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Abstract

We show that two natural operations on the set of convex polygons form a
closed semiring; the two operations are vector summation and convex hull of the
union. We then investigate various properties of these operations: for example,
the operation of vector summation takes O(m log m ) time where m is the
number of edges involved in the operation, while the decomposition of a given con-
vex polygon into two convex polygons ( in a sense, the inverse of vector summation
) is NP-complete.

Kleene’s algorithm applied to this closed semiring solves the problem of deter-
mining whether a directed graph with two-dimensional labels has a zero-sum cycle
or not. We show that this algorithm runs in polynomial time in the special cases
of graphs with one-dimensional labels, BTTSP ( Backedged Two-Terminal Series-
Parallel ) graphs, and graphs with bounded labels. We also investigate the
undirected zero-sum cycle problem and the zero-sum simple cycle problem.

1. Introduction

In this paper, we show that two natural operations on the set of convex
polygons form a closed semiring; the two operations are vector summation and
convex hull of the union. We then investigate the time complexity of each opera-
tion and its effect on the number of edges of the polygons. The inverse operation of
vector summation, known as decomposition, has been well studied in [ 21, 22, 23 ].
The decomposability problem is to determine whether or not a given convex
polygon is the summation of two convex polygons. We show that the decomposa-
bility problem in two-dimensions is NP-complete, while vector summation takes
O( m log m ) time where m is the number of edges in the original convex polygon.

Kleene’s algorithm applied to various closed semirings leads to efficient algo-
rithms for a variety of problems: for example, finding the shortest paths for all
pairs of nodes [ 10, 11, 12 ], converting a finite automaton into a regular expres-
sion, and finding the most reliable or largest-capacity path [ 5 ]. In this paper we
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Japan.



.9.

use the above closed semiring to solve the zero-sum cycle problem in doubly
weighted directed graphs.

Doubly weighted graphs, which have a two-dimensional weight on each edge,
have been studied by Lawler [ 6 ], Dantzig et al. [ 7 ] and Reiter [ 8 ]. The cost of a
path is defined as the sum of weights of edges in the path. The doubly weighted
zero-sum cycle problem is to find a cycle whose cost in each dimension is 0. In[ 1 -
4 |, we saw that certain problems in VLSI applications involving a regular struc-
ture can be transformed to problems in two-dimensional infinite graphs consisting
of repeated finite graphs. Repeated use of a doubly weighted digraph, called the
static graph G, forms a dynamic graph G™. As shown in Fig. 1, each label of the
static graph G indicates the differences between the x- and y-coordinates of two
connected vertices in G™®. The absence of a zero-sum cycle in the specified static
graph is then necessary and sufficient for the acyclicity of the associated dynamic
graph. A two-dimensional regular electrical circuit is associated with a dynamic
graph, and acyclicity of the dynamic graph implies that the associated electrical
circuit is valid; that is, free of an electrical “short circuit” [ 4 ].

We focus on the convex hulls of the lengths of all paths between two vertices
and apply the two operations above to the set of these convex hulls. We then use
the closed semiring defined by these two operations to solve the doubly weighted
zero-sum cycle problem. We show that this algorithm runs in polynomial time in
the special cases of bounded label graphs, BTTSP graphs ( the Backedged Two-
Terminal Series-Parallel graphs ), and graphs with one-dimensional labels. The 1-
bounded graphs, whose labels are 0, 1, or -1, arise in VLSI applications where the
interconnections between regular basic cells are made locally. The BTTSP graphs
are an extension of the class of Two-Terminal Series-Parallel [ 15, 16, 17, 18, 19,
20 ]. Whether the zero-sum cycle problem for general graphs is in P remains open.

Finally, we also discuss variations of the zero-sum cycle problem, the
undirected case, and the zero-sum simple cycle problem.

2. Two operations and a semiring

In this section, we define two operations on the set of convex polygons which
form a closed semiring, defined in [ 25 ] as follows:

Definition. A semiring is the system (S, +, -, 0, 1), where S is a set of ele-
ments, and + and - are binary operations on S, satisfying the following three pro-
perties:

1) (S, +,0) is a commutative monoid; that is, it is closed under +, + is com-
mutative and associative, and 0 is an identity.

2) (8, -, 1)is a monoid; that is, it is closed under -, - is associative, and 1 is an
identity.
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3) - distributes over + and 0 is an annihilator, ie, a0 =0-a = 0.

A semiring (S, +, -, 0, 1) is a closed semiring, if in addition infinite sums
exist, i.e. with every family { a;, i € I } of elements of S with countable ( finite or
infinite ) index set I, there is an associated element 3, a;, its sum. Infinite sums

i€l
must satisfy the following properties:
4) For finite non-empty index set I = {iy, ig, ..., ir }
Sae=a +a, +:+a
i€l
and for empty index set I = O,
2 a; = 0.
i€
5) The result of summation does not depend on the ordering of the factors, i.e. for
every index set I and every partition { I; : j € J } of I such that

UIi=I and ;NI =@ for j =k,
j€d

we have

Zai:.z (2 ai).

i €1 je€d i€l

J

6) Multiplication distributes over infinite sums, i.e.

(20;‘)'( 2 bj)= 2( Eai'bj)-

i€l jed i€l jed

Now we define our closed semiring. Let S be the set of all convex polygons.
Thatis, S = {at | a € 2Z2%XZ Y where at indicates the convex hull of a. ( Notice
that this definition allows polytopes with an infinite number of edges, extended to
infinity, but does not allow curves. ) We conventionally denote an element in S by
a lower-case Greek letter. We regard a point or a line segment as an element of S.

Definition. For any two sets a, B € S, we define the new set called B-shifted a as
follows:

ag = {(x, y) | there exist elements ( ay, ay ) € a and ( by, by ) € B
such that x = a, + by, ¥y = a, + by }.
Il
From the definition, ag = B,. Let ¢ = { (0, 0)} € S. Let & be the empty set.

Definition. We define a system (S, +, -, &, ¢) as follows: for «, 8 €S, we
define

a+B=(aUB)" and a-B=(ag)".
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That is, @ + B is the convex hull of the union of @ and B, while a - 8 is the con-
vex hull of B-shifted a. By convention, we define a - & = @ - a = . A convex
polygon a - p is called a p-copy of a or simply a copy of a when p is a point. []

Note that as we show later ( Corollary 3.2 in Section 3 ), ag is itself a convex
polygon when a and B are convex polygons. Therefore a -8 = (ag 3 s ag for
any a, 8 € S. Fig. 2 shows an example of a B-shifted a, that is, a - 8. Since
ag = B, the - operation is commutative.

Definition Let I be a countable ( finite or infinite ) index set. Let a; € S for all

i € I. Then we define the sum », a; as follows:
i€l

2 G!i:(_U a,;)+'
IEI EGI

H

Since 'LeJI a; exists and is unique, its convex hull >, a; exists and is unique.
¢ i€l
Note that «; is the convex hull of some set in 22 XZ and thus every vertex of

UI a; is in 22 X% Hence D, a; € S, and the sum above is well defined.
i€ iel

Lemma 2.1. Let a, B € 22%%. Then
(atUB) =(aUB)*.
Proof. Since @ C a™, we have
aUBCat UBC(at UB)*. @.1)

Since the right-hand-side of (2.1) is a convex polygon, it contains the convex hull
of the left-hand-side of (2.1). Thus

(aUB)T Cc(at uB)*t. (2:2)

Conversely we prove the opposite direction of (2.2). Note that a™ C (a U 8)*
and thus a* U B C (a U B)T. Therefore by the same argument as above,

(atUB)T Cc(aUpB)* . (2.3)
]
In the same way as above, we have the following lemma:

Lemma 2.2. Let I be a countable index set. Let a; € 22 X% for all i € I. Then
we have

(U af)r=(U o)t (2.4)
i€l iel
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Proof. Let A be the left-hand-side of (2.4), and B the right-hand-side. Since

a; C A for all i € I, we have _LéJI a; C A. Since A is a convex hull, we have
4

B=(U 0’.5)+CA.
i €1

Note that a; C B and thus a;* C B for all i € I. Therefore _LéJI(a{" ) C B,
1
and moreover since B is a convex polygon,

A =1 U el J* EB
i€l

O

Theorem 2.1. The system (S, +, -, &, € ) is a closed semiring.

Proof. We show that the system (S, +, -, &, € ) satisfies the six properties of a
closed semiring.

