POLICIES FOR DYNAMIC VOTE REASSIGNMENT

Daniel Barbara
Hector Garcia-Molina

Annemarie Spauster

September, 1985

CS-TR-010-85

POLICIES FOR DYNAMIC VOTE REASSIGNMENT

Degniel Barbara
Hector Garcio-Molina

Annemarie Spousier

Computer Science Department
° Princeton University

Princeton N.J. 08540

1. INTRODUCTION

In distributed systems, voting is used commonly to provide a mutual exclu-
sion mechanism that works under catastrophic failures like partitions. Each node
is a priori assigned a number of votes, and only the group with a majority of
votes is allowed to perform a restricted operation [e.g., DAVI82, GIFF79,

THOM?79, GARC82).

A classical problem in which voting has been widely used is the one of con-
trolling access to replicated data items in distributed databases, where executing
transactions can read and write these items. Basically, before committing, a tran-
saction must have control over all copies of all the data items involved, hen-
ceforth excluding any other competing transaction from changing the values of

those items, or reading data values that are to be immediately updated. When

This work bas been supported by NSF Grants ECS-8303146 and ECS-8351616, Naval Electronic Systems Com-
mand contract NO0039-84-C0485, and from grants from IBM and NCR corporations.

=

partitions occur, a transaction must also exclude transactions in other groups
from executing updates that conflict with its updates. For example, consider the
four node system of Figure 1. Assume each node has a copy of a database and
say the following vote assignment is in effect: v, = v, = v, =1 and v;= 2. In
this case, if nodes a and d can communicate, then they can run update transac-
tions on the database. Since e and d together have a majority of votes (3), then

no other group could possibly be in the same situation.

Figure 1

Since groups cannot communicate with each other during a partition, it is
possible that at a given time no group has a majority of votes. (In this example,
this can happen if, say, the three groups {d}, {a}, {b,c} form.) There is no way
to avoid this problem: even giving one node all the votes does not help since that

node may fail. We say that under these circumstances, the system becomes

-3.-

halted. The likelihood of such a state can be reduced by selecting a good vote

assignment [BARBS5a).

The likelihood of halting can also be reduced if we take advantage of £he fol-
lowing idea: in the case of a partition that leaves some group with the majority
of votes, let this group reassign the votes dynamically in order to increase its vot-
ing power so further partitions may be survived. Such dynamic vote reassignment
is the topic of this paper.

To illustrate, consider once again the system of Figure 1 and vote gssign-
ment v, = v, = v, = 1 and v, = 2. Assume that a partition separates node d
from nodes @, b and ¢. Nodes ¢, b and ¢ can still collect a majority of votes (3),
while d cannot. However, if a second partition occurs, separating node ¢ from a
and b, the system will be halted.

During the first partition, nodes e, b and ¢ may opt for reconfiguring the
votes in an effort to become more resilient to new partitions. For instance, a new
vote assignment could be v, = v, = v, = 5 and v; = 2. In this way the second
partition will find nodes e and b with 10 votes over 17, forming a majority group

and the system will not be halted.

Of course, we must be very careful in switching from the first assignment to
the second one, mﬁking sure that no node “mixes up” new and old votes. This
will ensure that all nodes are eventually informed of the new assignment, and
guarantee that at no time will two isolated groups think they have a majority.

We will refer to the algorithms for making the vote transition as the protocols.

-4-

Just as important, we must select a good new assignment. Note that the
second assignment in the example is just one of many possibilities, and each
different assignment may give different protection against new partitions. We
will use the term policy to refer to the mechanism for selecting the new assign-
ment. In this paper we study various policies and compare the protection they
give.

It is possible to distinguish two strategies for dynamic vote assignment:

e Group consensus. The nodes in the active group agree upon the new vote
configuration in a coordindted fashion. The information used is global.
Nodes outside the active group will not receive any votes under the new

configuration.

e Autonomous reconfiguration. Each node makes its own decisions auto-
nomously, without subordinating its new choice of votes to any other node.
However, before a change is made final, a node must get the approval of the
majority.

