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ABSTRACT

We describe a data compression scheme that exploits locality of reference, such as occurs when
words are used frequently over short intervals and then fall into long periods of disuse. The scheme
is based on 2z simple heuristic for self-organizing sequential search and on variable-length encodings
of integers. We prove that it never performs much worse than Huffman coding and can perform
substantially better; experiments on real files show that its performance is usually quite close to that
of Huffman coding. Our scheme has many implementation advantages: it is simple, allows fast
encoding and decoding, and requires only one pass over the data to be compressed (static Huffman

coding takes two passes).



A LOCALLY ADAPTIVE DATA COMPRESSION SCHEME

1. INTRODUCTION

Data compression schemes can be categorized by the unit of data they transmit. Huffman
[1951] codes are typical of “defined-word” schemes: the context defines sequences of input symbols
(which we shall call words) that are transmitted by a variable-length code. At the other extreme,
Ziv-Lempel [1978] codes transmit variable-length sequences of input symbols, often using a fixed-

length code.

In this paper we describe a defined-word scheme that uses a technique from another domain that
deals with defined words: self-organizing sequential search, in which we wish to maintain a
sequential list of words so that frequently accessed words are near the front. Our data compression
scheme uses a self-organizing list as an auxiliary data structure, and employs short encodings to
transmit words near the front of the list. The scheme never performs much worse than Huffman
coding. If the message to be transmitted exhibits locality of reference (that is, if the local frequency
of words changes dramatically within the message), the scheme performs much better than Huffman
coding, because a word will have a short encoding when it is used frequently and a long encoding

when it is used rarely.

Section 2 describes the basic scheme and several dimensions along which it may vary.
Mathematical analyses of the performance of the scheme are given in Section 3 and in the appendix,
and experimental evidence is presented in Section 4. Section 5 discusses implementation
considerations, and Section 6 contains concluding remarks. A preliminary version of our results

appeared as a conference paper (Bentley, Sleator, Tarjan, and Wei [1984]).

2. THE THEME AND SOME VARIATIONS

We shall illustrate our scheme by compressing simple “telegraph™ messages of words consisting
of upper case letters separated by single spaces and terminated by a final “®”. For concreteness, we

will transmit the message



THE CAR ON THE LEFT HIT THE CAR I LEFT e

Sender and receiver maintain identical word lists using the “Move-to-Front™ heuristic: after a word
is used it is deleted from its current position and moved to the front of the list. This attempts to

ensure that frequently-used words appear near the front of the list.

The list is initially empty. To transmit the word W, the sender looks it up in the list. If it is
present in position I, the sender transmits 7, which the receiver decodes by writing the J % element
in the list; both then move W to the front of their respective lists, shifting the words in positions
1..] — 1 to positions 2..I. If W is not in the list of N words, the sender reacts as though it were in
the N + 1¥ position and sends the integer N + 1 followed by the word W (which the receiver
expects because N + 1 is greater than the size of the current list); both sender and receiver then
move W to the front of their lists. For example, after transmitting the first three words of the above

message, both parties have the identical lists

ON CAR THE

The next word, THE, is encoded by the integer 3. The entire message is encoded as

1THE2CAR3ON34LEFTSHIT35615e

Each word is transmitted as a string of letters just once; subsequent occurrences are encoded by
integers. The integer encoding a word is one greater than the total number of different words that

have occurred since its last previous appearance. (Sleator and Tarjan [1984, 1985]).

This trivial example illustrates the most important property of our scheme: if a word has been
recently used then it will be near the front of the list and therefore have a short decimal encoding.
Because the integer J requires roughly log;o / characters to encode, frequent words are transmitted
with few characters. There are, however, many variations on the basic idea.

Lexical Analysis. English text may be divided into “words” in many ways. A simple scheme
might classify each character as a word, while a more complex scheme could find true English

words, together with capitalization information. Transmitting program text, executable object



code, or digitally encoded pictures demands a more subtle definition of words.

List Organization Discipline. Bentley and McGeoch [1982] and Sleator and Tarjan [1984,
1985] refer to many self-organization heuristics other than move-to-front. The transpose rule,
for instance, moves the accessed element one closer to the front; it is an instance of the move-

ahead-k heuristic with k = 1.

