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ABSTRACT

In this note we summarize our recent results on rotation distance, a distance measure on binary
trees with computer science applications. Cur main result is that the maximum rotation distance
between any two n-node binary trees is at most 2n—6 for n 2 11, and this bound is tight for
infinitely many n.



Rotation Distance

A rotation is a local transformation on a binary tree that changes the depths of certain nodes but
preserves the symmetric order of the nodes. (See Figure 1.) A rotation takes O(1) time on any
standard representation of a binary tree. Rotations are the operations used to rebalance binary

search trees [3,6]; thus they play a fundamental role in data structures.

[Figure 1]

Rotations also impose a mathematical structure on the set of all n-node binary trees. Let R,,
the rotation graph, be the undirected graph whose vertices are the n-node binary trees, such that
two trees are adjacent if and only if one can be obtained from the other by a single rotation. Let
d(T;,T,), the rotation distance between trees Ty and T, be the distance between T, and T, in R,,
i.e. the minimum number of rotations needed to transform T, into T, or vice-versa. This note

summarizes our recent work on rotation distance. Further details and proofs will appear in [5].
We formulate two fundamental questions about rotation distance:

Problem 1. Let d, be the diameter of R,, i.e. the minimum number of rotations that suffice to

transform any n-node binary tree into any other. What is d,?
Problem 2. Devise a polynomial-time algorithm that, given any two n-node binary trees T, and T,
computes d (T;,T>).

Our results provide an almost-complete solution to Problem 1 and an approximate solution to

Problem 2. Concerning Problem 1, we prove:
Theorem 1. d, < 2n—6foralln 2 11.

Theorem 2. d, = 2n—6 for infinitely many n.

We conjecture but cannot yet prove that d = 2n—6 for all n > 11. However, we believe that an

extension of our methods will establish this. We have computed the exact value of d, for n < 16.



(See Figure 2.) These results show that d, = 2n—6 for 11 < n < 16.

[Figure 2]

Concerning Problem 2, we exhibit a linear-time algorithm that will estimate d (7', T>) to within
a factor of two. Coming closer than a factor of two in general seems hard; however, our methods

allow the exact computation of d (T}, T5) in various special cases.

There has been very little previous work on rotation distance. To our knowledge the only
published work is by Culik and Wood [1], who defined the concept and showed that d, < 2n—2 for

all n. Leighton (private communication) showed that d, 2 7n/4—0(1) for infinitely many n.

The original definition of rotation distance is not so easy to study. Thus it is advantageous to
transform it into something more amenable. The binary trees are counted by the Catalan numbers
[2] as are many other mathematical objects, including triangulations of a polygon. It is these with
which we shall work. The n-vertex binary trees are in 1-1 correspondence with the triangulations of
an n+2-gon if rotationally equivalent triangulations are regarded as distinct. Fl_lrthermore, rotation
on binary trees corresponds to the diagonal flip operation on triangulations, in which we remove a
diagonal, causing two triangles to merge into a quadrilateral, and replace it with the other diagonal
of the quadrilateral. (See Figure 3.) Rotation distance on binary trees corresponds to flip distance
on triangulations; the flip distance f (T;,T,) between two triangulations T, and T, of an n-gon is
the minimum number of flips necessary to transform T into T, (or vice-versa). In the triangulation

setting, Problems 1 and 2 become:
Problem 1’: Determine f, = max{f (T;,T,) | T, and T, are triangulations of an n-gon}.

Problem 2’: Devise a polynomial-time algorithm to compute f(T;,T,) for any triangulations T,

and T>.

[Figure 3]

We summarize our results on triangulations.



Theorem I'. f, < 2n—10for alln > 13.

Proof. Anmy triangulation of an n-gon has n—3 diagonals. Given any vertex x of initial degree
d(x) < n—3, we can increase d (x) by one by a suitable diagonal flip. Thus in n—3—d (x) flips we
can produce the triangulation all of whose diagonals have one end at x. It follows that given any
two triangulations T, and T, we can convert T into T in 2n—6—d,(x) — d,(x) flips, where x is
any vertex, of degree d,(x) in T, and degree d,(x) in T,. A little algebra shows that if n > 13,

there is a vertex x such that d,(x) + d,(x) > 4. The theorem follows. O

Theorem 2°. f, = 2n—10 for infinitely many n.

The proof of Theorem 2’ is our most interesting and complicated result. It uses a second
transformation of the problem, to triangulating a polyhedron, and relies on volumetric arguments in

hyperbolic space.

Lemma 1. If T, and T, are any two triangulations having a common diagonal e, then any
minimum-length sequence of flips from T’ to T, leaves e alone; indeed any flip sequence from T to

T, that flips e uses at least two more flips than the minimum number,

Lemma 2. If T and T, are any two triangulations with no common diagonals but some diagonal e
of T can be converted into a diagonal e’ of T, in one flip, then there is a shortest flip sequence

from T to T, that first flips e to e'.

A further result along the lines of Lemmas 1 and 2 concerning diagonals fixable in two flips can
be proved. However, such results seem to be of no help in solving Problem 2’, because there are
pairs of triangulations T and T, such that fixing even a single diagonal requires Q (n) flips. On

the other hand, Lemma 1 allows us to estimate f (T, T») to within a constant factor:

Theorem 3. Let g(T,,T;) be the number of diagonals in T, that are not in T,. Then

g(T;,Tz) Sf(Tl,Tz) < Zg(Tl,Tz).

We close by mentioning another problem having to do with rotations that arises in the study of



self-adjusting search trees [4,7]. A turn is a pair of rotations as illustrated in Figure 4.
[Figure 4]

Problem 3. Starting from an arbitrary n-node binary tree T, what is the maximum number of right

turns that can be made before no more are possible?

We conjecture that the maximum number of right turns is O (n), but can only prove O (nlogn).

Note that, starting from an arbitrary tree, the maximum number of right rotations that can be

made is exactly [g]
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Figure 1. A rotation in a binary tree. Triangles denote
subtrees. The tree shown could be part of a
larger tree.
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Figure 2. Values of dn for small n.
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Figure 3. A diagonal flip in a triangulation.



Figure 4. A turn on a binary tree.



