OPTIMIZATION OF ONE BIT FULL ADDERS EMBEDDED
IN REGULAR STRUCTURES

Kazuo Iwano
Kenneth Steiglitz

Dept. of Computer Science
Princeton University
Princeton, NJ 08544

TR-031-86

Optimization of One-Bit Full Adders Embedded
_'.

in Regular Structures

Kazuo Iwano
Kenneth Steiglitz

Dept. of Computer Science
Princeton University
Princeton, NJ 08544

Abstract

We study the problem of optimizing the transistor sizes in the one-bit nMOS
full adder either isolated or embedded in a regular array.

A local optimization method that we call the critical-path optimization
method is developed. In this method two parameters at a time are changed along
the critical path until a locally optimal choice of transistor sizes is found. The
critical-path optimization method uses the Berkeley VLSI tools a.nd the hierarchi-
cal layout language ALLENDE developed at Princeton.

First, we optimize the isolated one-bit full adder implemented in three ways:
as a PLA, Data Selector; and with Random Logic. The details of the critical-path
optimization method and Power-Time tradeoff curves are illustrated here.

Second, we optimize the one-bit full adder embedded in a simple array mul-
tiplier. The entire 3X3, 4X4, 8X8 and 10X10 multipliers are optimized and
their local optima are compared. Because the optimization of the entire circuit
becomes less f)rﬁctica] when the circuit becomes larger, we develop a method that
makes use of circuit regularity. We prove that some small array of one-bit full
adders, called the canonical configuration, has the same local optima as the nXn
multiplier for large n, with the criterion of minimizing the delay time 7. Hence
we can greatly reduce the computation load by optimizing this canonical
configuration instead of optimizing the entire circuit. Experimental results
confirm the effectiveness of this approach.

1. Introduction

Regular arrays of cells are used often in custom chips for digital signal pro-
cessing. Such regular arrays lead to designs that are easy to lay out efficiently
and have high throughput. For example, bit-parallel and bit-serial multipliers can

i This work was supported in part by NSF Grant ECS-8414674, U. S. Army Research-Durham Contract
DAAG29-85-K-0191, DARPA Contract N00014-82-K-0549, ONR Grant N00014-83-K-0275, and IBM-Japan.

.

be constructed from one- and two-dimensional arrays of one-bit full adders, as
well as a wide variety of pipelined FIR and IIR filters (see, for example, [1-5, 9,
12, 16, 25|). This paper is aimed at the problem of optimizing such large arrays.
The technology used throughout is 4 g nMOS, but the general approach
described is applicable to other technologies as well.

We will develop what we call the critical-path optimization method. This is a
heuristic method for finding a locally optimal choice of transistor sizes by using
systematic variation of the parameters along the critical path. The optimization
loop uses the Berkeley tools [15] CRYSTAL (for timing) [19], POWEST (for
estimating the power consumption), and the constraint-based high level layout
language ALLENDE, developed at Princeton [11, 13]. We illustrate the critical-
path optimization method and resulting Power-Time tradeoff curves by optimiz-
ing an isolated one-bit full adder implemented in three topologies, namely: the
PLA, Data Selector, and with Random Logic. '

Investigating the optimization of the one-bit full adder embedded in an
array multiplier, we will next study how to take advantage of a circuit’s regular-
ity to reduce the optimization workload. Here we develop the canonical
configuration method, which is shown to be practical for optimizing large regular
structures. We will analyze the critical paths of the nX n multiplier using a finite
automaton, and extract its canonical configuration. Then we will prove that the
optimization of this canonical configuration provides, in the limit of large n, the
same local optima as the nX n multiplier.

The problem of optimizing the transistor sizes has been studied by several
authors. ANDY, developed by Trimberger [17]':'sizes transistors in a symbolic
description of a chip to match the load the transistors are driving, .then performs
power optimization off the critical path. L. A. Glasser and L. P.-J. Hoyte [6]
developed what they called macro models of VLSI circuits and optimize the
transistor sizes in a critical path. However their macro model is sometimes inac-
curate and leads them to errors of as much as 70% when compared with the
SPICE [15] circuit simulation. Matson [14] improved their macro models to be
more accurate and computationally faster, and used them for nonlinear optimiza-
tion of transistor sizing. Other related work is reported by Strojwas, Nassif and
Director (18] and N. Jouppi [23]. Our efforts will concentrate on taking advan-
tage of circuit regularity to make practical the optimization of large arrays.

2. Critical-path optimization method

The design of VLSI chips often involves the difficult task of effecting
tradeoffs among three important measures, that is: the delay time T} the peak or
average power dissipation P, or P,,; and the area A. There are many circuit
choices which can be used for controlling these tradeoffs: For example, we can

-3-

control the choice of an appropriate topology, use precharging, super buffers,
insert or delete logic stages to control the appropriate fanout factor, etc. How-
ever we will concentrate in this paper on the choice of pulldown diffusion widths,
because the problem of sizing transistors is important but very tedious work for
chip designers, and lends itself well to efficient solution by automated methods.

The constraint-based high-level layout language ALLENDE [13] enables us
to parameterize a circuit; that is, ALLENDE accepts a circuit parameter vector m
and produces the layout C(x). Since the circuit performance (such as the delay
time T, the power dissipation P, the area A, etc.) is determined by the circuit,
the vector (P, T, A) can be expressed as a function of C. Since the circuit C'is
parameterized as C(x), the vector (P, T, A) can finally be expressed as a function
g().

In general, therefore, our optimization can be formalized as follows:

min { P,T,A) = flg 7))
subject to constraints on P, T, and/or A.

Here f{ -+) is the cost function to be optimized , and 7 is a circuit parameter vec-
tor = (d),dy,...,d,) . Since we optimize the transistor sizes of pulldowns, we
treat each pullup/pulldown pair as a node. Typlcally, each node represents an
inverter, NAND, or NOR gate. Each layout is characterized by the parameter
vector 7 = (dy,dy, . . . ,d,) , which means that the pulldown diffusion width of
node ¢ is d\. We also use the vector & = (ky,kp, . . . ,k,) to mean that the
pullup to pulldown ratio of node i is k; [22]. The vector « is fixed for each circuit.