Group consensus can be achieved by using a coordinator. After a failure,
the members of the majority group (if any) elect a coordinator. The coordinator
collects information about the current system topology, and with a given policy
determines a good assignment. The coordinator then distributes the new assign-
ments to all group members. The new votes are tagged with a version number
that distinguishes them from old votes. Nodes outside the majority group cannot
be informed of their new votes (typically 0), but since their version number is out

of date, their votes become obsolete automatically. The protocols for group con-

o B
sensus are described in more detail in [GARC82|, and the policies for selecting an
assignment given a topology are studied in [BARB85a]. (Incidentally, group con-

sensus can also be performed in a distributed fashion.)

Group consensus can select very good assignments, but unfortunately
requires fairly tight coordination among the members of the group and good
knowledge of the current system topology. On the other hand, autonomous
reconfiguration is much simpler and more flexible. Each node decides indepen-
dently how many votes it should have. The node does not need complete or
accurate information about the state of the system. In a sense, the node makes
educated guesses about the best number of votes to have, with its primary goal
being to claim for itself all or part of the voting power of a node (or nodes) that

have been separated from the majority group.

When a node wishes to change its votes, it follows a commit protocol to
inform the rest of the nodes. The node can start voting with its new votes as
soon as it receives acknowledgments of the change from nodes with a majority of
votes, as this ensures that the change is eventually propagated to all nodes. The
protocol is extremely simple (only one phase is required), although the proofs of

correctness are not. The details can be found in [BARB85b].

The goal of this paper is to study the policies for autonomous vote reassign-
ment and to answer the following key questions: Which dynamic policy is best?
What price do we pay for having the simpler autonomous strategy? That is, does
group consensus provide significantly higher protection against partitions? The

policies are studied in section 2; the comparisons are made in section 3. Section 4

presents some conclusions.

2. VOTE CHANGING POLICY

In this section we consider several variations on autonomous reconfiguration.

We can divide the strategies as follows:

e Alliance techniques. After a failure (or group of failures), for each node
outside the active group, all the nodes in the active group increase their

votes to supplant the failed node.

¢ Overthrow techniques. After a failure (or group of failures), for each node
outside the active group, there will be one node in the active group sup-
planting it. A protocol is needed to decide which node will undertake this

task. An a priori ordering of the nodes may suffice.
We will deseribe policies for these two main techniques.

2.1 The Overthrow Technique

Vote increasing under the overthrow technique is straightforward. Consider
a system in which node z has gone down, while the rest of the nodes are still up.
(This can be considered as a partition of the system into two groups, with z in
one group and the rest of the nodes in the other.) Let v, be the number of votes

that node z has. Let TOT be the total number of votes in the system and MAJ

TOT+1

the majority of votes. Assuming TOT is odd, MAJ = . If node a is the

node supplanting z, the new number of votes for a, v, will have to be such that
it covers the voting power that a had before (v,), plus the voting power of z, plus

the increase in the total number of votes. If a increases its votes by 2v,, the total

& s

number of votes will be TOT' = TOT + 2v, and MAJ' = MAJ+ v, It can

be shown that all the majority groups that used z can be formed using a instead:

e If a group G had V votes and contained @ and gz, the group G' =
G- {z}, will have V4 = Vg+ 2v,- v, > MAJ+ v,= MAJ' . There
fore, G' is a majority group under the new vote assignment.

o If a group G had V; votes and contained z, but not g, the group
G' =GU {a} - {z} willhave Vi = Vg +v,+ v, > MAJ'.

Of course, any other group in which z does not participate may suffer loss of vot-

ing power and need the help of node @ to complete the majority, but the basic

goal of supplanting z is achieved.

Deciding which node should increase its votes for the node(s) that are no
longer in the active group can be accomplished,'for example, by ranking the
nodes; the node in the majority group with the lowest ranking can take the
extra votes. Or, a token passing mechanism can be used, where the node with
the token takes the votes. In any case, the method does not need to be foolproof.
If problems such as communication delays arise and nodes pick a vote value that
is not accurate or several nodes supplant an excluded node, the worst that will
happen is that the new assignment is not as good as it could be. It will noﬁ lead

to more than one active group.
2.2 The Alliance Technique
There are many variations on the alliance technique. We describe three

here. In general, we want to give each node a fraction of the voting power of a

node that has been excluded from the majority group. As in the overthrow

il

technique, we want to be sure to give out at least 2v, votes in the majority
group, enough to counteract those votes that node z holds plus the number of
votes node z could have contributed if it were in the active group. Of course, we
can always assign a surplus of votes to each node. One possibility is to assign 2v,
votes to every member of the active group; or, we can assign v, votes to each
member of the active group, and assign 2v, votes when there is just one node left.

