One-Processor Scheduling of Tasks with
Preferred Starting Times
Michael R. Garey
Robert E. Tarjan

Gordon T. Wilfong

CS-TR-49 -86

One-Processor Scheduling of Tasks with Preferred
Starting Times

Michael R. Garey
Robert E. Tarjan!
Gordon T. Wilfong

AT&T Bell Laboratories
Murray Hill, NJ 07974

ABSTRACT

We consider a new class of one-processor scheduling problems hav-
ing the following form: Tasks T;,Ts, .. ., Tx are given, with each T;
having a specified length I; and a preferred starting time p;. The tasks
are to be scheduled nonpreemptively (i.e., a task cannot be split) on a
single processor as close to their preferred starting times as possible. We
examine two different cost measures for such schedules, the sum of the
individual discrepancies from the preferred starting times and the max-
imum such discrepancy. For the first of these, we show that the problem
of finding minimum cost schedules is NP-complete; however, we give an
efficient algorithm that finds minimum cost schedules whenever the
tasks either all have the same length or are required to be executed in a
given fixed sequence. For the second cost measure, we give an efficient
algorithm that finds minimum cost schedules in general, with no con-

straints on the ordering or lengths of the tasks.

- - - . V -
I Also Computer Science Department, Princeton University, Princeton, NJ 08544.

One-Processor Scheduling of Tasks with Preferred
Starting Times

Michael R. Garey
Robert E. Tarjan't
Gordon T. Wilfong

AT&T Bell Laboratories
Murray Hill, NJ 07974

1. Introduction

Combinatorial scheduling theory has been of interest for almost three decades, and
an impressive body of literature, encompassing a wide variety of problems and methods,
now confronts any neophyte to the field. It is hard to imagine anyone posing a new
type of scheduling problem that does more than merely combine aspects of different
problems that were previously studied independently of one another. However, in this
paper, we shall study exactly such a new class of problems, involving tasks that have

“preferred” times at which one would like them to be executed.

The problems we shall be discussing all have the following general form: We are
given N tasks, T1,Ts, ..., Tn, each with a length [; > 0 and a preferred starting time
p; > 0. It is desired that these tasks be scheduled on a single processor, without
preemption (i.e., once started, a task is always executed to its completion /; time units
later), so that each is begun as close to its preferred starting time as possible. A
schedule assigns to each task T; a starting time s; such that no two tasks overlap in
their execution; i.e., the execution intervals [s;,s; + I and [sj,s; + [j] for any two tasks

T; and T; can intersect only at their endpoints.

We shall consider two different ways of measuring how well the schedule meets the
objective of starting tasks close to their preferred starting times. We define the
discrepancy of a task T;from its preferred starting time to be | s; — p;]. The first such

e :
measure is the fotal discrepancy, Y |s; — p;|. The second measure is the mazimum
i=1
discrepancy, ?a&xN| s; — p;|. We shall consider these two cost measures separately, in
1<i<

each case seeking schedules that make the cost as small as possible.

1 Also Computer Science Department, Princeton University, Princeton, NJ 08544.

-2-

Observe that these problems could just as well be stated using “preferred comple-
tion times” or “preferred midpoint times,” since it is easy to transform any of these
variants into any of the others, so there will be no loss of generality in restricting our

attention to preferred starting times.

Notice also that, although these problems bear superficial similarity to previously
studied problems having specified latest starting or finishing times (deadlines), all the
cost measures that have been considered for these older problems treat tasks that finish
early more favorably than tasks that finish late (and often more favorably than those
that finish on time). In contrast, the problems we consider regard finishing early to be
just as undesirable as finishing late. This is natural, for example, in the scheduling of a
sequence of experiments that depend on predetermined external events (such as the
position of the sun) and in scheduling manufacturing process steps to coordinate with
deliveries (seeking to achieve something similar to “just-in-time’’ inventory control, in

cases where delivery times are less adjustable than process steps).

The only prior work of which we are aware that considers preferred starting times
is that of Vere [5]. Indeed, Vere’s work motivated ours. Vere’s paper considers a more
general class of multiprocessor scheduling problems and presents a two-part exponential
time algorithm for solving them. The first part produces for each task an interval of
time, called a window, during which it can be started, with the property that for any
fixed choice of a starting time for the task within its window there exists a legal
schedule for the remaining tasks. The window always contains the preferred starting
time for the task. The second part of Vere’s algorithm then fixes a schedule of starting
times for each processor using the windows previously produced. However, the algo-
rithm does not attempt to minimize distance from the preferred starting times to the

actual starting times.

The remainder of our paper, all of which deals with scheduling on just a single pro-
cessor (often called “sequencing”’), is organized as follows. In Section 2, we examine the
problem of minimizing the total discrepancy from preferred starting times. We first
show that the corresponding decision problem is NP-complete and hence the optimiza-
tion problem is unlikely to be solvable by a polynomial time algorithm. We then give
an O(Nlog N)-time algorithm that minimizes the total discrepancy when the tasks
must be executed in a given fixed order, and we show that, when all the tasks have the
same length, executing the tasks in order of their preferred starting times is always
optimum. We also show that the algorithm generalizes easily to handle several types of
additional constraints, including window constraints like those obtained from the first
part of Vere’s algorithm. In Section 3, we consider the problem of minimizing the max-
imum discrepancy of any task from its preferred starting time and give an efficient

algorithm for solving this problem in general. The algorithm can also be viewed as

. -

solving a special case of the NP-complete problem [1] of sequencing arbitrary length
tasks under specified release time and deadline constraints. We conclude in Section 4

with some brief final remarks.

2. Minimizing Total Discrepancy

In this section we shall show that the general problem of minimizing the total
discrepancy is NP-complete, and we shall present an O(Nlog N)}-time algorithm that
minimizes the total discrepancy whenever the ordering of the tasks is fixed in advance
or the task lengths are all the same. Section 2.1 contains the NP-completeness proof
for the general problem. Section 2.2 contains a description of our algorithm for the case
of a fixed task ordering. Section 2.3 gives a proof that this algorithm produces a
minimum cost schedule for a fixed task ordering. Section 2.4 describes an O(Nlog N}
time implementation. Section 2.5 contains a proof that in the case of equal length
tasks, scheduling the tasks in order of their preferred starting times is always optimum.

Section 2.6 covers several generalizations of the algorithm.

2.1. The Total Discrepancy Problem is NP-Complete

In this section we show that the general problem of minimizing the total
discrepancy is NP-complete. More precisely, we show that the decision problem, “Is
there a schedule with total discrepancy no more than k?,” is NP-comple-te (and hence

the optimization problem is at least that “hard”)-

In order to simplify the presentation, it will be convenient to work with preferred
midtimes for the tasks, rather than preferred starting times. (Following this section,
we shall return to the use of preferred starting times for the remainder of the paper.)
Thus for each task T; we assume we are given a length / and a preferred midtime M;.
For any schedule S, let myS) denote the actual midtime for T; in S, i.e., the time
exactly half way between the starting and finishing times for T;in S.

The decision problem that will be shown to be NP-complete is as follows.