List Length. The above example assumed an infinite list; the scheme may also be
implemented with fixed-size lists. The move-to-front scheme with a finite list induces a least-
recently-used discipline of discarding words from the list (which, in this context, may be

viewed as a word cache).

Encoding List Position. Position in a finite list can be encoded with a fixed-length binary
code, but the scheme is usually more effective if used with a variable-length code. If the data
is to be transmitted as it is read, the variable-length prefix encodings of integers described by
Elias [1975] and by Bentley and Yao [1976] provide suitable encodings; these will be
discussed in detail later. If, on the other hand, the system can make two passes over the data
then the first pass can count the number of times each list position is accessed and the second

pass can encode the positions using a Huffman code.

Transmission of New Words. This is a classical problem in information theory.

We shall see several combinations of these choices in the next sections.

3. THEORETICAL ANALYSIS OF PERFORMANCE

In this section we show that the move-to-front scheme is sometimes much better than Huffman
codes but can never be much worse. Here we summarize our theoretical results; the appendix

contains a more complete analysis and proofs.

A simple example shows that the move-to-front scheme can be much better than any static

encoding scheme. Consider the sequence formed by repeating each of n words » times:



12" -« n". A static Huffman code uses roughly log n bits per word sent,” whereas the move-to-

front scheme uses only a small constant number of bits per word.

To analyze the move-to-front scheme we need to specify a particular encoding of the integers.
One method is to prefix the binary representation of the integer i > 1 with |log i] 0’s. This yields
a prefix code since the total length of a codeword is exactly one plus twice the number of 0’s in the
prefix. Once the length is known the boundary between codewords can be found. This method

encodes i with 1+2 |log i] bits.

We will analyze the scheme in which the size of the move-to-front list is equal to the number of
different words to be sent, and the list is initialized with all the words in their order of occurrence in
the sequence of words to be sent. This is the scheme that was outlined in Section 2, except that we
ignore the cost of sending the raw words (we ignore this cost in both of the schemes being
compared). Let pyr(X) be the average number of bits per word used to compress a sequence X
with the move-to-front scheme as described above. Let py (X) be the analogous quantity for a static

Huffman code. With the above encoding of the integers we have

(1) our(X) € 205 (X) +1.

We will now sketch a proof of this theorem; a proof of a stronger result appears in the appendix.
Suppose in the sequence X of length N, the symbol a occurs N, times. The distance @ can move
from the front of the list between successive occurrences of a is bounded by the number of other
accesses between these occurrences. The average size of these gaps between successive accesses to a
is about N/N,. If a were at its average position whenever it occurred in the sequence, then the
number of bits needed to transmit each occurrence would be 2 log(N/N,) + 1 bits. Although a is
not always at this position in the list, the convexity of the log function implies that 2 log(N/N,) + 1
is an upper bound on the average cost of transmitting an a@. Since the cost of transmitting @ with

an optimum prefix code is at least log(N/N,), the result follows.

*  All logarithms in this paper without an explicit base are binary.



By using more sophisticated encodings of integers, stronger results can be proved. For example

) emr(X) < 1+ pg(X) + 2log(1+p5 (X)) .

These results compare two schemes that differ in two important ways. The move-to-front
scheme is dynamic (the encoding of a word may change with time), whereas Huffman codes are
static (they are fixed in advance). This should, of course, give move-to-front an advantage. On the
other hand, the move-to-front scheme works on-line (words are transmitted as they appear), whereas

Huffman coding is off-line (it requires a pass over all the data before anything is sent).

Gallager [1978] and Knuth [1985] have studied a dynamic version of Huffman coding in which
an optimum code is maintained based on the frequencies of words so-far-transmitted. Recently,
Vitter [1985] has shown that with dynamic Huffman coding the average number of bits per word is
at most twice the number for static Huffman coding. He has alsc shown that a modified scheme
uses at most one more bit per word than static Huffman coding. These dynamic schemes run on-
line and thus avoid the two passes necessary for static Huffman coding, but they still have the
drawback that they do not exploit locality of reference. Vitter’s lower bounds on dynamic Huffman
coding imply that Theorems 1 and 2 remain true if H is a dynamic Huffman scheme, provided that

the additive constant 1 is replaced by 2.