The choice of the cost function f{ -) and constraints depends on the design
issues. For example, in one application the clock period may be fixed at a known
- value Ty, and it would therefore be senseless to make the the cell faster. On the
other hand, peak power may be a real constraint because of heat dissipation limi-
tations. At the same time it may be important to keep the area small so as to fit
as many cells on one chip _as possible. We might, therefore, try to minimize some
measure of the peak power and area (the product, P, T, for example), while
enforcing the constraint 7' < Ty. In other applications speed may be critical, and
it may be important to minimize T while observing constraints on P and A, and
so on. In general, we would like to have enough information about the tradeoffs
among the measures P, T and A to make intelligent design decisions. As we will
see, the P-T tradeoff is often of most interest, since the area is often a less sensi-
tive function of design parameters (at least for fixed topology).

P

3. Implementation of the critical-path optimization

We use a heuristic optimization method based on a critical path, and we will
call our optimization method a critical-path optimization method. The general
concept of the method is shown in Fig. 1.. A circuit C(x) is generated based on a
circuit parameter 7. The cost function f{C) of the circuit C(7) is computed next.
Then a desired variation) of the parameter vector m is computed, based on
the critical path. Finally §(x) is added to m and the new parameter (7 + o)
replaces 7 if its cost is better. This is repeated until a local optimum is found.
Fig. 2 shows a detailed flowchart of our implementation, which uses the tools
ALLENDE, MEXTRA, CRYSTAL, POWEST. A short description of each fol-

lows below:

1) ALLENDE This procedural constraint-based VLSI layout language
produces an integrated circuit layout in Caltech Intermedi-
ate Form (CIF) corresponding to the specified circuit
parameter 7 [14]. :

2) MEXTRA MEXTRA reads CIF and extracts the nodes to create a
circuit deseription for further analysis [15].
3) CRYSTAL CRYSTAL is used for finding the critical path and the
" delay tlme of the circuit [15, 19].
4) POWEST' POWEST is used for finding the average and maximum

power consumption of the circuit [15].

The basic approach we take will be to search for local improvements from
random initial designs. The search strategy will be to consider all single or dou-
ble changes of the current parameter vector m along the critical path. The idea is
that the critical path indicates which parameters are most important to perfor-
mance at any given point in the analysis. The “kchange” method is described
below in general, with simple and double change corresponding to k= 1 and 2.

Given a current parameter vector m = (dy,dy,...,d,) and the critical path
nodes which are on a critical path, say cpn—(d,l,d,e, d;), the “k-change”
method picks k nodes from cpn, say d;, d;, ..., and d;, then changes each of d;,

1 < I < k by one unit and keeps the others the same. For example, ‘‘2-change”

m
produces (2)X 2% = 2m(m — 1) sets of parameters. Then each parameter is

analyzed in a fixed order. When the first cost improvement is met, the current
parameter is picked as the parameter for the next iteration. That is, the first
improvement found is adopted.

oy

4. Full-adder circuit implementations

We used the one-bit full adder circuit as an example for experiments because
it is relatively simple, but is a basic arithmetic logic circuit and has a wide
variety of uses. The one-bit full-adder circuit can be implemented in many ways.
We chose three kinds of circuits: the PLA, Data Selector, and Random Logic. All
implemented circuits have been verified by ESIM [15] or SIMULATE [13|.

1) PLA Fig. 3a shows the full-adder circuit diagram implemented by a pro-
grammable logic array (PLA). The 7 and & of the PLA are as follows:

L (dandlf i :dand,r: dorls dorz’d:'nls d:'n2: ds'n;,: doutp doutg)

k= (4,4,4,4,4,4,4,4,4,4,4,4,4,4)

2) Data Selector Fig. 3b shows the full-adder circuit diagram of a Data Selec-
tor implementation [20]. The following truth table is used.

C; S; S, C,

0 0 A C; (or Sy

0 1 F R

1 0 A A _
- 1 1 A C; (or S)

This circuit selects inputs (A, A, or C;) instead of calculating S, and C,.

Here C;is the input carry signal, C, is the output carry signal, and S, is the out-
put sum signal. A and S; denote the two other inputs. This layout has the fol-
lowing 7 parameters.

§= (dAs dS,-r dG’,-1 dlid‘Zde',a dS,)

k= (44,484,838)

3) Random Logic Fig. 3c shows the circuit diagram of the Random Logic
implementation [21]. This layout has the following 4 parameters: one node for

computing carry, one for sum, one for carry, and one for sum.
T =(dgdgdg,ds,)
k= (8,124,4)

The following logical equations describe the circuit:
OO=A'(S;+ C,)‘f‘ C;‘S",

Soz Co (A+S,+C’;)+C;S"A

-

5. Computational results of the full-adder circuits optimization

Table 1 shows a comparison of the performance of our implementations.
Each row represents one point locally optimal with respect to T. The units of A,
P, Po., T, APT and PT are 10 - \2, (mW), (mW), ns, (1071%- A2 - W- ns)
and (107 - W - ns) respectively in all tables.

type A F PR T APy Pl
PLA 21.2 7.2 10.1 9.7 2074 980
21.3 7.5 10.6 9.7 2185 1026

Data Selector 8.2 3.3 e 147 628 760
8.4 3.5 5.6 14.7 699 830

Random Logic 9.3 1.7 2.4 1.2 161 173
9.3 1.8 2.6 7.3 179 197

Table 1. Performance comparison (one-bit full adder)

Fig. 4 shows P, vs T curves of the one-bit full adder for different topolo-
gies when minimizing T. These P ,, vs T tradeoff curves are obtained as follows:
During a critical-path optimization process, every time a current parameter 7
shows an improvement in cost (in this case, T), we plot the associated values of \
Pmu(fr) and T(7). We then obtain a trajectory from each initial random starting
point to a locally optimal point. By drawing an envelope of these points on
many trajectories, we finally obtain an approximate P, vs T tradeoff curve.