Total Discrepancy: Given N,k € Z* and M;, [; € Zt (1< i< N),is there a schedule S
N
such that cost(S) = ¥ | m{(S) — M;| < k?
i=1
The total discrepancy problem will be shown to be NP-hard by reducing the fol-

lowing NP-complete problem, which is a version of partition [1], to it.

Even-0dd Partition: Given n € Z¥ and a set B = {by,bs, - - ,ban} of positive integers,
where b; < b4y for 1 < ¢ < 2n, does there exist a partition of B into subsets B; and

B, such that 3] b= Y b and such that for each ¢, 1 < i < n, B; (and hence Bj)
beB, be B,

contains exactly one of { bg;_1, b2i}?

o s

We first show that the even-odd partition problem is NP-complete. Although this
problem is mentioned in [1} and is generally known to be NP-complete, as far as we
know no proof has appeared in the literature. We shall reduce the following standard

version of the partition problem to it:

Partition: Given n € Z* and a set A = {a;,aq, - - - ,8,} of positive integers, does there
exist a partition of A into subsets A; and A2 such that Y a= 3 a?
s € Ay 6 € Ag

Lemma 1. The even-odd partition problem is NP-complete.

Proof. Showing that the problem is in NP is straightforward. To show that it is
NP-hard we reduce partition to it. That is, given an instance P of the partition prob-
lem we show how to construct an instance EO of the even-odd partition problem that
has a solution if and only if P does. The construction of EO (and the size of EO) will be
polynomial in the size of P.

Let P be an instance of the partition problem. That is, we are given n and the set

A = {ay,a9, " - " ,0,}, and we wish to determine the existence of the desired partition

of A.

Consider the following instance EO of the even-odd partition problem. Without
loss of generality we assume for 1 < i < n, a; > 1. We define the elements of the set B
of EO recursively as follows:
by =1
boj=boi—y + 4, 1< i< m
bosp1=bas+ 1,15 1< m
Clearly b; < b;4q for 1 < i < 2n. Suppose B, and B, form a partition of B such
that for each i exactly one of by; and bg;—q is in By (and the other is in Bj). Let
Bi= Y b= ibg;_l + Y e for j=1,2. Then By =B, if and only if
b€ B; i=1 bai € B

Y} a;= Y, a; Therefore setting A; = {a;:bg; € B;} for 3= 1,2 provides a parti-
bg.’e Bl bg. € Bg

tion of A that satisfies P if and only if B; for j = 1,2 is an even-odd partition of B that
satisfies EQ. O

We wish to show that the total discrepancy problem is NP-complete by reducing
the even-odd partition problem to it. Towards this end we first consider a special case
of the total discrepancy problem in which we aré given tasks T, Ty, - - -, Tan, 2 length
I; for each Tj, and a single preferred midtime M that applies for each of the tasks. We
2n

assume that M is large (e.g M > Y) and that the tasks are ordered so that
s=0 i

0<lp<ly< -+ <lg,. The cost of a schedule S of these tasks will be

sosiCS= §U;M- miS)].

-5-

We shall show that for problems of this type minimum cost schedules take on a

very special form.

The first observation we make is that a2 minimum cost schedule S for such a set of
tasks cannot have any gaps between tasks. Clearly if there were a gap in the schedule
then the cost of the schedule could be reduced by closing the gap by rescheduling some
of the tasks closer to M.

We define the sets A(S) = { Ti: m{(S) < M} and B(S) = {T;: m{(S) > M}. Notice
that if my(S) = M then T; belongs neither to A(S) nor to B(S). The notation |X | will
be used to denote the cardinality of a set X.

It is easy to show that for any minimum cost schedule Sif T; and T; are both in
A(S) and [; < I; then my(S) > my(5). Similarly, if T; and T; are both in B(S) and
I; < I; then my(S) < my(S). We say that a schedule is ordered if it has these properties.
These observations follow by a simple swapping argument. Intuitively, the reason that
minimum cost schedules are ordered is as follows. Suppose T € B(S). Then the length
of T occurs as an additive term in the discrepancy for each task in B(S) that is further
from M than T. Thus the tasks that are closer to M contribute their lengths to the
cost of the schedule the largest number of times, and hence it is beneficial to schedule

the shorter tasks nearer to M.

We now show that another property of a minimum cost schedule S is that there is
some task not in A(S) or B(S). That is, there is a task whose scheduled midtime is at
M.

Lemma 2. If S is 2 minimum cost schedule then myS)= M for some :,
0< i< 2n.

Proof. Suppose myS) # M for all 1, 0< i< 2n Then
|A(S)| + |(B(S)| =2n+1 and so |A(S)| # |B(S)|. Consider the case
|A(S)] < |B(S)]-

Let mj{(S) = min{m{S): T; € B(S)} and k= mj(S)— M. Define E to be the
schedule such that myR) = my(S) — k. That is, R is obtained from S by rescheduling
all tasks k units earlier. By the definition of k, it follows that mj(R) = M. Then
cost(R) = cost(S) — |B(S)|k + | A(S)| k, but since | B(S)| > |A(S)| we can conclude
that cost(R) < cost(S). This contradicts the minimality of the cost of S.

The case where |A(S)| > | B(S)| leads to a similar contradiction. It follows that

there must be some i such that my(S) = M whenever Sis a minimum cost schedule. O

_ The next property we show for minimum cost schedules is that there must always
be the same number of tasks with midtimes scheduled after M as with midtimes
scheduled before M.

Lemma 3. If Sis a minimum cost schedule then |A(S)| = | B(S)].

-6-

Proof. By way of contradiction assume that |A(S)| < | B(S)]. The case where
|A(S)| > | B(S)]| is similar.

By the previous result we know there is some i such that m{S) = M (and hence T;
is in neither A(S) nor B(S)). Therefore it must be that |A(S)| + |B(S)| = 2n and so
IB(S)] > 1A(S)] +2 |

Define 7, k and R as in the previous proof. Then
cost(R) = cost(S) — | B(S)|k + (|A(S)| + 1)k because the midpoints of the tasks in
B(S) are k units closer to M, the midpoints of the tasks in A(S) are k units farther from
M. and the midpoint of the task T; that has its midpoint at M in S is also k units

b

farther from M in R than in S. Thus
cost(R) < cost(S) + (|A(S)] + 1 — |A(S)] — 2)k = cosi(S) — k < cost(S5).

This contradicts the minimality of the cost of S and hence we conclude that
|A(S)| = |B(S)|. O

We now know that every minimum cost schedule is ordered and has no gaps, that
it has some task T;scheduled with its midpoint at M, and that the remaining tasks are
divided equally in number on either side of M. Therefore we can completely describe a
minimum cost schedule by giving the order of the tasks in the schedule and indicating
which task has its midtime at M. We use the notation

I T A, T@ M,B,,B,, - - - ,B,)

to denote the minimum cost schedule S that has the tasks scheduled in the order indi-
cated and that has task T scheduled with its midtime at M.

We now show that the task with scheduled midpoint M must be Ty, the task with
the shortest length.