Another possibility is to spread the 2v, votes out. Say N = the number of nodes

2v
in the majority group. Then, give each node in the active group \'T:\ votes. If

need be, N can be estimated by the nodes. This may not be as good as possible
in terms of resilience to failures, but is certainly not dangerous. No matter what
the strategy, we have to be careful of the case when there are only 2 nodes left in
the majority group. In that situation, it is senseless to give each node the same
number of votes, since if they lose communication with each other, their extra
votes will only cancel each other out and no group may have a majority.

Instead, it is better to pick one node and give it 2v, votes.

2.3 Examples
We illustrate these techniques with an example. Consider again the system
of Figure 1, but with initial vote assignment v, = 6, v, = v, = v, = 5.
Assume that node a gets disconnected from the rest, leaving {b,c,d} as the active
group. Using the overthrow techniques, if we say node b is of lowest rank or has
the token (depending on the strategy used), the new vote assignment will be
v,= 6, v, =17, 9, = vy =>5.

since we give node b 2v, votes.

-9-
Now consider the three alliance techniques. If we give each node 2v, votes

we have

v,= 6, vy, = v, = v; = 17.

v, =6, vy, = v, = vy =1L
; 27, : -
If we give each node N votes, N = the number of nodes in the majority

group, we have the assignment

There are obvious differences between these assignments. For instance, the
first two have node(s) with a higher number of votes than the last two. In gep-
eral, the size of the votes will grow much faster using the first two techniques
than in the last two. We will discuss how to handle this problem shortly. Also,
the first assignment gave much power to one node, which can be a disadvantage
if this node fails. Also important is the amount of message traffic these assign-
ments incurred. Since only one node got votes in the overthrow case, this tech-
nique required fewer messages. But just looking at the assignments tells us little
about their relative performance. This is just one topology and set of failures,
certainly not representative. A later presentation of simulation results will give

us a better means of comparison.
2.4 Balance of Power

Of course, whenever a node 1s excluded from the majority and other nodes

increase their votes, the balance of voting power is disturbed. What we need are

- 18 -

techniques for maintaining the equilibrium of the system. There are two possibil-
ities:

(1) A node that has been out of the active group can “catch up” when it returns

to the active group, in other words, increase its votes.

(2) When a node that has been out of the active group returns, the node(s) that
increased their votes because of its absence can relinquish them, i.e., decrease

their votes.
2.4.1 Catch up Strategies

When a node z is separated from the active group each node in the active
group takes on more votes, depending on the policy chosen for vote increasing
and the value v,, When node z returns to the active group it should increase its
votes by at least as many as other nodes did when z was initially excluded. In
addition, node z can keep track of the last majority group that it participated in.
When it becomes part of an active group again, it can determine which nodes
were in the previous majority group with z, but are not in the present majority
group. These nodes caused vote increases since the last active group that included
node z. Node z can then increase its votes as if it were present when those nodes
were initially excluded. This allows node z to pick up most (but maybe not all)
of the vote changes that occurred while it was excluded from the active group. It
may not, for example, increase its votes for a node, y, that has failed after z

failed, but repaired before z repaired.

We illustrate this strategy with an example. Referring again to Figure 1,

suppose we have the initial vote assignment v, = 6, v, = v, = v3= 5. Assume

s Tl

we are using the 2v, alliance technique with catch up. Say once again that node
a goes down and nodes b, ¢, d get 17 votes each as in the example of Section 2.3.
Then, say node b fails and nodes ¢ and d take on 34 more votes each yielding the
assignment

v, =6, v, = 17, v, = v, = 5L
Now, node a returns and wishes to catch up. It takes 2 times its own votes
automatically. Then, it checks to see who is in the active group and notes that
node b is not. Since node b was in the last active group ¢ was in, b must have
become excluded in the interim.. So, node a takes 2X v, votes as well, which it
has learned from node ¢ (or d) is 17. So, node a gains 46 votes for a total of 52.
The final assignment is

v, = 52, v, = 17, v, = v; = 5L
and node ¢ has caught up.