As shown in Fig. 4, the P_,, vs T tradeoff curve of the Random Logic circuit
is below that of the Data Selector circuit and that of the PLA.

type A Lo ek i APT FPI
PLA 298 424 421 135 1288 566
Data Selector 88 194 217 204 390 439
Random Logic 100 100 100 100 100 100

Table 2. Normalized performance comparison (1-bit full adder)

Table 2 shows a normalized performance comparison of the best locally
optimal point for each layout, minimizing T. The Random Logic seems to be the
best choice in all respects except A. The product P, T of the Random Logic is
about 1/4.4 that of the Data Selector, while it is about 1/5.7 that of the PLA.

Table 3 below is the performance comparison table between the T-locally
optimal circuit and the circuit designed using the minimum sizes (2\). Our
optimization shows a good improvement of the delay time (improvement from-

. i

55% to 73%) in any implementation. Matson optimized the same Random
Logic circuit and obtained a delay time of 8.0 ns in [14], while our locally optimal
circuit has 7.2 ns, providing an independent check of the effectiveness of our
optimization method.

type cost PLA Data Selector Random Logic
min size (ns) T 21.7 53.2 26.9
T-opt (ns) T 9.7 14.7 72
improvement T -55.2% -72.3% -73.2%

———————————— ———— ————— —————— ————

Table 3. Performance improvement ratio

6. Full optimization of n Xn multipliers

In this section we take up the problem of optimizing the one-bit full adder
when it is embedded in a regular array, using the array multiplier illustrated in
Fig. 5a for 4 bits.

Complete layouts of the 3X3, 4X4, 8X8, and 10X10 multipliers were

- --optimized using the critical-path optimization method. Fig. 6 shows the possible

- tradeoff of power against delay time obtained in the same way as Fig. 4.

Table 4 gives the results of starting from 11 different initial parameter vec-
tors. They are yielding only four distinct local optima, corresponding to the
parameters m = (4,16,888), m, = (8,16,8,8,8), m; = (12,12,8,8,8), and
7y = (12,16,8,8,8). Note that in Table 4, ** indicates that the associated 7 is not
a local optimum.

As we can see in Table 5, the running time of this optimization method
increases quickly with the size of the array, growing approximately as the number
of basic cells in the circuit, or n® for an nX n multiplier. This means that optim-
izing the entire circuit at once is a very costly operation, practical for a relatively
small circuit, but not for large circuits. We will see later how to take advantage
of the circuit regularity to reduce the computational workload.

type cost T To g Ty
Bi3: o F 78.9 786 741 80.7(**)
Par 300 329 329 32.9
P 18.4 205 205 20.5
A 82.7 840 824 87.9
PO S 1189 1181 110.2 120.3(**)
PR Y 602 60.2 60.2
> 33.4 376 37.6 37.6
A 152.3 - 1547 1515 162.0
8x8 T 279.6 277.1 377.9(**) 2835
P 2247 251.0 9224.6 951.0
P, 1384 1581 1383 158.1
A 636.2 646.6 632.9 678.8
10x10 T 350.2 355.0 487.2(**) 364.1
P, 3530 . 3953 352.9 395.3
P, 2177 2494 217.6 249.4
A 1001.7 10181 996.5 1069.3

Table 4. Local optima (** means that this is not a local optimum.)

m33 m44 m388 m1010
#(basic cells) 6 12 56 90
cpu (one point) 2 min. 3min. 14 min. 22 min.
average # of (iterations) 5.0 5.1 5.0 6.0
average # (points searched) 61 84 61 100

Table 5. Optimization computing cost

In the next section we will define a class of circuits consisting of rectangular
arrays of one-bit full adders. In succeeding sections, we will analyze the critical
paths of their circuits, and show that they can be constructed from information
obtained by optimization of a small “representative” circuit, called a canonical
configuration. We will then prove that this optimization also yields the same
locally optimal one-bit full adders as direct optimization of large circuits.

e kA

Finally, we give experimental results which confirm this fact, and show the utility
of this approach.

7. A class of circuits

We discuss a class of circuits consisting of one-bit full adders which have
four nodes as shown in Fig. 3c. They are Nz, Ng, Ng, and Ng, which yield the

carry, carry, sum, and sum signals respectively. Note that there are inputs C;

and S; to the nodes Nz-and Nz. The relations among nodes are shown in Fig. 7.
Next we define a class of circuits as follows:
Definition Cpy = { C'| The circuit C has the following three properties. }

1) The circuit C'is an mXn subarray of the two-dimensional infinite array of
identical one-bit full adders shown in Fig. 8, for some m and n.

2) The one-bit full adder cell used in the array is the random logic circuit
shown in Fig. 3c. Note that the input A = a-b is created from two other

inputs a and b by a NOR circuit. The one-bit full adder is characterized
by the circuit parameter 7 = (d,4, d5; dg; dg, dg,). Since we use identical
one-bit full adders in the entire array as mentioned above, we regard the cir-

cuit parameter m of the one-bit-full adder as the circuit parameter of the
entire circuit C.

3) The interconnection scheme of the one-bit full adders is shown in Fig. 9.

In Fig. 8 each cell is a one-bit full adder with coordinates (z, y). We meas-
ure z to the left and y down, and A, , designates a cell located in position (z, y).
Each cell has two inputs (S; the sum input and Cg the carry input) and two
outputs (S,: the sum output and C,: the carr;output) as shown in Fig. 9. Pre-

cisely speaking, A, , has two more inputs ‘a and b, as shown in Fig. 5b, but we
do not include these inputs in our model because they will not appear in any crit-
ical path. In other words, we assume that two input @ and b are available to

any cell when a critical path reaches that cell. As shown in Fig. 9, the carry out-
put C,of A, , is propagated to the carry input of A, +1,p While the sum output S,
of A, ,is propagated to the sum input S;of A, ;.