A theorem in the appendix compares the performance of the move-to-front method when
compressing a discrete memoryless source with the entropy of the source. This result shows that the

move-to-front scheme is asymptotically optimum (see Gallager [1968]) because

<pur (X)) >

(3) HG)

— 1 as H(s) = o=,

where H (s) is the entropy of the source and <ppr(X)> is the expected number of bits per word

sent by the move-to-front scheme averaged over all sequences.

If the cost of rearranging the items in the list is high, then a modified version of the move-to-
front scheme called intermittent-move-to-front can be used. This is actually a family of schemes

parameterized by an integer 7 2 1. Rather than moving an item to the front each time it is



accessed, the intermittent scheme moves an item to the front every +* time it is accessed. To do

this, the method maintains for each item a count of the number of accesses to it since its last move.

(Bitner [1979] called this scheme wait-c-and-move, and analyzed it as a list updating heuristic).

We can prove nearly as strong a theorem about the performance of intermittent-move-to-front as

we can about ordinary move-to-front:

(4)

for

par(X) €1+ pp(X) + 210g(1 +pr (X)) + ¢

an arbitrary sequence X, where ¢ — 0 as the length of the sequence goes to infinity.

Furthermore, when the sequence X is generated by a discrete memoryless source s, we have

&)

<pmr (X) >

76 —1 as H(s) = oo

4. EXPERIMENTAL ANALYSIS OF PERFORMANCE

To gain further insight into the performance of our scheme we have implemented prototypes of

the following three compression algorithms.

Byte-level Huffman Code. A Huffman code is used on individual bytes. We did not charge for

transmitting the Huffman tree, which requires less than 200 bytes.

Word-level Huffman Code. Words were defined as longest sequences of alphanumeric and
nonalpbanumeric characters. This divides the input stream into two disjoint classes, which we
therefore compressed separately; the decoder knows to alternate between the two classes when
decoding. No case information was recorded; “the” and “The” were thus treated as distinct
words. The words were transmitted using a byte-level Huffman code (as above, without charge

for transmitting the tree).

MTF Cache. Many attributes of this scheme are the same as for the word-level Huffman code,
including word definition, two word sets, lack of case information, and transmission of words.
Because there are two word sets, the 8-element MTF cache stores 16 words (8 alphanumeric and

8 nonalphanumeric). For case of implementing the prototype, we encoded the position in the list



by a Huffman code, which implies that an implementation would have to make two passes over
the data.
None of the implementations actually compresses and restores data; rather, they measure the
efficiency of the various approaches. The performance of the MTF cache scheme tested can be no
worse than the method using a fixed encoding of the positions in the list, but it could be better. We
view this work only as a preliminary experiment to demonstrate the plausibility of the scheme and to

gain insight into its behavior.

The results of the experiments are presented in the table of Figure 1. The numbers show the
bits per character used by each scheme (the original encoding uses 8 bits per character, but that can
be trivially reduced to 7). The C and Pascal programs were written by several different
programmers; the book sections (written by two sets of multiple authors) include TROFF
formatting commands. The terminal session is the transcript of a several-hour session (we include it
to underscore the point that the performance of the various schemes is quite dependent on the

context).

[Figure 1]

Most of the data in the table is represented in the graph of Figure 2, in which each file is
represented by a line. Each line represents (from left to right) the cost of the byte-level Huffman

encoding, MTF cache encodings of increasing sizes, and the word-level Huffman encoding.

[Figure 2]

This graph tells several stories. It is obvious that the three types of inputs have different
characteristics; there is enough data on program text and book sections to draw plausible
conclusions. Byte-level Huffman codes for the book sections are roughly as effective as the 8-
element MTF cache; as the cache increases the move-to-front scheme shows steady improvement,
but even at the 256-element cache it is still somewhat inferior to word-level Huffman codes. The

relative order.ng of the book sections is quite stable through all the encoding schemes.



The programs differ dramatically from the book sections. Byte-level Huffman codes are less
effective for programs (presumably due to a larger character set), but the 8-element cache is already
down to 4 to 4.5 bits per character (presumably due to strong locality of reference). The
improvement with increasing cache size is erratic; some documents even exhibit non-monotonicity
(retransmitting a few words costs less than sending longer codes for the words that are kept in the
cache). The 256-element MTF cache is a little more effective than word-level Huffman codes. The
outlying program contains a large table that represents legal hyphenations of English words, so one

might expect it to be quite different.