Lemma 4. If Sis a minimum cost schedule then mo(S) = M.
Proof. By way of contradiction assume that m;(S) = Mand ;7 # 0. That s,
8= A, Aar; " Ay T; @ M,B,,By, - -~ ,By]-
Since Sis a minimum cost schedule we know that it is ordered. Thus either A} = To
or By = Ty.
Suppose B; = To. Let S’ be the schedule
[hly.as = ¢ = Ay @ M, T;,Bs, - - - ,By].

Then the cost due to B; (2 < ¢ < n) increases by (I; — o) /2, the cost due to A;
(1 < i < n) decreases by (}; — lp)/2, the cost due to T; increases by (lo + §;)/2, and
the cost due to To decreases by (lo + j)/2. Thus cost(S') = cost(S) — (I — lo)/2.
Since I; > lo we conclude that cost(S') < cost(S). This contradicts the fact that Sis a

minimum cost schedule.

The case where A; is T is handled simiié,rly. Thus mo(S) = M if Sis a minimum

cost schedule. O

Thus far we know that a minimum cost schedule must be an ordered schedule
without gaps such that the shortest task has its midtime at M and the numbers of
tasks on the two sides of M are equal. We would like to further characterize the form
of any minimum cost schedule by showing how to choose the side of M on which 2 task
should be scheduled. Towards this end we make the following definition. If

S=[AnAn_1, " AL To@ M,By,Bs, - -~ ,By)
then define

S;= [An - A1 BiAi-n - Ay, To@ M,By, - - - ,Bi_1,Ai,Biy1, -+ Bal:
That is, S; is the schedule obtained from S by swapping the order of A; and B; and leav-
ing the order of the remaining tasks the same. We now show that swapping such tasks
does not change the cost of the schedule. Intuitively, this follows because the number
of tasks scheduled before A; is the same as the number of tasks scheduled after B; and
hence the number of times each contributes its length to the cost is the same in either

case.
Lemma 5. For S; as defined above, cost(S;) = cost(S).
Proof. Let a; be the length of A; and let b; be the length of B;. Without loss of

generality assume a; < b;.

The cost due to A; and B; (1< j< 1 — 1) remains the same in S; as in S. Also
the cost due to T remains 0. The costs due to the n — i tasks Bj;q,Bise, - - , By are
b; — a;less in S; than in S and the costs due to the n — i tasks Ajyq1,Aiy2, "~ ,An 2T€
b; — a; more in S; than in S Therefore the changes in the costs due to all of these tasks

cancel each other out.

The sum of the costs due to A; and B; remains the same in S; as in S. Thus swap-
ping A; and B; causes no change in the cost of the schedule. O

As a consequence of the previous lemma we know that S is a minimum cost
schedule if and only if S; (1 < ¢ < n) is 2 minimum cost schedule.

Lemma 6. If S = [A;,Ap—1, - - - Ay, To@ M,By,Bs, . . . ,By] is a minimum cost
schedu]e, then {Ag,B,‘} = {Tg;, Tg,'._l}.

Proof. Consider S; where 1 < i< n. By the above remarks we know that S; is
also a minimum cost schedule. Therefore S; must also be an ordered schedule. Thus,
not including Tp, there must be exactly 2(i — 1) tasks with lengths less than both the
length of A; and the length of B; (and hence 2(n — 1) with greater lengths). The only
tasks with this property are Tg; and T3, s required. Hence A; is one of T,; and

To;—1 2nd B; must be the remaining one. O

Given the above characterization of a minimum cost schedule it is easy to show

.on
that the cost of any such schedule is ¥ (lgs + loi—1)(n — ¢ + 1/2) + (lo)n.

Ci=1

e

We are now in a position to show that the total discrepancy problem is NP-
complete. Again, we show that the problem is NP-hard by reducing a known NP-
complete problem (the even-odd partition problem) to it, leaving the proof that it is in

NP as a simple exercise.
Theorem 1. The total discrepancy problem is NP-complete.

Proof. Let EO be an instance of the even-odd partition problem. That is, we are
given a set B = {by,bs, - -~ ,bon} of positive integers, with b; < b4, for 1 <Li<n
and we wish to find a partition of B into sets B and By such that for each 3
1 < i < m, exactly one of by; and bg;—; s in B, (and the other is in Bg) and such that

3 b= 3 b Without loss of generality we assume that b, > 1.
be B, b€ By

From this instance we define the following instance D of the total discrepancy
problem. We take N, the number of tasks to be 2n + 2. The tasks are
To,T1, - = =, Ton41 such that lo=1by—1, lppy1 =2 2nd = b; for 1 < 1< 2n. We
2n

set M;= Y, 1;/2= Mior 0 < j< 2nand My,yy = 2M + lons1/2. We wish to know
i=0

if there is a schedule of the tasks such that the cost of the schedule is at most

n
k= 2 (lgi + loima)(n — i+ 1/2) + (lo)n.

i=1

By our previous results we know that the cost of any schedule of the tasks
To,T1, - - -, T2n must be at least k. Therefore there is a schedule S of all the tasks that
costs at most k if and only if the cost due to Tap4; in Sis 0 and the total cost due to
the other tasks is k.

Let S be any schedule of the 2n + 2 tasks and let S’ be the schedule that results
by removing Ta,4; from S. Then S' has cost k if and only if S’ is a minimum cost
schedule for To, Ty, - - -, T2y, and we know from our previous results that any such s’
must be an ordered schedule without gaps, must have mo(S') = M, and must have
exactly one of Ta; and To;_; in A(S') (and the remaining one in B(S")).

The additional cost due to Tg,4q in Sis 0 if and only if
M+l/2+ B < Magyy — lonsn/2=2M
T € B(SI)
Since
2n
M= Y1/2,
i=0
we can conclude that the additional cost due to Ton+1 is 0 if and only if
2n
Y KL YL/2
T;€ B(S’) i=1
and

Y &< 22'31:'/2

T.c A(s') i=1

-9-

because the tasks in A(S') must be scheduled between 0 and M — o /2.

Therefore the schedule S has cost at most k if and only if S’ is an ordered schedule
without gaps, exactly one of To; and To—y is In A(S'), and
2n
Y k=Y k=YhL/2
T, € B(S') T; € A(S") i=1
Let By = {b;: T; € A(S")} and By = {b;: T; € B(S")}. Then Sisa solution to D if
and only if By and B, form an even-odd partition of B that satisfies EO. O

2.2. A Scheduling Algorithm for a Fixed Task Ordering

We now turn to the special case in which the tasks are to be executed in a given
fixed sequence. Here, and in the remainder of the paper, we shall assume the preferred
times for the tasks are given as preferred starting times, and throughout the rest of this

section we shall refer to the sum of the task discrepancies as the cost of the schedule.

Assume that for 1 < ¢ < N, task T; must be completed by the time task Tjy; is
started, i.e. the tasks must be executed in the order given by their indices (which is
arbitrary). Our scheduling algorithm schedules tasks one at a time in increasing order
by index, sometimes shifting previously scheduled tasks earlier when scheduling a new
task.

Let S, be the schedule computed for the first n tasks. The blocks of the schedule
are the maximal sets of tasks Tj, ..., T; that are scheduled comtiguously, i.e.,
s;+ = 841 for dg < 1 < 4y, sjp—1 + lig—1 < S0 (or ig = 1), and s;, + &, < i1 (or
i; = n). Assume that there are t blocks By, . . . ,B;in S,.