Here we analyze an nX n multiplier which has n columns and (n — 1) rows of
full adders. Hence the nXn multiplier corresponds to the rectangle bounded by
the corner cells Agg, A, 10, Ap1,02 and Ag, 9 in Fig. 8.

AT

8. Definition of critical paths

In this section we define a critical path between two cells in a circuit
C € Cp4 and analyze the behavior of signals on a critical path.

Suppose that a path a exits the one-bit full adder cell A,,. The path «
exits the cell A, , from either the carry output C, or the sum output 5, with high
or low signal. Hence in order to identify the state of the path a at the exit of the
cell A, , we can use the representation (A, a) where A is either carry or sum,
and a is either high or low. Let (C, 0) denote the state in which a path exits
from the carry output with a low signal, and let (C, 1), (5,0), and (S, 1) be
defined analogously. Then the behavior of the path a can be represented by a
sequence of states. For example, the expression
(C,0)—=(C,0)—=(S51)— (S 0)represents the path which exits Ajo with
the low carry signal, exits A, o with the low carry signal, exits A;q with the high
sum signal, and finally exits A; ; with the low sum signal as shown in Fig. 8. We
can thus represent the behavior of the path by the state transition diagram D as
shown in Fig. 10a. Note that in this diagram, the states C, D, S, and T are used
instead of (C,0),(C,1),(D, 0), and (D, 1) respectively.

Lemma 1 The state transition diagram D in Fig. 10a correctly describes the
behavior of the signal along any path in the array of Fig. 8.

Proof In Fig. 7, each time a path passes through a node, the signal on that path
changes from high (low) to low (high). For example, suppose we have a path
a which exits from the carry output C, with a high signal. The path a must pass

through the nodes Nz and Ng. Since a signal changes from low (high) to high
(low) when a path passes through a node, the C, signal is low, and the input

on the path into the node N is high. Hence the state (C, 1) can be reached
either from the state (C; 1)or (S, 1).

In the same way we can determine other state transitions. Note that a path
to the sum output S, results from either Ng-— Nz — Ng or Ng-— Ng. O

From the above discussion, we can define a finite automaton M that
represents the state transitions along a path.

Definition The finite automaton M is defined as follows:
M:(sz16:q0:F)1

where Q is the set of states, ¥ is the alphabet, § is the state transition function,
go is the initial state, and F'is the set of final states.

Q: {qm C) -Da S: T}:
= { c, d, 30, 31y tOv tl }: and F = @,

=11 =

where the states C, D, S, and T represent the states (C;0), (C,1),(S,0),
and (S, 1) respectively. The symbol ¢ (d) indicates the transition from the
node Nz with a low (high) input to the node N with a high (low) output,
while the symbol s, (£,) indicates the transition from the node Ng- with a high (
low } input to the node Ng with a low (high) output. And the symbol s, (¢,)
indicales the transition from the node Nz with a low (high) input to the node
N with a low (high) output. The transition function § is shown in Fig. 10a
where ¢y and transitions from ¢, such as & gy c)=C, & ¢, d) =D,
5 qo, 89) = S, and §(qo, &) = T are not shown.

Since we use the fixed one-bit full adder shown in Fig. 7, there is a fixed
delay time associated with each state transition when the circuit parameter 7 is
fixed. Hence we can define a delay-time function w as follows:

Definition Given a circuit parameter 7 and a finite automaton
M= (Q, L%, 6 q, F) defined above, the delay-time function w, is defined as fol-
lows: w,: @ X @ — R such that w(¢, ¢o) is the delay time for calculating
the corresponding output signal and propagating this signal when the transition
(gy, g2) is in 8. When the transition (¢;, ¢) is not defined in 6, w,(¢, ¢) is
not defined. We use w instead of w, when a circuit parameter 7 is fixed in the
discussion. Since from the definition of the symbols, any transition with the same
-symbol has the same delay time, we also use the symbol to mean its delay time.
Note that sy > s, and #, > ¢, since the transition from the node Ng-to the node

Ny is a part of the transition from the node Nz to the node Ng through Ng-

Let I{ M) be the language accepted by the finite automaton M. The
language I{ M) corresponds to the set of all possible paths in our two-
dimensional array. - | Let
Lyp={c€elM)||al +|alg=m]|a|,+|ea|,+]|a|,+]|a]|,=n}
where | a |, indicates the number of times the symbol “a” in the string . Thus
L,,, corresponds to the set of paths from Agg to A, , ; ,, 1, OF in another words,
L,,, is the set of paths that have m carry stages and n sum stages.

We use the notation Cpy ,,, for representing the set of circuits C€ Cpy
whose critical paths are in L,,. We define the delay-time function w on a string
in L(M) as follows: Let a€L(M) and oa=aa---a, where

n
a; € { ¢,d,35,8;,t,t; } for1 <1< n. Then w{a)=)Y, u q;).
i=1

We can now define a critical path in our terms.

Definition We call a € L,,, C I{ M) a critical path when v a) > u(f) for
all B € L,,,. Define CPN as the set of all critical paths of all subcircuits in Cpy
and CPN,,, = CPN M L,,,. We say that two paths are equivalent when their

Sy

delay times are equal. When v) < w{B)(w(a) > w(f), w{a)=wp))
for two path o and 3, we denote that by o <, 8 (a >, B, a =, B, respectively.

)

Our problem of finding a critical path in the mXn multiplier then
corresponds to the problem of finding a critical path from Ajq to another cell
Am_llﬂ_z, as shown in Section 7.

Lemma 2 Every critical path of the nX n multiplier has (2rn — 3) carry calcula-
tion stages and (n — 1) sum calculation stages.