The word-level Huffman encoding is compared to the 256-element MTF cache in the graph of
Figure 3. For program text, the 256-element MTF cache is usually superior to Huffman codes; it
requires between 2.1 and 3.4 bits per character (which represents a space reduction factor of
between 2 and 4). For book sections, the word Huffman code is slightly better; it uses from 3.05 to

3.75 bits per character. All in all, though, the two schemes are quite comparable.

[Figure 3]

5. IMPLEMENTATION ISSUES

It is easy to implement the move-to-front scheme if efficiency is not important. In this section
we describe an efficient implementation of the scheme, designed to minimize the worst-case running
time to within a constant factor. The time to compress (encode) or expand (decode) a word is
proportional to the total number of bits in the expanded and compressed forms of the word. We
shall assume that the move-to-front word list is of fixed finite size n. Our computation model is a

sequential random access machine with unit cost measure.

Let us define the compression and expansion algorithms precisely. There are two parts to each:
we must convert a word into the corresponding integer list position (or vice-versa) and we must
convert an integer into the corresponding prefix code (or vice-versa). We shall use the following

operations on the word list:



position(w): Compute and return the position of word w in the word list, or n + 1 if w is not in

the list. (The positions in the list are indexed from 1 to n).
word(p): Compute and return the word in position p in the list.
mtf(p): Move the word in position p to the front of the list.
insert(w): Insert word w at the front of the list.

delete(p): Delete the word in position p of the list.

To manipulate the prefix codes for the integers we need two primitives:
encode(p): Compute and return the prefix code of the integer p.

decode: Read bits from the input until an entire prefix codeword has been read; then return the

corresponding integer.

The compression algorithm can be implemented as the following program (written in a variant

(Tarjan [1983], pp. 12-14) of the guarded command language of Dijkstra [1976]) applied to a word

Wi

compress: p:=position(w);
- fp<n+1-—
mtf(p); c:=encode(p);
output ¢;
| p=n+1-—
delete(n); insert(w); c:=encode(n + 1);

output c; output w in raw form

fi;

The expansion algorithm can be implemented as the following program:

expand: p:=decode,
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ifp<n+1-—
mtf(p); w:=word(p);
output w
| p=n+1—
read a word w from the input in raw form;
delete(n); insert(w);
output w
fi;

To implement the primitive operations we need four data structures: one each for encoding and
decoding integers and one each for converting words into list positions and vice-versa. The various
operations will have the following running times: O (|c|) for encode(p) and decode(c), where |c| is
the length of ¢; O(log p + |w|) for position(w) and word(p); O{log p) for mif(p); O(|lw|) for
insert(w); O(1) for delete(n). We assume that the length of a prefix codeword grows with p; that
is, |c(p)| is a non-decreasing function of p, where c(p) is the codeword of integer p. This
assumption implies by counting that p < 2@l je. log p < |c(p)|. By substituting |c| for log p
in the running times of the operations and examining the programs above we see that the time to
compress or expand is bounded by O(|w| + |c|), where w and ¢ are the word involved and its

compressed form.

It remains for us to describe the data structures and the implementation of the primitive
operations. Let us begin with the data structures for prefix coding of integers. We shall describe
general-purpose methods that apply to any prefix code; for specific codes such as those discussed in

Section 3 and the appendix, special-purpose algorithms can be used instead.

To implement encode, we use an array with positions 1 to n + 1, with position p holding the
codeword for p. Then encode takes a single array access and O(1) time, or O(|c|) time if we

charge one per bit for reading out c.

To implement decode, we use a binary trie (Knuth [1973], pp. 481-499). This is a binary tree
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such that each left edge (edge to a left child) is labeled O and each right edge (edge to a right
child) is labeled 1. Each path through the tree corresponds to the word obtained by concatenating
the labels of the edges along the path (top-down). To represent a prefix code, we construct a trie in
which the paths from the root to the leaves (nodes with no children) represent the codewords
(constructing such a trie is possible because of the prefix property). In each leaf we store the
corresponding integer. To perform decode, we start at the trie root, read bits from the input, and
follow corresponding edges of the trie, until reaching a leaf; then we return the integer in the leaf.

