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About this Book

From Evolving Networks to Cognitive Systems Theory This textbook covers a
wide range of concepts, notions and phenomena of a truly interdisciplinary sub-
ject of rapidly growing importance. Complex system theory deals with dynamical
systems containing a very large number of variables, showing a plethora of emer-
gent features, arising in a broad range of contexts. A central focus of these notes is
the notion of complexity arising within evolving and dynamical network structures,
such as the gene expression networks at the basis of all living, adaptive ecological
networks or neural networks for cognitive information processing.

Complex systems theory ultimately forms the basis of our long-standing quest
for exploring and understanding cognitive systems in general and our brain in par-
ticular – the mammalian brain is probably the most complex of all adaptive networks
known to humanity.

Readership and Preconditions This primer is intended for graduate students or
scientists from natural sciences, engineering or neuroscience. Technically, the reader
should have a basic knowledge of ordinary and partial differential equations and of
probability distributions. This textbook is suitable both for studies in conjunction
with teaching courses as well as for the individual reader.

Course Material and the Modular Approach When used for teaching, this
primer is suitable for a course running over 40–60 lecture hours, depending on the
pace and on the number of chapters covered. Essentially all mathematical transfor-
mations are performed on a step-by-step basis and in general the reader should have
no problem following the respective derivations.

Individual chapters, apart from the first three, having mostly introductory charac-
ter, may be skipped whenever time considerations demand it. I have followed a basic
modular approach and the individual chapters are, as far as possible, independent
of each other. Notwithstanding, cross references between the different chapters are
included throughout the text, since interrelations between distinct topics are helpful
for a thorough understanding.

Style This interdisciplinary primer sets a high value on conveying concepts and
notions within their respective mathematical settings. Believing that a concise style
helps the reader to go through the material I mostly abstained from long text

xi



xii About this Book

passages with general background explanations or philosophical considerations.
Widespread use has been made of paragraph headings, with the intention to facilitate
scientific reading in this way.

A Primer to Scientific Common-Sense Knowledge To a certain extent one can
regard this textbook as a primer to a wide range of scientific common-sense knowl-
edge regarding complex systems. Basic knowledge about life’s organizational prin-
ciples, to give an example, such as the notion of “life at the edge of chaos”, is impor-
tant in today’s world to an educated scientist. Other areas of scientific common-
sense knowledge discussed in this primer include network theory, which has appli-
cations ranging from social networks to gene expression networks, the fundamentals
of evolution, cognitive systems theory, as well as the basic principles of dynamical
systems and information theory.

Content All of the chapters making up this book deal with a subject worth devot-
ing an entire course to. This book addresses readers interested in multidisciplinary
aspects; I have consequently tried to present succinct expositions of the fundamental
notions and concepts on the basis of the subjects treated in the individual chapters.

1. Graph Theory and Small-World Networks
Networks, ranging from neural networks, social networks, ecological networks
to gene expression networks, are at the basis of many complex systems. Net-
works tend to be adaptive and evolving. Network theory is therefore a prerequi-
site for a thorough understanding of adaptive and/or complex systems.

2. Chaos, Bifurcations and Diffusion
This chapter introduces basic notions of dynamical systems theory, such as
attractors, bifurcations, deterministic chaos, diffusion and stochastic resonances,
many of which are used throughout these notes. Complexity emergent from
dynamical systems containing many variables, the central theme of this textbook,
is ultimately based on the concepts of classical dynamical systems theory, treated
in this chapter, which deals with differential equations involving a handful of
variables.

3. Complexity and Information Theory
Information theory provides the basis for statistical analysis and time-series char-
acterization, providing powerful concepts likes the Shannon entropy and mutual
information. This chapter will also provide a critical assessment of measures
proposed to quantify the degree of complexity of dynamical systems.

4. Random Boolean Networks
A prime model for complex systems with an infinite number of variables are
random graphs with Boolean variables. It allows for the characterization of typ-
ical dynamical behaviors, e.g. “frozen” vs. “chaotic”, which are of relevance in
many contexts. Of especial importance are random Boolean networks for the
fundamentals in the realm of life, leading to the notion of “life at the edge of
chaos”.

5. Cellular Automata and Self-Organized Criticality
Regular dynamical systems on lattices, the cellular automata, allow detailed



About this Book xiii

studies of the dynamics of complex systems, a key issue being the organizational
principle necessary for a dynamical system to show the emergent phenomenon
of “self-organized criticality”.

6. Darwinian Evolution, Hypercycles and Game Theory
Evolution of living organisms is, without a doubt, the paradigm for an adaptive
and complex dynamical system, that of interacting species. Key concepts such
as the “error catastrophe” and “hypercycles” for the prebiotic evolution are dis-
cussed within the standard statistical approach, together with the foundations of
game theory.

7. Synchronization Phenomena
When many distinct computational units interact, which is a typical situation
in complex systems, they might evolve synchronously, in phase, or rather inde-
pendently. Synchronization is an issue of wide ranging importance, from the
outbreak of epidemics to the definition of objects in cortical circuits.

8. Elements of Cognitive Systems Theory
The most complex of any known dynamical systems, and probably also the least
understood of all, is the brain. It constitutes the biological support for the human
cognitive system, supposedly the most evolved cognitive system known to date.
Basic principles and important concepts of cognitive systems theory are devel-
oped in this chapter.

The basic material and mathematical notions for the course are developed in the first
three chapters. The scientific investigations of complex systems are just beginning
and the subjects chosen in Chaps. 4–8 are of exemplary importance for this rapidly
developing field.

Exercises and Suggestions for Individual Studies Towards the end of each indi-
vidual chapter a selection of exercises is presented. Some of them deal with simple
extensions of the material, such as a proof of a specific formula or the application of
a method discussed in the main text to a different or related problem. Other exercises
are of the form of small work studies, such as the numerical implementation via a
C++ or Maple code of a basic model, with the objective to obtain a hands-on experi-
ence with an interesting phenomenon from the investigation of the results obtained
from the simulation runs.

This interdisciplinary field is very suitable for making an inroad with a basic
research project. The suggestions for work studies presented in the respective exer-
cise sections therefore also serve as guides and motivations for a first step towards
scientific research in this field, which in the end may possibly lead to research goals
developed by the individual reader. It is a highly satisfying experience and is truly
recommended.

References and Literature The section “Further Reading” at the end of each indi-
vidual chapter contains references to standard introductory textbooks and review
articles, and to some articles for further in-depth studies dealing with selected issues
treated within the respective chapter. Certain original research literature containing
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some of the first investigations of phenomena discussed in the respective chapter is
also selectively listed whenever of scientific or historical interest.

Complexity and Our Future Human society constitutes an adaptive network
with “intelligent vertices”, us as individuals. On a larger scale, intricate inter-
relations between industrial companies, political parties and pressure groups,
non-governmental organizations (NGOs) of the civil society and many other con-
stituent components defy any encompassing analysis. The complex dynamical
system denoted human society will remain beyond our predictive capacities for
many years to come.

Nevertheless complexity theory represents a fundamental tool for long-term
modeling and scenario building. A good understanding of possible emergent behav-
iors, of chaotic vs. regular evolution processes and of stability analysis is clearly
very helpful when trying to study and model the long-term consequences of human
actions today. The theory of complex and adaptive dynamical systems is a basic tool
for genuine futurology.

The Future of Life and of Our Civilization On a personal note the author
believes, in this context, that the long-term perspective is of central importance as
a guideline for global human actions today, in view of our capability to change the
very face of the earth. We are living at a point in history where we, the constituents
of human society, are not capable of directly controlling the global and dynamical
developments of this very society, an example of what one denotes an emergent
behavior – the sum is more than its parts.

We are nevertheless the central actors within human society and the long-term
developments and trends are determined by the underlying principles, by the long-
term guidelines to our actions and planning. A stronger focus on long-term perspec-
tives and developments, for all the positive outlook it may provide, for the perils to
our civilization and to life on earth it might reveal, is of central importance, in the
view of the author, at this point in history. The reader thinking along similar lines is
invited to visit the organization Future 25,1 which is dedicated to the “future of life
and humanity on earth, the planets and in the universe”.
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Chapter 1
Graph Theory and Small-World Networks

Dynamical networks constitute a very wide class of complex and adaptive systems.
Examples range from ecological prey–predator networks to the gene expression and
protein networks constituting the basis of all living creatures as we know it. The
brain is probably the most complex of all adaptive dynamical systems and is at the
basis of our own identity, in the form of a sophisticated neural network. On a social
level we interact through social networks, to give a further example – networks are
ubiquitous through the domain of all living creatures.

A good understanding of network theory is therefore of basic importance for
complex system theory. In this chapter we will discuss the most important concepts
of graph1 theory and basic realizations of possible network organizations.

1.1 Graph Theory and Real-World Networks

1.1.1 The Small-World Effect

Six or more billion humans live on earth today and it might seem that the world is a
big place. But, as an Italian proverb says,

“Tutto il mondo é paese” – “The world is a village”.

The network of who knows whom – the network of acquaintances – is indeed quite
densely webbed. Modern scientific investigations mirror this century-old proverb.

Social Networks Stanley Milgram performed a by now famous experiment in the
1960s. He distributed a number of letters addressed to a stockbroker in Boston to
a random selection of people in Nebraska. The task was to send these letters to the
addressee (the stockbroker) via mail to an acquaintance of the respective sender. In
other words, the letters were to be sent via a social network.

The initial recipients of the letters clearly did not know the Boston stockbroker
on a first-name basis. Their best strategy was to send their letter to someone whom

1 Mathematicians generally prefer the somewhat more abstract term “graph” instead of “network”.

C. Gros, Complex and Adaptive Dynamical Systems, 2nd ed.,
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Fig. 1.1 Left: Illustration of the network structure of the world-wide web and of the Internet (from
Albert and Barabási, 2002). Right: Construction of a graph (bottom) from an underlying bipar-
tite graph (top). The filled circles correspond to movies and the open circles to actors cast in the
respective movies (from Newman et al., 2001)

they felt was closer to the stockbroker, socially or geographically: perhaps someone
they knew in the financial industry, or a friend in Massachusetts.

Six Degrees of Separation About 20% of Milgram’s letters did eventually reach
their destination. Milgram found that it had only taken an average of six steps for
a letter to get from Nebraska to Boston. This result is by now dubbed “six degrees
of separation” and it is possible to connect any two persons living on earth via the
social network in a similar number of steps.

The Small-World Effect. The “small-world effect” denotes the result that the
average distance linking two nodes belonging to the same network can be
orders of magnitude smaller than the number of nodes making up the network.

The small-world effect occurs in all kinds of networks. Milgram originally examined
the networks of friends. Other examples for social nets are the network of film actors
or that of baseball players, see Fig. 1.1. Two actors are linked by an edge in this
network whenever they co-starred at least once in the same movie. In the case of
baseball players the linkage is given by the condition to have played at least once on
the same team.

Networks are Everywhere Social networks are but just one important example of
a communication network. Most human communication takes place directly among
individuals. The spreading of news, rumors, jokes and of diseases takes place by
contact between individuals. And we are all aware that rumors and epidemic infec-
tions can spread very fast in densely webbed social networks.

Communication networks are ubiquitous. Well known examples are the Internet
and the world-wide web, see Fig. 1.1. Inside a cell the many constituent proteins
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Fig. 1.2 A protein interaction network, showing a complex interplay between highly connected
hubs and communities of subgraphs with increased densities of edges (from Palla et al., 2005)

form an interacting network, as illustrated in Fig. 1.2. The same is of course true for
artificial neural networks as well as for the networks of neurons that build up the
brain. It is therefore important to understand the statistical properties of the most
important network classes.

1.1.2 Basic Graph-Theoretical Concepts

We start with some basic concepts allowing to characterize graphs and real-world
networks.
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Fig. 1.3 Random graphs with N = 12 vertices and different connection probabilities p = 0.0758
(left) and p = 0.3788 (right). The three mutually connected vertices (0,1,7) contribute to the
clustering coefficient and the fully interconnected set of sites (0,4,10,11) is a clique in the network
on the right

Degree of a Vertex A graph is made out of vertices connected by edges.

Degree of a Vertex. The degree k of the vertex is the number of edges linking
to this node.

Nodes having a degree k substantially above the average are denoted “hubs”, they
are the VIPs of network theory.

Coordination Number The simplest type of network is the random graph. It is
characterized by only two numbers: By the number of vertices N and by the average
degree z, also called the coordination number.

Coordination Number. The coordination number z is the average number
of links per vertex, viz the average degree.

A graph with an average degree z has N z/2 connections. Alternatively we can define
with p the probability to find a given edge.

Connection Probability. The probability that a given edge occurs is called
the connection probability p.

Erdös–Rényi Random Graphs We can construct a specific type of random graph
simply by taking N nodes, also called vertices and by drawing N z/2 lines, the
edges, between randomly chosen pairs of nodes, compare Fig. 1.3. This type of
random graph is called an “Erdös–Rényi” random graph after two mathematicians
who studied this type of graph extensively.