Proof Every time a sum signal appears in a path the ycoordinate increases by
1, while z-coordinate decreases by 1. Every time a carry signal appears in a path
the z-coordinate increases by 1, while g-coordinate remains the same. Hence a
path from the cell Ay, with e, sum stages and e, carry stages reaches the cell
A, g o In the nXn multiplier, a critical path starting from the cell Ay, finally

.~y G,
comes out of the cell A, , o with the sum signal. Hence n—-1 = a, - q, and
n -2 = a, Thus a, =n-1+ a,= 2n- 3. Hence we proved that every

critical path a of the nX n multiplier has (2n - 3) carry calculation stages, and
(n—2) sum calculation stages, plus another sum calculation in the cell 4, , o.

O

‘9. Analysis of critical paths

In Section 8, we saw that the behavior of the signals on the path can be
described by the weighted state transition diagram M. In this section, we investi-
gated the problem of finding the critical paths effectively, given the weighted

state transition diagram.

Since the longest path between two nodes can be computed given the delay
time of all paths between two nodes, we have the following theorem. -

Theorem 1 Given a fixed parameter m and the delay-time function w,:
@X @ — R, we can effectively construct the set CPN.

We next describe a more practical way of constructing a critical path in L.
We wuse R(a,a,...,68) to represent the pair (1 a;) where
a; = maxy a,, 4y, . . ., a;); that is, R tells us which argument is maximum.

Theorem 2 Given a circuit parameter 7, knowledge of
R(e,d), R(8t), R(so+ b, 89+ 8, %+t), and
R(s + o, 28, 24;)

is both necessary and sufficient to construct a critical path in L, for m > 0 and
n>0.

=X

We need the following lemmas to prove Theorem 2. The first lemma shows
that we can simplify our finite automaton.

Lemma 3 Let L be the set of strings accepted by the finite automaton

= (Q, L, 4 qp I') defined in Section 8 and shown in Fig. 10a. Let L; be the
set of strings accepted by the finite automaton M; = (@y, Xy, é;, qo, F;) shown
in Fig. 10b, where @, = { ¢y, A, B}. F; = { A, B}, and §; is shown in Fig.
10b. Then I{ M)=I(M,).
Proof Use the state minimization algorithm in [24]. O

From now on, we will concentrate our attention on the reduced state auto-

maton M;. Next we will characterize the strings accepted by M,.

Lemma 4 Let E be the regular expression of the strings accepted by M;. Then

E = agaf(tobsy) ‘aj(€ + fy) + bobi(soasto)byl € + 5)

where a; = s; + ¢, b; = t; + dfor 1 = 0, 1 and ¢ is the empty input.
Proof Let r, (rp) be the regular expressions of strings starting from and end-
ing at state A (B). Then r, = aj(tyby3)) as and rg = b{(spasty) b;. Let E4 (
Ep) be the regular expressions of strings accepted at state A (B). Then
E4 = ayry + byrpsy and Ep = byrp + agraty. Therefore E= E, + Ep is the
desired regular expression. [J
Definition For two regular expressions F; and E,, we define £, ~ E, iff for any
e, € E; (&g € E,), there exists e; € By (¢; € E;) such that e; =, e,, that is,
N e)= T(e). We also use e; ~ e5 when ¢, =, €,.
Lemma 5 E ~ (sty + cty + dsy + 89+ ¢ + d)sjc’(sy + &y) 'td’
Proof Note that for a bEYX, (a+b)" ~a"b’, ab~ ba. Hence
oy =(s+c) ~sic’, bj=(t+d) ~td, (tobsy) ~ (sofo)bs, and
(895ty)" ~ (8oty) ‘a;. From Lemma 4, we can obtain desired result. [J

Let y3 = max(sy + &y, o + 81, tg + ;) and U= maa:(8 + to, 281, 2¢;).
Then define z;, 2, 23, and z; as follows:

spy=max(e¢c d), m=max(a,tl)

sotg if y3 =18+ 1 Solo if yy=1sp+
Zs={ S8 if y3=29+3 , z4={ si if y =25

Lemma 6 let o " be a- critieal | path: in . L. Then
A%% i n=2k+1
* S| muA-1 if n=2k

<3 -

Proof Let 3 be a path in L,, ,. From Lemma 5, # ~ ¢™d"y where z; + 7, = m
and Y € (8y + &y + 8, + t;)™ Clearly, 8 <, 'y = max(¢, d)™. Hence we only
have to think about a critical path in Ly, Let g be a path in Ly, From
Lemma 5, ﬁ ~ (Soto + S0 = tg)Sflf;z(Seto)33-

We take the following two cases: 1) n = 2k + 1 and 2) n = 2k.

1) n=2k+1: B~ 5"t sty)™ where v € (solp + 5o + £o).

l.a) If v = syt;, then either z; or z, is odd. Without loss of generality, we
assume that z; = 2k, + 1 and z, = 2k,. Since 8; <, 8, 8 <y 2% & <u %
Soto <y 24 and sy <, 2, we have

k, 2k : k, k
B~ solomsy ' 50ty)? <o %0225 <o 27

1.b) If v = sy or &y, then B ~ ~s;'"% 8oty)™ and 2, = z, (mod 2). Note that

N <yp2Z Ifz=2k+1and z, = 2k; + 1, then

2k, 2k a b
B~ A a1ty)8, ' (%0t) <u 2l S0k V25272 <y %745

If 7, = 2k, and 7, = 2k, then B ~ 78 4y sty) < 27

Hence 8 < z,2h.
9) n=2k : B~ st soly)® where 7€ (séto + 898 + byt + Sty + 848y).
Since n= 2+ z; + 2, + 2z; is even, we know z; = z,(mod2). Since
sot; <o Sofo and 81ty <., solo, We have B <, zs'ti soto)™. In the same way as
in LUt sl)P< 8~ Thwsp< asl-!. B
Definition A string 8 € £ is said to be constructible when there exists a path
a € L(M,) such that a ~ f.

