EFFICIENT TOP-DOWN UPDATING OF RED-BL

Robert Endre Tarjan

Computer Science Department
Princeton University
Princeton, NJ 08544

and

AT&T Bell Laboratories
Murray Hill, NJ 07974

June, 1985
CS-TR-006-85

ACK TREES

i
i
|
:

Efficient Top-Down Updating of Red- Trees
Robert Endre Tarjan |

Computer Science Department i
Princeton University
Princeton, NJ 08544

and ;

AT&T Bell Laboratories
Murray Hill, NJ 07974

June, 1985

Abstract

Thib red-black tree is an especially flexible and efficient form of binary search tree. In this note
we show that an insertion or deletion in a red-black tree can be performed in one top-down pass,
requiring O (1) rotations and color changes in the amortized case.

i

Efficient Top-Down Updating of Red-Bh*:k Trees

A binary search tree is a data structure that can be used to| represent a set of items selected
from 4 totally ordered universe. It consists of a binary tree containing the items of the set in its

externﬁl nodes, one item per node, with the items in increasing order from left to right in the tree.

In addition, each internal node contains an item in the universe (not necessarily in the set), called a
|

key, such that all items in the left subtree of the node are less thali or equal to the key and all items

in theéright subtree are greater than the key. One possible way io choose keys is to place in each
']

interndl node the largest item in its left subtree. (See Figure 1).

H
l
i
!
i
i

[Figure 1]

An item in the set can be accessed in time proportional to the 4epth of the tree by starting at the
root ali@ld searching down through the tree, at each internal node b+anching left or right according to
wheth#r the desired item is no greater than or greater than the key in the node. Eventually the

search reaches an external node; either this node contains the desired item or it is not in the set.

An n-node binary tree has Q(logn) depth; thus the worst-case access time in a binary search
tree isg Q1 (logn). There are many classes of balanced binary trees, such as height-balanced trees
(1], wkight-balanced trees [10], and red-black trees [5], that have O(logn) depth and can be
rebala#glced after an insertion or deletion in O (logn) time. The O(logn) depth bound follows from a
local &alance constraint that is enforced at each node. Maintaining this constraint requires storing

some 5mount of balance information in each node. Rebalancing after an update (insertion or

deletion) is done by performing local transformations, called rotgtions, on the tree structure and
modif)fing the balance information appropriately. The structural Ihang@s take place on or near the

access path, i.e. the path from the root to the newly inserted or Jeleted node. Each rotation takes

'0(1) time and changes the depths of certain nodes while preserving the left-right order of keys and

items. | (See Figure 2.) Further discussion of the properties of binary search trees can be found in

the books by Knuth [7] and Tarjan [13].

[Figure 2]

Some uses of binary search trees, such as in the priority search trees of McCreight [9] and in the

persistént search trees of Sarnak and Tarjan [12], require that the

update be O (1) rather than O(logn). Red-black trees satisfy this

number of structural changes per

requirement. A red-black tree is

a binatfy tree in which each node is colored red or black in a way satisfying the following constraints

(see Figure 1):
() Al external nodes are black.

1)) (black constraint). All paths from the root to an external

black nodes.

node contain the same number of

(iii) ' (red constraint). The parent of any red node, if it exists, i$ black.

These trees were introduced by Bayer [2], who called them s};Imetric binary B-trees. The red-

black (ieﬁmtlon was formulated by Guibas and Sedgewick [5].

livié [11] proposed an equivalent

deﬁmtion that of half-balanced trees. Independent results (lf Maier and Salveter [8] and

Huddleston and Mehlhorn [6] for 2,4 trees imply that updates on
in O(1) rotations and color changes in the amortized case.” Tar
deletion algorithms taking O(1) rotations in the worst case and O

case.

Th#se update algorithms perform the required rebalancing in

red-black trees can be performed
jan [14] has given insertion and

1) color changes in the amortized

a bottom-up pass that proceeds

from tjhe (previously located) inserted or deleted node up toward the root of the tree. However,

there Are applications in which it is convenient to do insertions and deletions in a single top-down

pass from the root that simultaneously locates the node to be inserted or deleted and rebalances the

tree. Top-down updating eliminates the need for parent pointers t]r a stack to hold the access path.