Most of the following discussion will be valid for all types of random graphs, we
will explicitly state whenever we specialize to Erdös–Rényi graphs. In Sect. 1.2 we
will introduce and study other types of random graphs.

For Erdös–Rényi random graphs we have

p = N z

2

2

N (N − 1)
= z

N − 1
(1.1)

for the relation between the coordination number z and the connection probability p.
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The Thermodynamic Limit Mathematical graph theory is often concerned with
the thermodynamic limit.

The Thermodynamic Limit. The limit where the number of elements making
up a system diverges to infinity is called the “thermodynamic limit” in physics.
A quantity is extensive if it is proportional to the number of constituting ele-
ments, and intensive if it scales to a constant in the thermodynamic limit.

We note that p = p(N ) → 0 in the thermodynamic limit N → ∞ for Erdös–Rényi
random graphs and intensive z ∼ O(N 0), compare Eq. (1.1).

There are small and large real-world networks and it makes sense only for very
large networks to consider the thermodynamic limit. An example is the network of
hyperlinks.

The Hyperlink Network Every web page contains links to other web pages, thus
forming a network of hyperlinks. In 1999 there were about N � 0.8 × 109 docu-
ments on the web, but the average distance between documents was only about 19.
The WWW is growing rapidly; in 2007 estimates for the total number of web pages
resulted in N � (20 − 30) × 109, with the size of the Internet backbone, viz the
number of Internet servers, being about � 0.1 × 109.

Network Diameter and the Small-World Effect As a first parameter characteriz-
ing a network we discuss the diameter of a network.

Network Diameter. The network diameter is the maximum degree of sepa-
ration between all pairs of vertices.

For a random network with N vertices and coordination number z we have

zD ≈ N , D ∝ log N/ log z , (1.2)

since any node has z neighbors, z2 next-nearest neighbors and so on. The logarith-
mic increase in the number of degrees of separation with the size of the network
is characteristic of small-world networks. log N increases very slowly with N and
the network diameter therefore remains small even for networks containing a large
number of nodes N .

Average Distance. The average distance � is the average of the minimal
path length between all pairs of nodes of a network.

The average distance � is generally closely related to the diameter D; it has the same
scaling as the number of nodes N .

Clustering in Networks Real networks have strong local xrecurrent connections,
compare, e.g. the protein network illustrated in Fig. 1.2, leading to distinct topolog-
ical elements, such as loops and clusters.

The Clustering Coefficient. The clustering coefficient C is the average frac-
tion of pairs of neighbors of a node that are also neighbors of each other.
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The clustering coefficient is a normalized measure of loops of length 3. In a fully
connected network, in which everyone knows everyone else, C = 1.

In a random graph a typical site has z(z−1)/2 pairs of neighbors. The probability
of an edge to be present between a given pair of neighbors is p = z/(N − 1),
see Eq. (1.1). The clustering coefficient, which is just the probability of a pair of
neighbors to be interconnected is therefore

Crand = z

N − 1
≈ z

N
. (1.3)

It is very small for large random networks and scales to zero in the thermodynamic
limit. In Table 1.1 the respective clustering coefficients for some real-world net-
works and for the corresponding random networks are listed for comparison.

Cliques and Communities The clustering coefficient measures the normalized
number of triples of fully interconnected vertices. In general, any fully connected
subgraph is denoted a clique.

Cliques. A clique is a set of vertices for which (a) every node is connected
by an edge to every other member of the clique and (b) no node outside the
clique is connected to all members of the clique.

The term “clique” comes from social networks. A clique is a group of friends where
everybody knows everybody else. The number of cliques of size K in an Erdös–
Rényi graph with N vertices and linking probability p is

(
N
K

)
pK (K−1)/2

(
1 − pK

)N−K
.

The only cliques occurring in random graphs in the thermodynamic limit have the
size 2, since p = z/N . For an illustration see Fig. 1.4.

Another term used is community. It is mathematically not as strictly defined as
“clique”, it roughly denotes a collection of strongly overlapping cliques, viz of sub-
graphs with above-the-average densities of edges.

Clustering for Real-World Networks Most real-world networks have a substan-
tial clustering coefficient, which is much greater than O(N−1). It is immediately
evident from an inspection, for example of the protein network presented in Fig. 1.2,
that the underlying “community structure” gives rise to a high clustering coefficient.

Table 1.1 The number of nodes N , average degree of separation �, and clustering coefficient C ,
for three real-world networks. The last column is the value which C would take in a random graph
with the same size and coordination number, Crand = z/N (from Watts and Strogatz, 1998)

Network N � C Crand

Movie actors 225, 226 3.65 0.79 0.00027
Neural network 282 2.65 0.28 0.05
Power grid 4, 941 18.7 0.08 0.0005
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Fig. 1.4 Left: Highlighted are three three-site cliques. Right: A percolating network of three-site
cliques (from Derenyi et al., 2005)

In Table 1.1, we give some values of C , together with the average distance �, for
three different networks:

– the network of collaborations between movie actors
– the neural network of the worm C. Elegans, and
– the Western Power Grid of the United States.

Also given in Table 1.1 are the values Crand that the clustering coefficient would
have for random graphs of the same size and coordination number. Note that the
real-world value is systematically higher than that of random graphs. Clustering is
important for real-world graphs. These are small-world graphs, as indicated by the
small values for the average distances � given in Table 1.1.

Erdös–Rényi random graphs obviously do not match the properties of real-world
networks well. In Sect. 1.2 we will discuss generalizations of random graphs that
approximate the properties of real-world graphs much better. Before that, we will
discuss some general properties of random graphs in more detail.

Correlation Effects The degree distribution pk captures the statistical properties of
nodes as if they where all independent of each other. In general, the property of a
given node will however be dependent on the properties of other nodes, e.g. of its
neighbors. When this happens one speaks of “correlation effects”, with the cluster-
ing coefficient C being an example.

Another example for a correlation effect is what one calls “assortative mixing”.
A network is assortatively correlated whenever large-degree nodes, the hubs, tend
to be mutually interconnected and assortatively anti-correlated when hubs are pre-
dominantly linked to low-degree vertices. Social networks tend to be assortatively
correlated, in agreement with the everyday experience that the friends of influential
persons, the hubs of social networks, tend to be VIPs themselves.

Tree Graphs Real-world networks typically show strong local clustering and loops
abound. For many types of graphs commonly considered in graph theory, like
Erdös–Rényi graphs, the clustering coefficient vanishes however in the thermo-
dynamic limit, and loops become irrelevant. One denotes a loopless graph a “tree
graph”, a concept often encountered in mathematical graph theory.
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Bipartite Networks Many real-world graphs have an underlying bipartite struc-
ture, see Fig. 1.1.

Bipartite Graph. A bipartite graph has two kinds of vertices with links only
between vertices of unlike kinds.

Examples are networks of managers, where one kind of vertex is a company and the
other kind of vertex the managers belonging to the board of directors. When elim-
inating one kind of vertex, in this case it is customary to eliminate the companies,
one retains a social network; the network of directors, as illustrated in Fig. 1.1. This
network has a high clustering coefficient, as all boards of directors are mapped onto
cliques of the respective social network.

1.1.3 Properties of Random Graphs

So far we have considered mostly averaged quantities of random graphs, like the
clustering coefficient or the average coordination number z. We will now develop
tools allowing for a more sophisticated characterization of graphs.

Degree Distribution The basic description of general random and non-random
graphs is given by the degree distribution pk .

Degree Distribution. If Xk is the number of vertices having the degree k,
then pk = Xk/N is called the degree distribution, where N is the total number
of nodes.

The degree distribution is a probability distribution function and hence normalized,∑
k pk = 1.

Degree Distribution for Erdös–Rényi Graphs The probability of any node to
have k edges is

pk =
(

N − 1

k

)
pk (1 − p)N−1−k , (1.4)

for an Erdös–Rényi network, where p is the link connection probability. For large
N 	 k we can approximate the degree distribution pk by

pk � e−pN (pN )k

k! = e−z zk

k! , (1.5)

where z is the average coordination number, compare Eq. (1.1). We have used

lim
N→∞

(
1 − x

N

)N = e−x ,

(
N − 1

k

)
= (N − 1)!

k!(N − 1 − k)! � (N − 1)k

k! ,
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and (N − 1)k pk = zk , see Eq. (1.1). Equation (1.5) is a Poisson distribution with
the mean

〈k〉 =
∞∑

k=0

k e−z zk

k! = z e−z
∞∑

k=1

zk−1

(k − 1)! = z ,

as expected.

Ensemble Fluctuations In general, two specific realizations of random graphs dif-
fer. Their properties coincide on the average, but not on the level of individual links.
With “ensemble” one denotes the set of possible realizations.

In an ensemble of random graphs with fixed p and N the degree distribution
Xk/N will be slightly different from one realization to the next. On the average it
will be given by

1

N
〈Xk〉 = pk . (1.6)

Here 〈. . .〉 denotes the ensemble average. One can go one step further and calcu-
late the probability P(Xk = R) that in a realization of a random graph the number
of vertices with degree k equals R. It is given in the large-N limit by

P(Xk = R) = e−λk
(λk)

R

R! , λk = 〈Xk〉 . (1.7)

Note the similarity to Eq. (1.5) and that the mean λk = 〈Xk〉 is in general extensive
while the mean z of the degree distribution (1.5) is intensive.

Scale-Free Graphs Scale-free graphs are defined by a power-law degree
distribution

pk ∼ 1

kα
, α > 1 . (1.8)

Typically, for real-world graphs, this scaling ∼ k−α holds only for large degrees k.
For theoretical studies we will mostly assume, for simplicity, that the func-
tional dependence Eq. (1.8) holds for all k. The power-law distribution can be
normalized if

lim
K→∞

K∑
k=0

pk ≈ lim
K→∞

∫ K

k=0
pk ∝ lim

K→∞ K 1−α < ∞ ,

i.e. when α > 1. The average degree is finite if

lim
K→∞

K∑
k=0

k pk ∝ lim
K→∞ K −α+2 < ∞ , α > 2 .
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A power-law functional relation is called scale-free, since any rescaling k → a k
can be reabsorbed into the normalization constant.

Scale-free functional dependencies are also called critical, since they occur gen-
erally at the critical point of a phase transition. We will come back to this issue
recurrently in the following chapters.

Graph Spectra Any graph G with N nodes can be represented by a matrix encod-
ing the topology of the network, the adjacency matrix.

The Adjacency Matrix. The N × N adjacency matrix Â has elements Ai j =
1 if nodes i and j are connected and Ai j = 0 if they are not connected.

The adjacency matrix is symmetric and consequently has N real eigenvalues.

The Spectrum of a Graph. The spectrum of a graph G is given by the set of
eigenvalues λi of the adjacency matrix Â.

A graph with N nodes has N eigenvalues λi and it is useful to define the corre-
sponding “spectral density”

ρ(λ) = 1

N

∑
j

δ(λ − λ j ),

∫
dλ ρ(λ) = 1 , (1.9)

where δ(λ) is the Dirac delta function.

Green’s Function2 The spectral density ρ(λ) can be evaluated once the Green’s
function G(λ),

G(λ) = 1

N
T r

[
1

λ − Â

]
= 1

N

∑
j

1

λ − λ j
, (1.10)

is known. Here T r [. . .] denotes the trace over the matrix (λ− Â)−1 ≡ (λ 1̂ − Â)−1,
where 1̂ is the identity matrix. Using the formula

lim
ε→0

1

λ − λ j + iε
= P

1

λ − λ j
− iπδ(λ − λ j ) ,

where P denotes the principal part,3 we find the relation

ρ(λ) = − 1

π
lim
ε→0

I mG(λ + iε) . (1.11)

2 The reader without prior experience with Green’s functions may skip the following derivation
and pass directly to the result, namely to Eq. (1.13).
3 Taking the principal part signifies that one has to consider the positive and the negative contribu-
tions to the 1/λ divergences carefully.
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The Semi-Circle Law The graph spectra can be evaluated for random matrices
for the case of small link densities p = z/N , where z is the average connectivity.
Starting from a random site we can connect on the average to z neighboring sites
and from there on to z − 1 next-nearest neighboring sites, and so on:

G(λ) = 1

λ − z
λ− z−1

λ− z−1
λ−...

≈ 1

λ − z G(λ)
, (1.12)

where we have approximated z−1 ≈ z in the last step. Equation (1.12) is also called
the “self-retracting path approximation” and can be derived by evoking a mapping to
Green’s function of a particle moving along the vertices of the graph. It constitutes
a self-consistency equation for G = G(λ), with the solution

G2 − λ

z
G + 1

z
= 0, G = λ

2z
−
√

λ2

4z2
− 1

z
,

since limλ→∞ G(λ) = 0. The spectral density Eq. (1.11) then takes the form

ρ(λ) =
{√

4z − λ2/(2π z) if λ2 < 4z
0 if λ2 > 4z

(1.13)

of a half-ellipse also known as “Wigner’s law”, or the “semi-circle law”.