Of course, we can not let votes increase forever. Eventually the nodes must
decide to decrease their votes. After some node hits a predefined threshold vote
value it can attempt to initiate some consensus technique to bring all the votes
back down to their original values. This may require that all nodes be in the
active group and that other processing wait until the votes are reset. This is
probably not too severe, though, since this reconfiguration should not need to be

done too often.
2.4.2 Decrease Strategies

Decreasing votes avoids the problem of votes getting too big. To implement

this, each node must keep track of how many votes it took on when some other

= 1B

node became excluded. When the node returns to the active group, the nodes
can decrease their votes by the appropriate amount. This requires that each site

maintain a table with an entry for each other node indicating the vote change.

In the next section we present performance results for the techniques
described along with an analysis of the advantages and disadvantages of each

method.

3. PERFORMANCE RESULTS

As discovered in the last section we have many policies to choose from for an
implementation of dynamic vot; reassignment. The next step is to determine
their usefulness. Several questions require our attention: Is dynamic vote reas-
signment much better than retaining a static assignment? Is group consensus
much more resilient than the autonomous techniques? Is one autonomous tech-
nique better than the rest? Is the topology of the network relevant? In an
attempt to answer these questions we simulated the policies of the previous sec-

tion.
3.1 Methods

Each experiment uses an event driven simulator where the events consist of
node and link failures, and repairs. Times between failures (and repairs) are
exponentially distributed. The failure rates are assumed to be very high in order
to focus our attention on how well the system adapts. In other words, if we
choose typical failure rates (e.g., each component is down 1% of the time), the
system will halt rarely and the vote reassignment policy will have little effect on

average reliability measures. However, our goal is to minimize disruptions during

- 13-

failures, so instead we zero in on a failure period when the system is unstable, by

selecting high failure rates.

To simplify the simulation, we assume that the vote reassignment is done
instantaneously. In other words, if an event causes a new vote assignment, the
vote changes occur before the next event does. This approach will yield worst
case results for autonomous reconfiguration techniques as compared to group con-
sensus since we presume that group consensus vote increases take much longer in

practice than autonomous techniques.

The topology and the connectivity of the communication network play an
important role in dynamic vote reassignment. Of course, we must limit the
number of networks studied, and Figure 2 presents the six 5-node systems for
which we give results in this paper. The networks represent a spectrum of con-
nectivity. We chose 5-node networks because we think they are the most
representative. Larger networks are not expected: remember, we are only looking
at nodes containing database copies. Finally, the results for smaller systems

appear to be subsumed by the results for these networks.

All results obtained a 95% confidence interval with a width of 10 percentage
points. Each policy was simulated for 200 time units for the five network topolo-
gies shown in Figure 2, with nodes and links failing and repairing at a rate of 20.

Nine strategies were simulated:

(1). Alliance: 2v, votes with vote catchup

(2). Alliance: v, votes with vote catchup

2v
(3). Alliance: Ir-—ﬁf—) votes with vote decreasing

-14-

Il

RS

I2

c5

I4

Figure 2

& 15 =

(4). Alliance: 22, votes with vote decreasing

(5). Alliance: v, votes with vote decreasing

(6). Overthrow: ranking with vote decreasing

(7). Overthrow: token passing with vote decreasing
(8). Group consensus

(9). Static Vote Assignment

The overthrow technique combined- with vote catch up was not imple-
mented. Since in overthrow votes are not evenly distributed when a node is
excluded, a node catching up would only catch up to one other node and do little

to rebalance the voting power. Vote catch up was not implemented for the alli-

2v
ance technique with {T;} votes either, since it would be difficult in practice for

the returning node to know how many nodes were in the active group when it

was excluded.

For each strategy, the nodes start off with an initial assignment deterinined
by the topology of the network. Votes are distributed according to the number
of links incident to a node. If need be, an extra vote is added to the node with
the largest number of incident edges to make the total number of votes odd. See
[BARBS85a] for the details and rationale of this technique. The static vote assign-
ment strategy retains this same assignment throughout a run. The group con-
sensus technique readjusts the votes after each failure according to this algo-
rithm.