It also/makes concurrent tree operations [3,4] efficient; one operat

* By émomzanon we mean averaging the cost of a worst-case sequence of oper;
paper [15] discusses this concept in detail.

on need only lock a fixed number

ations over the sequence. Tarjan’s survey

of tre¢ nodes rather than an entire access path to avoid interference.

Guibas and Sedgewick [5] have described top-down insertion

black itrees, but their algorithms require £ (logn) rotations, even

and deletion algorithms for red-

in the amortized case. We shall

modif& the bottom-up update algorithms of Tarjan [14] to proan top-down algorithms that require

only @ (1) rotations and color changes in the amortized case. Th

can be obtained while preserving the O (1) amortized restructuring

the virtues of top-down updating

bound of bottom-up updating.

We begin by discussing our framework for obtaining an amortized complexity bound. We use

the potential paradigm [15]. To each red-black trec we assign

a non-negative integer called the

mtenﬁial of the tree. The potential of the empty tree is zero. We define the amortized cost of an

update operation to be the actual cost plus the net increase in tree

With this definition the total actual cost of a sequence of update

potential caused by the operation.

operations is the total amortized

cost minus the net increase in potential over the sequence. If the initial tree is empty, the net

potentiia] increase over any sequence is non-negative, and the sum jof the amortized costs is an upper

boundi on the sum of the actual costs.

Asi the potential of a tree, we use a special case of the potential used by Maier and Salveter [8]

and }{uddleston and Mehlhorn {6] to analyze a, b trees, also known as “weak” or “hysterical” B-

trees. | We assign to each black internal node a potential of one if
if it has one red child, and two if it has two red children. The pa

potentials of its nodes.

We shall describe top-down insertion and deletion algorithms

the node has no red children, zero

tential of a tree is the sum of the

aving O (1) amortized cost, where

we ch?.rge unit cost for a constant number of rotations and color ¢hanges. The constant depends on

the details of the algorithms; since we are ignoring constant factors, we shall not bother to compute

its value.

The bottom-up insertion algorithm that we shall modify is as follows. First we replace the

approﬁriate external node by an internal node having two external children, one containing the new

item tb be inserted and the other containing the item in the replaced node. The key of the new

internbl node is the minimum of the items in its two children. We color the new internal node red.

(See Figure 3(a).)

[Figure 3]

This preserves the black constraint (i) but may violate the red constraint (iii). If a red node x

has a red parent p(x) whose sibling is also red, we color p(x) and its sibling black and the

grandtyarcnt g(x) of x red. (See Figure 3(b).) This will cause a new vialation of Gii) if the parent
of g(#) is red. We repeat this recoloring step until no new violation is created or a red node x has
a red barent p(x) that is the root or whose sibling is black. To eliminate the last violation we apply

the appropriate one of the transformations in Figures 3(c), 3(d) and 3(0).

We make several observations about this insertion process. Each application of a case in Figure

3 takes O(1) rotations and color changes and increases the potential by at most two. The only non-

termixiating case is 3(b), each application of which causes only color chasges; each application but

the last causes the potential to drop by one. It follows that a bottom-up insertion takes O(1)

rotations in the worst case and O(1) color changes in the amortiz

case.

Oq%r top-down insertion method proceeds from the root down along the access path, maintaining
the inij'ariant that the current node is black and has at least one black child. To make the invariant
true it?jitially, we let the current node be the root and change it to black if it is red or change both
its chijldren to black if they are both red. The general step of the| insertion consists of walking from

the cujrrent node, say x, down along the access path, until one of the following cases occurs:

(@) An external node is reached. Proceed as in bottomiup imsertion. (The rebalancing

‘terminates when x is reached bottom-up.)

(b) A black node, say y, with a black child is reached. Replace the current node x by y and

‘repeat the general step.

(c) Four successive black nodes, each with two red children, are reached along the access path.

Let z be the bottom-most such node. Color z red and its two children black. Proceed as in

bottom-up insertion to eliminate the resulting violation of

potential drops by at least one. Replace the current n

'access path and repeat the general step.