We define a partition of each block B; into two subsets, Decrease(j) and
Increase(j), as follows: task T;€ B;is in Decrease(j) if s; > p; and is in Increase(j) if
s; < p;. The idea is that if T; € Decrease(j), reducing s; decreases the discrepancy of
T;, whereas if T;€E Increase(j), reducing s; increases the discrepancy of T;. We define
Inc(j) to be the number of tasks in Increase(j) and Dec(j) to be the number of tasks in
Decrease(j). As a way of representing the blocks, we denote by first(j) and last(7) the

smallest and largest indices, respectively, of tasks in B;.

Our initial schedule S; simply schedules T to start at time p;. In general, given
S,, we schedule T,4; as follows. There are two cases. If s, + I, < pny1, then we
schedule T, to start at p,41. In this case T,4; has no discrepancy, and S, and S, 41
have the same cost. If on the other hand s, + I > pni1, We begin by scheduling T4
to start at s, + I,. Now 'T,,,+1 has positive discrepancy, and both the block B; and the
set Decrease(t) have gained T, as a member. A key property that our algorithm will :
maintain is that, for each block Bj in Sy, either Dec(j) < Inc(j) or 8firse(j) = O (in which
case j=1). Hence, after scheduling T,4+1, we have either Dec(t) < 'Ine(t) or

-10-

Sgirst(t) = 0. If Sfirge(yy = 0 oF Dec(t) < Inc(t), we take no further action; the current
schedule is S,4;. On the other hand, if now Dec(t) = Inc(t) and sg() # 0, we can
shift the entire block B, earlier without affecting the cost of the schedule. We shift
block B; earlier until one of three things happens:

(1) Sfires(s) ecomes zero;

(ii) for some T; € By, s; becomes equal to p;; or
(iii) Sgrse(r) becomes equal t0 $(gp(r—1) + Ligst(t—1)-
The resulting schedule is B

Observe that case (i) above can only occur if ¢ = 1; if it occurs, block B; cannot be
moved earlier because it now starts at time zero. In case (ii), task T; is transferred
from set Decrease(t) to Increase(t), and further shifting of B, will only increase the cost
of the schedule. In case (iii), block B is merged into block By_;. By the property men-
tioned earlier, in S, it will be true that either Dec(t—1) < Inc(t—1) or sgree(t—1) = 0,
which implies that after B; is merged into By_y, it is still true that either
Dec(t—1) < Inc(t—1) or sgrai(t—1) = 0, 1€, the combined block cannot be shifted ear-

lier without increasing the cost (or illegally starting a task before time 0).

The scheduling algorithm consists of beginning with the schedule S; and applying
the above construction to form schedules S,,S3, .. .,Sy. The observations above sug-

gest why the algorithm should work. We prove correctness in the next section.

2.3. Proof of Correctness

For any schedule S, we denote the cost of S by cost(S). Our correctness proof

begins with a lemma.

Lemma 7. For any schedule S, computed by the algorithm, each block B; in S,
satisfies Dec(j) < Inc(j) or Spra(j) = 0.

Proof. By induction on n, using the observations at the end of Section 2.2. O

Theorem 2. For any n, the schedule S, computed by the algorithm has

minimum cost among all schedules of the first n tasks.

Proof. By induction on n. The theorem is certainly true for the empty schedule
So. Assuming that it is true for values O through n, we shall prove it for n + 1. Let S
be any schedule of the first n + 1 tasks, and let s; and s; be the starting times of task

T; in S, and S, respectively. We consider two cases.

Case 1. If s, + I, < pny1, then in Spyy task Toyy is scheduled to start at pp4q,
i.e., it has a discrepancy of zero. Thus cost(Sp41) = cost(S,). But cost(S) > cost(S,)
by the induction hypothesis, since S with T,.+1 deleted is a schedule for the first n
tasks, having cost at least cost(S,) by the induction hypothesis, and the discrepancy of

- 3 =

T,4; in S (and indeed in any schedule) is non-negative. It follows that
cost(S) > cost(Sy41), i.e., the theorem is true.

Case 2. On the other hand, suppose s, + l, > pn,4+1. Let R be the schedule
formed from 5, by starting Tisa at time sy + I Then
cost(Sp41) = cost(R) = cost(S,) + s» + l, — pns1, since the shift that produces Sy44
from R does not change the cost of the schedule. (This follows from Lemma 7 by the
discussion in the description of the algorithm.) Let us compare cost(S) with cost(R).

We consider two subcases.

Case 2.1. If we have Sps1 2 Sp+ L then cost(S)
> cost(S,) + Spy1 — Pat1 = cost(S,) + sy + Iy — Pns1 = cost(R), which means the

theorem 1s true.

Case 2.2. The remaining case is sp4;’ < s, + . Let B be the last block in R,
which consists of the last block in S, augmented by Tp4;. By Lemma 7 and the discus-
sion in the algorithm description, Dec(f) < Inc(t), where these values are defined with
respect to B. Since every task in B, is scheduled no later in S than in R, it follows that
the total discrepancy of the tasks in By is no less in S than in R. Let S’ denote the
schedule of the tasks in Ty, T2, . - -, Thrst(e)-1 formed from S by removing the tasks in
B,. Removing the tasks in B; from R leaves exactly Spra(-1- BY the induction
hypothesis, cost(S') > cost(Sprst(t)—1), Which implies by the observation above that
cost(S) > cost(R), and again the theorem is true. O

Note that the minimum cost schedule is not necessarily unique. The algorithm
computes an “earliest starting time” minimum schedule; that is, among minimum cost
schedules, the one computed by the algorithm schedules every task as early as possible.
Note also that by changing the task ordering it may be possible to reduce the cost of
the schedule.

2.4. Efficient Implementation

It is straightforward to implement the scheduling algorithm to run in O(N?) time.
To achieve a smaller time bound, we need a data structure that will allow us to deter-
mine quickly the amounts by which blocks should shift. For this purpose we use heaps
[4] (sometimes called priority queues [2]). For each block Bj in the current schedule, we
maintain a heap h(7) containing all indices 7 such that T; € Decrease(j). Each index 7 in
h(j) has a key equal to s; — p;, i.e., the maximum amount by which s; can be decreased

while decreasing the discrepancy of T;. We need the following operations on heaps:
make_heap (h): create a new, empty heap, named h.

find_min (h): find an item of minimum key in heap h and return its key,

without removing the item from h.

-12-

delete_min (h): find an item of minimum key in h, delete it from k, and return it.
insert (3,7,h): insert item ¢ with key z in heap A.
meld (hq,h2): combine item-disjoint heaps hy and hy into a new heap, which

becomes hy; ho becomes empty.
add_to_all_keys(z,h): add z to the keys of all items in h.

These operations can be implemented to run in O(log N) time per operation (each
heap will contain at most N items). Indeed, the time for make_heap and
add_to_all_keysis O(1) [4].