The strategies are compared on the basis of mean percent uptime, the aver-

age over all runs of the percentage of time that some group in the system could

perform operations. For purposes of illustration, this is displayed graphically in

- 16 -

Graph 1, even though the connectivity axis is not continuous. (Note that up
times are relatively low, but remember that we are looking at a failure period
only.) Incidentally, we also performed a number of other tests. Due to space limi-
tations, they are not presented here, but the results of Graph 1 are representa-

tive.
3.2. Analysis

Looking at Graph 1, we see that any of the reconfiguration strategies proved
more effective at keeping the system operative than retaining a static assignment.
Group consensus showed a slight gain over the autonomous techniques in all
cases. Among the alliance techniques, assigning 2v, votes with catching up
yielded the best results, especially in the intermediate cases, although 2v, with
vote decreasing worked as well for graphs R5 and I1. In general, though, catch-
ing up yielded better results than its decreasing counterpart for higher connec-

tivity graphs. Alliance 2v, performed better than v, under the same balancing
. . . 2’”2 . .
strategy. Use of the alliance policy with N votes showed relative improvement

as the connectivity increased.

Overthrow using token passing did not work as well as the other
reconfiguration strategies. This is not surprising since when the token ends up
with some node not in the majority, no node gets extra votes. Overthrow using
ranking, however, performed well. It was in fact slightly better than the alliance
techniques for graphs R5 and I1, but worse for the 12,13, 14 and C5 graphs. This
is not surprising in light of work done in [BARB85a] on static assignment, which

asserts that vote distribution is not as advisable for rings and other low

-17-

100 %
60

40 —+

%

up
time —_—

M 3=
alliance overthrow
Py sessene ranking cesiess
20 4=
Vy ceeeeees tokens —
2v, /N
15 <L group consensus 4 catchup @
é staticass't x decrease g
l | [L I L 1
T v €]] i
RS _Il E2 I3 14 C5

connectivity

Graph 1

- 18 -

connectivity networks; a singleton assignment is preferable. But higher connec-
tivity graphs perform better under vote distribution. Otherwise, 2v, with

decreasing appears to be a good choice.

4. CONCLUSIONS

Judging from the results, dynamic vote reassignment is a valuable technique
for any system with frequent enough failures to render it inoperative.
Specifically, note that dynamic vote reassignment can improve up time over a
static assignment by a factor of 2 or 3. The results at first seem to point to group
consensus as the best choice ove;all. Keep in mind, though, that the nature of
the simulation favors group consensus over autonomous techniques. In general,
group consensus will take longer and is harder to implement. In light of this and
how closely these techniques did perform in the simulation, autonomous tech-

niques may be a viable alternative.

Of the autonomous techniques, overthrow, in consideration of its simplicity
and low message traffic is advisable, especially in low connectivity networks. For
higher connectivity networks, especially the completely connected case, the win in
performance of the alliance technique may be enough to deal with the message
traffic. Catching up is better, but reconfiguration must be easy to handle to

make it worthwhile. Otherwise, 2v, with decreasing appears to be a good choice.

In summary, vote assignments play a central role in making data available
during partitions. Giving a system the capability to dynamically adjust these
votes is relatively simple with autonomous techniques and can significantly

improve reliability. The results we have presented suggest good policies for

implementing such reconfigurations.

o T

IBARBS5a|

[BARBS5b)]

[DAVIS2]

[GARCS?]

[GIFF79)]

[THOM79)

-9

References

D. Barbara, "Mutual Exclusion in Distributed Systems”, Ph.D
Thesis, Department of Electrical Engineering and Computer Sci-
ence, Princeton University, October 1985.

D. Barbara, H. Garcia-Molina, and A. Spauster,”Dynamic Vote
Assignment: Protocols and Policies”, Technical Report, Depart-
ment of Computer Science, Princeton University, September 1985.

S. Davidson, "Evaluation of an Optimistic Protocol for Partitioned
Distributed Database Systems”, Technical Report 299, Department
of Electrical Engineering and Computer Science, Princeton Univer-
sity, May 1982.

H. Garcia-Molina, ”Reliability Issues for Fully Replicated Distri-
buted Databases”, IEEE Computer, Vol. 15, No. 9, September
1982, pp. 34-42.

D.K. Gifford, “Weighted Voting for Replicated Data”,
Proceedings Seventh Symposium on Operating System Principles,
December 1979, pp. 150-162.

R.H. Thomas, ”A Majority Consensus Approach to Concurrency
Control”, ACM Transactions on Database Systems, Vol. 4, No. 2,
June 1979, pp. 180-209.