[Figure 4]

the red constraint (see Figure 4.)

This takes three applications of 3(b) followed possibly by j application of 3(c) or 3(d). The

e x by the child of z along the

Silice case (a) is terminal, case (b) does not change the tree, fnd case (c) takes O(1) rotations

and cdlor changes and decreases the potential by at least one, th

o) ias desired.

amortized cost of an insertion is

Deletion is similar to insertion but more complicated. To discuss deletion we need the concept of

a shoﬁt node. A node is short if all paths from it down to an ex

ternal node contain one less black

node tban all paths down from its sibling. The bottom-up deletion algorithm that we shall modify is

as folfbws. We find the external node containing the item to be d¢
sibliné. (See Figure 5(a).) If the replaced node was black, the

the shbrtness up the tree by repeating the transformation in Figy

eleted and replace its parent by its
replacing node is short. We push

re 5(b) until it no longer applies.

Then we perform the transformation in Figure 5(c) if appropriate. Finally, we apply 5(b), 5(d),

5(e), ¢r 5(f) to eliminate the last shortness.

[Figure 5]

Cdse 5(b), the only repeated one, causes only color changes

and produces a potential drop of

two. Casc 5(c) causes no change in potential; the other cases cause the potential to increase by at

most &wo. It follows that a deletion takes O(1) rotations in the worst case and O(1) color changes

in the}amortized case.
|

Ol‘*r top-down deletion algorithm maintains the invariant that the current node is red or has a

red cﬂild or grandchild. The initial current node is the root; to make the invariant truc initially we

color the root red if it is black with two black children. The gen

eral step of the algorithm consists

of praceeding from the current node, say x, down along the access path until one of the following

cases occurs:

(a) An external node is reached. Proceed as in bottom-up deletion. (The rebalancing terminates

\#hen x is reached bottom-up.)

(b 4 node, say y, that is red or has a red child or grandchild is reached. Replace the current

l#Ode x by y and repeat the general step.

©) 't"hree successive black nodes with all black children and grandchildren are reached along the

4wess path. Let z be the bottom-most such node. Color z and its sibling red, making its

parent short. Eliminate the shortness as in bottom-up deleti

n. (See Figure 6.) This takes

an application of 5(b) followed possibly by 5(c) followed by 5(b), 5(d), 5(e), or 5(f). The

ﬁotential drops by at least one. Replace the current node x by z and repeat the general step.

[Figure 61

Since case (a) is terminal, case (b) does not change the tree, a
and color changes and decreases the potential by at least one, the

o).

d case (c) takes O(1) rotations

amortized cost of a deletion is

We |conclude with three remarks. First, our insertion and deletion algorithms can be easily

modified to work in purely top-down rather than globally top-down but locally bottom-up fashion.

Second, our techniques generalize to provide efficient top-down update algorithms for a, b trees.

Third, tillere are other arrangements of keys in a binary search tree

to which our algorithms extend.

The mast common alternative is to store the items in the internal nodes, one item per node, in

symmetric order. Thus the items themselves are the keys, and external nodes need not be

reprmseﬁted. With this arrangement top-down insertion is essentially unaffected, but top-down

deletioni becomes harder because if the item to be deleted is in a node with two internal children, it

must be swapped with its predecessor or successor before the tree
requiresi cither a second pass along the access path or the storage of

makes tjhe problem of avoiding deadlock during concurrent tree oper:

restructuring takes place. This
extra pointers in the tree, and it

ations much harder.

[1]

(2]

References

information,” Soviet Math. Dokl. 3 (1962), 1259-1262.

Inform. 1 (1972), 290-306.

G. M. Adel'son-Vel'skii and E. M. Landis, “An algorithm for the organization of

R. Bayer, “Symmetric binary B-trees: data structure and maintenance algorithms,” Acta

(31 R Bayer and M. Schkolnick, “Concurrency of operations on B-trees,” Acta Inform. 9

(4]

(5]

[6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

(1977, 1-21.

Annual IEEE Symp. on Foundations of Computer Science
Inform. 17 (1982), 157-184.
'D.E. Knuth, The Art of Computer Programming, Vol. 3

Wesley, Reading, MA, 1973.

