other alliance techniques in most cases and catching up
in general is better than vote decreasing. Use of the 2v,/N alliance technique was the worst of
the alliance group. Overthrow with ranking performed comparably to alliance for rings and low
connectivity graphs but lost out as more links were added. The use of tokens with the
overthrow technique did not perform as badly relative to the other techniques as it did for the

previous scenario.

Group consensus again performed better than all autonomous techniques, however not
significantly better than 2v, alliance for the intermediate graphs, and only slightly for the ring.

It was substantially better for the complete graph case.

_ 41 -

Looking at the third scenario in Graph 3, where nodes do not fail and links fail and repair
at the same rate, we see a large increase in the effectiveness of the static assignment. In fact
for 13, 14 and C5, it is questionable that we should pursue a dynamic means of vote assignment.
The most striking aspect of these results, though, is the perfect performance of group consensus.
Since it is tailored to the topology of the system and the vote changes were immediate, it was

not affected by the edge failures.

2v
Here again, token passing in overthrow and Wz alliance showed a slightly poorer perfor-

mance. The other alliance techniques performed nearly equivalently. The overthrow with rank-

ing policy showed just a slight improvement over alliance for the less dense networks.

6. CONCLUSIONS

We have presented a technique for achieving higher availability in a distributed system
operating under mutual exclusion constraints. Using voting as the basic mutual exclusion
mechanism, upon failure of a node or partitioning of the network, nodes can reassign themselves
new votes dynamically, in order to survive future failures. A policy is chosen which the nodes use
to determine a new vote value. A set of protocols allow each node to initiate this vote change
autonomously. The method is simple and fast and does not require accurate detection of
failures and partitions at the sites. In addition, our method is flexible, it can be used for any
application that requires mutual exclusion. The simulation results we have presented show that
autonomous reassignment shows substantial improvement over a static assignment of votes and

is a viable alternative to dynamically reassigning votes using a group consensus technique.

7. ACKNOWLEDGMENTS

The authors would like to thank Rafael Alonso and Ken Salem for their many helpful

comments and suggestions.

- 49 -

8. REFERENCES

[Abbags]

[Barb34]

[Bernsl]

[Davess)

[Davig85]

[Garc82a]

[Gare82b)

[Giff79]

(Gray78|

[Thom?79]

A. Abbadi, S. Toueg, "Availability in Partitioned Replicated Databases,” Proc.
Principles of Database Systems Symposium, 1986.

D. Barbara, H. Garcia-Molina, "Optimizing the Reliability Provided by Voting
Mechanisms," Proc. Fourth International Conference on Distributed Computing
Systems, October 1984, pp. 340-346.

P. Bernstein, N. Goodman, "Concurrency Control in Distributed Database Sys-
tems", ACM Computing Surveys, Vol. 13, No. 2, June 1981, pp. 185-221.

D. Davecev, W. Burkhard, "Consistency and Recovery Control for Replicated
Files", Proc. Tenth ACM Symposium on Operating Systems Principles, December
1985, pp. 87-96.

S. Davidson, H. Garcia-Molina, D. Skeen, "Consistency in Partitioned Networks",
ACM Computing Surveys, Vol. 17, No. 3, September 1985, pp. 341-370.

H. Garcia-Molina, "Elections in a Distributed Computing System", IEEE Transac-
tions on Computers, C-31, No. 1, January 1982, pp. 48-59.

H. Garcia-Molina, "Reliability Issues for Fully Replicated Distributed Databases”,
IEEE Computer, Vol. 15, No. 9, September 1982, pp. 34-42.

D K. Gifford, "Weighted Voting for Replicated Data", Proceedings Seventh Sympo-
stum on Operating System Principles, December 1979, pp. 150-162.

JN. Gray, "Notes on Database Operating Systems", in Operating Systems: An
Advanced Course, Springer-Verlag, New York, 1978, pp. 393-481.

R.H. Thomas, "A Majority Consensus Approach to Concurrency Control”, ACM
Transactions on Database Systems, Vol. 4, No. 2, June 1979, pp. 180-209.

