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Abstract

We report measurements of soliton phase shifts resulting from
head-on collisions in the LC lattice of Hirota and Suzuki, the electri-
cal analog of the Toda Lattice. The effect of dissipation along this
lattice is to decrease the amplitude and increase the width of the sol-
itons as they travel down the lattice. To within experimental error,
however, we found that the velocity and phase shifts remain con-
stant, so that a soliton species is uniquely determined by its velocity.
This shows that the positional phase of such solitons can be used to
encode information in a very simple way, and that the lattice can be
used to do computation, of which parity checking is a simple exam-
ple.

1. Introduction

Hirota and Suzuki [1] built a network consisting of a ladder of inductors and
nonlinear capacitors. This non-linear network supports solitons, and is the electri-
cal analog of the mechanical lattice analyzed by Toda [2], which is made of balls
of unit mass connected by nonlinear springs. These masses interact with their
nearest neighbors via an exponential potential. The equation governing the gen-
eralized momentum of a unit mass in this system is equivalent to the equation
governing the voltage at a point on the lattice. In the continuum limit both equa-
tions reduce to the K-dV equation [2].

In [3,6] it is suggested that if the positional phase of a soliton is used to
encode information, the phase shifts resulting from collisions can accomplish useful
computation. This idea springs from work with cellular automata that support
soliton-like structures, and the design of a carry-ripple adder using these ‘‘pseudo-
solitons” is described in [6]. To carry this idea over to solitons supported by phy-
sical systems, however, it is important that the phase shifts on collisions depend
only on the species of soliton, and not on the position where the collision takes
place.

The experiment reported here, then, was motivated by this question of
whether the soliton phase shifts in the Hirota-Suzuki lattice are determined only
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by the identity of the solitons. We recreated a lattice similar to that described by
Hirota and Suzuki and measured phase changes that result from the head-on colli-
sion between two solitons moving in opposite directions. The Appendix contains a
description of our apparatus and the procedures. The results reported by Hirota
and Suzuki do not show the effects of dissipation in the lattice, but in our imple-
mentation these effects are appreciable.

In the dissipationless lattice, the amplitude, velocity, width, and phase
changes between colliding solitons are all closely related, but once determined
remain invariant with respect to position along the lattice. With dissipation, how-
ever, the soliton amplitude decreases as it travels along the lattice, with a
corresponding increase in width. However, we found that the velocity remains con-
stant — and therefore that the species, or identity, of a soliton is uniquely deter-
mined by its velocity. Moreover we found that the phase change resulting from a
collision is dependent only on the species of solitons involved, and not on the par-
ticular amplitudes and widths at the moment of collision. We also observed some
effects reported by Hammack and Segur [9] in their experiments on dissipative
water waves.

Finally, we will discuss the possible computational uses of solitons. The
results allow us to encode a bit in the positional phase of a soliton in a natural
way, and we are able to construct a very simple parity-checker with the lattice.

2. Velocity and Amplitude Measurements

There are 80 sections in the lattice and the physical circuit would measure
about 2 meters if fully extended. Figure 1 shows the measured amplitude of a typ-
ical soliton with respect to distance along the lattice, in logarithmic units. The
decrease in the amplitude of solitons was approximately exponential. This can be
attributed to two factors:

1) There is Ohmic dissipation in the windings of the coils and the interconnec-
tion wires;

2) The small oscillatory tail that follows the passage of a soliton can briefly for-
ward bias the varactor diodes, causing them to conduct current.

Variation of dissipation coeff. with reverse bias
reverse bias(V) dissipation coeff

-0.12 -0.001201

-0.20 -0.001210

-0.28 -0.001337

-0.36 -0.001878

-0.42 -0.002753

-0.50 -0.002948

Table 1
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The dissipation was dependent on both initial amplitude and on the reverse
bias on the varactor diodes. The greater the initial amplitude or the reverse bias
the greater the dissipation. Figure 2 shows the variation of soliton amplitude with
lattice position for various reverse biases, while Table 1 gives the corresponding
variation in the estimated exponent 7y in the relation

An)=Ae™

where A(n) is the amplitude at Lattice Position n, and A; is the amplitude at Lat-
tice Position 1. The values of «y were obtained by a least-squares regression on the
log-amplitude data. Figure 3 and Table 2 show the corresponding information for
various initial amplitudes. These results can be explained by the fact that the
higher the reverse bias or initial amplitude the closer the diodes are to their break
voltage, making it easier for a soliton to forward bias them. Thus, the exponent ~
becomes more negative with higher reverse bias and initial amplitude. We would
expect the effect of Ohmic dissipation to stay constant.

Variation of dissipation coeff. with initial amplitude
init. amp. dissipation coeff
2 -0.001480
3 -0.001492
4 -0.001450
9 -0.001661
6 -0.002116
Table 2

In the dissipative system described by Hammack and Segur [9], the water
level around the soliton increases as it loses amplitude. A similar affect was
noticed in our lattice — as a soliton loses amplitude the reverse bias increases.
The explanation offered by Hammack and Segur [9] is that as the solitons lose
energy due to viscous affects, the total mass of the waves is conserved. Thus, as
mass gets forced out of the solitons, it raises the average water level behind them.
In our system charge is similarly conserved, and as the soliton loses charge it goes
into increasing the forward bias of the varactor diodes. This increase in water level
is referred to as a ‘“‘shelf” in [5, p. 284|.