1) (S, +, @) is a commutative monoid. Since a + f is a convex polygon, the set
S is closed under +. Let a, B, Y € S. Then

(a+B)+y=(aUB)TUy)T

=((aUB)Uy)" (from Lemma 2.1)
=(aU(BUy)T
=(aU(BUy)" )t (from Lemma 2.1)
=(aU(B+ y))" (from the definition )
=a+(B+7v) ( from the definition )

Hence + is associative. Since

a+B=(aUB)  =(BUa)" =8 +a,

+ is commutative. Since
d+-@zlel@f=af =a

for any a € S, & is the identity for +.

2) (S, -, €) is a monoid. Since a - B is a convex polygon, the set S is closed under

a-(B-y)=agpg,) ( from the defintion and Corollary 3.2 )
= {(x, y) | there exist (a,, a, ) € a,
(by, by) € B, and (g, gy ) € Y such that
x =6y +byt+g,y=0a,+0b +g}

= (ag )y ( using symmetry )



-6 -

=(a*'B)- 7.
Thus - is associative. Since
a-&={(x,v) | there exists ( a,, ay ) € a such that
x=a +0=a,y=a +0=aq,.}
—g-a=a
for any a € S, € is the identity for -.
3) - distributes over +. Let a, B, y € S be convex polygons. Since

a-BCa-(B+y)and a-yCa-(B +v),

we have
(a-B)U(a-y)Ca-(B+v) (2.5)
Since the right-hand-side of (2.5) is a convex polygon, we have
[(a-B)U(a-y)]ITCa-(B+vy). (2.6)

Note that the left-hand-side of (2.6) is (a-fB8) + (a-y) from the definition.
Thus we proved

(a-B)+(a-y)Ca-(B+ ). 2.7

Conversely we prove the opposite direction of (2.7). Let x be a point in
a- (B + v). Then x can be represented by a - b ( treating a and b as single point
polygons ) such that ¢ € « and & is on the line segment b;, by where
by, by € BUY Ifb; and by arebothin B(ory),x =a-bisina-B(ora-vy
). Otherwise, without loss of generality, we can assume that b; € B8 and by € v.
Then the point x = a - b is on the line segment a * by, @ - by where a - b; € a - f8
and a - by € a +y. Thus

z€(a'B)+(a-vy).
Therefore

a-(B+y)C(a-B)+(a-vy). (2.8)
From (2.7) and (2.8), we have

a'(B+y)=(a-B)+(a-vy)
Thus - distributes over +. Note that we can also prove that - distributes over
finite sums by induction.
Since

a+a=(aUa)’ = at = a,

+ is idempotent.
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Let I ={iy, ig,..., iy } be a finite non-empty index set. Let a; € S for all
i € I. Then we prove
Eai:ail+ai2+---+aik (29)
i€l
by induction on k. When k2 = 1, (2.9) holds. Assume that (2.9) holds for the
numbers less than k.

dp, oy b sl @

1

= { > o ) + @y ( from the induction hypothesis )
i€ —{iy}

:('EIU{'}ai)++ai" ( from the definition of ) )
i —{i

:(( U ai)+Uaik)+
el —{ip}

=(( U a)Uga,)" (from Lemma 2.1)
i€l —{i}
— U At = o:
( per ™ ) iie:l ‘
For empty index set I = &, we have

2 ai=®.

ie@

Let I be an arbitrary index set I and {I; :j € J } be an arbitrary partition of I
such that

U IJ=I and Ijﬂ[k=@ for j = k.
jEd
Then we have

2 (X e)= X (U a)F

j€d i€l jed €L

=( U (

Y Y e )* )t (from the definition of Y, )
J i

L

U
€
=( U (U )7 ( from Lemma 2.2 )
je€d i€l

=(U a;)t = 3 a;.

Thus the result of summation does not depend on the ordering of the factors.

6) Let B €S. Leta; € Sfori = 1,2, --. Let

Let

B =8 +8g + »~ <k @+ 354,

Ze.g=a;-Bt+ag B+ -+oa-B+---.



Then we prove that
B-Zy=2Z4.8. (2.10)

We first prove that 8- Z, CZ,.g. Let p = b - x be an arbitrary point in B-Z,
with b €B and x€Z, If there exists a finite set of indexes
J =1{Jj1,J2, ..., jm } such that

x€aj +a,+ -+ aj,
then
=b-x €EB-Lap +ay + '+ a; )
=B'aj1+B'aj2+"'+B'“jm ( from 3) )
CB-ax+Brag+ - +B-ai+: - =Zgp

If x is not in the sum of a finite number of a;’s, then x must be the limit point of a
sequence of points, each of which is in some a;; that is, there exists an infinite set
of indexes J = {Jj1,Jjo,...5 Ji»- .., }such that

x = lim x; where x; € ;.
- JI Jl Jl
i —>

Then

p=b-x=5"lim x

i —> o

= lim b-xj € lim 8- aj

i > i—>w®

CB aj +B-aj, + - +B aj +
CB-ar+B-ag+ +Bag+ - =Zg.p

Therefore 8- Z, C Z,.g.

We now prove the converse; that is, Z,.3 C 8-Z,. Let p be an arbitrary
point in Z,.g. If there exists a finite set of indexes J = {Jj1, j2,.--, Jm } sSuch
that

pEB-aj1+B'aj2+---+B-ajm.
Then
p€B-(aj, +a;, +---+aj )CB-Z, (from3))

If not, there exists an infinite set of indexes J = {j1,Jj2,...,Ji».-.,} and
p; = b; - x; with b; € B and x; € a; such that

p = lim p; = lim b; - x;.
4

i —> o —>

i
Let y; = (k U . xp )T . Note that y; C y; + 1 for all i € Z. We now have
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p = lim b;-x; € lim B - x; ( since b; € B)
I —® 1 >
CB-x1+B-x2+--- +B-xi+---
CB-vi+B-y2+- +B-yi+ - (sincex; €y;)
= lim By (since y; C ¥i +1 )
] > o

i
=fB-lim y; =B lim (klei)"'
[ —> o i =

CB'(x1+x2-I-----I-xi-l----)CB-Za.
Therefore we have Z,.g = B Z,.

Now let I, J be countable index sets and a; €I, B; € J for i € I and j € J.
Thus

(Y ;) (2 Bj)= > (a;-( X B;)) (using (2.10) )

iel JEd i€l Jjed
= > (> aBj). (using (2.10))
iel jed

Thus multiplication distributes over infinite sums. []

Having established that the structure (S, +, -, &, €) is a closed semiring,
we can apply Kleene’s algorithm to solve certain problems related to paths in a
graph ([ 12, 25 1). With this goal in mind we next investigate the basic properties
of the operations + and -.

3. Some properties of the * operation

In this section, we investigate the properties of the - operation.

Definition. Let ag be the set of edges of the convex polygon a, and ay the set of
its vertices. []

Definition. Let a be a convex polygon. Let [ be an edge of a or a line which does
not intersect a. Then we regard [ as the oriented line with respect to a and define
its direction, denoted by 4;( @ ), in the range — 3/2 7# < 0, < 1/2 7 such that a
lies on the right-hand-side of ! when we traverse [ in its positive direction. Unless
specified, §, means §,( a) for an edge e € ag. We regard e € ag as a vector e
with the direction of §,( a ).

We say that two edges e € ag and f € Bg are equivalent when
8.(a) =04 B). Equivalent edges are said to be fwins when their lengths are
equal. If there are no equivalent edges in ag U Bg, we say that a and B are
independent. []

Definition. Let a,r = (€ | ¢ € ag }. By convention, we define the following
special cases: When a« is either a point or the entire plane, we regard a as a
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special symbol and define @y = { @ }. When a is a line segment e, we define
Cyocior = { +0., —8,} where 8, = 6,(a). ]

Definition. Let A = { @; } be a set of convex polygons. We define

Al = U (a;
| | | @ EA L)vector |
= the number of distinct vectors in UA & Dasamp
a; €
We also write | A | = | « | when A has the single element a. []

Now we have the following lemma about the relationship between two con-
secutive edges of a convex polygon and their directions.

Lemma 3.1. Let e and f be two consecutive edges of a convex polygon a in clock-
wise order. Then

9f<9€ or (08+w)<ﬂf if 63< —1/2 7

(0, —7m)<br<@, if §, =2 —1/2 7.