Loops and the Clustering Coefficient The total number of triangles, viz the over-
all number of loops of length 3 in a network is C(N/3)(z − 1)z/2, where C is the
clustering coefficient. This number is related to the adjacency matrix via

C
N

3

z(z − 1)

2
= number of triangles

= 1

6

∑
i1,i2,i3

Ai1i2 Ai2i3 Ai3i1 = 1

6
Tr
[

A3
]
,

since three sites i1, i2 and i3 are interconnected only when the respective entries of
the adjacency matrix are unity. The sum of the right-hand side of above relation is
also denoted a “moment” of the graph spectrum. The factors 1/3 and 1/6 on the
left-hand side and on the right-hand side account for overcountings.

Moments of the Spectral Density The graph spectrum is directly related to certain
topological features of a graph via its moments. The lth moment of ρ(λ) is given by
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∫
dλ λlρ(λ) = 1

N

N∑
j=1

(
λ j
)l

= 1

N
Tr
[

Al
]

= 1

N

∑
i1,i2,...,il

Ai1i2 Ai2i3 · · · Ail i1 , (1.14)

as one can see from Eq. (1.9). The lth moment of ρ(λ) is therefore equivalent to the
number of closed paths of length l, the number of all paths of length l returning to
the starting point.

Graph Laplacian Consider a function f (x). The first and second derivatives are
given by

d

dx
f (x) = f (x + Δx) − f (x)

Δx
,

d2

dx2
f (x) = f (x + Δx) + f (x − Δx) − 2 f (x)

Δx2
,

in the limit Δx → 0. Consider now a function fi , i = 1, . . . , N on a graph with N
sites. One defines the graph Laplacian Λ̂ via

Λi j =
⎛
⎝∑

j

Ai j

⎞
⎠ δi j − Ai j =

⎧⎨
⎩

ki i = j
−1 i and j connected
0 otherwise

, (1.15)

where the Λi j = (Λ̂)i j are the elements of the Laplacian matrix, Ai j the adjacency
matrix, and where ki is the degree of vertex i . Λ̂ corresponds, apart from a sign
convention, to a straightforward generalization of the usual Laplace operator. To see
this, just apply the Laplacian matrix Λi j to a graph-function f = ( f1, . . . , fN ).

Alternatively one defines by

Li j =
⎧⎨
⎩

1 i = j
−1/

√
ki k j i and j connected

0 otherwise
, (1.16)

the “normalized graph Laplacian”, where ki = ∑
j Ai j is the degree of vertex i . The

eigenvalues of the normalized graph Laplacian have a straightforward interpretation
in terms of the underlying graph topology.

Eigenvalues of the Normalized Graph Laplacian Of interest are the eigenvalues
λl , l = 0, .., (N − 1) of the normalized graph Laplacian.

– The normalized graph Laplacian is positive semidefinite,

0 = λ0 ≤ λ1 ≤ · · · ≤ λN−1 ≤ 2 .

– The lowest eigenvalue λ0 is always zero, corresponding to the eigenfunction
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e(λ0) = 1√
C

(√
k1,

√
k2, . . . ,

√
kN

)
, (1.17)

where C is a normalization constant and where the ki are the respective vertex-
degrees.

– The degeneracy of λ0 is given by the number of disconnected subgraphs con-
tained in the network. The eigenfunctions of λ0 then vanish on all subclusters
beside one, where it has the functional form (1.17).

– The largest eigenvalue λN−1 is λN−1 = 2, if and only if the network is bipartite.
Generally, a small value of 2 − λN−1 indicates that the graph is nearly bipartite.

– The inequality

∑
l

λl ≤ N

holds generally. The equality holds for connected graphs, viz when λ0 has degen-
eracy one.

Examples of Graph Laplacians The eigenvalues of the normalized graph Lapla-
cian can be given analytically for some simple graphs.

• For a complete graph (all sites are mutually interconnected), containing N sites,
the eigenvalues are

λ0 = 0, λl = N/(N − 1), (l = 1, . . . , N − 1) .

• For a complete bipartite graph (all sites of one subgraph are connected to all other
sites of the other subgraph) the eigenvalues are

λ0 = 0, λN−1 = 2, λl = 1, (l = 1, . . . , N − 2) .

The eigenfunction for λN−1 = 2 has the form

e(λN−1) = 1√
C

(√
kA, . . . ,

√
kA︸ ︷︷ ︸

A sublattice

,−√kB, . . . ,−
√

kB︸ ︷︷ ︸
B sublattice

)
. (1.18)

Denoting with NA and NB the number of sites in two sublattices A and B, with
NA + NB = N , the degrees kA and kB of vertices belonging to sublattice A and
B respectively are kA = NB and kB = NA for a complete bipartite lattice.

A densely connected graph will therefore have many eigenvalues close to unity.
For real-world graphs one may therefore plot the spectral density of the normalized
graph Laplacian in order to gain an insight into its overall topological properties.
The information obtained from the spectral density of the adjacency matrix and
from the normalized graph Laplacian are distinct.
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Step A Step B

Fig. 1.5 Construction procedure of a random network with nine vertices and degrees X1 = 2,
X2 = 3, X3 = 2, X4 = 2. In step A the vertices with the desired number of stubs (degrees) are
constructed. In step B the stubs are connected randomly

1.2 Generalized Random Graphs

The most random of all graphs are Erdös–Rényi graphs. One can relax the degree of
randomness somewhat and construct random networks having an arbitrarily given
degree distribution. This procedure is also denoted “configurational model”.

1.2.1 Graphs with Arbitrary Degree Distributions

In order to generate random graphs that have non-Poisson degree distributions we
may choose a specific set of degrees.

The Degree Sequence. A degree sequence is a specified set {ki } of the
degrees for the vertices i = 1 . . . N.

Construction of Networks with Arbitrary Degree Distribution The degree
sequence can be chosen in such a way that the fraction of vertices having degree
k will tend to the desired degree distribution

pk, N → ∞

in the thermodynamic limit. The network can then be constructed in the following
way:

1. Assign ki “stubs” (ends of edges emerging from a vertex) to every vertex i =
1, . . . , N .

2. Iteratively choose pairs of stubs at random and join them together to make com-
plete edges.

When all stubs have been used up, the resulting graph is a random member of the
ensemble of graphs with the desired degree sequence. Figure 1.5 illustrates the con-
struction procedure.

The Average Degree and Clustering The mean number of neighbors is the coor-
dination number
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z = 〈k〉 =
∑

k

k pk .

The probability that one of the second neighbors of a given vertex is also a first
neighbor, scales as N−1 for random graphs, regardless of the degree distribution,
and hence can be ignored in the limit N → ∞.

Degree Distribution of Neighbors Consider a given vertex A and a vertex B that
is a neighbor of A, i.e. A and B are linked by an edge.

We are now interested in the degree distribution for vertex B, viz in the degree
distribution of a neighbor vertex of A, where A is an arbitrary vertex of the random
network with degree distribution pk . As a first step we consider the average degree
of a neighbor node.

A high-degree vertex has more edges connected to it. There is then a higher
chance that any given edge on the graph will be connected to it, with this chance
being directly proportional to the degree of the vertex. Thus the probability distri-
bution of the degree of the vertex to which an edge leads is proportional to kpk and
not just to pk .

Excess Degree Distribution When we are interested in determining the size of
loops or the size of connected components in a random graph, we are normally
interested not in the complete degree of the vertex reached by following an edge
from A, but in the number of edges emerging from such a vertex that do not lead
back to A, because the latter contains all information about the number of second
neighbors of A.

The number of new edges emerging from B is just the degree of B minus one
and its correctly normalized distribution is therefore

qk−1 = k pk∑
j j p j

, qk = (k + 1)pk+1∑
j j p j

, (1.19)

since kpk is the degree distribution of a neighbor. The distribution qk of the outgoing
edges of a neighbor vertex is also denoted “excess degree distribution”. The average
number of outgoing edges of a neighbor vertex is then

∞∑
k=0

kqk =
∑∞

k=0 k(k + 1)pk+1∑
j j p j

=
∑∞

k=1(k − 1)kpk∑
j j p j

= 〈k2〉 − 〈k〉
〈k〉 . (1.20)

Number of Next-Nearest Neighbors We denote with

zm, z1 = 〈k〉 ≡ z
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the average number of m-nearest neighbors. Equation (1.20) gives the average num-
ber of vertices two steps away from the starting vertex A via a particular neighbor
vertex. Multiplying this by the mean degree of A, namely z1 ≡ z, we find that the
mean number of second neighbors z2 of a vertex is

z2 = 〈k2〉 − 〈k〉 . (1.21)

z2 for the Erdös–Rényi graph The degree distribution of an Erdös–Rényi graph
is the Poisson distribution, pk = e−z zk/k!, see Eq. (1.5). We obtain for the average
number of second neighbors, Eq. (1.21),

z2 =
∞∑

k=0

k2e−z zk

k! − z = ze−z
∞∑

k=1

(k − 1 + 1)
zk−1

(k − 1)! − z

= z2 = 〈k〉2 .

The mean number of second neighbors of a vertex in an Erdös–Rényi random graph
is just the square of the mean number of first neighbors. This is a special case
however. For most degree distributions, Eq. (1.21) will be dominated by the term
〈k2〉, so the number of second neighbors is roughly the mean square degree, rather
than the square of the mean. For broad distributions these two quantities can be very
different.

Number of Far Away Neighbors The average number of edges emerging from
a second neighbor, and not leading back to where we came from, is also given by
Eq. (1.20), and indeed this is true at any distance m away from vertex A. The average
number of neighbors at a distance m is then

zm = 〈k2〉 − 〈k〉
〈k〉 zm−1 = z2

z1
zm−1 , (1.22)

where z1 ≡ z = 〈k〉 and z2 are given by Eq. (1.21). Iterating this relation we find

zm =
[

z2

z1

]m−1

z1 . (1.23)

The Giant Connected Cluster Depending on whether z2 is greater than z1 or not,
Eq. (1.23) will either diverge or converge exponentially as m becomes large:

lim
m→∞ zm =

{∞ if z2 > z1
0 if z2 < z1

, (1.24)

z1 = z2 is the percolation point. In the second case the total number of neighbors
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∑
m

zm = z1

∞∑
m=1

[
z2

z1

]m−1

= z1

1 − z2/z1
= z2

1

z1 − z2

is finite even in the thermodynamic limit, in the first case it is infinite. The network
decays, for N → ∞, into non-connected components when the total number of
neighbors is finite.

The Giant Connected Component. When the largest cluster of a graph
encompasses a finite fraction of all vertices, in the thermodynamic limit, it
is said to form a giant connected component (GCC).

If the total number of neighbors is infinite, then there must be a giant connected
component. When the total number of neighbors is finite, there can be no GCC.

The Percolation Threshold When a system has two or more possibly macroscop-
ically different states, one speaks of a phase transition.

Percolation Transition. When the structure of an evolving graph goes from a
state in which two (far away) sites are on the average connected/not connected
one speaks of a percolation transition.

This phase transition occurs precisely at the point where z2 = z1. Making use of
Eq. (1.21), z2 = 〈k2〉 − 〈k〉, we find that this condition is equivalent to

〈k2〉 − 2〈k〉 = 0,
∞∑

k=0

k(k − 2)pk = 0 . (1.25)

We note that, because of the factor k(k − 2), vertices of degree zero and degree
two do not contribute to the sum. The number of vertices with degree zero or
two therefore affects neither the phase transition nor the existence of the giant
component.

– Vertices of degree zero are not connected to any other node, they do not contribute
to the network topology.

– Vertices of degree two act as intermediators between two other nodes. Removing
vertices of degree two does not change the topological structure of a graph.

One can therefore remove (or add) vertices of degree two or zero without affecting
the existence of the giant component.

Clique Percolation Edges correspond to cliques with Z = 2 sites (see page 6). The
percolation transition can then also be interpreted as a percolation of cliques having
size two and larger. It is then clear that the concept of percolation can be generalized
to that of percolation of cliques with Z sites, see Fig. 1.4 for an illustration.
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The Average Vertex–Vertex Distance Below the percolation threshold the aver-
age vertex–vertex distance � is finite and the graph decomposes into an infinite
number of disconnected subclusters.

Disconnected Subclusters. A disconnected subcluster or subgraph consti-
tutes a subset of vertices for which (a) there is at least one path in between
all pairs of nodes making up the subcluster and (b) there is no path between
a member of the subcluster and any out-of-subcluster vertex.

Well above the percolation transition, � is given approximately by the condition
z� � N :

log(N/z1) = (� − 1) log(z2/z1), � = log(N/z1)

log(z2/z1)
+ 1 , (1.26)

using Eq. (1.23). For the special case of the Erdös–Rényi random graph, for which
z1 = z and z2 = z2, this expression reduces to the standard formula (1.2),

� = log N − log z

log z
+ 1 = log N

log z
.

The Clustering Coefficient of Generalized Random Graphs The clustering
coefficient C denotes the probability that two neighbors i and j of a particular
vertex A have stubs that do interconnect. The probability that two given stubs are
connected is 1/(zN − 1) ≈ 1/zN , since zN is the total number of stubs. We then
have, compare Eq. (1.20),

C = 〈ki k j 〉q

N z
= 〈ki 〉q〈k j 〉q

N z
= 1

N z

[∑
k

kqk

]2

= 1

N z

[ 〈k2〉 − 〈k〉
〈k〉

]2

= z

N

[ 〈k2〉 − 〈k〉
〈k〉2

]2

, (1.27)

since the distributions of two neighbors i and j are statistically independent. The
notation 〈. . .〉q indicates that the average is to be take with respect to the excess
degree distribution qk , as given by Eq. (1.19).