Lemma 7 For any integers m > 0 and k > 1, the strings 2J"22; and 2J'z2;
are constructible, and therefore the upper bounds in Lemma 6 are attained.

-1

Proof We will prove this for n = 2k + 1. The proof for n even is similar.
Without loss of generality, we assume that z = s,. Now we consider the con-
structibility of z,zf. We will find a string &g, € Ly, such that aq, ~ 22k, We
have the following three cases for z,:
1) 2 = solo * Let ap, = s fo%)* € Lo Then ag, € L{ My) and aq , ~ 2%
2) 3 =o7: Let oy, = 8083F € Ly ,- Then g , € I(M,) and ¢ , ~ 225
3) z, =8 : Since g + fH < 24 < fy + ¢;, we have sy < {; < &. However we
assumed that 2z = max (8y, £,) = 85. Thus this case does not happen.

From 1), 2), and 3) we showed that the string 225 is constructible.

D

Now we prove that z[*z2; is constructible. Let y, = soc™ if z; = ¢, or let
¥ = d™sp if z; = d. Let eg , = sy Let & =y,3,. Here we know that e € L, ,
and a ~ 2["225. Thus we proved that #'z2% is constructible. O

The following example shows how to construct a critical path fin Lo from
knowledge of R-functions, given a fixed parameter 7 = (12,16,12,8,8). By compu-
lation we obtain a critical path @ = cclysy in Lys, w, = 10.3 ns, w, = 18.7 ns,
and w, = 15.2 ns. Since w(cclysy) > uf ddsgly) , we have max{ ¢, d) = c.
Since cclysy >, ccloty, we have sy + o > by + t; > 2t;. Since maz(sy, fy) = ¢,
we know 89 + by = 28y > 28 and o 2 8 > 8. Thus
maz(sy + by, 2 8, 2 8) = 89 + by and max(55 + by, 89+ 8y, g+ 4) = 89 + b
Then from Lemma 7, we can construct a critical path 8= c'% ty8y)*ty € Lyg5
and calculate the delay time w(f) = 189.5 ns. In fact, actual computation shows
that a critical path of Ljgs is v = ¢’ tyse)X ty8)ty and its delay time w(y) is
189.3 ns. Note that the critical paths 4 and # are equivalent in the sense that
w(B) = w(y) = 10¢ + 3y + 2s,.

Lemma 8 Given a critical path « in L, 5, we know the values of the R-functions
in Theorem 2.

Proof Let o be a critical path in L;3. « ~ B~ where SE€(c+ d) and
NE(8y+ 8 + tg+ t;). Clearly f= maz(¢, d) = z. Since 88,8 <, SotoS
and sylpt; <, loSolp, we have g~ (8057 + SoloSe + bosolo + LtF). Suppose
N~ 8583 Then we can find the values of the R-functions in Theorem 2 as fol-
lows. Since §8;8; >, SoloSo, We have 55+ fH < 2s < 8 + 8. Thus
ty < 8 < 8. Hence maz(sp, by) = 85, maz(sy + by, 89 + 8, fo+ ;) = 85 + 8
and max(sy + &y, 23;, 2¢;) = 2s;. We can also compute the R-functions in the
other cases as above. [

Now we prove Theorem 2.

Proof of Theorem 2 Suppose we know the values of R-functions in Theorem
2. From Lemma 7, there is a path g in L,, such that
And if n=2k+1
N{ Pyk-1 if n=2k.
worse than any path in L,, ,. This means that the path g itself is a critical path.
Conversely, we can find the desired R-functions from a critical path in L, 3 from
Lemma 8. O

From Theorem 2 and Lemma 8, we have found a new way to implement our
critical-path optimization method, as shown in Fig. 11. By analyzing the small
configuration (the circuit in Cpy ;3), Wwe can avoid analyzing the entire circuit.
This means that our optimization workload will be reduced significantly when the
circuit is large.

From Lemma 6, the delay time of the path g is

~ 18 -

10. A canonical configuration for the nX n multiplier

Although we found an effective way of computing a critical path of L, and
its delay time, we still have a major question left. That is, does there exist an
effective way to find a locally optimal parameter for the large nX n multiplier? In
this section we prove that the answer to the question is yes and, furthermore, we
will show a stronger result by introducing the idea of the canonical configuration.
Definition A circuit CC € Cpy is called the canonical configuration of the nXn
multiplier iff the optimization of CC yields the same parameters as the optimiza-
tion of the nX n multiplier, for all sufficiently large n.

We now consider the following problem:
Problem 1 Is there a canonical configuration CC of the nXn multiplier?! If a
CC exists, what is it? How can it be found?

Let T,(n) denote the delay time of the critical path of the nX n multiplier
given a circuit parameter 7. We use 7{ n) instead of T,(n) when = is fixed in
the discussion. We can now give an explicit formula T,(n) for the nXn multi-
plier.

Theorem 3 Given a circuit parameter w, then T,(n) can be represented as fol-

lows:
Th(n) = kay + 2 ind 5. AR
where k= | n/2 | - 1,
7y = 4 max(¢, d) + maz(t, + sy, 28y, 2¢;)
{max(¢y d) + maa{ to, 3) if n = 2k
2=\ 3maxr(¢, d) + max{ ty+ 8, 89 + 85, bo+ ;) if n=2k+1

Proof Let z;, 2, z, and z; be as defined in Section 9. From Lemma 2, a critical
path a of nXn multiplier is in Ly, _3 ,_;. And from Lemma 6, we know that
4" %%4 ifn-1=2+1 n=2k+2
a ~ zf"‘azszﬁ“ ifn-1= 2k o =292 +1
{ 4 %521 it n— 2k
O ~

: T
A=l k-1 if n=2k+1 10U

A8 Y na) ite it
Y TN Ay)Y Ay) Hn=2k+1

Note that k= | n/2 | - 1. I3

1%

Corollary 1 Given a circuit parameter m, then T,(n) is asymptotically propor-

tional to n.
Proof This is clear from Eq. (1). O

In fact, from Table 4 in Section 5, we can obtain empirically the formula
T,, = 40(n-1) when m = (4,16,8,8).