Performing decode takes O (|c|) time.

Maintaining the word list efficiently is somewhat more complicated. We use two interlinked
data structures, a binary trie to convert words into integer positions, and a binary tree to represent

the order of words in the word list.

The trie contains marked and unmarked nodes; node x is marked if the path from the root to x
corresponds to (the binary representation of) a word in the word list. Given a word w in the list,
the corresponding node can be found in O(|w|) time by transversing the appropriate path down

from the root in the trie.

The binary tree contains one node per word in the word list; the node contains the corresponding
word. Symmetric order in the tree corresponds to front-to-back order in the word list. (Symmetric
order is defined recursively as follows: for any node x, all nedes in its left subtree are less than x,
and all nodes in its right subtree are greater than x). The size of a node is the number of nodes in
the subtree rooted there. Every node in the tree contains pointers to its parent and to its left and
right children. Every node except those on the leftmost and rightmost paths (the paths from the
root to the leftmost (smallest) and rightmost (largest) nodes) contains its size. Every node on the

leftmost path contains a mark indicating that it is on the leftmost path.

We access the tree via a pointer to its leftmost node. If the tree is balanced, we can find the p*™
node in symmetric order in O(log p) time by starting at the leftmost node, walking up the leftmost

path accumulating size information in right children, and walking down into the subtrie containing
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the p'® node. Conversely, given a pointer to any node in the tree, we can compute its symmetric-
order position p in O (log p) time by walking up from the node until reaching the leftmost path and

then walking down to the leftmost node, accumulating size information along the way.

The trie and the tree are linked together as follows: each marked node in the trie contains a
printer to the corresponding node in the tree, and vice-versa (see Figure 4). To compute
position(w), we walk down the path in the trie corresponding to w, jump to the corresponding node
in the tree, and compute the symmetric-order position p of this node as described above. This takes
O(og p + |w|) time. To compute word(p), we find the p™ node in the tree and return the word
contained there. This takes O (log p) time, or O(log p + |w|) time if charge one per bit for reading

out w.

The update operations (mtf(p), insert(w), and delete(p)) are more difficult to implement
because they must modify the data structures. To make these operations efficient, we make the
binary search tree into a finger search tree with fingers at the leftmost and rightmost nodes. A
finger search tree is a data structure such that an insertion or deletion at a position 4 away from a
finger takes Of(log d) time. There are ways to implement a finger search tree to obtain the
O(log d) time bound either in the worst case (Kosaraju [1981], Huddleston [1981], Tsakalidis
[1984]) or in the amortized (time-averaged) case (Huddleston and Mehlhorn [1982], Maier and
Salveter [1991]). Any of these methods will suit our purposes. The only modification that must be
made to these structures is that the size information must be updated after an insertion or deletion,
but this does not affect the running time, given that we do not need to maintain the size information

along the leftmost and rightmost paths.

We perform the update operations as follows. To carry out mif(p), we find the node in position
p in the tree, delete it, and insert it in the leftmost position. This takes O(log p) time. (The trie
does not change). To carry out insert(w), we put the word w into the trie, insert a node containing
w into the tree at the leftmost position, and link the corresponding trie and tree nodes together.
This takes O (Jw|) time. To carry out delete(n), we delete the n™* node in the tree (this takes O (1)

time starting from the right finger) and delete nodes in the trie, starting with the node representing
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the deleted word w, and walking up until finding a node with a marked descendant other than w,.
(The node at which we stop is w, if w, has at least one child, or the nearest ancestor of w, with at

least two children otherwise).

Deleting w, from the trie using this method takes O(|w,|) time, whereas our goal is an O(1)
time bound. There are at least four ways to make deletion more efficient, depending on what
ground rules we are willing to accept. First, if the word list is large enough to hold all words that
are ever compressed; then deletion never takes place. Second, if we are prepared to accept an
amortized time bound, we can charge the time for a trie deletion to the corresponding insertion.
Third, we can delete a word in the trie by merely unmarked the corresponding node, and run a
background process that deletes unneeded trie nodes. Fourth, we can compress the trie, so that each
edge represents a bit string rather than just a single bit. (See Figure 5). Then a deletion requires
removing at most a single edge, and even if the bit string associated with an edge is stored in a

linked list, returning the entire linked list to the free list takes O (1) time.