The clustering coefficient vanishes in the thermodynamic limit N → ∞, as
expected. However, it may have a very big leading coefficient, especially for degree
distributions with fat tails. The differences listed in Table 1.1, between the mea-
sured clustering coefficient C and the value Crand = z/N for Erdös–Rényi graphs,
are partly due to the fat tails in the degree distributions pk of the corresponding
networks.
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1.2.2 Probability Generating Function Formalism

Network theory is about the statistical properties of graphs. A very powerful method
from probability theory is the generating function formalism, which we will discuss
now and apply later on.

Probability Generating Functions We define by

G0(x) =
∞∑

k=0

pk xk (1.28)

the generating function G0(x) for the probability distribution pk . The generating
function G0(x) contains all information present in pk . We can recover pk from
G0(x) simply by differentiation:

pk = 1

k!
dk G0

dxk

∣∣∣∣
x=0

. (1.29)

One says that the function G0 “generates” the probability distribution pk .

The Generating Function for Degree Distribution of Neighbors We can also
define a generating function for the distribution qk , Eq. (1.19), of the other edges
leaving a vertex that we reach by following an edge in the graph:

G1(x) =
∞∑

k=0

qk xk =
∑∞

k=0(k + 1)pk+1xk∑
j j p j

=
∑∞

k=0 kpk xk−1∑
j j p j

= G ′
0(x)

z
, (1.30)

where G ′
0(x) denotes the first derivative of G0(x) with respect to its argument.

Properties of Generating Functions Probability generating functions have a cou-
ple of important properties:

1. Normalization: The distribution pk is normalized and hence

G0(1) =
∑

k

pk = 1 . (1.31)

2. Mean: A simple differentiation

G ′
0(1) =

∑
k

k pk = 〈k〉 (1.32)

yields the average degree 〈k〉.
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3. Moments: The nth moment 〈kn〉 of the distribution pk is given by

〈kn〉 =
∑

k

kn pk =
[(

x
d

dx

)n

G0(x)

]
x=1

. (1.33)

The Generating Function for Independent Random Variables Let us assume
that we have two random variables. As an example we consider two dice. Throwing
the two dice are two independent random events. The joint probability to obtain
k = 1, . . . , 6 with the first die and l = 1, . . . , 6 with the second dice is pk pl . This
probability function is generated by

∑
k,l

pk pl xk+l =
(∑

k

pk xk

)(∑
l

pl xl

)
,

i.e. by the product of the individual generating functions. This is the reason why
generating functions are so useful in describing combinations of independent ran-
dom events.

As an application consider n randomly chosen vertices. The sum
∑

i ki of the
respective degrees has a cumulative degree distribution, which is generated by

[
G0(x)

]n
.

The Generating Function of the Poisson Distribution As an example we
consider the Poisson distribution pk = e−z zk/k!, see Eq. (1.5), with z being the
average degree. Using Eq. (1.28) we obtain

G0(x) = e−z
∞∑

k=0

zk

k! xk = ez(x−1) . (1.34)

This is the generating function for the Poisson distribution. The generating func-
tion G1(x) for the excess degree distribution qk is, see Eq. (1.30),

G1(x) = G ′
0(x)

z
= ez(x−1) . (1.35)

Thus, for the case of the Poisson distribution we have, as expected, G1(x) = G0(x).

Further Examples of Generating Functions As a second example, consider a
graph with an exponential degree distribution:

pk = (1 − e−1/κ ) e−k/κ ,

∞∑
k=0

pk = 1 − e−1/κ

1 − e−1/κ
= 1 , (1.36)
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where κ is a constant. The generating function for this distribution is

G0(x) = (1 − e−1/κ )

∞∑
k=0

e−k/κ xk = 1 − e−1/κ

1 − xe−1/κ
, (1.37)

and

z = G ′
0(1) = e−1/κ

1 − e−1/κ
, G1(x) = G ′

0(x)

z
=
[

1 − e−1/κ

1 − xe−1/κ

]2

. (1.38)

As a third example, consider a graph in which all vertices have degree 0, 1, 2, or 3
with probabilities p0 . . . p3. Then the generating functions take the form of simple
polynomials

G0(x) = p3x3 + p2x2 + p1x + p0, (1.39)

G1(x) = q2x2 + q1x + q0 = 3p3x2 + 2p2x + p1

3p3 + 2p2 + p1
. (1.40)

Stochastic Sum of Independent Variables Let’s assume we have random vari-
ables k1, k2, . . . , each having the same generating functional G0(x). Then

G 2
0 (x), G 3

0 (x), G 4
0 (x), . . .

are the generating functionals for

k1 + k2, k1 + k2 + k3, k1 + k2 + k3 + k4, . . . .

Now consider that the number of times n this stochastic process is executed is
distributed as pn . As an example consider throwing a dice several times, with a
probablity pn of throwing exactly n times. The distribution of the results obtained
is then generated by

∑
n

pnG n
0 (x) = G N (G0(x)) , G N (z) =

∑
n

pnzn . (1.41)

We will make use of this relation further on.

1.2.3 Distribution of Component Sizes

The Absence of Closed Loops We consider here a network below the percolation
transition and are interested in the distribution of the sizes of the individual subclus-
ters. The calculations will crucially depend on the fact that the generalized random
graphs considered here do not have any significant clustering nor any closed loops.
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Fig. 1.6 Graphical representation of the self-consistency Eq. (1.42) for the generating function
H1(x), represented by the box. A single vertex is represented by a circle. The subcluster connected
to an incoming vertex can be either a single vertex or an arbitrary number of subclusters of the
same type connected to the first vertex (from Newman et al., 2001)

Closed Loops. A set of edges linking vertices

i1 → i2 . . . in → i1

is called a closed loop of length n.

In physics jargon, all finite components are tree-like. The number of closed loops of
length 3 corresponds to the clustering coefficient C , viz to the probability that two
of your friends are also friends of each other. For random networks C = [〈k2〉 −
〈k〉]2/(z3 N ), see Eq. (1.27), tends to zero as N → ∞.

Generating Function for the Size Distribution of Components We define by

H1(x) =
∑

m

h(1)
m xm

the generating function that generates the distribution of cluster sizes containing a
given vertex j , which is linked to a specific incoming edge, see Fig. 1.6. That is,
h(1)

m is the probability that the such-defined cluster contains m nodes.

Self-Consistency Condition for H1(x) We note the following:

1. The first vertex j belongs to the subcluster with probability 1, its generating
function is x .

2. The probability that the vertex j has k outgoing stubs is qk .
3. At every stub outgoing from vertex j there is a subcluster.
4. The total number of vertices consists of those generated by H1(x) plus the

starting vertex.

The number of outgoing edges k from vertex j is described by the distribution func-
tion qk , see Eq. (1.19). The total size of the k clusters is generated by [H1(x)]k , as
a consequence of the multiplication property of generating functions discussed in
Sect. 1.2.2. The self-consistency equation for the total number of vertices reachable
is then
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H1(x) = x
∞∑

k=0

qk [H1(x)]k = x G1(H1(x)) , (1.42)

where we have made use of Eqs. (1.30) and (1.41).

The Embedding Cluster Distribution Function The quantity that we actually
want to know is the distribution of the sizes of the clusters to which the entry vertex
belongs. We note that

1. The number of edges emanating from a randomly chosen vertex is distributed
according to the degree distribution pk .

2. Every edge leads to a cluster whose size is generated by H1(x).

The size of a complete component is thus generated by

H0(x) = x
∞∑

k=0

pk [H1(x)]k = x G0(H1(x)) , (1.43)

where the prefactor x corresponds to the generating function of the starting vertex.
The complete distribution of component sizes is given by solving Eq. (1.42) self-
consistently for H1(x) and then substituting the result into Eq. (1.43).

The Mean Component Size The calculation of H1(x) and H0(x) in closed form
is not possible. We are, however, interested only in the first moment, viz the mean
component size, see Eq. (1.32).

The component size distribution is generated by H0(x), Eq. (1.43), and hence the
mean component size below the percolation transition is

〈s〉 = H ′
0(1) =

[
G0(H1(x)) + x G ′

0(H1(x)) H ′
1(x)

]
x=1

= 1 + G ′
0(1)H ′

1(1) , (1.44)

where we have made use of the normalization

G0(1) = H1(1) = H0(1) = 1 .

of generating functions, see Eq. (1.31). The value of H ′
1(1) can be calculated from

Eq. (1.42) by differentiating:

H ′
1(x) = G1(H1(x)) + x G ′

1(H1(x)) H ′
1(x), (1.45)

H ′
1(1) = 1

1 − G ′
1(1)

.

Substituting this into (1.44) we find
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〈s〉 = 1 + G ′
0(1)

1 − G ′
1(1)

. (1.46)

We note that

G ′
0(1) =

∑
k

k pk = 〈k〉 = z1, (1.47)

G ′
1(1) =

∑
k k(k − 1)pk∑

k kpk
= 〈k2〉 − 〈k〉

〈k〉 = z2

z1
,

where we have made use of Eq. (1.21). Substitution into (1.46) then gives the aver-
age component size below the transition as

〈s〉 = 1 + z2
1

z1 − z2
. (1.48)

This expression has a divergence at z1 = z2. The mean component size diverges
at the percolation threshold, compare Sect. 1.2, and the giant connected component
forms.

1.3 Robustness of Random Networks

Fat tails in the degree distributions pk of real-world networks (only slowly decaying
with large k) increase the robustness of the network. That is, the network retains
functionality even when a certain number of vertices or edges is removed. The
Internet remains functional, to give an example, even when a substantial number
of Internet routers have failed.

Removal of Vertices We consider a graph model in which each vertex is either
“active” or “inactive”. Inactive vertices are nodes that have either been removed, or
are present but non-functional. We denote by

b(k) = bk

the probability that a vertex is active. The probability can be, in general, a function
of the degree k. The generating function

F0(x) =
∞∑

k=0

pk bk xk, F0(1) =
∑

k

pk bk ≤ 1 , (1.49)

generates the probabilities that a vertex has degree k and is present. The normaliza-
tion F0(1) is equal to the fraction of all vertices that are present. By analogy with
Eq. (1.30) we define by
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F1(x) =
∑

k k pk bk xk−1∑
k k pk

= F ′
0(x)

z
(1.50)

the (non-normalized) generating function for the degree distribution of neighbor
sites.

Distribution of Connected Clusters The distribution of the sizes of connected
clusters reachable from a given vertex, H0(x), or from a given edge, H1(x), is gen-
erated respectively by the normalized functions

H0(x) = 1 − F0(1) + x F0(H1(x)), H0(1) = 1,

H1(x) = 1 − F1(1) + x F1(H1(x)), H1(1) = 1 , (1.51)

which are logical equivalents of Eqs. (1.42) and (1.43).

Random Failure of Vertices First we consider the case of random failure of ver-
tices. In this case, the probability

bk ≡ b ≤ 1, F0(x) = b G0(x), F1(x) = b G1(x)

of a vertex being present is independent of the degree k and just equal to a constant b,
which means that

H0(x) = 1 − b + bxG0(H1(x)), H1(x) = 1 − b + bxG1(H1(x)), (1.52)

where G0(x) and G1(x) are the standard generating functions for the degree of a
vertex and of a neighboring vertex, Eqs. (1.28) and (1.30). This implies that the
mean size of a cluster of connected and present vertices is

〈s〉 = H ′
0(1) = b + bG ′

0(1) H ′
1(1) = b + b2G ′

0(1)

1 − bG ′
1(1)

= b

[
1 + bG ′

0(1)

1 − bG ′
1(1)

]
,

where we have followed the derivation presented in Eq. (1.45) in order to obtain
H ′

1(1) = b/(1 − bG ′
1(1)). With Eq. (1.47) for G ′

0(1) = z1 = z and G ′
1(1) = z2/z1

we obtain the generalization

〈s〉 = b + b2z2
1

z1 − bz2
(1.53)

of Eq. (1.48). The model has a phase transition at the critical value of b

bc = z1

z2
= 1

G ′
1(1)

. (1.54)

If the fraction b of the vertices present in the network is smaller than the critical
fraction bc, then there will be no giant component. This is the point at which the
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network ceases to be functional in terms of connectivity. When there is no giant
component, connecting paths exist only within small isolated groups of vertices,
but no long-range connectivity exists. For a communication network such as the
Internet, this would be fatal.

For networks with fat tails, however, we expect that the number of next-nearest
neighbors z2 is large compared to the number of nearest neighbors z1 and that bc is
consequently small. The network is robust as one would need to take out a substan-
tial fraction of the nodes before it would fail.