Even though the amplitude of a soliton decreases down the lattice, its velocity
was observed to stay constant to within a few percent. Figure 4 shows a typical
plot of delay time vs. lattice position, showing this linear relationship. The same
linear relationship was observed for various initial amplitudes and reverse biases.
For each particular velocity there is an amplitude-width curve (see Fig. 5), and the
curves for different velocities do not overlap with each other.
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A soliton forms in the first few lattice sections, and its velocity in this forma-
tion zone is lower than in the rest of the lattice. The effect of this formation zone
was also evident in the regression analyses of amplitude vs. reverse bias and
amplitude vs. initial bias. In both regressions, the fit after the fifth section was
much better than at earlier points, and the first two data points were always
anomalous. A soliton thus stabilizes its behavior only after passing through this
formation zone. We might also mention that the variation of amplitude with lat-
tice position is not quite exponential: Close inspection of the log-amplitude vs.
position curve in Fig. 1 shows that there is a knee at about the 40th lattice sec-
tion, at which point the slope decreases.

3. Phase Shifts on Collision

We now come to the main point of our experiments — the measurement of
phase shifts resulting from head-on collisions between two solitons. Our results
show that these phase shifts depend only on the velocities of the two colliding soli-
tons, and is not affected by the decrease in amplitude once the solitons are formed.
This was tested by holding the initial pulse amplitudes constant and varying the
location of collision in the lattice. The variation of amplitude with position means
that the pair of amplitude values at each point in the lattice is different. Figure 6
shows the relationship between phase shift and location of collision for a typical
case. The phase shifts are constant to within 3%.

Maxworthy [8] measured positional phase shifts resulting from head-on colli-
sions (using reflection) between two water waves of equal initial amplitudes, and
found them independent of those initial amplitudes. Our main experiment and
result, showing that phase shift is independent of the variations in amplitude and
width due to dissipation, is therefore quite different. We did repeat Maxworthy’s
experiment, varying the initial amplitudes, and hence the velocities, and found the
dependence of phase change on velocity shown in Fig. 7. Our results indicate that
the phase shift increases with increasing velocity, and with increasing initial
amplitude, and are thus closer to the theoretical predictions described by
Maxworthy [9] than his own experimental results.

4. A Design for a Parity Checker

The phase changes can be exploited to design a parity checker. The scheme
will depend heavily on the fact that a phase change is independent of where the
collision takes place on the lattice once the initial amplitude is set. For safety all
collisions are forced into the region where the phase position relationship is known
(see Fig. 6).

The idea is simple. We send a ‘‘parity-checker” soliton down one end of the
lattice, and send the data bits encoded in solitons from the other end. The phase
of the parity checker soliton when it arrives at the other end of the lattice will
indicate whether or not the parity of the data bits is odd or even.

For encoding purposes the following method is used. A ‘0O’ bit is represented
by one soliton and a ‘1’ by two solitons, so that if collision with a ‘O’ causes a
phase change of z in the checker soliton, collision with a ‘1’ causes a phase change
of 2z. After the checker soliton passes through all the data solitons, its phase
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mod(z) will be 0 or 1, if the data stream had an even or odd number of 0’s, respec-

tively.

To see how this would work in practice, we generated pulses for a 3-bit data
stream, using wave function generators in burst mode, where one can be triggered

by the other. T

he settings on the two function generators were:

1) repetition rate: 1.07 kHz, initial pulsewidth: 194 ns, initial amplitude: 3.3 V,
Offset: -0.28 V.
2) repetition rate: 871 kHz, initial pulsewidth: 287 ns, initial amplitude: 2.11 V,
Offset: -0.28 V.
Phase shifts that can be used in a 3-bit parity checker
Collision # Phase shift(us)
1 0.134
2 0.132
3 0.136
4 0.134
5 0.138
6 0.138

Table 3 gives t

parity-checker
the average de

Us.

To decode
can drive a log

soliton will sur
of ecollisions.

cause detectior

The oseill
waveforms. T

pulse width mu

produces two s
tial conditions.

5. Summary

Our result

ton are fixed

decrease in am

tudes decrease
in the phase ¢
amplitude is s

Table 3

he measured phase shifts associated six consecutive collisions. The
soliton will appear at the end of the lattice delayed by a multiple of
lay, 0.1353 us. In our setup the normal undeflected delay was 13.415

the answer, the output checker soliton can be amplified (so that it
sic gate), and then ANDed with a 7.3892 MHz clock. The checker
vive the AND operation if and only if it undergoes an even number
Note that the smallest and largest phase changes above will not
1 problems if the solitons are sharp enough pulses.

atory tails that often follow solitons tended to degrade the soliton
his effect can be reduced by using wider input pulses. However, the
1st stay below the transition value, the value where the initial pulse
olitons instead of one. We found this to be about 300 ns for our ini-

s suggest that in the Hirota-Suzuki lattice the properties of a soli-
once it is introduced into the lattice, and are not affected by the
plitude caused by dissipation. We found that even when the ampli-
d by a factor of two, there was no significant change in velocity or
hange that results from collisions. The independence of velocity on
similar to the behavior of solitons in the non-linear Schrodinger
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equation with dissipation [5, pp. 270-271]. Theoretical or computational
verification of our results requires further work on the Lattice model with dissipa-
tion.