[Figure 5]

This implementation, though theoretically efficient, is more complicated than one would like. A
simpler, practical alternative is to use a hash table in place of the trie for representing words and a
self-adjusting search tree (Sleator and Tarjan [1983], [1985]) in place of the finger search tree for
representing the word list. The hash table will have an O(1) average time bound for inserting and
deleting words, and it is conjectured that self-adjusting search trees support accesses, insertions, and
deletions in the vicinity of a finger in O (log d) amortized time (Sleator and Tarjan [1985]). Thus

this alternative implementation is probably efficient in theory as well as in practice.

6. Remarks

We have described a simple data compression scheme and analyzed its performance both
theoretically and experimentally. Both analyses suggest that the method may be useful in practice.
An intriguing area for future research is to devise other locally adaptive data compression schemes

and compare them with the move-to-front scheme. Dynamic Huffman coding can be made locally
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adaptive by keeping a “window” as suggested by Knuth [1985], maintaining a Huffman tree for
word frequencies within the window. Another possibility is to maintain a dynamic Huffman tree
based on a weight for each word that is incremented by one each time the word is compressed;
periodically all word weights are multiplied by a constant factor less than one. Recently Elias
[1985] independently discovered the move-to-front scheme and derived inequalities (1) and (2). He
also proposed a related scheme called interval coding, in which a word is encoded as a prefix code of
the number of words occuring since its last appearance. Elias showed that inequalities (1) and (2)
hold for interval coding (which also follows from our analysis). Interval coding always needs at
least as many bits as the move-to-front scheme but is easier to implement. It would be useful to

derive further results comparing these locally adaptive schemes.
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APPENDIX: ANALYSIS

In order to analyze our scheme we need to have specific prefix codes for the integers. Elias
[1975] and Bentley and Yao [1976] describe a series of encoding schemes in which the integer i is
encoded with roughly log i bits. The various schemes differ in their choice of trade-off between

performance on small numbers and performance on large numbers.

The simplest of the schemes encodes the integer i > 1 with 1 + 2 [log i] bits. The encoding of
i consists of llog i) 0’s followed by the binary representation of i (which takes 1+ |log i] bits, the
first of which is a 1). This results in a prefix code since the total length of a codeword is exactly one
plus twice the number of 0’s in the prefix. Once the length is known the boundary between

codewords can be found.

Another scheme results if we replace the llog i] 0’s followed by a 1, by a two part prefix (an
encoding of 1+ llog i] by the above scheme) which takes 1 + 2 [log(1 + llog i]) | bits. Thus we
have a scheme that encodes i with 1+ llogi] + 2llog(1 + log i) ] bits. (Note that

llog(1 + llog i]) ] = llog(1 + log i) ].)

These ideas can be applied again to give an encoding for {  with
1+ llogi] + llog(1 +log i) | + 2 llog(1 + log(1 + log i)) | bits. This process can be continued;

however, the codes that result are better only for astronomically large numbers.

Knowing the range of numbers to be encoded in advance can be used to advantage. For example
if the numbers are bounded above by n, then in the first scheme above the llog i] 0’s followed by a
1 can be replaced by llog(1 + log n)|  bits, giving an encoding for i with
llog i] + llog(1 + log n) | bits. The same idea applied to the second scheme gives an encoding of

iin llogi] + llog(1 +log i) | + llog(l + log n))) | bits.

For the following discussion we assume that an encoding of the integers has been chosen, and
that the number of bits needed to encode the integer i is at most f (i), where f (i) is a convex
monotonically increasing function defined on real values of i 2> 1. For example, if we choose the

second scheme then we can let f(i) =1+ logi + 2log(l + log i). We assume that the input



- 16 -

stream has been partitioned into a sequence of dictionary words, which we shall call symbols. Let
the sequence of symbols be X = x;,x;, ..., xy. The symbols are taken from a dictionary S of
size n. Let pyr(X, f) be the average number of bits per symbol needed to transmit X by the
move-to-front scheme using a code with codeword length function f. That is, ppr(X) is the total
number of bits needed to transmit the sequence X divided by N. (From now on we omit the

reference to f). Let N, be the number of occurrences of a symbol @ in X. Then we have