Random Failure of Vertices in Scale-Free Graphs We consider a pure power-law
degree distribution

pk ∼ 1

kα
,

∫
dk

kα
< ∞, α > 1 ,

see Eq. (1.8) and also Sect. 1.5. The first two moments are

z1 = 〈k〉 ∼
∫

dk (k/kα), 〈k2〉 ∼
∫

dk (k2/kα) .

Noting that the number of next-nearest neighbors z2 = 〈k2〉 − 〈k〉, Eq. (1.21), we
can identify three regimes:

– 1 < α ≤ 2: z1 → ∞, z2 → ∞
bc = z1/z2 is arbitrary in the thermodynamic limit N → ∞.

– 2 < α ≤ 3: z1 < ∞, z2 → ∞
bc = z1/z2 → 0 in the thermodynamic limit. Any number of vertices can be
randomly removed with the network remaining above the percolation limit. The
network is extremely robust.

– 3 < α: z1 < ∞, z2 < ∞
bc = z1/z2 can acquire any value and the network has normal robustness.

Biased Failure of Vertices What happens when one sabotages the most important
sites of a network? This is equivalent to removing vertices in decreasing order of
their degrees, starting with the highest degree vertices. The probability that a given
node is active then takes the form

bk = θ(kc − k) , (1.55)

where θ(x) is the Heaviside step function

θ(x) =
{

0 for x < 0
1 for x ≥ 0

. (1.56)

This corresponds to setting the upper limit of the sum in Eq. (1.49) to kc.
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Differentiating Eq. (1.51) with respect to x yields

H ′
1(1) = F1(H1(1)) + F ′

1(H1(1)) H ′
1(1), H ′

1(1) = F1(1)

1 − F ′
1(1)

,

as H1(1) = 1. The phase transition occurs when F ′
1(1) = 1,

∑∞
k=1 k(k − 1)pkbk∑∞

k=1 kpk
=

∑kc
k=1 k(k − 1)pk∑∞

k=1 kpk
= 1 , (1.57)

where we used the definition Eq. (1.50) for F1(x).

Biased Failure of Vertices for Scale-Free Networks Scale-free networks have a
power-law degree distribution, pk ∝ k−α . We can then rewrite Eq. (1.57) as

H (α−2)
kc

− H (α−1)
kc

= H (α−1)∞ , (1.58)

where H (r)
n is the nth harmonic number of order r :

H (r)
n =

n∑
k=1

1

kr
. (1.59)

The number of vertices present is F0(1), see Eq. (1.49), or F0(1)/
∑

k pk , since
the degree distribution pk is normalized. If we remove a certain fraction fc of the
vertices we reach the transition determined by Eq. (1.58):

fc = 1 − F0(1)∑
k pk

= 1 − H (α)
kc

H (α)∞
. (1.60)

It is impossible to determine kc from (1.58) and (1.60) to get fc in closed form. One
can, however, solve Eq. (1.58) numerically for kc and substitute it into Eq. (1.60).
The results are shown in Fig. 1.7, as a function of the exponent α. The network is
very susceptible with respect to a biased removal of highest-degree vertices.

– A removal of more than about 3% of the highest degree vertices always leads to
a destruction of the giant connected component. Maximal robustness is achieved
for α ≈ 2.2, which is actually close to the exponents measured in some real-
world networks.

– Networks with α < 2 have no finite mean,
∑

k k/k2 → ∞, and therefore make
little sense physically.

– Networks with α > αc = 3.4788. . . have no giant connected component. The
critical exponent αc is given by the percolation condition H (α−2)∞ = 2H (α−1)∞ ,
see Eq. (1.25).
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Fig. 1.7 The critical fraction fc of vertices, Eq. (1.60). Removing a fraction greater than fc of
highest degree vertices from a scale-free network, with a power-law degree distribution pk ∼ k−α

drives the network below the percolation limit. For a smaller loss of highest degree vertices (shaded
area) the giant connected component remains intact (from Newman, 2002)

1.4 Small-World Models

Random graphs and random graphs with arbitrary degree distribution show no clus-
tering in the thermodynamic limit, in contrast to real-world networks. It is therefore
important to find methods to generate graphs that have a finite clustering coefficient
and, at the same time, the small-world property.

Clustering in Lattice Models Lattice models and random graphs are two extreme
cases of network models. In Fig. 1.8 we illustrate a simple one-dimensional lattice
with connectivity z = 2, 4. We consider periodic boundary conditions, viz the chain
wraps around itself in a ring. We then can calculate the clustering coefficient C
exactly.

– The One-Dimensional Lattice: The number of clusters can be easily counted. One
finds

C = 3(z − 2)

4(z − 1)
, (1.61)

which tends to 3/4 in the limit of large z.
– Lattices with Dimension d: Square or cubic lattices have dimension d = 2, 3,

respectively. The clustering coefficient for general dimension d is

C = 3(z − 2d)

4(z − d)
, (1.62)
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Fig. 1.8 Regular linear graphs with connectivities z = 2 (top) and z = 4 (bottom)

which generalizes Eq. (1.61). We note that the clustering coefficient tends to 3/4
for z 	 2d for regular hypercubic lattices in all dimensions.

Distances in Lattice Models Regular lattices do not show the small-world effect.
A regular hypercubic lattice in d dimensions with linear size L has N = Ld vertices.
The average vertex–vertex distance increases as L , or equivalently as

� ≈ N 1/d .

The Watts and Strogatz Model Watts and Strogatz have proposed a small-world
model that interpolates smoothly between a regular lattice and an Erdös–Rényi ran-
dom graph. The construction starts with a one-dimensional lattice, see Fig. 1.9a. One
goes through all the links of the lattice and rewires the link with some probability p.

Rewiring Probability. We move one end of every link with the probability p
to a new position chosen at random from the rest of the lattice.

For small p this process produces a graph that is still mostly regular but has a few
connections that stretch long distances across the lattice as illustrated in Fig. 1.9a.
The average coordination number of the lattice is by construction still the initial
degree z. The number of neighbors of any particular vertex can, however, be greater
or smaller than z.

The Newman and Watts Model A variation of the Watts–Strogatz model has
been suggested by Newman and Watts. Instead of rewiring links between sites as in
Fig. 1.9a, extra links, also called “shortcuts”, are added between pairs of sites chosen
at random, but no links are removed from the underlying lattice, see Fig. 1.9b. This
model is somewhat easier to analyze than the original Watts and Strogatz model,
because it is not possible for any region of the graph to become disconnected from
the rest, whereas this can happen in the original model.

The small-world models illustrated in Fig. 1.9, have an intuitive justification for
social networks. Most people are friends with their immediate neighbors. Neighbors
on the same street, people that they work with or their relatives. However, some
people are also friends with a few far away persons. Far away in a social sense,
like people in other countries, people from other walks of life, acquaintances from
previous eras of their lives, and so forth. These long-distance acquaintances are
represented by the long-range links in the small-world models illustrated in Fig. 1.9.
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(a)

rewiring of links

(b)

addition of links

Fig. 1.9 Small-world networks in which the crossover from a regular lattice to a random network
is realized. (a) The original Watts–Strogatz model with the rewiring of links. (b) The network with
the addition of shortcuts (from Dorogovtsev and Mendes, 2002)

Properties of the Watts and Strogatz Model In Fig. 1.10 the clustering coefficient
and the average path length are shown as a function of the rewiring probability p.
The key result is that there is a parameter range, say p ≈ 0.01 − 0.1, where the
network still has a very high clustering coefficient and already a small average path
length, as observed in real-world networks. Similar results hold for the Newman–
Watts model.

1.5 Scale-Free Graphs

Evolving Networks Most real-world networks are open, i.e. they are formed by
the continuous addition of new vertices to the system. The number of vertices, N ,
increases throughout the lifetime of the network, as it is the case for the WWW,
which grows exponentially by the continuous addition of new web pages. The small
world networks discussed in Sect. 1.4 are, however, constructed for a fixed number
of nodes N , growth is not considered.

Preferential Connectivity Random network models assume that the probability
that two vertices are connected is random and uniform. In contrast, most real net-
works exhibit the “rich-get-richer” phenomenon.

Preferential Connectivity. When the probability for a new vertex to connect
to any of the existing nodes is not uniform for an open network we speak of
preferential connectivity.
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Fig. 1.10 The clustering coefficient C(p) and the average path length L(p), as a function of the
rewiring probability for the Watts and Strogatz model, compare Fig. 1.9 (from Watts and Stro-
gatz, 1998)

A newly created web page, to give an example, will include links to well-known
sites with a quite high probability. Popular web pages will therefore have both a high
number of incoming links and a high growth rate for incoming links. The growth of
vertices in terms of edges is therefore in general not uniform.

Barabási–Albert Model We start with m0 unconnected vertices. The preferential
attachment growth process can then be carried out in two steps:

– Growth: At every time step we add a new vertex and m ≤ m0 stubs.
– Preferential Attachment: We connect the m stubs to vertices already present with

the probability

Π(ki ) = ki/
∑

j

k j , (1.63)

viz we have chosen the attachment probability Π(ki ) to be linearly proportional
to the number of links already present. Other functional dependencies for Π(ki )

are of course possible, but not considered here.

After t time steps this model leads to a network with N = t + m0 vertices and mt
edges, see Fig. 1.11. We will now show that the preferential rule leads to a scale-free
degree distribution

pk ∼ k−γ γ > 1 , (1.64)
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t = 0 t = 1 t = 2 t = 3

Fig. 1.11 Illustration of the preferential attachment model for an evolving network. At t = 0 the
system consists of m0 = 3 isolated vertices. At every time step a new vertex (shaded circle) is
added, which is connected to m = 2 vertices, preferentially to the vertices with high connectivity,
determined by the rule Eq. (1.63)

with γ = 3. The relation Eq. (1.63) is valid for the case we consider here, large
degrees ki . For numerical simulations one should use Π(ki ) ∝ (ki + 1).

Time-Dependent Connectivities The time dependence of the degree of a given
vertex can be calculated analytically using a mean-field approach. We are interested
in vertices with large degrees k; the scaling relation Eq. (1.64) is defined asymptot-
ically for the limit k → ∞. We may therefore assume k to be continuous:

Δki (t) ≡ ki (t + 1) − ki (t) ≈ ∂ki

∂t

= A Π(ki ) = A
ki∑m0+t−1

j=1 k j

, (1.65)

where Π(ki ) = ki/
∑

j k j is the attachment probability. The overall number of new
links is proportional to a normalization constant A, which is hence determined by
the sum rule

∑
i

Δki (t) ≡ m = A

∑
i ki∑
j k j

= A ,

where the sum runs over the already existing nodes. At every time step m new
edges are attached to the existing links. The total number of connectivities is then∑

j k j = 2m(t − 1). We thus obtain

∂ki

∂t
= mki

2m(t − 1)
= ki

2(t − 1)
≈ ki

2t
. (1.66)

Note that Eq. (1.65) is not well defined for t = 1, since there are no existing edges
present in the system. In principle preferential attachment needs some starting con-
nectivities to work. We have therefore set t − 1 ≈ t in Eq. (1.66), since we are only
interested in the long-time behaviour.

Adding Times Equation (1.66) can be easily solved taking into account that every
vertex i is characterized by the time ti = Ni − m0 that it was added to the system
with m = ki (ti ) initial links:
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Fig. 1.12 Left: Time evolution of the connectivities for vertices with adding times t = 1, 2, 3, . . .
and m = 2, following Eq. (1.67). Right: The integrated probability, P(ki (t) < k) = P(ti >

tm2/k2), see Eq. (1.68)

ki (t) = m

(
t

ti

)0.5

, ti = t m2/k2
i . (1.67)

Older nodes, i.e. those with smaller ti , increase their connectivity faster than the
younger vertices, viz those with bigger ti , see Fig. 1.12. For social networks this
mechanism is dubbed the rich-gets-richer phenomenon.

The number of nodes N (t) = m0 + t is identical to the number of adding times,

t1, . . . , tm0 = 0, tm0+ j = j, j = 1, 2, . . . ,

where we have defined the initial m0 nodes to have adding times zero.

Integrated Probabilities Using (1.67), the probability that a vertex has a connec-
tivity ki (t) smaller than a certain k, P(ki (t) < k) can be written as

P(ki (t) < k) = P

(
ti >

m2t

k2

)
. (1.68)

The adding times are uniformly distributed, compare Fig. 1.12, and the probability
P(ti ) to find an adding time ti is then

P(ti ) = 1

m0 + t
, (1.69)

just the inverse of the total number of adding times, which coincides with the total
number of nodes. P(ti > m2t/k2) is therefore the cumulative number of adding
times ti larger than m2t/k2, multiplied with the probability P(ti ) (Eq. (1.69)) to
add a new node:
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P

(
ti >

m2t

k2

)
=
(

t − m2t

k2

)
1

m0 + t
. (1.70)

Scale-Free Degree Distribution The degree distribution pk then follows from
Eq. (1.70) via a simple differentiation,

pk = ∂P(ki (t) < k)

∂k
= ∂P(ti > m2t/k2)

∂k
= 2m2t

m0 + t

1

k3
, (1.71)

in accordance with Eq. (1.64). The degree distribution Eq. (1.71) has a well defined
limit t → ∞, approaching a stationary distribution. We note that γ = 3, which
is independent of the number m of added links per new site. This result indicates
that growth and preferential attachment play an important role for the occurrence of
a power-law scaling in the degree distribution. To verify that both ingredients are
really necessary, we now investigate a variant of above model.