Proof. From the definition, flies in the right-half plane of e. Hence we have the
desired result. []

Corollary 3.1. Let ag = { ey, e, ..., ey } be the edges of a convex polygon a in
clockwise order. Let 4, be the maximum of { 4, }. Then

By 20, 5 -~ F 0.

We call this order the canonical order. The set ag is called the canonical edge set
when the elements of ag are ordered canonically.

Proof. This is clear from Lemma 3.1. []
Now we analyze how the - operation affects the number of distinct vectors.

Theorem 3.1. Suppose two convex polygons a, B € S are not points. Then for
every e € ag U Bg, there exists the equivalent edge f in (a- B )g; that is,
@;= 0,. This enables us to define a function f = @ (e) from ag U Bg to
(a - B)g. Moreover the function ¢ is onto.

In Fig. 2, the edges with the same number are equivalent.

Before proving Theorem 3.1, we need some definitions. Given «, 8 € S and

w = (wy, wy ) € By, we define the set a,, to be the set of w-copies of vertices in a;
that is,

ay, = { (x, y) | there exists an element ( ay, a, ) € ay such that

X =ay + wy, y =ay + wy}
Then we have ag = ( U a,)".

g Let s € (a- B )y. Then there exist v € ay
w v
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and w € By such that s = v - w € B, N a,. Hence we denote s by p, ,.

Proof of Theorem 3.1. Let a, €8S with ay ={vy, ve,..., vy} and
By ={wy, wg,..., wy}. Let y = a- B. We assume that v; and w; are labeled
in clockwise order and the indexes of vertices v; ( w; ) are interpreted mod m (
mod n ). From the above discussion, we denote a vertex in yy by p;; with
pij = v; - wj where v; € ay and w; € By.

Suppose that e € ag U 8. Then we prove that there exists an edge
f € (a-B)g such that §; = f,. Note that there is no pair of equivalent edges in
Yg, so there is the unique edge f € yg such that &= 0#,. Assume that
e = (v, v; +1) € ag. From Corollary 3.1, as shown in Fig. 3a, there exists some
k such that 8, is between 8, and f, . where e, and e, 4 ; are edges in Bg in
clockwise order. Let w; be the common vertex of e, and e; 4 1, and let e’ be the
vector from w; such that #, = #,. Note that as shown in Fig. 3a, any point
v, € ay is in the right-hand-side of the edge e, and any point w, € By is also in
the right-hand-side of the edge e'. Thus as shown in Fig. 3b, any point
Pxy = Ug - wy in v is also in the right-hand-side of the edge f = w; - e. Therefore f
is the edge of y such that §; = 4.,.

Conversely suppose that f = e;;p; = (pjj, P ) is an edge of y. Then we
prove that there is an edge e € ag U Bg such that 8, = 6. Let

di =k —i (modm)andd, =1 —j (mod n).
Then we claim that
(dy =0,dy, = 1)or(d; = *1,d, =0).

Assume that the claim above does not hold. If d, = 0 and | d, | = 2, then the
edge e;; i = ejju = (pij, piz)is a diagonal line of the convex hull 8, as shown in
Fig. 3c. Hence the line segment e;; ;; cannot be an edge of y. In the same way, the
line segment e;; ; such that | d; | = 2 and d, = 0 cannot be an edge of y. Now
assume that d; = 1 and d, = 1. In this case the line segment e;;; is a diagonal
line of the parallelogram P consisting of four vertices p;;, pi, pri, and pg; ( P is
shown by double lines in Fig. 3c. ) However each edge of P is a diagonal line of a
convex hull a, , ay,, B, or B,,, thus the line segment e;; ;; cannot be an edge of y.
Thus ( a - B )g consists of

(pijsPit1,j) = (v, vi+1) wj or (pyj, pij+1) = v (wj, wj+1)
Therefore we have
e=(vi,viil)€a or e=(wj,wjil)€,8

and e satisfies §, = 8. [
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Corollary 3.2. Let a, 8 be convex polygons. Then a - B = ag = B,.

Proof. From the proof of Theorem 3.1, we know that every edge in a - B is either
e-bora- fwheree € ag, b € By, f € Bg, and a € ay. Therefore

a-BCagClag)t =a-B.
Hence a - B = ag = B4. [

Corollary 3.3. Suppose two convex polygons a, 8 € S are not points. Then the
order of the canonical edge set (a-B)g is obtained by sorting the set
{8, e€agUBg} Thus a-B can be computed in O(n log n) steps where

n=|a-B|.

Proof. From Theorem 3.1, every edge e in a -8 has an associated edge f in
ag U Bg such that 87 = 6,. Thus the order for the canonical edge set (a - B)E
can be obtained by sorting { 8¢ | f € ag U B g } in decreasing order. []

Corollary 34. Let ai, ag, ..., and a, be convex polygons which are not points.
Then we have an onto function ¢

from (al)E U (az)E k.« = =&3 (an)E to ( o] "0y " " Oy )E
such that
Opey = 0, for any e € (a1)g U (ag)g U -+ U (ap)g.

Proof. By induction on n and Theorem 3.1. []
Theorem 3.2. For any a, 8 € S, we have

la- Bl =|{aBtl=lal+]|B]

Proof. First we prove that | a -8 | = | {a, B} |. If neither @ nor B is a point,
this is clear from Theorem 3.1. The equality holds if and only if a and B are
independent. If either a or S is a point, without loss of generality, we can assume
that a is a point p, and then

la-Bl=1p-Bl=1B1=|{aB}]
Since | { &, B} | is the number of distinct vectors in a U 3, we have
[ {e, Bt =lal|+ ]8I
[l

Definition. A convex polygon a is said to be decomposable if and only if there
exist two convex polygons B and y such that @ = B -y and neither 8 nor y is a
point and there are no equivalent edges in Bg and yg. If a convex polygon a is
not decomposable, we say a is irreducible. []
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The decomposability problem has been studied in [ 21, 22, 23 ]. Note that the
definition of the decomposability is slightly different here. In [ 21, 22, 23 ] the
authors allow equivalent edges, while we don’t. For example, the decomposition
shown in Fig. 4a is not allowed by us, but is allowed in [ 21, 22, 23 ].

Note that a decomposition into irreducible convex polygons is not necessarily
unique. Fig. 4b shows a convex polygon a decomposed into irreducible convex
polygons in two ways: @ = B - B3 - B3 and @ = y; * Y2.

The following theorem shows that decomposition of a convex polygon is in
general difficult.

Theorem 3.3. The problem determining whether a given convex polygon a is
decomposable or not is NP-complete.

Before proving the theorem, we state the problem in another way by regard-
ing the edges of the convex polygon as vectors. Let a € S be a convex polygon. We
express a vector € € Quer by two displacements ( e, e, ); that is, a vector e is the
same vector as (0, 0) - (e, e, ). We then formulate our problem DC ( the decom-
posability problem ) as follows:

Instance Ipc: Let I be a finite index. A set of vectors {e; | i € I} such that
e; = ejfor any i, j € Iwith i = jand 2 € = (0, 0).
iel
Question: Is there a proper subset J of I such that > e =1(0,0)7?
JEd
To see that this formulation is equivalent to the decomposability problem,
assume first that >, ¢; = (0, 0) and E e; = (0, 0) where J is a proper subset

i€l jEF
of I. Note that >, e; = (0, 0) means that the edges {e; | i € I} form a closed
i€l

path. From Corollary 3.1, the edges { e; | i € I'}in canonical order form a convex
polygon ( say a; ). In the same way, the edges {e; | j € J } in canonical order
form a convex polygon a,, while the edges { e; | j € J } in canonical order form a
convex polygon aj. From Corollary 3.1, there exists a point p such that
p-ay-ay = aj.

Conversely assume that a convex polygon a is decomposed into two convex
polygons B and y; that is, « = B-y. Let ag ={e; | i €I} Then ag is an
instance of Ipc, since e;’s are different from each other and > e =(0,0).

el
From the definition of decomposition, there are no equivalent edges in Bg and yg.
Thus from Corollary 3.1, every edge in Bg U yg can be associated with its twin
edge in ag. Let J C I be a subset of indexes such that e; € ag, j € J has a twin
edge in Bg. From the definition of decomposition, J is a proper subset of I. Then

> ej = (0, 0). Therefore we can find the solution of the instance Ipc.
i€d
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Hence the above formulation is a valid representation of our problem DC.