We described a simple parity checker based on the idea that information can
be encoded in the phase of a soliton. It will be interesting to see if more sophisti-
cated computation can be implemented this way. Fiber optical transmission lines,
which support envelope solitons, are fast and small enough to offer an attractive
medium for such an application.
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APPENDIX
Experimental Details

The Hirota-Suzuki nonlinear LC lattice used in these experiments is low-pass
in the small-signal limit; that is, the inductors are in the series arms and the capa-
citors in the parallel arms. Altogether there were 80 four-terminal sections, each
consisting of an inductor and capacitor. We used reversed-biased varactor diodes
(Phillips ECG 618) for the voltage-dependent capacitors, and ferrite-core coils (J.
W. Miller Part No. 4628) with a nominal inductance of 39uH for the linear indue-
tances. The diodes had a measured capacitance of 440 pF at 1.2V and a minimum
Q of 200 at 1V.

Solitons are observed by applying to one end of the lattice a pulse with ampli-
tude between 1V and 6V with a DC bias between -0.2V and -0.5V. We attempted
to terminate the other end of the lattice with a characteristic impedance, which,
because the circuit is nonlinear, varies with frequency. In our experiments the
repetition rate of the pulses was used to calculate the termination impedance, and
this value was fine-tuned experimentally to prevent reflection. The output
impedance of the function generator was very high, and therefore required an
operational amplifier to isolate it and make its effective impedance low.

The voltage dependence of the capacitor that is required by the Toda model
is logarithmic:

O(V) = Col—2) nlt + 3 )

The Taylor series expansion of this is
Colt =55~ +3(5) —5(5) ] 2)
. 2 4

The actual variation of the capacitance is shown in Fig. 8, and is predicted by
theory to be of the form [7, pp. 131-134]

()= —2 3)
1+

We measured ¢y = —0.64V, and obtained the value 5‘0 = 780 pF from the graph.
Equation (3) has the Taylor series expansion

R TS £ S
Co [t =25 +3(37) —4(37) | (@)



=8 =
Choosing Cy = Co and V = ¢y /4 in (4) yields

1V 3. v?2 1 . vS8
00[1———+§(70) _E(To) ] (5)

which agrees with (2) to first order. We note that Leane [4] claims that many
nonlinear functions besides the logarithm also produce solitons.

Figure Captions

Fig. 1 Measured logarithm of the amplitude in volts of a typical soliton vs. dis-
tance along the lattice. Initial amplitude = 4 V; DC bias = -0.27 V; initial pulse
width = 90 ns, repetition rate = 2 kHz.

Fig. 2 Amplitude of typical solitons vs. position for various reverse biases. Initial
amplitude = 1.72 V; DC bias = -0.12 V to -0.5 V; initial pulse width = 279 ns,
repetition rate = 1.09 kHz.

Fig. 3 Amplitude of typical solitons vs. position for various initial amplitudes. Ini-
tial amplitude = 2.0 V to 6.0 V; DC bias = -0.32 V; initial pulse width = 200 ns;
repetition rate = 5.0 kHz.

Fig. 4 Delay time of a typical soliton vs. lattice position. Initial amplitude = 4.4
V; DC bias = -0.27 V; initial pulse width = 217 ns; repetition rate = 1.09 kHz.

Fig. 5 Amplitude vs. width for solitons of various velocities. Initial amplitude =
2.0 V to 5.0 V; DC bias = -0.31 V; initial pulse width = 114 ns; repetition rate
5.0 kHz.

Fig. 6 Phase shift vs. location of collision for a pair of typical solitons. First func-
tion generator: Initial amplitude = 3.29 V; DC bias = -0.28 V; initial pulse width
= 194 ns; repetition rate = 1.09 kHz. Second function generator: Initial amplitude
= 2.11 V; DC bias = -0.28 V; initial pulse width = 286 ns; repetition rate = 252
kHz.

Fig. 7 Phase shift vs. velocity for head-on collisions of solitons with equal initial
amplitudes. First function generator: Initial amplitude = 1.5 V to 4.5 V; DC bias
= -0.28 V; initial pulse width = 160 ns; repetition rate = 1.17 kHz. Second func-
tion generator: Initial amplitude = 1.5 V to 4.5 V; DC bias = -0.28 V; initial pulse
width = 160 ns; repetition rate = 5.19 kHz.

Fig. 8 Measured C-V plot for varactor diode; only negative voltages, correspond-
ing to reverse biases, are of interest.
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