Growth with Random Attachment We examine then whether growth alone can
result in a scale-free degree distribution. We assume random instead of preferential
attachment. The growth equation for the connectivity ki of a given node i , compare
Eqs. (1.65) and (1.69), then takes the form

∂ki

∂t
= m

m0 + (t − 1)
. (1.72)

The m new edges are linked randomly at time t to the (m0+t−1) nodes present at the
previous time step. Solving Eq. (1.72) for ki , with the initial condition ki (ti ) = m,
we obtain

ki = m
[

ln(m0 + t − 1) − ln(m0 + ti − 1) + 1
]
, (1.73)

which is a logarithmic increase with time. The probability that vertex i has connec-
tivity ki (t) smaller than k is then

P(ki (t) < k) = P

(
ti > (m0 + t − 1) exp

(
1 − k

m

)
− m0 + 1

)

=
[

t − (m0 + t − 1) exp

(
1 − k

m

)
− m0 + 1

]
1

m0 + t
,(1.74)

where we assumed that we add the vertices uniformly in time to the system.
Using

pk = ∂P(ki (t) < k)

∂k
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and assuming long times, we find

pk = 1

m
e1−k/m = e

m
exp

(
− k

m

)
. (1.75)

Thus for a growing network with random attachment we find a characteristic degree

k∗ = m , (1.76)

which is identical to half of the average connectivities of the vertices in the system,
since 〈k〉 = 2m. Random attachment does not lead to a scale-free degree distribu-
tion. Note that pk in Eq. (1.75) is not properly normalized, nor in Eq. (1.71), since
we used a large-k approximation during the respective derivations.

Internal Growth with Preferential Attachment The original preferential attach-
ment model yields a degree distribution pk ∼ k−γ with γ = 3. Most social net-
works such as the WWW and the Wikipedia network, however, have exponents
2 < γ < 3, with the exponent γ being relatively close to 2. It is also observed
that new edges are mostly added in between existing nodes, albeit with (internal)
preferential attachment.

We can then generalize the preferential attachment model discussed above in the
following way:

– Vertex Growth: At every time step a new vertex is added.
– Link Growth: At every time step m new edges are added.
– External Preferential Attachment: With probability r ∈ [0, 1] any one of the m

new edges is added between the new vertex and an existing vertex i , which is
selected with a probability ∝ Π(ki ), see Eq. (1.63).

– Internal Preferential Attachment: With probability 1 − r any one of the m new
edges is added in between two existing vertices i and j , which are selected with
a probability ∝ Π(ki )Π(k j ).

The model reduces to the original preferential attachment model in the limit r → 1.
The scaling exponent γ can be evaluated along the lines used above for the case
r = 1. One finds

pk ∼ 1

kγ
, γ = 1 + 1

1 − r/2
. (1.77)

The exponent γ = γ (r) interpolates smoothly between 2 and 3, with γ (1) = 3
and γ (0) = 2. For most real-world graphs r is quite small; most links are added
internally. Note, however, that the average connectivity 〈k〉 = 2m remains constant,
since one new vertex is added for 2m new stubs.
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Exercises

BIPARTITE NETWORKS

Consider i = 1, . . . , 9 managers sitting on the boards of six companies with
(1,9), (1,2,3), (4,5,9), (2,4,6,7), (2,3,6) and (4,5,6,8) being the respective board
compositions. Draw the graphs for the managers and companies, by eliminating
from the bipartite manager/companies graph one type of nodes. Evaluate for
both networks the average degree z, the clustering coefficient C and the graph
diameter D.

DEGREE DISTRIBUTION

Online network databases can be found on the Internet. Write a program and
evaluate for a network of your choice the degree distribution pk , the clustering
coefficient C and compare it with the expression (1.27) for a generalized random
net with the same pk .

ENSEMBLE FLUCTUATIONS

Derive Eq. (1.7) for the distribution of ensemble fluctuations. In the case of
difficulties Albert and Barabási (2002) can be consulted. Alternatively, check
Eq. (1.7) numerically.

SELF-RETRACING PATH APPROXIMATION

Look at Brinkman and Rice (1970) and prove Eq. (1.12). This derivation is only
suitable for readers with a solid training in physics.

PROBABILITY GENERATING FUNCTIONS

Prove that the variance σ 2 of a probability distribution pk with a generating
functional G0(x) = ∑

k pk xk and average 〈k〉 is given by σ 2 = G ′′
0(1) + 〈k〉 −

〈k〉2. Consider now a cummulative process, compare Eq. (1.41), generated by
GC (x) = G N (G0(x)). Calculate the mean and the variance of the cummulative
process and discuss the result.

CLUSTERING COEFFICIENT

Prove Eq. (1.61) for the clustering coefficient of one-dimensional lattice graphs.
Facultatively, generalize this formula to a d-dimensional lattice with links along
the main axis.

SCALE-FREE GRAPHS

Write a program that implements preferential attachments and calculate the
resulting degree distribution pk . If you are adventurous, try alternative func-
tional dependencies for the attachment probability Π(ki ) instead of the linear
assumption (1.63).

EPIDEMIC SPREADING IN SCALE-FREE NETWORKS

Consult “R. Pastor-Satorras and A. Vespigiani, Epidemic spreading in scale-free
networks, Physical Review Letters, Vol. 86, 3200 (2001)”, and solve a simple
molecular-field approach to the SIS model for the spreading of diseases in scale-
free networks by using the excess degree distribution discussed in Sect. 1.2.1,
where S and I stand for susceptible and infective individuals respectively.

EPIDEMIC OUTBREAK IN THE CONFIGURATIONAL MODEL

Consult “M.E.J. Newman, Spread of epidemic disease on networks, Physical
Review E, Vol. 66, 16128 (2002)”, and solve the SIR model for the spreading
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of diseases in social networks by a generalization of the techniques discussed in
Sect. 1.3, where S, I and R stand for susceptible, infective and removed individ-
uals respectively.

Further Reading

For further studies several books (Watts, 1999; Dorogovtsev and Mendes, 2003;
Caldarelli, 2007) and review articles (Albert and Barabási, 2002; Dorogovtsev and
Mendes, 2002) on general network theory are recommended.

The interested reader might delve into some of the original literature on,
e.g. the original Watts and Strogatz (1998) small-world model, the Newman and
Watts (1999) model, the mean-field solution of the preferential attachment model
(Barabási et al., 1999), the formulation of the concept of clique percolation (Derenyi
et al., 2005), an early study of the WWW (Albert et al., 1999), a recent study of the
time evolution of the Wikipedia network (Capocci et al., 2006), a study regarding
the community structure of real-world networks (Palla et al., 2005), the notion of
assortative mixing in networks (Newman, 2002) or the mathematical basis of graph
theory (Erdös and Rényi, 1959). A good starting point is Milgram’s (1967) account
of his by now famous experiment, which led to the law of “six degrees of separation”
(Guare, 1990).
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Chapter 2
Chaos, Bifurcations and Diffusion

Complex system theory deals with dynamical systems containing very large num-
bers of variables. It extends dynamical system theory, which deals with dynamical
systems containing a few variables. A good understanding of dynamical systems
theory is therefore a prerequisite when studying complex systems.

In this chapter we introduce important concepts, like regular and irregular behav-
ior, attractors and Lyapunov exponents, bifurcation, and deterministic chaos from
the realm of dynamical system theory. A short introduction to dissipative and
stochastic, viz noisy systems is given further on, together with two important exam-
ples out of noise-controlled dynamics, namely stochastic escape and stochastic res-
onance.

Most of the chapter will be devoted to ordinary differential equations, the tradi-
tional focus of dynamical system theory, venturing however towards the end into the
intricacies of time-delayed dynamical systems.

2.1 Basic Concepts of Dynamical Systems Theory

Dynamical systems theory deals with the properties of coupled differential equa-
tions, determining the time evolution of a few, typically a handful of variables. Many
interesting concepts have been developed and we will present a short overview cov-
ering the most important phenomena.

Fixpoints and Limiting Cycles We start by discussing an elementary non-linear
rotator, just to illustrate some procedures that are typical for dynamical systems the-
ory. We consider a two-dimensional system x = (x, y). Using the polar coordinates

x(t) = r(t) cos(ϕ(t)), y(t) = r(t) sin(ϕ(t)) , (2.1)

we assume that the following non-linear differential equations:

ṙ = (Γ − r2) r, ϕ̇ = ω (2.2)

govern the dynamical behavior. The typical orbits (x(t), y(t)) are illustrated in
Fig. 2.1. The limiting behavior of Eq. (2.2) is

C. Gros, Complex and Adaptive Dynamical Systems, 2nd ed.,
DOI 10.1007/978-3-642-04706-0_2, C© Springer-Verlag Berlin Heidelberg 2011
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x

y

x

y

Fig. 2.1 The solution of the non-linear rotator equations (2.1) and (2.2) for Γ < 0 (left) and
Γ > 0 (right)

lim
t→∞

[
x(t)
y(t)

]
=

⎧⎪⎪⎨
⎪⎪⎩

[
0
0

]
Γ < 0[

rc cos(ωt)
rc sin(ωt)

]
r2

c = Γ > 0
. (2.3)

In the first case, Γ < 0, we have a stable fixpoint; in the second case, Γ > 0, the
dynamics approaches a limiting cycle.

Bifurcation. When a dynamical system, described by a set of parameter-
ized differential equations, changes qualitatively, as a function of an external
parameter, the nature of its long-time limiting behavior in terms of fixpoints
or limiting cycles, one speaks of a bifurcation.

The dynamical system (2.1) and (2.2) shows a bifurcation at Γ = 0. A fixpoint turns
into a limiting cycle at Γ = 0, and one denotes this specific type of bifurcation as a
“Hopf bifurcation”.

Stability of Fixpoints The dynamics of orbits close to a fixpoint or a limiting orbit
determines its stability.

Stability Condition. A fixpoint is stable (unstable) if nearby orbits are
attracted (repelled) by the fixpoint, and metastable if the distance does not
change.

The stability of fixpoints is closely related to their Lyapunov exponents, see
Sect. 2.2.

One can examine the stability of a fixpoint x∗ by linearizing the equation of
motions for x ≈ x∗. For the fixpoint r∗ = 0 of Eq. (2.2) we find

ṙ =
(
Γ − r2

)
r ≈ Γ r r � 1 ,

and r(t) decreases (increases) for Γ < 0 (Γ > 0). For a d-dimensional system
x = (x1, . . . , xd) the stability of a fixpoint x∗ is determined by calculating the d
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eigenvalues of the linearized equations of motion. The system is stable if all eigen-
values are negative and unstable if at least one eigenvalue is positive.

First-Order Differential Equations Let us consider the third-order differential
equation

d3

dt3
x(t) = f (x, ẋ, ẍ) . (2.4)

Using

x1(t) = x(t), x2(t) = ẋ(t), x3(t) = ẍ(t) , (2.5)

we can rewrite (2.4) as a first-order differential equation:

d

dt

⎡
⎣ x1

x2
x3

⎤
⎦ =

⎡
⎣ x2

x3
f (x1, x2, x3)

⎤
⎦ .

Autonomous Systems It is then generally true that one can reduce any set of cou-
pled differential equations to a set of first-order differential equations by introducing
an appropriate number of additional variables. We therefore consider in the follow-
ing only first-order, ordinary differential equations such as

dx(t)
dt

= f(x(t)), x, f ∈ IRd , t ∈ [−∞,+∞] , (2.6)

when time is continuous, or, equivalently, maps such as

x(t + 1) = g(x(t)), x, g ∈ IRd , t = 0, 1, 2, . . . (2.7)

when time is discrete. An evolution equation of type Eq. (2.6) is denoted
“autonomous”, since it does not contain an explicit time dependence. A system of
type ẋ = f(t, x) is dubbed “non-autonomous”.

The Phase Space. One denotes by “phase space” the space spanned by all
allowed values of the variables entering the set of first-order differential equa-
tions defining the dynamical system.

The phase space depends on the representation. For a two-dimensional system (x, y)
the phase space is just IR2, but in the polar coordinates Eq. (2.1) it is

{
(r, ϕ)

∣∣∣ r ∈ [0,∞], ϕ ∈ [0, 2π [
}
.

Orbits and Trajectories A particular solution x(t) of the dynamical system
Eq. (2.6) can be visualized as a “trajectory”, also denoted “orbit”, in phase space.
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x
P(x)

Fig. 2.2 The Poincaré map x → P(x)

Any orbit is uniquely determined by the set of “initial conditions”, x(0) ≡ x0, since
we are dealing with first-order differential equations.

The Poincaré Map It is difficult to illustrate graphically the motion of x(t) in
d dimensions. Our retina as well as our print media are two-dimensional and it is
therefore convenient to consider a plane Σ in IRd and the points x(i) of the intersec-
tion of an orbit γ with Σ , see Fig. 2.2.