Proof of Theorem 3.3. It is obvious that the problem DC is in NP, since we can
guess a proper subset J C I then we can check whether or not >, ¢; = (0, 0)in
j€ed
polynomial time.
We reduce the following variation of the subset sum problem SS; to the prob-
lem DC.

Problem SS;: a variation of the subset sum problem.

Instance Igg: {a; €Z' |k € K} where K is a finite index and a;’s are
different from each other. B € Z .

Question: Is there a subset L of K such that >, a; = B?
leL

In order to prove that SS; is NP-complete, we can use the same reduction as
the reduction from the 3-exact cover problem to the subset sum problem, as shown
in[ 14 1.

We reduce SS; to DC as follows: given the above instance Igg , we construct
an instance Ipc with the property that Igs has a solution if and only if Ipc has a

solution. Let K ={1,2,...,n} Let A = D a;. Then A > 0. Define a set of
k€K
vectors
{e;|i=1,2...,2n +3}

as follows: Let
={0,1,...,2n +3} and M =(n +1)(A + B).
Let
eg =(—-B, 1),
e =1(ay,l) fori=12,...,n,
ei+i=(M =i} i =1, 2, ..., 8 n+1,

€on + 2 = ( "—M, 0), and
2n_+ 2
eam+3=—( O e)=(-nM+B - A, n(n+1)/2)
i= 8
The e;’s are not equivalent to each other. To see that, note that the only possible
equivalent vectors in {e; | i € I } are eg and e, 4 3. Assume that eg and egy + 3
are equivalent, that is, there is a positive integer c¢ such that

€2n +3 = C €.
Then
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(-nM + B — A, n(n+1)/2)=(—cB, c).
Thus we have
—nM +B —-—A=[-n(n+1)B1/2
or
[n(n+1)—2]1B+[2n(n+1)+2]A =0.

Notethat n(n +1)—-2=20,B >0,2n(n + 1)+ 2>0,and A > 0. Thus the
left-hand-side of the above equation is positive. Therefore we got a contradiction.

Hence eg and egy 4 3 are not equivalent. Therefore the vectors in {e; | i € I } are
2n_ + 3

different from each other. Moreover >, € = 0, and thus {e; | i €I} is an
i=0

instance of Ip¢.

Suppose first that Ipc has a solution; that is, there exists a proper subset
JC{1,2,...,2n + 3} and D, ¢ =(0,0). We consider the following two
B j€d
subcases: a) 2n + 3 € Jand b) 2n + 3 € J.
a) 2n + 3 € J: Note that 2n + 2 € J, since some i € {1, 2,..., n } and some
n+k€{n+1,n+2...,2n + 1}areinJ. Since

€n+2 1t etk = (0, —#& ],

there exists subindex K' € {0, 1,..., n }such that | K' | = k and
( D ex)t+emiat+teyrx=1000)
k€K
Note that only eq has negative first coordinate among {ex | # =0,1,..., n }.

Therefore 0 € K'. Thus
-B + 2 ap. =D,
EEK —{0}
Therefore Igg, has a solution.
b) 2n + 3 € J: We now take two cases: b.1) 2n + 2 € Jand b.2) 2n + 2 € J.

If b.1) holds then we obtain a contradiction as follows. Since
€m+2 temig=(—-(n+1)M + B — > ap, n(n + 1)/2),
k €K
from the definition of M,

{n+1,n+2...,2n +1}Cd.

Note that

2n 4+ 3
S e =(B—- > a, —(n+1))
n+1 k€K

i =



-16 -

Since every ey for £k =0,1,..., n has 1 in its second coordinate, we know
{0,1,..., n}€J. Thus J = I. This is a contradiction, since J should be a proper
subset of I.

If b2) 2n + 2 € J holds, and suppose that 2n + 1 € J, then from the
definition of M,

{n+1,n+2,...,2n}Cd.

Thus
_2n.
€ +3 t+ 2 ei:(B_E ag, 0).
i=n+1 k€K
Since every second coordinate of {eg|]i=0,1,...,n} is 1, we have
{0,1,..., n} Cd. Therefore
J={n+1L,nrn+2...,22} and B= 3 a.

k€K
Thus we found a solution of Igg .

If 2n + 1 € J, then there exists an index n + %k € J such that
n+k€{n+1,n+2...,2n}

Let
A =ey 43+ > eg=(B— D ap, —n—1+Fk)
i€e{n+1,...,2n}Li=n+k k€K
If 0 € J, then

eg+A=(— ap, —n+k)
keK

Thus there exists subindex
Jc{1,2...,n}
such that

|J' | =n—%k and — D ar + X @ =0.
LK€K jEd

This is a contradiction, since g;’s are positive and | J' | =n —k <n = | K | or
|| = | K|

If 0 € J, then there exists subindex
FCTI{L 8 ..; B}
such that

|J’I=n +1—-—% and B — 20’;5‘1‘ 2 aj-—“O.
k€K Jed



= 1

Therefore we found a solution of Igg, .
In either case, we have a solution of Igg .

Conversely if I'sg, has a solution J in I such that >, a; = B, it is obvious
JEed
that Ipc has a solution.

We have therefore reduced a variation of the subset sum problem to the
decomposition problem in NP. Thus the decomposition problem is NP-complete. []
4. Some properties of the + and * operations

Next we analyze the effect of the + operation on the number of distinct vec-
tors.

Lemma 4.1. Let a € S. Let py, pg, ..., pp be points. Then
|a+p1+ps+...+pu| =] a]| +n

Proof. This is proved by induction on m. Suppose n = 1. If p; € a, then

| p1 + @ | = | a |. Otherwise, at least one edge of a is inside p; + a . Thus

| p1 + @a| =1+ | «|. Therefore Lemma 4.1 holds for » = 1. Suppose Lemma
4.1 holds for numbers less than n. Let

B=a+py+ps+...+p,_1.
Then from the induction hypothesis,
|Bl=|a|l+(n—-1)and | B + p, |

IA

| B | + 1.
Thus

la+pi+pe+ ...+ | =B+l =]al|+n
Hence Lemma 4.1 holds for every n = 1. []
Theorem 4.1. Let a, 8 € S. Then

la+Bl=lal+]B]

Proof. Let By = {p1, P2, ..., pn }. Note that
a+B=a+p1+ps+ ...+ py,
and n < | B8 |. Thus from Lemma 4.1,
la+B|=]al+rn=|al|l+]|B8]
L]

Definition. For a convex polygon a, we define a convex polygon a™ for nonnega-
tive integer m as follows:

1 & =g



= HB

2) a® =a-a™ " lform > 1
Since a system (S, +, -, &, €) is a closed semiring, we can define the convex
polygon @ by a® + 2t + -+ = D o'. O
i=0

See Fig. 5 for an example of the * operation. Note that o  has at most two
edges.

Now we analyze an effect of the * operation on a number of distinct vectors.
Lemma 4.2. For two convex polygons a and y, we have | a -y | = | a | + 1.

Proof. If y" = ¢, we have | @y | = | @ |. If ¥ is the entire plane, we have
|a-y" | =1=|al|.Ify isahalfline issuing from the origin, then there is at
least one edge of a inside a-y". Thus | @ -y | = | a| + 1. If ¥ is a line pass-
ing through the origin, then a - y" is a half plane. Thus | a-y | =1<| a|.
Otherwise y* has two edges g1 and g’g. Let g1 ( g2 ) be the support lines at v (w )
of the convex polygon a such that 8, (a) = 8, ( Yy ) and 6, (a) = 8,,( Y.
Ifv=uwthen |a-y | =]y | =2 Ifv # w, then as shown in Fig. 5, there
must be at least one edge of a which is inside a- y'. Thus
la-y | =lel+10

Lemma 4.3. Let y; € Sfori =1,2,..., n,n = 2. Then
Yi“vz o vn=(rityat ot
Proof. We prove this by induction on n. We use k for the index of induction.
When k£ = 2, we prove that Y1 - ya2 = (y1 + ¥2 ). Since
Y1C(y1 +7v2) and y2C(y1 + 72,
we have
Y1 v2C(y1 +v2) (4.1)
Since € € Y] * Y3, we have
Y1+ Y2C (v +y2) Y1 Y2
=(y; Y1) Y2 + 711 (ya- va) (using distribution law )
C Y1 Ya.
Thus
(y1 +72) Cyi- vz (4.2)
Hence from (4.1) and (4.2),

Y1y =(y1 +7v2).
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Assume that the lemma holds for 2 < n, then
Y1ioY2  Yn=(Y1 Y2 " Yn-1) Ya
=(‘Yl+72+"‘+7n—1)*']’; (usingk =n — 1)
=(yp+ Y2+ -+ 7). (using & = 2)

O
Lemma 4.4. Let a, 3, and y be convex polygons. Then

a+B- Y =(a+B) Y.
Proof. See Fig. 5. Since @ C a - y*, we have
a+B-yYCayY +B- Y =(a+B)-7. (4.3)
We now prove that
(a+B) Y Ca+B 7. (4.4)
Since
By Catf-v,
we only have to prove that
a' Y Ca+B-7v. (4.5)

Let p = @ - g be a point in -y with @ € @ and g € y. Let b be an arbitrary
point in B. Let p, be a point obtained by the following equation when we regard
Pn, @, b, and g as points in the x —y plane:

ppn=(1—-1/n)a + (1l/n)( b+ ng).