The implementation of the algorithm as the procedure minimize_sum is given in

Figure 1. It uses the auxiliary procedure shift given in Figure 2.

procedure minimize_sum,
t:= first(1):= last(1):= Inc(1):= 1; Dec(1):= 0; s1°= pu;
make_heap (h(1));
for n:= 1to Ndo
if s, + I, < pp+1 then
{t:= t + 1; first(t):= last(t)'=n + 1;
Inc(t):= 1; Dec(t):= 0; Sp41°= Pa+1;
make_heap (h(1))}
else if s,+1, = p,+1 then
{last(t):= n + 1; Inc(t):= Inc(t) + 1; sp41°= Sat+ 1}
else if 5, + I, > pn+1 then
{last(t):= n + 1; Dec(t):= Dec(t}+1; sp41°= Sntls;
insert(n + 1,851 — Pas1,h (1))
if Dec(t) = Inc(t) then shift}
end for

end minimize_sum;

Figure 1. The procedure minimize_sum.

<13 =

procedure shift;
A, = find_min(h(t));
Ag:=if t = 1 then s; else Sgra(r) — Stast(t—1) — Uigst(t—1);
A= min{A;,A};
add_to_all_keys(—A,h(t));
Sfirst(t) = Sfirst(t) — A; Sigst(t) "= Slast(t) — A;
while find_min (h(t)) = 0 do
i:= delete_min (h(t));
Dec(t):= Dec(t) — 1; Inc(t)'= Inc(t) + 1;
end while;
if Sfiret(t) = Stast(1—1) T last(e—1) then
{meld (h(t—1),h(t));
last(t—1):= last(t);
Inc(t—1):= Inc(t—1)+Inc(t);
Dec(t—1):= Dec(t—1)+Dec(t);
ti=t— 1}
end shift;

Figure 2. The procedure shift.

When minimize_sum finishes its computation, the values of first(7), last(3), Sgirst(s)s
and Sygu(;) for each block B; are correct; starting times for tasks not beginning or end-
ing a block may not be correct because they do not reflect shifts. The correct starting

times of the tasks can be computed in O(N) time using the following recurrence:

Sfirsi(5) if i = first(j) for some j < ¢
%= 1s_1 + i1 otherwise.

It is straightforward to show that the implementation is correct and runs in
O(Nlog N} time.

2.5. Equal Task Lengths

Suppose that all tasks have the same length. Then, as we show below, among
schedules having no restriction on the task ordering, there is always a minimum cost
one that executes the tasks in order of increasing (nondecreasing) preferred starting

times. Thus in this case we can find a globally minimum cost schedule by first sorting

w Pl

the tasks by preferred starting time and then applying the previously described algo-
rithm. As a notational convenience, we shall assume in this section that the tasks are

indexed so that p; < piy1-

Theorem 3. If all tasks have the same length, then there is a minimum cost
schedule in which 8; < 8;41 for1 < 1 < N

Proof. We use a standard interchange argument. Assume S is any schedule con-
taining two tasks T; and T; with p; < p; but s; > s;. We shall show that the tasks can
be interchanged in S without increasing the cost of S. The theorem then follows by
induction on the number of interchanges needed to put the tasks in order by preferred

starting time.

Since T; and T; have equal lengths, interchanging them results in a feasible
schedule, i.e. it does not produce overlapping tasks. There are six cases, depending on
the relative ordering of p;,pjs;, and s;. In the two cases s; < ;< p; < pj and
p; < pi< s < s interchanging T; and T; results in no change in the cost of the
schedule. In the four cases s; < p; < 8 < pjy 85 <pi<pi<s, pi<s<s<p;
and p; < s; < p; < s, the interchange always reduces the cost. O '

2.6. Generalizations of the Algorithm

The following generalizations, motivated primarily by the additional constraints
considered by Vere [5], can be made to the procedure minimize_sum of Section 2.4. It
should be noted, however, that the ordering result for equal length tasks (Theorem 3)

need not continue to hold in these versions of the problem.

2.6.1. Window Constraints

We assume in this section that for each T;, we are given a window of time |[a;,b;]
in which T; must be started. We call these constraints window constraints. Following
Vere [5), we assume that each window [a;,b;] is such that a;+ < 654, and
b; + ; < bj4,. Suppose that several of the tasks have their starting times fixed in a
consistent manner (i.e., the fixed tasks do not overlap one another in time). Then the
above property ensures that there exists a schedule in which the fixed tasks start at
their fixed times and the starting times of the remaining tasks fall within their given

windows.

It is easy to extend the algorithm given previously to handle such constraints. A
block B; is said to be fized if s; = e; for some T; in B;. That is, no task in B; can be
rescheduled earlier without splitting the block or violating a window constraint. When
shifting the rightmost block B to the left in modifying the schedule for the first n tasks
to incorporate Tp4;, we now have an additional stopping criterion: we stop shifting if

B, becomes fixed. No shifting is possible if By is already fixed, or if T4 is merged into

= B

B, and causes By to become fixed because s;41 = Gp41-

To keep track of when blocks become fixed, we need only maintain a single vari-
able for each block Bj, equal to the least distance of any task in the block to the left
end of its window. When two blocks are merged (or a task is merged into a block), the
new value of this variable is the smaller of the corresponding values for the two original
blocks. In determining how far we can shift B,, we simply take the smaller of this value
and the shift distance computed in the previous version of shift. Clearly this can be

done without increasing the time complexity of the algorithm.

2.8.2. Consecutive Task Constraints

We next consider the case in which we allow consecutive task constraints, which
are of the form 8;41 = 8 + k. We shall show how to extend the scheduling algorithm
to handle such constraints. We call a set of consecutive tasks Ty, Tj41, - - - » Tk 2 string
if T;, is constrained to start when T; finishes for j < i < k, but not for 1 = j— 1l or
i=k (Thatis, T;Tj41, .-, T is a maximal set of tasks whose starting times are
fixed with respect to each other.)

We modify the algorithm so that at each iteration it attempts to schedule the next
string instead of just the next task. For any string it is easy to find a starting time for
the string so as to maximize the number of tasks in the string with initial starting
times greater than their preferred starting times. Call this time g for the k™ string.
The first step in the algorithm is very similar to that of the original algorithm, except
that the relationship between s, + I, and ¢, is tested. Similar actions are taken as
before, except that instead of just adding one task to h(t), each task in the string must
be added.

The major difference in the algorithm is that whereas before we only had to shift
at most once in each iteration of the main loop, now it may be the case that after the
string is placed at the end of the schedule (i.e. just before shift is called for the first
time) we have Dec(t) > Inc(t). Instead of just shifting once we continue to shift until
Dec(t) < Inc(t) or the left end of the block reaches 0. Notice that once a task joins
Increase(t) it never leaves. Also, every time shift is called, the difference between Dec(f)
and Inc(t) is reduced by at least one or else the left end of the block reaches 0, in which
case shift is no longer called. Thus, in each iteration of the main loop the number of
times shift can be called is at most the number of tasks in the string being added. The
modified algorithm takes O(Nlog N) time in the worst case, since shift is called at most
N times and takes O(log N) time per call.

-16 -

2.6.3. Weighted Sum of Discrepancies

Our final generalization allows each task T; to have an associated weight w; > 0,
with the objective now being to minimize the weighted sum of the discrepancies from
the preferred starting times.