Theorem 1.
N, N
6 < .
() pMF(’X)\‘,?ng(Na)
Proof. Let #,,t5, ..., 1y, be the times when the N, occurrences of the symbol a are sent. That is,

x, =a and t; < t;3;. When a occurs at time #; its position in the list is at most #;. Furthermore
when a occurs at time #; for i > 1 its position is at most #; — t;—;. Therefore the cost of
transmitting the first a is at most f(z;), and the cost of transmitting the i & is at most
ft; —t;_y). If we let R;(X) be the total number of bits used to transmit the N, occurrences of

symbol a then

N,
@)) Ra(X) < f(tl) - 2 Ef(tf = If-l) 5

=2

Noting the convexity of f and applying Jensen’s inequality” we get

8) R,(X) € N,f ( < N, f (=)

Nﬂ IN
(t1+ E(Ii'—ti—l)))-Naf( ') N

1 N
Na j=2 N, a
The equality follows from the fact that the terms #; — #;_; telescope, and the second inequality

follows from the fact that f is monotonically increasing. Summing over all @ ¢ S and dividing by N

gives Theorem 1. O

* Jensen’s inequality states that if f is a convex function, {WJ is a set of positive real weights whose sum is 1, and {p,} is
a set of points in the domain of f, then 3, w; f () < > w;p;) (Hardy, Littlewood, and Polya [1967], p. 70).
7 .

1
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By combining Theorem 1 with a particular encoding scheme we can relate the efficiency of the
move-to-front compression scheme on a particular sequence to the value of the “empirical entropy”

of the sequence. This entropy, H ®, is defined as follows.

N, N,
9) HX) =Y -—>1 =
E N BN

Corollary 1.
(10) pur(X) K14+ H (X) +2log(1 + H* X)) .

Proof. We use the function f  appropriate for the second  scheme:

fG)=1+1logi + 2log(l + log i).

Substituting this into Theorem 1 we get:

N, N, N N, N
(11) our(X) < =+ Z log + 2 log(1 + log )
“E N ES N N, Es N N,

de

The value of the first sum is 1. The second sum is just H' (X).

N,
Because log is a convex function and 3, -N—a =1 we can apply Jensen’s inequality to the third

summation to bound it by

N N
(12) 2 log[‘gs N (1 + log N, ).

The summation in (12) is just 1 + H"(X). Combining these results yields the corollary. O

We may now compare the performance of the move-to-front scheme with that of an optimum
static prefix code for any particular sequence. One way of getting an optimum code for a particular

sequence is to generate an optimum code for a source in which the probability of a symbol a
.. N, e . S —
occurring is =, which is just a Huffman code for this probability distribution. Let pg(X) be the

average number of bits per symbol used by this code on the sequence X. A well known fact about

an optimum static code is
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(13) HX <pgX) SH X)+1.
(See Chapter 3 of Gallager [1968]).
Substituting the left hand inequality into Corollary 1 gives us inequality (2) in Section 3, namely
pur(X) < 1+ pg(X) +210g(1 + pg (X)) .

This means that the move-to-front scheme at its worst performs almost as well as a static optimum
code, even though it has no advance knowledge of the sequence. Moreover, the move-to-front

scheme will do much better than the static optimum on certain types of sequences.

We can also evaluate the average performance of our scheme when compressing a sequence of
symbols generated independently according to a fixed distribution. (This is called a discrete

memoryless source).

Theorem 2. If the symbols are generated by a discrete memoryless source in which

Prob{x, = a} = P,, then we have

(14) <our(X)> < 3 Pof (),
aeS a

where < - > denotes expected value over all sequences of length N.

Proof. Taking expected values on both sides of Theorem 1, we have

N, N
(15) <pprX)> < < (=—)>
PMF E; N ¥ N,

- 3 3 @robiN, = i) £ r (&)

aeS i=1

- B INT e oadbg A eV,
2 2 (V) ma-romr Gy

LIy i— - L N
-3k S (M) P a-rv Ly

aeS  i=l
The next step is to pull f out of the inner summation using Jensen’s inequality. To do this we must

N 3
verify that 3 [l}r] PR O — PN ILV. = 1. This follows immediately from the observation that

i=1
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[]1\’ ] IF = [‘?r__l] ] and the binomial theorem.