Then p, is on the line segment a, (b - g" ), and thus p, € a + B - y". Note that
Pwo = lim p,isalsocina + B - v and p» = a - g = p. Therefore (4.5) holds, and

n —> o

(4.4) does so. []
Lemma 4.5. Letn = 2. Leta;, y; € Sfori =1,2,..., n. Then

*

al'Y';‘.+a2-Y;+'..+an'Y::(al+a2+"'+an)-7;-q{§...¥ﬁ-

Proof. We again use induction on n, and we use k for the index of induction.
When & = 2, from Lemma 4.4,

@Y +agcys = (ap-yl +ag) v =C(ar +azg) y1- v
Assume that the lemma holds for 2 < n. Let

*

A=a - yi+ag ya+ -+ o Yn
From the induction hypothesis of 2 = n — 1,
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A=(ay+ag+ - +a-1)"¥1°¥2 " "Yn-1+ & Tn.
From Lemma 4.3,
A=(ap+ag+ - +ap_1) (yn+vya+t - +v-1) +an Tn
From the basis of the induction ( £k = 2),
A=(ap+ag+ ta) (yityz+ - +¥m-1) Tn

From Lemma 4.3, we have

*

A=(amtag+ - +a) ¥ v Yn
O
Theorem 4.2. Let
k;
Bi= 1I Bir =Biy1Biz- Bis,
k=1
Bir€{a,as,...,anp} for 1 =i =n, a;€S.
Let y; € Sfor1 =i < n. Let
A:BI+B2+--'+Bn-
Let

*

B=8 - yi+Ba-v2+...%Bn" 1n
Then

|B|=]A| + 1

Proof. From Lemma 4.3 and 4.5, we have
B=B1-yi+Ba-va+- -+ Buvn
=(Bi+Ba+ - +Bu) Vi ¥aTa
=(Br+Ba+ - +B) (Y1t + + )
From Lemma 4.2,
Bl =|Bi+B+ - +B|+1=]A]+1L
O

Theorem 4.3. Let | @« | + | B | = n. The operations -, + and * can all be done
in O( n log n ) steps.

Proof. From Corollary 3.3, we know that the - operation takes O( n log n ) time.
In [ 24, 26 ], we have an algorithm which takes O( n log n ) time for computing
the convex hull of two convex polygons. There is also an algorithm in [ 26 ] which
computes I Na in O(log ( | @ | )) steps where [ is a line segment and a is a
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convex hull. Therefore the * operation takes O ( n log n ) time. []

5. Application of the closed semiring (S, +,*, &, €)

In this section, we define the doubly weighted zero-sum cycle problem and
solve it by using the closed semiring defined in Section 2.

Our instance is I = (G, T ) where G is a directed graph G = (V, E ) and T
is a two-dimensional labeling such that T(e ) = (e, e, ) for every e € E.

Definition. Given a digraph G = (V, E ), a path P in G is a sequence of vertices

P =vg,v1,..., 0, where e; =(v;_1,v;)€E and v; € V. If all vertices
vg, U1, ..., Up—1 are distinct, a path P is simple. A path P such that vy = v} is
called a cycle. []
Definition. Given a path P = vg, vy, ..., U, we define
k k k
T(P)= X T(e)=( 2 e, 2 e, )
i=1 i=1 =1
where
e, =(vj_1,vi)€Efor i =1,2,..., k and

T(e)=1C(e,e ).

¥

O

Definition. Let G be a doubly weighted graph. Then a cycle W such that
T(W) =1(0, 0) is called a zero-sum cycle. []

Problem ZSC: Doubly Weighted Zero-sum Cycle Problem.

Instance: The doubly weighted digraph I = ( G, T ) where G is a directed graph
G = (V, E) and T is a two-dimensional labeling such that T(e) = (e, ey ) for
every e € E.

Question: Does G have a zero-sum cycle? In other words, is there a cycle W such
that T(W)=1(0,0)?

By using the fact that the two operations defined on convex polygons form a
closed semiring, we can answer this question with the Floyd-Warshall’s algorithm
[ 10, 11, 12, 14 ].

Algorithm ZSC:

Input: A doubly weighted graph G is described above. Let
V ={vy, vg,..., vy }. Let Ty be a function from VXV to 2Z2%Z such that

{T((vo, w))} (v, w)EE
Ty ((v, w)) =4

otherwise.
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Output: This algorithm answers “Yes” if the digraph G has a zero-sum cycle; oth-
erwise the algorithm answers “No”.

Method: We compute the convex hull aﬁ; for 1 <i,j <nand 0 <k =n. The
convex hull a‘% is the convex hull of the lengths of all paths from v; to v; such that
all vertices on the path, except possibly the endpoints, are in the set
{U1:v21---7 Uk}.

procedure zero-sum cycle

begin
l.fer 1 =4, j Sndoa?j =T1((v;, v5) )
2.fork =1ton
do
3. forl =i, j <ndo
4, aﬁ-=aff,-_l+af’k_1'(a£k_1)*-a§j_l;
5. if (0,0) € a for some isuch that 1 <i < n
then exit ( “Yes” );
od
6. exit ( “No” );
end []

Theorem 5.1. Algorithm ZSC works correctly.
Before proving Theorem 5.1, we need the following lemmas.

Lemma 5.1. If there is a cycle W such that T( W ) = (0, 0 ), there must be some
vertex v; such that (0, 0) € al.

Proof. Let v; be a vertex which is on the cycle W. Since the convex hull af
includes all lengths of paths from v; to v;, we have (0, 0) € af;. [J

Lemma 5.2. If (0, 0) € a?, there must be a cycle W such that T(W ) = (0, 0)
and the vertex v; is on the path W.

Proof. Suppose that (0, 0) € aj;. Let

(aﬁ)V:{SI:SZa"-’sm}
such that s; € Z X Z. Since af} is a convex polygon, any point z € aj; can be
represented as
2 = 2 kj 8
s; €(afi),
such that ; = 0. Let p; be a cycle corresponding to s; such that T(p; ) = s; and
v; is on the cycle p;. Note that since every s; has integral coordinates, k; can be
chosen rational, if z € Z X Z. Thus there are rational numbers &; such that
(0,0 ) = 2 kj 8j.

s; € (af)y,
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There is an integer K such that all K - k; are integers. Thus

K-(0,0)=(0,0)= 3 (K-k)sj

s; € (ajf)y,
Then the desired cycle W consists of K - k; copies of p; for 5; € (aj )y. [

Now we prove Theorem 5.1.

Proof of Theorem 5.1. From Lemma 5.1 and 5.2, in order to find a zero-sum
cycle, we only have to check whether or not there exists some i such that
{0,0} € al. We also have to prove that af} is correctly computed by the algo-
rithm. By induction on k2 (as in [ 12 ] ), we can prove that af,- is the convex hull
of the lengths of all paths from v; to v; such that all vertices on the path, except
possibly the endpoints, are in the set { vy, vg, ..., vr ). [

Theorem 5.2. Algorithm ZSC uses O ( n3) +, -, and * operations from the closed
semiring defined above where n is the number of vertices in G.

Proof. Note that line 4 is executed n® times in total. []

6. Special cases of the zero-sum problem

In this section, we discuss the special cases of the zero-sum problem where 1)
the graphs have one-dimensional labels, 2) the graphs are undirected, 3) the
graphs have labels with magnitude at most M, and 4) we are looking for a simple
cycle with zero sum. The first three cases have low order polynomial algorithms,
whereas the fourth is NP-complete.