For the purpose of illustration let us consider the plane

Σ = { (x1, x2, 0, . . . , 0) | x1, x2 ∈ IR }

and the sequence of intersections (see Fig. 2.2)

x(i) = (x (i)
1 , x (i)

2 , 0, . . . , 0), (i = 1, 2, . . .)

which define the Poincaré map

P : x(i) �→ x(i+1) .

The Poincaré map is therefore a discrete map of the type of Eq. (2.7), which can
be constructed for continuous-time dynamical systems like Eq. (2.6). The Poincaré
map is very useful, since we can print and analyze it directly. A periodic orbit, to
give an example, would show up in the Poincaré map as the identity mapping.

Constants of Motion and Ergodicity We mention here a few general concepts
from the theory of dynamical systems.

– The Constant of Motion: A function F(x) on phase space x = (x1, . . . , xd) is
called a “constant of motion” or a “conserved quantity” if it is conserved under
the time evolution of the dynamical system, i.e. when
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d

dt
F(x(t)) =

d∑
i=1

(
∂

∂xi
F(x)

)
ẋi (t) ≡ 0

holds for all times t . In many mechanical systems the energy is a conserved
quantity.

– Ergodicity: A dynamical system in which orbits come arbitrarily close to any
allowed point in the phase space, irrespective of the initial condition, is called
ergodic.
All conserving systems of classical mechanics, obeying Hamiltonian dynam-
ics, are ergodic. The ergodicity of a mechanical system is closely related to
“Liouville’s theorem”, which will be discussed in Sect. 2.3.1.
Ergodicity holds only modulo conserved quantities, as is the case for the energy
in many mechanical systems. Then, only points in the phase space having the
same energy as the trajectory considered are approached arbitrarily close.

– Attractors: A bounded region in phase space to which orbits with certain initial
conditions come arbitrarily close is called an attractor.
Attractors can be isolated points (fixpoints), limiting cycles or more complex
objects.

– The Basin of Attraction: The set of initial conditions that leads to orbits approach-
ing a certain attractor arbitrarily closely is called the basin of attraction.

It is clear that ergodicity and attractors are mutually exclusive: An ergodic system
cannot have attractors and a dynamical system with one or more attractors cannot
be ergodic.

Mechanical Systems and Integrability A dynamical system of type

ẍi = fi (x, ẋ), i = 1, . . . , f

is denoted a “mechanical system” since all equations of motion in classical mechan-
ics are of this form, e.g. Newton’s law. f is called the degree of freedom and a
mechanical system can be written as a set of coupled first-order differential equa-
tions with 2 f variables

(x1 . . . x f , v1 . . . v f ), vi = ẋi , i = 1, . . . , N

constituting the phase space, with v = (v1, . . . , v f ) being denoted the generalized
velocity. A mechanical system is integrable if there are α = 1, . . . , f independent
constants of motion Fα(x, ẋ) with

d

dt
Fα(x, ẋ) = 0, α = 1, . . . , f .
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Fig. 2.3 A KAM-torus. Left: The torus can be cut along two lines (vertical/horizontal) and
unfolded. Right: A closed orbit on the unfolded torus with ω1/ω2 = 3/1. The numbers indicate
points that coincide after refolding (periodic boundary conditions)

The motion in the 2 f -dimensional phase space (x1 . . . x f , v1 . . . v f ) is then
restricted to an f -dimensional subspace, which is an f -dimensional torus, see
Fig. 2.3.

An example of an integrable mechanical system is the Kepler problem, viz the
motion of the earth around the sun. Integrable systems, however, are very rare, but
they constitute important reference points for the understanding of more general
dynamical systems. A classical example of a non-integrable mechanical system is
the three-body problem, viz the combined motion of earth, moon and sun around
each other.

The KAM Theorem Kolmogorov, Arnold and Moser (KAM) have examined the
question of what happens to an integrable system when it is perturbed. Let us con-
sider a two-dimensional torus, as illustrated in Fig. 2.3. The orbit wraps around
the torus with frequencies ω1 and ω2, respectively. A key quantity is the ratio of
revolution frequencies ω1/ω2; it might be rational or irrational.

We remember that any irrational number r may be approximated with arbitrary
accuracy by a sequence of quotients

m1

s1
,

m2

s2
,

m3

s3
, . . . s1 < s2 < s3 < . . .

with ever larger denominators si . A number r is “very irrational” when it is dif-
ficult to approximate r by such a series of rational numbers, viz when very large
denominators si are needed to achieve a certain given accuracy |r − m/s|.

The KAM theorem states that orbits with rational ratios of revolution frequencies
ω1/ω2 are the most unstable under a perturbation of an integrable system and that
tori are most stable when this ratio is very irrational.

Gaps in the Saturn Rings A spectacular example of the instability of rational
KAM-tori are the gaps in the rings of the planet Saturn.
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The time a particle orbiting in Cassini’s gap (between the A-ring and the B-ring,
r = 118, 000 km) would need around Saturn is exactly half the time the “shepherd-
moon” Mimas needs to orbit Saturn. The quotient of the revolving frequencies is 2:1.
Any particle orbiting in Cassini’s gap is therefore unstable against the perturbation
caused by Mimas and it is consequently thrown out of its orbit.

2.2 The Logistic Map and Deterministic Chaos

Chaos The notion of “chaos” plays an important role in dynamical systems theory.
A chaotic system is defined as a system that cannot be predicted within a given
numerical accuracy. At first sight this seems to be a surprising concept, since differ-
ential equations of type Eq. (2.6), which do not contain any noise or randomness,
are perfectly deterministic. Once the starting point is known, the resulting trajectory
can be calculated for all times. Chaotic behavior can arise nevertheless, due to an
exponential sensitivity to the initial conditions.

Deterministic Chaos. A deterministic dynamical system that shows expo-
nential sensibility of the time development on the initial conditions is called
chaotic.

This means that a very small change in the initial condition can blow up even after
a short time. When considering real-world applications, when models need to be
determined from measurements containing inherent errors and limited accuracies,
an exponential sensitivity can result in unpredictability. A well known example is
the problem of long-term weather prediction.

The Logistic Map One of the most cherished models in the field of deterministic
chaos is the logistic map of the interval [0, 1] onto itself:

xn+1 = f (xn) ≡ r xn (1 − xn), xn ∈ [0, 1], r ∈ [0, 4] , (2.8)

where we have used the notation x(t + n) = xn . The logistic map is illustrated in
Fig. 2.4. The logistic map shows, despite its apparent simplicity, an infinite series of
bifurcations and a transition to chaos.

Biological Interpretation We may consider xn ∈ [0, 1] as standing for the
population density of a reproducing species in the year n. In this case the factor
r(1 − xn) ∈ [0, 4] is the number of offspring per year, which is limited in the case
of high population densities x → 1, when resources become scarce. The classical
example is that of a herd of reindeer on an island.

Knowing the population density xn in a given year n we may predict via
Eq. (2.8) the population density for all subsequent years exactly; the system is deter-
ministic. Nevertheless the population shows irregular behavior for certain values
of r , which one calls “chaotic”.
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Fig. 2.4 Illustration of the logistic map f (x) (thick solid line) and of the iterated logistic map
f ( f (x)) (thick dot-dashed line) for r = 2.5 (left) and r = 3.3 (right). Also shown is an iteration
of f (x), starting from x = 0.1 (thin solid line) Note, that the fixpoint f (x) = x is stable/unstable
for r = 2.5 and r = 3.3, respectively. The orbit is attracted to a fixpoint of f ( f (x)) for r = 3.3,
corresponding to a cycle of period 2 for f (x)

Fixpoints of the Logistic Map We start considering the fixpoints of f (x):

x = r x(1 − x) ⇐⇒ x = 0 or 1 = r(1 − x) .

The non-trivial fixpoint is then

1/r = 1 − x, x (1) = 1 − 1/r, r1 < r, r1 = 1 . (2.9)

It occurs only for r1 < r , with r1 = 1, due to the restriction x (1) ∈ [0, 1].
Stability of the Fixpoint We examine the stability of x (1) against perturbations by
linearization of Eq. (2.8), using

yn = xn − x (1), xn = x (1) + yn, |yn| � 1 .

We obtain

x (1) + yn+1 = r(x (1) + yn)(1 − x (1) − yn)

= r x (1)(1 − x (1) − yn) + r yn(1 − x (1) − yn) .

Using the fixpoint condition x (1) = f (x (1)) and neglecting terms ∼ y2
n , we obtain

yn+1 = −r x (1)yn + r yn(1 − x (1)) = r(1 − 2x (1)) yn,

and, using Eq. (2.9), we find
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yn+1 = r(1 − 2(1 − 1/r)) yn = (2 − r) yn = (2 − r)n+1 y0 . (2.10)

The perturbation yn increases/decreases in magnitude for |2−r | > 1 and |2−r | < 1,
respectively. Noting that r ∈ [1, 4], we find

|2 − r | < 1 ⇐⇒ r1 < r < r2
r1 = 1
r2 = 3

(2.11)

for the region of stability of x (1).

Fixpoints of Period 2 For r > 3 a fixpoint of period 2 appears, which is a fixpoint
of the iterated function

f ( f (x)) = r f (x)(1 − f (x)) = r2x(1 − x)(1 − r x(1 − x)).

The fixpoint equation x = f ( f (x)) leads to the cubic equation

1 = r2(1 − r x + r x2) − r2x(1 − r x + r x2),

0 = r3x3 − 2r3x2 + (r3 + r2)x + 1 − r2 . (2.12)

In order to find the roots of Eq. (2.12) we use the fact that x = x (1) = 1 − 1/r is
a stationary point of both f (x) and f ( f (x)), see Fig. 2.4. We divide (2.12) by the
root (x − x (1)) = (x − 1 + 1/r):

(r3x3 − 2r3x2 + (r3 + r2)x + 1 − r2) : (x − 1 + 1/r) =
r3x2 − (r3 + r2)x + (r2 + r) .

The two new fixpoints of f ( f (x)) are therefore the roots of

x2 −
(

1 + 1

r

)
x +

(
1

r
+ 1

r2

)
= 0 .

We obtain

x (2)
± = 1

2

(
1 + 1

r

)
±
√

1

4

(
1 + 1

r

)2

−
(

1

r
+ 1

r2

)
. (2.13)

Bifurcation We have two fixpoints for r > 3 and only one fixpoint for r < 3.
What happens for r = 3?
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Fig. 2.5 The fixpoints of the (iterated) logistic map (left) and the corresponding maximal Lya-
punov exponents (right), see Eq. (2.16), both as a function of the parameter r . Positive Lyapunov
exponents λ indicate chaotic behavior

x (2)
± (r = 3) = 1

2

3 + 1

3
±
√

1

4

(
3 + 1

3

)2

−
(

3 + 1

9

)

= 2

3
= 1 − 1

3
= x (1)(r = 3) .

At r = 3 the fixpoint splits into two, see Fig. 2.5, a typical bifurcation.

More Bifurcations We may now carry out a stability analysis for x (2)
± , just as we

did for x (1). We find a critical value r3 > r2 such that

x (2)
± (r) stable ⇐⇒ r2 < r < r3. (2.14)

Going further on one finds an r4 such that there are four fixpoints of period 4, that
is of f ( f ( f ( f (x)))), for r3 < r < r4. In general there are critical values rn and
rn+1 such that there are

2n−1 fixpoints x (n) of period 2n−1 ⇐⇒ rn < r < rn+1.

The logistic map therefore shows iterated bifurcations. This, however, is not yet
chaotic behavior.

Chaos in the Logistic Map The critical rn for doubling of the period converge:

lim
n→∞ rn → r∞, r∞ = 3.5699456 . . .
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There are consequently no stable fixpoints of f (x) or of the iterated logistic map in
the region

r∞ < r < 4 .

In order to characterize the sensitivity of Eq. (2.8) with respect to the initial condi-
tion, we consider two slightly different starting populations x1 and x ′

1:

x1 − x ′
1 = y1, |y1| � 1 .

The key question is then whether the difference in populations

ym = xm − x ′
m

is still small after m iterations. Using x ′
1 = x1 − y1 we find for m = 2

y2 = x2 − x ′
2 = r x1(1 − x1) − r x ′

1(1 − x ′
1)

= r x1(1 − x1) − r(x1 − y1)(1 − (x1 − y1))

= r x1(1 − x1) − r x1(1 − x1 + y1) + r y1(1 − x1 + y1)

= −r x1 y1 + r y1(1 − x1 + y1) .

Neglecting the term ∼ y2
1 we obtain

y2 = −r x1 y1 + r y1(1 − x1) = r(1 − 2x1) y1 ≡ d f (x)

dx

∣∣∣
x=x1

y1 ≡ ε y1 .

For |ε| < 1 the map is stable, as two initially different populations close in with
time passing. For |ε| > 1 they diverge; the map is “chaotic”.

Lyapunov Exponents We define via

|ε| = eλ, λ = log

∣∣∣∣d f (x)

dx

∣∣∣∣ (2.15)

the Lyapunov exponent λ = λ(r) :

λ < 0 ⇔ stability, λ > 0 ⇔ instability .