The key change to the algorithm necessary to handle this generalization is to
change the definitions of Inc(t) and Dec(i). They are redefined to be the sum of the
weights in the corresponding sets Increase(i) and Decrease(i), rather than the number
of tasks in these sets. It is not hard to see that the updating of the corresponding vari-
ables in the algorithm is easily changed to correspond to these new definitions. How-
ever, as in the previous section, when adding a new task to the schedule, we may again
have to shift more than once, since merged blocks can still have Inc(i) < Dec(i). The
details of the modifications to the algorithm are straightforward. An argument similar
to that of the previous section shows that the worst-case time complexity remains
O(NlogN). Also notice that for any combination of the generalizations we have

presented, the worst-case time complexity is O(Nlog N).

3. Sequencing Tasks to Minimize Maximum Discrepancy

In this section we consider the problem of scheduling /N tasks so as to minimize the

maximum discrepancy of any task from its preferred starting time.

One convenient way to address this problem is to seek an algorithm for the
simpler variant in which we are also given a bound v > 0 on the desired maximum
discrepancy and asked whether there exists a schedule with maximum discrepancy no
more than ~, with the requirement that we construct such a schedule whenever one
exists. Any algorithm for solving this version can be used as a subroutine to solve the
original problem, simply by performing a binary search on 7 to find its minimum
achievable value. (The sum of the task lengths is an obvious upper bound on 7,
although in practice a better bound will usually be obtained by taking the maximum
discrepancy actually achieved by some heuristically obtained schedule. The number of
bits of accuracy needed to describe the optimal value of 7 is certainly no more than the
number of bits in the sum of the task lengths plus the sum of the preferred starting

times.) Hence we shall concentrate on this variant.

We can reformulate this version of the problem in terms of individual task
¢“release times” and “‘deadlines” by observing that our goal is equivalent to finding a
schedule that begins each task T; no sooner than max {0, p; — 7} and that finishes T;
no later than p; + ; + . Thus, instead of thinking of each task T; as having a pre-
ferred starting time p; we can think of T; as having a given release lime r;
(= max{0, p; — 7}) and a given deadline d; (= p; + k; + 7), with our goal being a
schedule that begins each task no earlier than its release time and finishes it no later

-17 -

than its deadline. Although the general problem of determining whether there exists a
one-processor schedule for such a set of tasks is NP-complete [1], in our case the task
release times and deadlines have a special form. Namely, there exists a constant
a = 27 such that, for each task Tj, either di—r;=L+acorrp=0and &; <+ c.
We shall see that this makes the problem significantly easier.

We shall work with the problem in this form. A schedule will be called feasible if
it begins each task no sooner than its release time and finishes it no later than its dead-
line. A schedule is optimum if it is feasible and, among all feasible schedules, has
minimum makespan (i.e., minimizes the completion time of the latest finishing task).
This additional optimization criterion will be useful for building up new schedules from
those for smaller sets of tasks. Indeed, our algorithm will actually produce an optimum

schedule for our problem rather than just an arbitrary feasible schedule.

3.1. Normal Forms for Optimum Schedules
The key result we shall use for solving this problem is the following:

Theorem 4. Consider any instance of the above scheduling problem, and let Ty
be a task having the largest deadline in this instance. Then, if there exists a feasible
schedule, there exists an optimum schedule in which the tasks that follow Ty all have
release times strictly later than the time at which Ty starts. (We say that such a

schedule satisfies the release time property.)

Proof. Consider any such instance for which a feasible schedule exists, and let Ty
be a maximum deadline task. For any feasible schedule, let us say that a task T;is a
straggler in that schedule if it is executed after Ty but has a release time no greater
than the time at which Ty starts. Suppose, contrary to the theorem statement, that

every feasible schedule for this instance has at least one straggler.
Consider any optimum schedule with the following properties:
(a) Among all optimum schedules, it has the fewest tasks executed after Tn.

(b) Among all optimum schedules satisfying (a), it has the fewest tasks executed
between Ty and the first straggler that follows Tn.

Let Ty,Ts, ..., T; denote the sequence of tasks executed after Ty in this
schedule up to and including the earliest straggler T;. For 1< i< g, let ¢ denote the
starting time for T; in the schedule, let ¢ denote the starting time for Ty, and let £,
denote the finishing time for T;. We shall alter the portion of the schedule between g
and £;4; in such a way as to show that the original schedule could not have satisfied
the stated properties, a contradiction to the assumption that every feasible schedule

includes a straggler.

First, suppose that some task among i Ty e 5 T;_, has its deadline at or after

- 18-

t;+1. Let Ty be the rightmost such task. We construct a new schedule by pulling out
Ty, moving Tgyq, - - - , Ij left to ¢, and reinserting T, into the gap created, so it now
finishes at time t;,;. Obviously, T} is still legally scheduled, since it moved right to a
point no greater than its deadline. Also, T; is still legally scheduled, since it moved left,
but still begins after #, > r;. Since each task T;€ {Ti41,---,Tj—1} satisfies
d; < tj4+1, it must be the case that n=di—a— <ty —a—LE< - L <y,
because iy < g < dy=ry+ IN+ @ < tg+ Iyn+ a< t; + . (The release time
r; must differ from d; by exactly o + [;, because r; > o > 0). Thus, since T; does not
start before t; in the new schedule, it too is still legally scheduled. Hence the new
schedule is feasible, has the same number of tasks executed after Tp as the original
schedule, and has fewer tasks executed between Ty and T; than before, a contradiction
to our choice of original schedule. Therefore, we know that the deadlines for the tasks

Ty, Ty, ..., Tj—y must all precede £,

Now suppose we interchange the tasks Ty and Tj, shifting the block of tasks
between them left or right depending on which of the two is longer. We want to show
that the new schedule is still feasible, which will give us our final contradiction, since
the new schedule is still an optimum schedule and has fewer tasks executed after Ty

than the original.

Obviously Tx and T; are legally scheduled in the new schedule, since their release
times are both at or before t; and their deadlines are both at or after ¢;4;. Consider
any task Tj;, 1< i< j— 1. Since d; < 4y, the release time r; for T; is less than
tiy1 — @ — I (again, r; must differ from d; by the full amount o + [, because
r; > to > 0). However, T; now starts after T; finishes, which is at most a to the left of
where T; finished in the original schedule, i.e., at least t;4; — @, which is already
greater than the release time for T;. Thus T; still starts after its release time. On the
other hand, since r; > to (by assumption), we must have d; > fo + L+ a>t)+ a
Since T; now finishes before the start of T, and Ty starts at most « later than 1t
started in the original schedule, i.e., no later than £y + @, we also have that T; still fin-
ishes before its deadline. Thus the new schedule remains a feasible schedule and is still
optimum because we have not changed the makespan. Since it has fewer tasks exe-
cuted after Ty than the schedule with which we started, we have our final contradic-

tion, proving the theorem. O

Our algorithm will not be based directly on Theorem 4, but, rather, on the follow-
ing corollary of Theorem 4:

Corollary 1. Consider any problem instance for which a feasible schedule exists,
and let Ty be a maximum deadline task in this instance. Then there always exists an
optimum schedule in which, for some real number B> 0, the set of tasks executed

before Ty is exactly the set of all tasks with deadline B or less.