1) The one-dimensional zero-sum cycle problem

Theorem 6.1. The one-dimensional zero-sum cycle problem can be solved in
O ( n? ) time where n is the number of vertices.

Proof. We can apply our algorithm ZSC by ignoring the second labels. Note that
in the one-dimensional case, every afj has at most two vertices, since it is either a
point, a line segment, or a line on the x-axis. Thus | af | = 2. From Theorem
4.3, each operation +, -, or * takes constant time. Hence from Theorem 5.2, the
algorithm ZSC takes O ( n? ) time. []

2) The two-dimensional undirected zero-sum cycle problem

We assume that G is connected. We will show that the undirected version of
the zero-sum cycle problem can be solved in O( m log m ) time where m is the
number of edges. In the undirected case, a path can traverse an edge in either
direction.

An instance of the undirected problem is as follows:
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Instance: A connected undirected graph G = ( V, E ) with

V=104 Udsin; 8 ) 0 B ={ei: 8845 € b
A two-dimensional labeling T from E to Z X Z with T(e) = (e, e, ) for every
e € E.

Now we have the following lemma:

Lemma 6.1. Let G and T be defined as above. Let Hg be the convex hull of
[T(e)| e€E} A necessary and sufficient condition for the existence of a zero-
sum cycle is that exactly one of the following two conditions holds:

1) The convex hull Hg properly contains the origin.
2) The origin is on an edge h of the convex polygon Hg. Let
Y ={e€E | T(e)is on h} Then there exists an edge e € Y such that

T(e)=1(0, 0), or there are two edges ey, ea € Y such that e; and ey are
adjacent in G and the origin is on the line segment T'(e; ), T'( ey ).

Before proving Lemma 6.1, we need some definitions. Let
X={C,|le€E)}
such that C, is the cycle v = w — v where e = (v, w ). Then

T(C,) =2T(e).

Definition. A set of cycles A = { W; | i € I } is said to be nullable if there exists

a set of non-negative integers Az = {n; € ZT U {0} | i €I} such that the n; are

not all 0 and D, n; T(W;) = (0, 0). If( _LEJI W; ) is connected, we say that A is
i€l i

connected. []

Note that we can construct a zero-sum cycle from a connected nullable set.
Now we have the following lemmas.

Lemma 6.2. Let G, T, and X be defined as above. Let A = {W; | i €I} be a
nullable set of cycles. Then we can find a connected nullable set B.

Proof. Since A is nullable, there exists a set of non-negative integers
Az ={n;€Z* U{0}|i €I} such that the n; are not all 0 and
> n; T(W;)=(0,0). If A is connected, A is the desired set. Suppose A is not
i€l

connected. Let v; be an arbitrary point on W; for every i € I. Since G is con-
nected, there is a cycle P; which passes through v, and v; for every i € I — {1}
Let k be a large positive integer. Let Q; be a cycle consisting of & copies of W; and
one copy of P; for every i € I — {1}. Let @; = W;. Then

ET(W1) fori =1,

T(Qi)=\pT(W,)+ T(P,) fori€l—{1}.
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Since the convex hull of {T(W;) | i €I} contains (0, 0), the convex hull of

{T(Q;)|i €1} contains (0, 0) for some large k. Therefore B = {Q; | i € I}is

nullable for large k. Since v; € .QI Q;, B is connected. Thus B is the desired set.
L

]

Now we prove Lemma 6.1.

Proof of Lemma 6.1. Suppose 1) holds. Note that T( C, ) = 2T (e ) where C, is
the cycle for every e € E defined as above. Since A = {2T(e) | e € E } is a null-
able set, we can find a connected nullable set, by Lemma 6.2. Thus there is a zero-
sum cycle in G. Suppose 2) holds. It is obvious that there is a zero-sum cycle in G.

Conversely, suppose there exists a zero-sum cycle W. From the definition,
there exist positive integers n, for e € W such that

3 n,T(e)=1(0,0). (6.1)
e e W

This means that the convex hull of { T(e) | e € E }, denoted by Hg, contains the
origin. If Hg contains the origin properly, 1) holds. Otherwise, there must be an
edge e € E such that T(e) = (0, 0), or the origin must be on an edge & of Hg.
Now we assume that T(e ) # (0, 0) for every e € E. Let

Y ={e€E | T(e)ison theedgeh}

Since W is nullable, every edge in Wis in Y. Let e be an edge in Y. Then for every
edge e € Y, there exists k, and T(e ) = k, T(e ). Let

W, ={e€W|T(e)=Fk T(e), k. >0}
and let

W_={e€W|T(e)=—k,T(e) k, >0}
From (6.1), we have

S nT(e)=( 3 nk,— 3 neke)T(e)=1(0,0). (6.2)
e e W e €W, e € W_

Note that W, = @ and W_ = &. From (6.2), since W = W, U W_ is con-
nected, there must be connected edges e; € W and eg € W_. Thus 2) holds. []

Theorem 6.2. The two-dimensional undirected zero-sum cycle problem can be
solved in O ( m log m ) time where m is the number of edges.

Proof. We only have to check condition 1) and 2) in Lemma 6.1, which can be
done in O( m log m ) time. []
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3) The graphs with bounded labels

Definition. Let G =( V, E ) be a digraph. Let T be a two-dimensional labeling
from E to Z X Z. Let M be a positive integer. An instance ( G, T ) is called a M-
bounded graph if each dimension of every label is in [ —M, M ]; that is,

|ex | =Mand | e, | = Mfor everye € E, T(e) = (e, e ).
O

In many VLSI applications, the communication between regular cells is made
locally: that is, interconnections are made only to neighbors. For example, the
n X n multiplier can be constructed from arrays of one-bit full adders with carry
and sum signal connections to the neighbors of each cell [ 1 - 4 ]. The parallel
adder can also be constructed from one-bit full adders with the carry connection to
the neighbor of each cell [ 1 ]. Many systolic arrays are also implemented with
interconnections to neighbors. In such VLSI applications, the associated static
digraphs of the regular structure are all 1-bounded graphs [ 4 1.

We have the following lemma about the number of edges of a convex polygon
included in a bounded region.

Lemma 6.3. Let R be a rectangle of width w and height A. Let H be an arbitrary
convex polygon included in R. Then | H | < 2 max (w, h) + 2.

Proof. Without loss of generality, we can assume that max (w, h ) = w. Let H,
be the set of edges in H from its leftmost and uppermost vertex to its rightmost
and uppermost vertex in clockwise order. When we traverse an edge in H,, we
move at least one unit in the x-direction. Thus the number of edges in H, is at
most w. There are at most two vertical edges in H. Thus

|H | =2max(w, h) + 2.
U
Lemma 6.4. Let G be a M-bounded graph with n vertices, then we have
| @ | = 4nM + 3.
Proof. Let Bf‘j be the convex hull of the lengths of all simple paths from v; to v;
such that all vertices on the path, except possibly the endpoints, are in the set
{vy, Vg, ..., vp }. Note that the length of a simple path is at most nM in each

dimension. Thus B% is bounded by the rectangle [ —nM, nM ] X [ —nM, nM 1.
Therefore, from Lemma 6.3,

| BE | =2-(2rM) + 2 = 4nM + 2.
From Theorem 4.2,

la | = |B5 | +1=<4nM + 3.
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[

Theorem 6.3. The algorithm ZSC takes O( n*M log( nM )) time for the M-
bounded graphs with n vertices.

Proof. From Theorem 5.2 and Lemma 6.4, the algorithm ZSC takes
O(n®-nMlog( nM )) = O( n*M log( nM ) ) time. []

4) The zero-sum simple cycle problem
Theorem 6.4. The zero-sum simple cycle problem ( ZSSC ) is NP-complete.

Proof. Here we use a variant of the reduction from the subset sum to the directed
path problem in the one-dimensional dynamic graphs discussed in [ 13 ]. It is
obvious that ZSSC is in NP. We use reduction from the subset sum problem SS to
ZSSC, where the problem SS is defined as follows:

Input: {a; € Z%Y |i€I}wherel ={1,2,...,n}and B€Z".
Question: Is there a subset J of I such that », a; = B ?
JEd
_ Given an instance Igg of SS, we construct an instance Izggc of the zero-sum
simple cycle problem as follows: A directed graph G = ( V, E ) is shown in Fig. 6
where
Vi o= f oy 5 5 00 O 0T 0O = 5 o5 Wb
E ={e,-=(v,-_1,ui)|i=1,2,...,n}U
{fi=(y_,w)|i=12...,n}U
{gi=(w,v)|i=12...,n}U
{eO = (Un, U]_)}.
Let T be a two-dimensional labeling from E to Z X Z as follows:
T(eoy)=1(—-B,0),
T(e;)=T(g;)=(0,0) fori=1,2,..., n,
1, 2.....