Corollary 2 The circuit C; € Cpg4o shown in Fig. 12 is a canonical
configuration of the nXn multiplier. The ecritical path of C; has four carry
stages and two sum stages.

Proof From Theorem 3, we have T n) = ay| n/2] + f, where a,, is the
delay time of four carry stages and two sum stages and f is the constant delay
time. Hence an optimal parameter of L, is, asymptotically for large n, also an
optimal parameter of L,,,. .00 : :

From Lemma 2 in Section 7, there are (2n — 3) carry stages and (n—1)
sum stages in any critical path of the nXn multiplier. Thus we might expect
that the circuit Cj € Cryqy, Whose critical path has two carry stages and one
sum stage, is a canonical configuration of the nXn multiplier. However, as we
saw in this section, the circuit C; € Cpy 40 is a canonical configuration, but the
circuit Cy € Cpy o, is not a canonical configuration. The reason is that optimiza-
tion of the circuit Cy cannot determine maz(sy + &y, 28y, 2¢;).

11. The optimization of a subcircuit

‘In this section, we optimize the two circuits Cy and Cj discussed in the pre-
vious section, verifying that the circuit C; works well as a canonical
- configuration, but the circuit Cy does not. The circuit C; is indicated by a solid
line in Fig. 12, while the circuit Cj is indicated by a dotted line. The critical
path from cell Agqo to cell Ay, is analyzed for C; in Fig. 12, while the critical
path from cell Ay, to cell A, is analyzed for .

Table 6 shows which parameters are locally optimal for m33, m44, m88,
m1010, Cy and Cj. The symbol X indicates a local optimum. The same set of 11
random initial parameters were used for each circuit, and only these 5 distinct
local optima were obtained.

The most important result is that every local optimum of m88 and m1010 is
also a local optimum of C;. This is not true for C;, nor is it true for the smaller
circuits m33 and m44. Thus we can say that the circuit C; is indeed appropriate
as a representative subcircuit of the nX n multiplier. In this way, Corollary 2 in
Section 9 is confirmed very well by numerical experiments.

<18 =

T o T3 Ty s
Gy X X
c, X X X
m1010 X X X
m8&8 X X X
m44 X X X
m33 X X X

Table 6. Locally optimal parameters for each circuit

12. Conclusions

We have described a general approach for sizing the transistors in a cell that
is embedded in a regular array, using local search along the critical path. The
simplest, most regular array multiplier structure was used as an example, with
delay time (not throughput) as a criterion. No attempt was made to incorporate
intermediate clocking, precharging, or superbuffers.

We quickly encountered the problem that the running time of the optimiza-
tion increases rapidly when we increase the size of the multiplier. We therefore
tried to make our optimization method more practical by making use of the
circuit’s regularity and developed what we call the canonical configuration
method. In this method we locally optimize the small circuit C| instead of the
entire circuit. We showed how to extract this canonical configuration C for the
nX-n multiplier, and gave experimental results that illustrate the savings offered
by this method.

The following problems are the subject of future investigation: Do there exist

canonical configurations in more general regular arrays? If the canonical
configuration exits for some regular array, how can we extract it?

References

1. P. R. Cappello and K. Steiglitz, ‘‘Digital Signal Processing Applications of
Systolic Algorithms,”” CMU Conference on VLSI Systems and Computations,
H.T. Kung, Bob Sproull, and Guy Steele (eds.), Computer Science Press,
Rockville, Md., 1981.

2. P. R. Cappello and K. Steiglitz, ‘“Completely Pipelined Architectures for
Digital Signal Processing,” IEEE Trans. on Acoustics, Speech, and Signal

10.

11.

12.

13.

14.

=30 -

Proc., vol. ASSP-31, no. 4, pp. 1016-22, August 1983.

P. R. Cappello and K. Steiglitz, “A Note on 'Free Accumulation’ in VLSI
Filter Architectures,” IEEE Trans. on Circuits and Systems, in press.

C. Caraiscos and B. Liu, “Bit Serial VLSI Implementations of FIR and IIR
Digital Filters,” Proc. IEEE Int. Symp. on Circuits and Systems, May 1983.

P. B. Denyer and D. J. Myers, “Carry-Save Arrays for VLSI Signal Process-
ing,” in VLSI 81: Very Large Scale Integration, John P. Gray (ed.),
Academic Press, London, 1981. (Proceedings of the First International
Conference on Very Large Scale Integration, University of Edinburgh,
August 18-21, 1981.)

L. A. Glasser and L. P. J. Hoyte, ‘“Delay and Power Optimization in VLSI
Circuits,”” Proc. IEEE 21st Design Automation Conference, 1984, pp. 529-
235.

K. Iwano and K. Steiglitz, “Some Experiments in VLSI Leaf-cell Optimiza-
tion,” 1984 IEEE Workshop on VLSI Signal Processing, pp. 387-395, Univer-
sity of Southern California, Nov. 12-14, 1984.

K. Iwano and K. Steiglitz, ‘‘Time-Power-Area Tradeoffs for the nMOS VLSI
Full-adder,” 1985 Proc. Int. Conf. on Acoustics, Speech, and Signal Process-
ing, pp 1453-56, Tampa, Florida, Mar., 1985. '
HT. Kung, L. M. Ruane, and D. W. L. Yen, “A Two-Level Pipelined Sys-
tolic Array for Convolutions,” CMU Conference on VLSI Systems and Com-
putations, H.T. Kung, Bob Sproull, and Guy Steele (eds.), Computer Science
Press, Rockville, Md., 1981.