After applying Jensen’s inequality we have

N
16 <our0)> < 3 PSS (] Pt @ - PN 2
aeS i=] N
N
9 [Jf] B0~ -0~
= 2 Pa f( i=0 )

aeS Pa

1-(1 — PN
=3 P,,f(—-I;-——)

aeS a

1
< 2P, f(=)
a% f Pﬂ

by the binomial theorem and the monotonicity of f. O

Note. Theorem 2 holds for all valuesof N =2 1. O

Using Theorem 2 we can derive a corollary that bounds the expected performance of the move-
to-front scheme in terms of the entropy of the source s. This is an expected-case version of

Corollary 1. Let H (s) denote the entropy of the source:

a7 His) = 3 =P, ik,
aeS

Corollary 2.
(18) <purX)> <1+ H(s) +21og(1 + H(s)) ,
where the average is taken over all sequences of length N.

This follows from Theorem 2 in much the same way that Corollary 1 follows from Theorem 1.
A substitution is made for f into Theorem 2, then the three summations are bounded using Jensen’s

inequality.

Corollaries similar to 1 and 2 above can be proven for all of the integer prefix codes. The bound
achieved in each case is the same as the formula for f with an entropy replacing each log i. In

particular, we can derive inequality (1) in Section 3 for the simplest code.
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We can use Corollary 2 to prove Shannon’s source coding theorem (see Gallager [1968]). This
theorem says that the number of bits per symbol needed to transmit the information from a discrete
memoryless source can be made as close as desired to the entropy of the source. Let X be a
sequence generated by a discrete memoryless source s. By grouping the symbols of X in blocks of
size k and using the move-to-front scheme of Corollary 2 on these blocks, the average number of
bits per block used is bounded by 1+ H(s*) + 2 log(l + H(s*)), where H(s*) = kH (s) is the

entropy of the block source s*

. Hence the average number of bits per symbol of X is bounded
above by 1/k + H(s) + (2/k) log(1 + k H(s)). As k goes to infinity this number approaches the

entropy of the source, proving the theorem.

The performance of the intermittent move-to-front scheme is very similar to that of the move-
to-front scheme. Assume that an item is moved to the front every r** appearance. Recall that there

are |S| = n symbols.

Theorem 3.
N, N + 1n
19 <
19) prar (X) < E}g N S N,
Proof. Let 1,15, ..., 1y, be the times when symbol a@ occurs in the sequence. For 1 < i < N,,

let y; be the number of times move-to-front is applied between times #; and #;4; (exclusive). The

i-1
position of the symbol a at time #;,i > 7, is at most 1 + 3 y;. The position of a at times

J=i—r
ti,t3,...,1, is at most n. Therefore the total number of bits used to transmit the IV, occurrences
of symbol a is

Na
(20 RX)S7f(m+ I f

i=r+]

i-1
1+ 2 J’j]-

J=i=T

The sum of the y;’s is at most (N — N,) /7, and each y; is counted at most 7 times. Hence

N, i-1
@D 3 |l B I€N,
i=r+1 j=i—t




)

By Jensen’s inequality and the convexity of the function f, we have

N+

(22) RX)Lf N

Summing over all a €S and dividing by NV gives the theorem. O

Using the function f for the second integer coding scheme, we obtain

(23) oor X)) S 1T+H X)) +2lgQ+H X)) +0

kil
~N |
The last term is negligible for long sequences.

Similarly, we can prove

Theorem 4. If the symbols are generated by a discrete memoryless source in which

Prob{x, = a} = P,, then

(24) <pmr X)> < 3 P, f|——

where e = tn [N.
A direct consequence of Theorem 4 and the second integer coding scheme is
(29 <pmrX)> €1+ H() +2log (1 + H(s)) + 0Gn/N)

where H (s) is the entropy of the discrete memoryless source s.
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Figure 4. Data structures representing the 1list of words
(in binary) [01,1010,0100,01101,1011]. Marked
nodes in the trie are circled.
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Figure 5. The compressed form of the trie in Figure 4.