T(f) = (a;, 0) fori=1,2...,n

Suppose Igg has a solution J such that , @; = B. Then Izggc has a solution
Jjed _
of a simple cycle consisting of eq, f; and g; for j € J, and ¢; for i € J.
Conversely, suppose that Izggc has a solution; that is, there exists a simple
cycle W such that T(W)=(0,0). Note that W must use e;. Let

J={j|f €W} Then 3 q; = B.Thus Igg has the solution J. []
jed
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7. Backedged two-terminal series-parallel multidigraphs.

The class of Two-Terminal Series-Parallel ( TTSP ) graphs has been well stu-
died, the undirected version in [ 16, 17, 18, 19 ] from the aspect of its relationship
to electrical networks, and the directed version in [ 15 ] to provide an algorithm to
recognize general series-parallel digraphs.

A digraph is called a multidigraph if we allow multiple edges between the
same two vertices. The definition of the class of TTSP multidigraphs appears in [
15 ] as follows:

Definition. [ Two-Terminal Series-Parallel Multidigraphs .

(1) A digraph consisting of two vertices joined by a single edge is in TTSP.

(2) If G; and G4 are TTSP multidigraphs, so too is the multidigraph obtained by
either of the following operations:

(2.8) Two terminal parallel composition: identify the source of G; with the
source of Gy and the sink of G with the the sink of Gg.

(2.0) Two terminal series composition: identify the sink of G; with the source
of Gg.
Let TTSP( m ) be the class of TTSP multidigraphs which have m edges. []
From this definition, a TTSP multidigraph has the single source, denoted by s,

and the single sink, denoted by ¢ We define the more general class called BTTSP
as follows:

Definition. [ Backedged Two-Terminal Series-Parallel Multidigraph ].

Let G be a TTSP graph. A multidigraph Gp, obtained by adding any number
of backedges to a TTSP graph G, is called a BTTSP ( Backedged Two-Terminal
Series-Parallel ) multidigraph. An edge (x, y ) is called a backedge if there is a
path from y to x in G. The graph G is called the underlying TTSP graph of Gg.

Let BTTSP( m ) be the class of BTTSP multidigraphs which have m edges. []
Fig. 7a shows an example of a BTTSP graph Gg which consists of a backedge
indicated by dotted lines and the underlying TTSP graph G.

Let G = (V, E) be a multidigraph. Let T be a two-dimensional labeling
from E to Z X Z. Then for all x, y € V, the convex polygon of x —y paths, ax (T ),
is defined in the same way as in previous sections; that is, the convex polygon
(T ) is the convex hull of all lengths of paths from x to y in G with the two-
dimensional labeling 7.

Definition. For any multidigraph G, let
A(G) = max | ay(T) |
X ¥ T
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and similarly for a class of graphs we write A({ G } ). That is, A( G ) is the max-
imum number of edges in a,,( T ) when x, y, and T are arbitrary and G is fixed.

O

Definition. Let L,, be the TTSP multidigraph consisting of two vertices, s and ¢,
and m edges from s to ¢. []

See Fig. 7c for an example.
We have the following theorem:
Theorem 7.1. A(TTSP(m )) = m.
Before proving the theorem, we need some lemmas:
Lemma 7.1. A(L,, ) = m.

Proof. Let ¢ for i=1,2,..., m be the edges of L,, and Ilet
T(e; ) = v; € Z X Z. Then ag is the convex hull of { v; }, which can clearly have
m sides, and no more than m sides. []

Lemma 7.2. Let G be in TTSP( m ) with source s and sink ¢, and let T be a two-
dimensional labeling of G. Let x, y be arbitrary vertices in G such that
(x,y) # (s, t). Then there exists a two-dimensional labeling 7" such that

| an(T) | = | ax(T) |[.

Before proving Lemma 7.2, we define the graph G,, as follows:
Definition. Let G = (V, E ) be a TTSP graph. Let x, y € V. Then we define the
graph G,, = ( Vy, Ey, ) by the following operations on G:
1) First, we delete all incoming edges to x and all outgoing edges from y.
2) We then delete all useless vertices and their adjacent edges. A vertex v is

called useless when there is no v —x path or y —v path. []
Proof of Lemma 7.2. If there is no x —y path in G, we have a,,( T ) = @. Thus

| a(T) | =0=]au(T) |

Choose T as T".

Otherwise there exists an x —y path in G. Since there exist an s —x path and
a y—t path, let Py, ( Py ) be an arbitrary s—x path ( y—¢ path ). Let
G, = (Vy, E1) be the graph consisting of Py, Gy, and P,. We define a two-
dimensional labeling T as follows:
@ if e€c E — E 1
T'(e)=1¢ if e € Py UPy,.
T(e) if e€E,
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Then
|axy(T) | = [ ag( T") |

]

Proof of Theorem 7.1. We first prove A( TTSP(m )) < m by induction on m.
It is clear that A( TTSP(1)) = 1. Assume that the induction hypothesis is true
for k <m. Let G = (V, E) be in TTSP( m ) with source s and sink ¢£. From
Lemma 7.2, we only have to show | agz(T ) | < m for any T. From the definition
of TTSP, G must be constructed either in series or in parallel from

G, €TTSP(m,;) and Gg € TTSP(mgy3) such that m = m; + my and
m1, mg > 0. Then we have

A(G)=A(G,y)+ A(Gy) (from Theorems 3.2 and 4.1)
=m; + mg = m. ( from the induction hypothesis )
Thus
A(TTSP(m)) = m.

Since L,, € TTSP( m ), from Lemma 7.1, A( L,, ) = m, which shows this bound is
achievable. []

We will show the same result for the class of BTTSP multidigraphs. The fol-
lowing lemma says that every backedge in an s —¢ path in a BTTSP graph lies on
a cycle which lies on the s —¢ path.

Lemma 7.3. Let Gp be a BTTSP graph with source s and sink ¢, and let P be a
path from s to ¢ possibly using some backedges in Gg. Then P can be represented
as follows: P = P;C1'P3C%* . ..P,C} where P1Py ... P, is a path from source
to sink in the underlying TTSP graph G, the C;’s are cycles in Gg, and r; = 0 for
1 <i <k
Proof. See next section. []
Theorem 7.2. A(BTTSP(m )) = m.
Proof. Since TTSP(m ) C BTTSP( m ), we have

A(BTTSP(m )) = A(TTSP(m)) = m.

We now prove that for an arbitrary graph Gg € BTTSP( m ) with at least one
backedge, A(Gg ) = m. Let G = (Vy, E;) be the underlying TTSP graph of
Gg, and let T be a two-dimensional labeling of Gg. Let Pg( s, t ) be the set of s —¢
paths in Gg, and let P(s, ¢ ) be the set of s —¢ paths in G. Let P be an arbitrary
path in Pg( s, ¢ ). Then from Lemma 7.3, P can be represented as

P = P,C7'P,CYy ... PCH



=939 -

where P{Po ... P} is a path from source to sink in the underlying TTSP graph G,
the C;’s are cycles in Gg,and r; = Ofor 1 =i =< k. Let

Bp = T(PPy...P;) and yp, = T(C;) forl <i < k.
Then
T(P)=Bp P, ' VF, """ TP,
Let
P* = {P;CT P03 ... PO |
P = P,C]'PyC% ...P,C}* € Pp(s, t),
andn; € ZT U{0}for 1l =i < k}.
Let T(P" ) be defined as T(P") = 3 T(Q). Since P* C Pg(s, t), we have

QepP
T(P")=Bp-(yp, +yp, + " +7yp,)C 3 T(P)
P € Pg(s, t)
Note that (P ) is in T(P" ). Therefore
¥ FiPI= - E FTE)
P € Pg(s, t) P €Py(s, t)
Thus we now have
lag(T) =] X T(P)|=| 3 TP
P €Py(s, t) P €Py(s, t)
=] X Bp-(yp,+yp, + +yp) |
P € Pg(s, t)
< | > Bp| +1 (using Theorem 4.2 )
P € Pg(s, t)
= x TP)l+1
PeP(s t)
=|lax(T)| +1 ( from the definition )
< A(TTSP(|E, |)+1
=|E; | +1 ( using Theorem 7.1 )
=m

because | E; | = m — 1 by the assumption that G has a backedge. Thus
A(BTTSP(m)) = m.
Ll
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Corollary 7.2. For BTTSP, the algorithm ZSC runs in O( n® mlog m) time
where m is the number of vertices and the e is the number of edges.