- 18=

Proof. For any optimum schedule of the form given by Theorem 4, let ¢ be the
time at which Ty starts in the schedule. Every task T; executed before Ty has
d; < r;+ i+ . Since T; finishes no later than time ¢t in the current schedule, we
have r; + k< t and hence d; < t + . On the other hand, every task executed after
Ty has release time greater than t and hence deadline greater than ¢ + «. Thus the set
of tasks executed before Ty is exactly the set of tasks with deadline ¢ + « or less. O

Consider any optimum schedule of the form given by Corollary 1. Since Ty starts
no sooner than ry and since dy = ry + Iy + a, the finishing time for T must be at
least dy — o (or 0, if this is negative). Any other task T; satisfies d; < dy and hence
r; < max{0,dy — «}. In particular, this says that all tasks executed after Ty must
have release times no greater than the time at which Ty finishes. This immediately
implies that there can be no idle time in the schedule from the time that Ty starts to
the time that the last task finishes, for otherwise we could shorten the schedule by
shifting to the left any tasks that follow such an idle period. Moreover, it also implies
that we can without loss of generality execute the tasks following Ty in order of
increasing (nondecreasing) deadlines, since, if any ordering of those tasks finishes all of

them by their deadlines, this ordering necessarily will.

Let the tasks in our given problem instance be indexed so that
d, < dy < --- < dy, and, for convenience, let us introduce an additional dummy
task Tp having ro = do = lp = 0. Then Corollary 1 and the preceding paragraph tell
us that, whenever there exists a feasible schedule for this instance, there necessarily
exists an optimal schedule of the following standard form: For some index j,
0< j< N—1, it begins with a schedule (which can be assumed optimum) for the
tasks To, Ty, ..., Tj This is followed by the remaining tasks
T Tinns Fines - - - » T, executed in this order and without any intervening idle
time, beginning as soon as possible after the completion of the first part of the schedule,
i.e., beginning at the maximum of ry and the completion time for the prior portion of
the schedule. We will call the index j the split indez corresponding to this standard

form schedule.

We also observe that the release time property given in Theorem 4 remains
relevant, although it is not the case that every optimum schedule of the above standard
form must have this property. The proof of Corollary 1 actually showed that any
optimum schedule with the release time property must have the form given in Corollary
1, and hence we know that there always exists an optimum schedule satisfying Corol-
lary 1 and having the release time property. The necessary transformations, as dis-
cussed above, performed on such a schedule to obtain a schedule in our standard form
neither changed the set of tasks executed after Ty nor increased the starting time for
Ty. Thus we have:

- 920 -

Corollary 2. Whenever there exists a feasible schedule for the given problem
instance, there always exists an optimum schedule that is both in standard form and

has the release time property.

3.2. The Optimization Algorithm

These normalization results lead directly to an algorithm for solving our problem.
We first sort the given tasks so that dg < d; < -+ < dy. We then successively find
optimum schedules for the subproblems consisting of tasks To,Ty,...,T,, for n
increasing from O to N. For each such subproblem, we can restrict our search to solu-
tions in standard form, with T, playing the role of the maximum deadline task in that

subproblem.

To solve the subproblem consisting of Ty alone, we simply schedule T at time 0.
In general, to optimally schedule the task set To, Ty, ..., T,, given optimal schedules
for the smaller sets, we merely need to consider each of the indices 0,1,...,n — lasa
possible split index for this problem. For each such index 7, we can determine the
corresponding standard form schedule using the already-computed optimum schedule
for the tasks T, Ty, - - -, Tj. We then have to make sure that the resulting schedule is
feasible, which requires only that we verify that T, and all tasks that follow it in the
schedule are completed by their respective deadlines. This is because the release times
of all the tasks following T, in the schedule are no greater than the finishing time of T,
(see the discussion following Corollary 1). In checking the various candidate schedules,
we can safely ignore any that do not have the release time property (although it does
not hurt to consider them), since Corollary 2 assures us that we will still find an
optimum schedule. Of the schedules that meet these criteria, the one with least finish-
ing time is an optimum schedule for T, Ti, ..., T, If there are several with the least
[inisliing time, we can choose among them arbitrarily. If there are none, then this sub-
problem is infeasible, which implies that the entire problem is infeasible, so we can halt.
Unless the subproblem for this value of n is infeasible, we then increment n by one and
repeat the process, continuing until we have completed the case with n = N, which

solves the problem with which we started.

It is not difficult to implement this approach to run in O(N?) time; however, with
a bit more care the time can be reduced to O(N) plus an initial O(Nlog N) for sorting
the tasks by deadline. Notice that, when we apply the algorithm repeatedly with dif-
ferent values of a to solve the problem of minimizing the maximum discrepancy of any
task from its preferred starting time, the sorting need not be redone each time, since

the same ordering by deadline holds for all a.

Hence let us assume that the tasks have been given to us presorted by deadline
and indexed so that dg< dy < -+ < dy. For 0< n< N, let F(n) denote the

-921-

finishing time of an optimal schedule for the tasks To, Tq, . . ., Tn, and let S(n) denote
the split index corresponding to some such schedule that is in standard form. We shall
concentrate on computing the values of all the F'(n) and S(n), from which an optimal

schedule can be constructed easily in linear time.

The key to computing these values in O(N) time is to observe that many of the
possible values 0,1,...,n—1 for the split index j do not actually need to be con-
sidered when computing F(n) and S(n), either because the corresponding standard
form schedule will not have the release time property or because the length of that
schedule cannot possibly be shorter than the length of some other schedule already con-
sidered for this value of n. To see how such “irrelevant’ possibilities for j arise and are
avoided by the algorithm, we first describe the general approach, ignoring the details of

the computation.

We shall keep the relevant possibilities for the split index j on a pushdown stack,
which will always be in sorted order with the largest index on top. Initially, we set
F(0) = 5(0) = 0 and place the index O on the stack as its first element. For each n,
1< n< N, in turn, we compute F(n) and S(n) by working down the stack, consider-
ing each of the possible values for the split index j when we encounter it on the stack.
If jis the topmost stack element, we compute the length of the standard form schedule
corresponding to this split index and determine whether this schedule is feasible. If it is
feasible and shorter than the best such schedule seen so far for this value of n, we save

it as our new current best.

Suppose this schedule (feasible or not) starts T, at time F(j) > r,. It follows
immediately that the index j will be an irrelevant split index for all larger values of n.
For any k > n, the schedule for Ty, Ty, - . ., T, corresponding to split index j cannot
have the release time property, because it executes T, after T; even though the release
time for T, is smaller than the time (F(j) or later) at which this schedule begins execut-
ing T;. Therefore, we can now pop § off the stack, because we shall never need to con-
sider j as a split index value again. We then continue by examining as our next possi-
bility the index that has newly risen to the top of the stack.