202,

- Comput. 2 (1973), 33-43.

Informatique Théoretique 16 (1982), 51-71.

~and Applied Mathematics, Philadelphia, PA, 1983.

H. J. Olivie, “A new class of balanced search trees:

C. S. Ellis, “Concurrent search and insertion in 2-3 trees,” Acta Inform. 14 (1980), 63-86.

L. J. Guibas and R. Sedgewick, “A dichromatic framework for balanced trees,” Proc. 19th

(1978), 8-21.

S. Huddleston and K. Mehlhorn, “A new data structure for representing sorted lists,” Acta

Sorting and Searching, Addison-

D. Maier and S. C. Salveter, “Hysterical B-trees,” Inform. Process. Lett. 12 (1981), 199-

E. M. McCreight, “Priority search trees,” SIAM J. Comput. 14 (1985), 257-276.

J. M. Nievergelt and E. M. Reingold, “Binary search trees of bounded balance,” SI4M J.

haif-balanced trees,” RAIRO

N. Sarnak and R. E. Tarjan, “Persistent search trees and geometric retrieval,” to appear.

R. E. Tatjan, Data Structures and Network Algorithms, CBMS 44, Society for Industrial

[14]

[15]

R. E. Tarjan, “Updating a balanced search tree in O(1) rotations,” Inform. Process. Lett. 16

(1983), 253-257.

R. E. Tarjan, “Amortized computational complexity,” SIAM J. Alg. Disc. Meth. 6 (1985),

1 306-318.

*S9pouU |euddlxd sauaenbs syl
pue °S3apou |RuJdIUL pad SI|d4LD 3|buls By3 *sapou |eusajui
¥2e|q 9J0UIP SI|D4LD ALQNOP BYL 9343 YduedS Yde|g-pad Yy °| dunbi4

*9947 49b4B| B 40 9343GNS B 8Q UBD UMOYS 3343
3yl °so9au3qns Aueuzlque ajoudp salbueruz syl c-uotjejod y g 24nb 14

[ESRENGURESSIEES e

NOILV.LOH
14371

-

NOI1lv.10d
1HOIN

(a) O

OR

P AR

2

(b)

: ci\z

| ROOT

- (e) —>
i 0

(d) .

| o

- (e)

Figure 3. The cases in bottom-up insertion. Symmetric cases are
not shown. Hollow nodes are red, solid nodes are black.
The numbers are node potentials. A1l missing children of
red nodes are black. In cases (d) and (e) the bottommost
black node shown can be externall.

*(P)e 40 (2)¢ 40 uoliedl|dde ue Aq pamo||04 s4e sabueyd 40|0d pajeILpUl BY} pue X St
juaJed s3L ‘pads sL £ spou 41 -sabueyd 40|0d A|uo sayel (2) 3sed 4o uorzedtjdde ay3
pue °x SL 2L “3yoe|q SL A 9pou JI °PpPaJd 40 YOB|Q 43YylL3d ‘400D ul snonbLque si A apou
paLiti-41ey 8yl -wyztsoble uoLjaasut umop-dol a8yl ul (3) ased jo uoijedt|dde [ed1dA] y

*y 24nbLq

(a) A X@ (-)
—
X

1 o@ (-
(b) @- 1 -

0 0
(c)A) —>

0

(d)‘l‘ffj::zil\\‘.’ —
(e)‘N — !
(f)% — 4 4

Figure 5. The cases in bottom-up deletion. The two ambiguous
nodes in (e) have the same color, as do the two
ambiguous nodes in (f). Minus signs denote short nodes.
In (a) the replacing node x, which can be either internal
or external, is short if the replaced internal node was

black. 1In (b) the top node after the transformation is
short unless it is the root.

"(3)§ 40 *(3)5 “(P)s “(9)g
Aq pamo| |0} Auessadau 3t (o)g burfidde Aq pajeuiwl|d SL SSaujlaoys 3yl

‘wyjLaobe uot3a|ap umop-doj ayz ul (o) ased jo uorzedr|dde |eordd3 y g dunbid