Proof. Clear from Theorem 5.2 and Theorem 7.2. []

8. Proof of Lemma 7.3.

Let G = (V, E ) be a TTSP multidigraph with source s and sink ¢. A binary
decomposition tree for the TTSP, which was discussed in [ 15 ], represents the con-
struction process of the TTSP by a binary tree. A binary decomposition tree,
called BDT( G ), has a leaf for each of the edges of the TTSP multidigraph it
represents. Fig. 7b shows an example, where ,S, ( ,P, ) indicates the two-
terminal series ( parallel ) composition with source v and sink w. Note that every
path in G has a corresponding route in BDT ( G ). For example, the path

P=v-3-b-5—-—c—-—T—d—-—-8—-—¢e—-—9—uw,
shown in bold lines in Fig. 7a, has the corresponding route in BDT ( G )
Papr (v, B)=8 — ;P — a8p — o8¢ — cPe — 59¢ — 54 —
o8 — @S¢ — 4Py — a8y — a8y — &y = eSr— 9=(e, w).
Note that the vertices shown in bold face in the path Pgpr, (b, ¢, d, and e ),
appear in P in this order.

Let T, be the smallest subtree in BDT ( G ) which includes vertices v and w.
( Find the first common ancestor, and include the appropriate subtree. ) Let T, (
T, ) be the subtree of T, in which v ( w ) exists as shown in Fig. 7d. We use 4,
for representing either ,S; or ,Pp. Let ,Ap, 4A., and gA; be the root of the sub-
trees Ty, Ty, and T, respectively. Then we have the following lemma:

Lemma 8.1. Suppose A, appears in Pppr.
If (A, appears in T, then y is in P.
If ,A, appears in T, then x is in P.
Proof. Suppose ;A, appears in T),. The vertex v is in the TTSP graph with source

x and sink y. Thus every path from v to a vertex which is not in 7, must pass
through y. We can prove the other case in the same way. []

Corollary 8.1. Suppose there is a v —w path in G and T,, T, and T, are
defined as above. Let ,Ap, A, and zAp be the roots of the subtrees T, T, and
T, respectively. Then we have the following:

1) LAp = ,Sp, that is, the root of T, corresponds to a series composition, and
c=d.

2) Every path from v to ¢ passes through the vertex c.



-33 -

3) Every path from s to w passes through the vertex c.
4) Any v —t path and any s —w path intersect at some vertex.
Proof. 1) If the root of T, corresponds to a parallel composition, there is no path

from v to w. Thus ,A; = ,Sp. And the series composition identifies the sink of A,
and the source of jA;, thus ¢ = d.

2) Since there is a w —¢ path and ¢ € T,. From the proof of the above lemma,
every path from v to ¢ passes through the vertex c.
3) We can prove this in the same way as 2).
4) It is obvious from 3) and 4). []
Proof of Lemma 7.3. Let k be the number of backedges in P. Let B,y ( P, )
denote an x —y path in Gg ( G ). We prove the lemma by induction on k.
Suppose & = 1 and let e = (w, v ) be the backedge in P. Note that there
must be a v —w path in the underlying TTSP graph G. P can be represented as
P = PSW e Put.
P,, and P, are paths in G, since £ = 1, so that from Corollary 8.1, they pass
through the same vertex c. Therefore, we can express P as
P =Py Py e Py Py
Thus we obtain the cycle
Cy = Poy e Py.

Suppose the lemma holds for numbers less than k. Let
Eg ={ey, eq,..., ¢/} be the backedges which appear in P, in this order. Let
e; = (w;, v;) for 1 =i <1I. Let e = (wp, vf) be the last backedge in Ep such
that there is a path from vf to w; in G. Assume that ef # e;. ( When ef = ey,
we can easily modify the following proof. ) Then as shown in Fig. Te, P can be
represented as

I = Pswlelelwfevaft-
Let Py, be an arbitrary s —vs path in G, and let
By = Psuvaft-

Then P; has [ backedges where [ < k& — 1, because e; is not on P;. From the
induction hypothesis, P; can be formed from an s—¢ path Py and cycles
{C;|j€d} Note that Py is part of Py; that is, there exists a vy—¢ path P,

such that Py = Py Py . Suppose not. Let e = (x, y ) be the first edge in Py,
such that y € P;. Then there exists a backedge ( z, x ) in B, and a cycle C; such
that (z, x ) € C;. Since there exists an x —vy path and a vy—w, path in G, there
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exists a x —w; path in G. This contradicts the definition of vy, since the backedge
(2, x ) is in By,, and thus appears after ef in Ep.

Thus Pg; = Pg Py s, and the path P consists of Py, e1By y ef, Py, and cycles

Py = Psw]elBulwfevaft-

Since there is a vy—w; path in G, from Corollary 8.1, Py, and P,, intersect at
some vertex ¢. Thus Py can be expressed as

Py = Py, CPy; where C = Py, e1By 6Py .

Therefore the path P consists of the path Pg P, cycle C and cycles { C ilJ€ed)
O

9. Conclusion.

We showed that the two operations of vector summation ( - ) and convex hull
of union ( + ) defined on the set of convex polygons form a closed semiring. We
then investigated some properties of these operations. For example, the - operation
can be done in O ( m log m ) time where m is the number of edges involved in the
operation, and the decomposability problem, which can be regarded as the inverse
operation of the - operation, is shown to be NP-complete.

We then obtained the algorithm ZSC by using Kleene’s closure algorithm on
the above closed semiring. The algorithm ZSC solves the two-dimensional zero-
sum cycle problem, which has a close relationship to the problem of acyclicity in
two-dimensional regular electrical circuits. The complexities of our algorithm ZSC
in some special cases are O(n®) time for the one-dimensional labeling case,
O( n*M log (nM )) time for M-bounded graphs, and O(n® m log m ) time for
BTTSP graphs, where n is the number of vertices and m is the number of edges.
The complexity of this algorithm in the general case remains open. We also
showed that the undirected version of the zero-sum cycle problem can be solved in
O( m log m ) time, and that the zero-sum simple cycle problem is NP-complete.

We are now working on the following conjecture about the number of edges of
the convex polygons which appear in the algorithm ZSC:

Conjecture. Let G, T, and a;;( T ) be defined in the same way as in the text.
Then

A(G)=max | a(T)| =m
i T
where m is the number of edges in G.

If this conjecture is true, then algorithm ZSC runs in O( n® m log m ) time
on general graphs.
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A staticgraph G
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The dynamic graph G™®

Figure 1. A static graph G shows how to connect nodes in G™°.
The shaded area shows a basic cell.



Figure 2. o-p is bounded by edges which are equivalent to the edges in a or §.
The equivalent edges are shown by the same numbers.



Figure 3a. There exists k such that 6¢ is between 8¢ and 8¢, ,
in clockwise order.

Pis+1,

Figure 3b. Every point v,-w, in a-g is in the right hand side of f=wj-e where
vi€ aand wy € B.



Figure 3c. This shows part of a-g. A line segment p;;pi,; cannot be an edge of a-,
when | k-i |+ | Ij|= 2.



Figure 4a. Example of an invalid decomposition into
non-independent convex polygons.

B1

Y1

B2

Yo

B3

Figure 4b. a is decomposed in two different ways.




Figure 5. | a-y*|<|a|+1anda+B-y*= (a+ B)-y*.



Wi

fi =(2;,0) gi=(0,0)
Vit vi

e =(0,0)

Figure 6. The graph above has a zero-sum cycle if and only if there exists a subindex
JC’={ 1,2,...,n}SUCh thatﬁje_;aj =B.



Figure 7a. A BTTSP multidigraph Gg; the backedge is indicated by the dotted line.
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Figure 7b. A binary decomposition tree BDT( G ).
The wide solid line corresponds to the path from v to w in Fig. 7a.



Figure 7d. Ap = aSp and c=d. Every path from v to x¢Ty passes through c.
Every path from x¢T,, to w passes through d =c.



P$W1 t

Figure 7e. ef is the last backedge from which there is a path to wy. Then we apply
the induction hypothesis to the path Ps, By, +.