E. Lawler, Combinatorial Optimization, Holt, Renehart and Winston, New
York, N. Y., 1976.

R. J. Lipton, S. C. North, R. Sedgewick, J. Valdes, and G. Vijayan, “VLSI

Layout as Programming,” ACM Trans. on Programming Languages and-Sys-
tems, July 1983.

R. F. Lyon, “A Bit-Serial VLSI Architecture Methodology for Signal Process-
ing,” in VLSI 81: Very Large Scale Integration, John P. Gray (ed.),
Academic Press, London, 1981. (Proceedings of the First International
Conference on Very Large Scale Integration, University of Edinburgh,
August 18-21, 1981.)

J. Mata, “ALLENDE: A Procedural Language for the Hierarchical
Specification of VLSI Layouts,” Proc. IEEE 22nd Design Automation
Conference, 1985.

M. D. Matson, ‘“Macromodeling and Optimization of Digital MOS VLSI Cir-
cuits,” Ph.D thesis, Department of EECS, M. I. T., Jan., 1985.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

| B

R. N. Mayo, J. K. Ousterhout, and W. S. Scott, “1983 VLSI Tools,”” Report
No. UCB/CSD 83/115, Computer Science Division (EECS), University of
California, Berkeley, Calif., March 1983.

J. V. McCanny, J.G. McWhirter, J. B. G. Roberts, D. J. Day, and T. L.
Thorp, “Bit Level Systolic Arrays,” Proc. 15th Asilomar Conf. on Circuits,
Systems, and Computers, Nov., 1981.

S. Trimberger, ‘“‘Automated Performance Optimization of Custom Integrated
Circuits,”’ in VLSI 83: VLSI Design of Digital Systems, F. Anceau and E. J.
Aas (eds.), North Holland, Amsterdam, 1983. (Proceedings of the IFIP

International Conference on Very Large Scale Integration, Trondheim, Nor-
way, August, 1983.)

A. J. Strojwas, S. R. Nassif, and S. W. Director, “Optimal Design of VLSI
Minicells using a Statistical Process Simulator,” Proc. IEEE International
Conference on Circuit and System, 1983, pp. 202-205.

J. K. Ousterhout, “Switch-Level Delay Models for Digital MOS VLSI,” Proc.
IEEE 21st Design Automation Conference, 1984, pp. 542-547.

D. J. Myers, “Multipliers for LSI and VLSI Signal Processing Applications,”
Masters Degree Thesis, Edinburgh University, Edinburgh, England, Sept.

1981. :

J. Allen, “VLSI Architectures for Signal Processing,” in VLSI architecture,
B. Randell and P. C. Treleaven (eds.), pp. 242-254, Prentice-Hall Inc., Engle-
wood Cliffs, N. J., 1983.

C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley
Publishing Co. Menlo Park, Ca., 1980. e .

N. Jouppi, “Timing Analysis for nMOS VLSI,"” Proceedings 20th Design
Automation Conference, IEEE, June 1983, pp. 411-418.

J. E. Hoperoft and J. P. Ullman, Introduction to Automata Theory,
Languages and Computation, Addison-Wesley Publishing Co. Menlo Park,
Ca., 1979.

C. W. Wu, P. R. Cappello, and M. Saboff, “An FIR Filter Tissue,” 1985
Proc. 19th Asilomar Conference on Circuit, Systems, and Compulers, Pacific
Grove, CA, Nov., 1985.

CIRCUIT C(u)

COST (C)

LOCAL OPTIMUM

- Figure 1. Critical-path optimization

RANDOM

l

LOCAL CHANGE

ALLENDE

MEXTRA

.
CRYSTAL |

f(P,T.A),
CITICAL PATH

Detailed flowchart of the critical-path optimization method

. o
LOCAL OPTIMUM

Figure 2.

v

POWEST

Adbbl Al SRS

Figure 3a. Circuit diagram of the PLA

A D
4 _{> T g

I L

Figure 3b. Circuit diagram of the Data Selector

Figure 3c. Circuit diagram of the Random Logic circuit

- \
// \\,/ X //, A\
i oy / \ \\’/
II \ // TG t_‘ i 4 —_—
/ % \ \ [[
s ot " [[: "‘[L \ ||
/ \ So
II I—“I \\ -Gy \
! \.‘ IC I \
Tie T .
\
Ci—| S|—I = \
[I: \ ,’ —I[C|—[\ =
\ / Vi
| JE—— \
! \
i
\
o[sidLao [siql
arb -II% C*'I[Si -||: | y
I ' /
I I /
[a-b-l[/ /
3 e 2l / /
\ . = 1 / P
\\ /\\ - & ,//
\"~ Nt; /I \\ _ /5/
- e /
P N5, .

Pmax (mW)

15
10 ':‘ x x

5 -
B MR
welector

& gt Random LBgic
0 VR :
D B TR T(ns)

. Figure 4. _
~ The P-T trade off curves of one-bit full adder circuits -

7@%{7%

a2

a3

bo —

P3

Pa

Ps

Pe6

P7

Figure 5a. 4 by 4 multiplier

Si
Co Ci
B b
So

a

Figure 5b. One-bit full adder cell

o

b

o

a

a-b

Figure 5c. AND cell

Pmax (mW)

500

400

300

200 : ‘ \-\

Kmmo

100 |

L | |
i I m88
: 0 -
o A% 600
Figure 6.

The P-T trade off curves of inultipl_iers

T (r_1§)

- Figure 7. ,
The nodes in the one-bit full adder

—— — — -

—0 O O—

Figure 8.
Two-dimensional array of one-bit full adders

The basic cells and the interface rule

to to
SQ S0
Y
C
51
51
Figure 10a.

State transition diagram along a critical-path

51,C

Figure 10b.
Minimized state transition diagram

()

>

Y
FIND a13€CPN13

LOCAL CHANGE. CONSTRUCT Bmn€CPNmp
A

COMPUTE W(Bmn)

LOCAL OPTIMUM

Figure 11.
New implementation of the critical-path optimization method

Figure 12. The circuits Cg and C4