On the other hand, suppose the schedule starts T}, at time r,. That is, F(j) < ra.
Then we know that we need look no deeper in the stack for this value of n. All indices
that occur deeper in the stack are less ‘than j and will have corresponding F-values no
greater than F(7). Hence the standard form schedule corresponding to each such split
index will also start T, at time r,, will follow T, with a superset of the tasks following
it in the standard form schedule for split index j, and hence can be no shorter than our
current schedule (and cannot be feasible unless the schedule for split index j also is).
Therefore we need consider no further split index possibilities for this value of n. We

simply set F(n) and S(n) according to the best schedule found in the above process,

-99.

halting if no feasible schedule was found for this value of n. If n < N, we then prepare
for the computation of F(n + 1) and S(n + 1) by pushing the index n onto the top of
the stack as a future possibility for the split index j. Notice that in this last case we
did not pop from the stack the last split index value considered, since it may still be
relevant for later values of n. (We could pop the stack in this case if F'(j) = r, because,
as in the earlier case, schedules of the first k tasks (where k > n) with j as the split

index will not have the release time property.)

It is easy to see that the approach outlined above will consider only O(N) split
indices (and corresponding standard form schedules) overall, since each possible split
index is placed on the stack exactly once and, except for a single index left on the stack
for each value of n, we always pop from the stack any split index that we consider. In
order to complete the description of the algorithm, we need to show how in constant
time we can compute the length and check the feasibility of each of the relevant

schedules.

We maintain for each index j on the stack two additional values, A7) and A(y),
which depend on both j and the next lower index k on the stack. The value of A\(j) is
simply the sum of the lengths of the tasks Tiy1, T2, - - - T;. The value of A(j) is the
latest time at which the block of tasks Tiy1, Tk+2, - - - » L executed in this order and
with no idle time between them, could be completed and still finish each individual task
in the block by its deadline (independent of the other tasks in the problem). It is con-
venient to think of the block of tasks formed from Ty, Tito, - - - T; as if it were sim-
ply a single task having length X\(;) and deadline A(7)-

Now let us see how these values are updated and used during the computation’ of
the various F(n) and S(n). For n = 0, we simply set X(0) = A(0) = 0 when we place
the index O on the stack. In general, for a particular value of n, 1 < n < N, we begin
by initializing bestF = co and bestS = 00 as the best F-value and corresponding split
index seen so far for this n. We then initialize two new variables, A\ and A, to the
values [, and d,, respectively. In general, if jis the index currently on top of the stack,
we maintain these variables so that A = Ly + Ljy2o + -+ + I, and so that A is the
latest time at which the block of tasks Ty, Tiv1, Ti42s - - - » T,—1, executed in this order
and with no idle time between them, could be completed and still finish all its consti-
tuent tasks by their deadlines. We can think of pushing the block of tasks to later and
later times until the finish time of one of the tasks, say Tj, reaches its deadline. The
task T} is said to determine A. We then begin considering the various possibilities for
the split index jon the stack (the first will always be n — 1) '

Let j denote the index currently on top of the stack. The standard form schedule
corresponding to this split index starts T, at time s = max {F(j),rs} and has make-
span f= s+ X. It is feasible if f< A. If it is feasible and f < bestF, we then set

-23-

bestF = fand bestS = j, establishing this as our new current best solution.

Consider the case where s > r,. Let k be the index on the stack just below 5. In
this case we must pop j off the stack and update A and A as follows before going on to
consider the next stack element k. The new value of X\ is easily seen to be
A= X+ Xj). The new value of A is the latest time at which the block of tasks
T, Tes1, Tiw2, - - - Ty Tig1, - - -, Tay could be executed consecutively and still finish
in time to satisfy their deadlines. Let T be the task that determines this new value for
A. If T, is one of Tgyq,...,T;, then the new value of A is
A(J) + lig1 + Ly + - + L. But this can be rewritten as A(j) + A — /,. How-
ever, if T} is one of Ty, Tit1, Tj42, - - -, Ta—y then the value of A remains unchanged.
Thus we set A = min {A, A(j) + X — L,}.

In the case where s = r, we know that we can stop the search for a better split
index for the the tasks Ty, T4, ..., Ty

At this point we check to see if any feasible split index for n was found. If no
feasible split index was found (i.e. bestF' = co), we halt since this subproblem is infeasi-
ble and so the entire problem is infeasible. Otherwise, we set F(n)= bestF’ and
S(n) = bestS, push the index n on top of the stack, set \(n) = X\ and A(n) as described
next, and then go on to compute F(n + 1) and S(n + 1). To see how A(n) should be
set, let j denote the index on the stack just below n. If the task that determines A(n)
is T,, then A(n)= d,. On the other hand, if the task that determines A(n) is one of
Tjs1,Tj42, - - -, Tno1 then A(n) = A + I,. Thus we set A(n) = min {d,,A + I,}.

It is not hard to check that the values of all variables are maintained as claimed

and hence that the procedure correctly computes all F(n) and S(n) in linear time.

The procedure minimize_maxz given in Figure 3 implements this algorithm. It uses
operations push, pop, and fop (with the obvious meanings) to manipulate the stack,

which is assumed to be initially empty.

- 924 -

procedure minimize_maz,
F(0):= S(0):= X(0):= A(0):= 0;
push(0);
for n:= 1to Ndo;
Ni= by A= dy
bestF := bestS:i= 00;
while true do
s:= max{F(top),r.}; f'= s+ X
if f< A and f < bestF then
{bestS:= j; bestF:= f}
if s > r, then
{A:i= X\ + Mn); A= min{A,A(7) + N — l.}; pop}
else break
end while;
if bestF = cothen halt (infeasible subproblem)
else
{F(n):= bestF; S(n):= bestS;
push(n); \(n):= X\; A(n):= min{d, A + I,}}
end for

end minimize_maxz,

Figure 3. The procedure minimize_maxz.

4. Remarks

It should be clear from the results presented in this paper that preferred starting
times add an interesting and nontrivial new aspect to combinatorial scheduling prob-
lems. We have explored only the simplest variants of such problems, all with only a sin-
gle processor. Problems with more than one processor are certainly also of interest,
although the NP-completeness of most multiprocessor scheduling problems with arbi-
trary task lengths suggests that the most fruitful areas of exploration will involve ident-

ical length tasks.

The main single processor scheduling problem left open by our results is that of
finding a more direct approach to minimizing the maximum discrepancy. We have
given a way to solve this problem that combines an algorithm for the corresponding

decision problem with a binary search on the possible values for the maximum

-925-

discrepancy. If all task lengths are integers of magnitude at most S, then our overall
algorithm runs in time O(N(log N + logS)). It would be preferable to have an algo-
rithm whose running time is independent of S. Although such a method can be
obtained from our basic algorithm by applying a general technique described in 3], the
time bound for the resulting method becomes quadratic in N. It remains an open ques-
tion whether there exists some way to minimize the maximum discrepancy that avoids

the binary search and has time complexity only O(Nlog NV).

- 96 -

References

1]

2]

3]

[4]

5]

M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman and Co., New York, 1979.

D. E. Knuth, The Art of Computer Programming, Volume 8: Sorting and Search-
tng, Addison-Wesley, Reading, MA, 1973.

N. Megiddo, Combinatorial Optimization with Rational Objective Functions,
Mathematics of Operations Research, Vol. 4, 1974, pp. 414-424.

R. E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1983.

S. Vere, Planning in Time: Windows and Durations for Activities and Goals,
IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. PAMI-5, No. 3,
May 1983, pp. 246-267.