For positive Lyapunov exponents the time development is exponentially sensitive to
the initial conditions and shows chaotic features. This is indeed observed in nature,
e.g. for populations of reindeer on isolated islands, as well as for the logistic map
for r∞ < r < 4, compare Fig. 2.5.

Maximal Lyapunov Exponent The Lyapunov exponent, as defined by Eq. (2.15)
provides a description of the short time behavior. For a corresponding characteriza-
tion of the long time dynamics one defines the “maximal Lyapunov exponent”
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λ(max) = lim
n	1

1

n
log

∣∣∣∣∣
d f (n)(x)

dx

∣∣∣∣∣ , f (n)(x) = f ( f (n−1)(x)) . (2.16)

Using Eq. (2.15) for the short time evolution we can decompose λ(max) into an aver-
aged sum of short time Lyapunov exponents. We leave this as an exercise to the
reader, λ(max) is also denoted the “global Lyapunov exponent”.

One needs to select advisedly the number of iterations n in Eq. (2.16). On one
side n should be large enough such that short-term fluctuations of the Lyapunov
exponent are averaged out. The available phase space is however generically finite,
for the logistic map y ∈ [0, 1], and two initially close orbits cannot diverge ad
infinitum. One needs hence to avoid phase-space restrictions, evaluating λ(max) for
large but finite numbers of iterations n.

Routes to Chaos The chaotic regime r∞ < r < 4 of the logistic map connects
to the regular regime 0 < r < r∞ with increasing period doubling. One speaks of
a “route to chaos via period-doubling”. The study of chaotic systems is a wide field
of research and a series of routes leading from regular to chaotic behavior have been
found. Two important alternative routes to chaos are:

– The Intermittency route to chaos.
The trajectories are almost periodic; they are interdispersed with regimes of irreg-
ular behaviour. The occurrence of these irregular bursts increases until the system
becomes irregular.

– Ruelle–Takens–Newhouse route to chaos.
A strange attractor appears in a dissipative system after two (Hopf) bifurcations.
As a function of an external parameter a fixpoint evolves into a limiting cycle
(Hopf bifurcation), which then turns into a limiting torus, which subsequently
turns into a strange attractor.

2.3 Dissipation and Adaption

In the preceding sections, we discussed deterministic dynamical systems, viz sys-
tems for which the time evolution can be computed exactly, at least in principle,
once the initial conditions are known. We now turn to “stochastic systems”, i.e.
dynamical systems that are influenced by noise and fluctuations.

2.3.1 Dissipative Systems and Strange Attractors

Friction and Dissipation Friction plays an important role in real-world systems.
One speaks also of “dissipation” since energy is dissipated away by friction in phys-
ical systems.
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The total energy, however, is conserved in nature and friction then just stands for
a transfer process of energy; when energy is transferred from a system we observe,
like a car on a motorway with the engine turned off, to a system not under observa-
tion, such as the surrounding air. In this case the combined kinetic energy of the car
and the thermal energy of the air body is constant; the air heats up a little bit while
the car slows down.

The Mathematical Pendulum As an example we consider the damped “mathe-
matical pendulum”

φ̈ + γ φ̇ + ω2
0 sinφ = 0 , (2.17)

which describes a pendulum with a rigid bar, capable of turning over completely,
with φ corresponding to the angle between the bar and the vertical. The mathemati-
cal pendulum reduces to the damped harmonic oscillator for small φ ≈ sinφ, which
is damped/critical/overdamped for γ < 2ω0, γ = 2ω0 and γ > 2ω0.

Normal Coordinates Transforming the damped mathematical pendulum Eq. (2.17)
to a set of coupled first-order differential equations via x = φ and φ̇ = y one gets

ẋ = y
ẏ = −γ y − ω2

0 sin x .
(2.18)

The phase space is x ∈ IR2, with x = (x, y). For all γ > 0 the motion approaches
one of the equivalent global fixpoints (2πn, 0) for t → ∞ and n ∈ Z.

Phase Space Contraction Near an attractor the phase space contracts. We con-
sider a three-dimensional phase space (x, y, z) for illustrational purposes. The
quantity

ΔV (t) = Δx(t)Δy(t)Δz(t) = (x(t) − x ′(t)) (y(t) − y′(t)) (z(t) − z′(t))

corresponds to a small volume of phase space. Its time evolution is given by

d

dt
ΔV = ΔẋΔyΔz + ΔxΔẏΔz + ΔxΔyΔż ,

or

ΔV̇

ΔxΔyΔz
= Δẋ

Δx
+ Δẏ

Δy
+ Δż

Δz
= �∇ · ẋ . (2.19)

The time evolution of the phase space is illustrated in Fig. 2.6 for the case of the
mathematical pendulum. An initially simply connected volume of the phase space
thus remains under the effect of time evolution, but it might undergo substantial
deformations.
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Fig. 2.6 Simulation of the mathematical pendulum φ̈ = − sin(φ)− γ φ̇. The shaded regions illus-
trate the evolution of the phase space volume for consecutive times, starting with t = 0 (top). Left:
Dissipationless case γ = 0. The energy E = φ̇2/2−cos(φ) is conserved as well as the phase space
volume (Liouville’s theorem). The solid/dashed lines are the trajectories for E = 1 and E = −0.5,
respectively. Right: Case γ = 0.4. Note the contraction of the phase space volume

Dissipative and Conserving Systems. A dynamical system is dissipative, if
its phase space volume contracts continuously, �∇ · ẋ < 0, for all x(t). The
system is said to be conserving if the phase space volume is a constant of
motion, viz if ∇ · ẋ ≡ 0.

Mechanical systems, i.e. systems described by Hamiltonian mechanics, are all con-
serving in the above sense. One denotes this result from classical mechanics as
“Liouville’s theorem”.

Mechanical systems in general have bounded and non-bounded orbits, depending
on the energy. The planets run through bounded orbits around the sun, to give an
example, but some comets leave the solar system for ever on unbounded trajectories.
One can easily deduce from Liouville’s theorem, i.e. from phase space conservation,
that bounded orbits are ergodic. This comes arbitrarily close to every point in phase
space having the identical conserved energy.

Examples Dissipative systems are a special class of dynamical systems. Let us
consider a few examples:

– For the damped mathematical pendulum Eq. (2.18) we find

∂ ẋ

∂x
= 0,

∂ ẏ

∂y
= ∂[−γ y − ω2

0 sin x]
∂y

= −γ �∇ · ẋ = −γ < 0 .

The damped harmonic oscillator is consequently dissipative. It has a single fix-
point (0, 0) and the basis of attraction is the full phase space (modulo 2π ). Some
examples of trajectories and phase space evolution are illustrated in Fig. 2.6.
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– For the non-linear rotator defined by Eq. (2.2) we have

∂ ṙ

∂r
+ ∂ϕ̇

∂ϕ
= Γ − 3r2 =

⎧⎨
⎩
< 0 for Γ < 0
< 0 for Γ > 0 and r > rc/

√
3

> 0 for Γ > 0 and 0 < r < rc/
√

3
, (2.20)

where rc = √
Γ is the radius of the limiting cycle when Γ > 0. The system might

either dissipate or take up energy, which is typical behavior of “adaptive systems”
as we will discuss further in Sect. 2.3.2. Note that the phase space contracts both
close to the fixpoint, for Γ < 0, and close to the limiting cycle, for Γ > 0.

Phase Space Contraction and Coordinate Systems The time development of a
small phase space volume, Eq. (2.19), depends on the coordinate system chosen to
represent the variables. As an example we reconsider the non-linear rotator defined
by Eq. (2.2) in terms of the Cartesian coordinates x = r cosϕ and y = r sinϕ.

The respective infinitesimal phase space volumes are related via the Jacobian,

dx dy = r dr dϕ ,

and we find

Δ̇V

ΔV
= ṙΔrΔϕ + rΔ̇rΔϕ + rΔrΔ̇ϕ

rΔrΔϕ
= ṙ

r
+ ∂ ṙ

∂r
+ ∂ϕ̇

∂ϕ
= 2Γ − 4r2 ,

compare Eqs. (2.2) and (2.20). The amount and even the sign of the phase space
contraction can depend on the choice of the coordinate system.

The Lorenz Model A rather natural question is the possible existence of attractors
with less regular behaviors, i.e. which are different from stable fixpoints, periodic
or quasi-periodic motion. For this question we examine the Lorenz model

dx

dt
= −σ(x − y),

dy

dt
= −xz + r x − y, (2.21)

dz

dt
= xy − bz .

The classical values are σ = 10 and b = 8/3, with r being the control variable.

Fixpoints of the Lorenz Model A trivial fixpoint is (0, 0, 0). The non-trivial fix-
points are

0 = −σ(x − y), x = y,
0 = −xz + r x − y, z = r − 1,
0 = xy − bz, x2 = y2 = b (r − 1) .
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Fig. 2.7 The Sierpinski carpet and its iterative construction

It is easy to see by linear analysis that the fixpoint (0, 0, 0) is stable for r < 1. For
r > 1 it becomes unstable and two new fixpoints appear:

C+,− =
(
±√b(r − 1),±√b(r − 1), r − 1

)
. (2.22)

These are stable for r < rc = 24.74 (σ = 10 and b = 8/3). For r > rc the behavior
becomes more complicated and generally non-periodic.

Strange Attractors One can show, that the Lorenz model has positive Lyapunov
exponents for r > rc. It is chaotic with sensitive dependence on the initial condi-
tions. The Lorenz model is at the same time dissipative, since

∂ ẋ

∂x
+ ∂ ẏ

∂y
+ ∂ ż

∂z
= −(σ + 1 + b) < 0, σ > 0, b > 0 . (2.23)

The attractor of the Lorenz system therefore cannot be a smooth surface. Close to the
attractor the phase space contracts. At the same time two nearby orbits are repelled
due to the positive Lyapunov exponents. One finds a self-similar structure for the
Lorenz attractor with a fractal dimension 2.06 ± 0.01. Such a structure is called a
strange attractor.

The Lorenz model has an important historical relevance in the development of
chaos theory and is now considered a paradigmatic example of a chaotic system.

Fractals Self-similar structures are called fractals. Fractals can be defined by recur-
rent geometric rules; examples are the Sierpinski triangle and carpet (see Fig. 2.7)
and the Cantor set. Strange attractors are normally multifractals, i.e. fractals with
non-uniform self-similarity.

The Hausdorff Dimension An important notion in the theory of fractals is the
“Hausdorff dimension”. We consider a geometric structure defined by a set of points
in d dimensions and the number N (l) of d-dimensional spheres of diameter l needed
to cover this set. If N (l) scales like

N (l) ∝ l−DH , for l → 0 , (2.24)
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Fig. 2.8 Left: The fundamental unit of the Sierpinski carpet, compare Fig. 2.7, contains eight
squares that can be covered by discs of an appropriate diameter. Right: The seesaw with a water
container at one end; an example of an oscillator that takes up/disperses takes up/disperses energy
periodically

then DH is called the Hausdorff dimension of the set. Alternatively we can rewrite
Eq. (2.24) as

N (l)

N (l ′)
=
(

l

l ′

)−DH

, DH = − log[N (l)/N (l ′)]
log[l/ l ′] , (2.25)

which is useful for self-similar structures (fractals).
The d-dimensional spheres necessary to cover a given geometrical structure will

generally overlap. The overlap does not affect the value of the fractal dimension
as long as the degree of overlap does not change qualitatively with decreasing
diameter l.

The Hausdorff Dimension of the Sierpinski Carpet For the Sierpinski carpet
we increase the number of points N (l) by a factor of 8, compare Fig. 2.8, when we
decrease the length scale l by a factor of 3 (see Fig. 2.7):

DH → − log[8/1]
log[1/3] = log 8

log 3
≈ 1.8928.

2.3.2 Adaptive Systems

Adaptive Systems A general complex system is neither fully conserving nor fully
dissipative. Adaptive systems will have periods where they take up energy and
periods where they give energy back to the environment. An example is the non-
linear rotator of Eq. (2.2), see also Eq. (2.20).

In general one affiliates with the term “adaptive system” the notion of complexity
and adaption. Strictly speaking any dynamical system is adaptive if ∇ · ẋ may take
both positive and negative values. In practice, however, it is usual to reserve the
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term adaptive system to dynamical systems showing a certain complexity, such as
emerging behavior.

The Van der Pol Oscillator Circuits or mechanisms built for the purpose of con-
trolling an engine or machine are intrinsically adaptive. An example is the van der
Pol oscillator,

ẍ − ε(1 − x2)ẋ + x = 0,
ẋ = y
ẏ = ε(1 − x2)y − x

(2.26)

where ε > 0 and where we have used the phase space variables x = (x, y). We
evaluate the time evolution �∇ · ẋ of the phasespace volume,

�∇ · ẋ = +ε (1 − x2) .

The oscillator takes up/dissipates energy for x2 < 1 and x2 > 1, respectively. A
simple mechanical example for a system with similar properties is illustrated in
Fig. 2.8

Secular Perturbation Theory We consider a perturbation expansion in ε. The
solution of Eq. (2.26) is

x0(t) = a ei(ω0t+φ) + c.c., ω0 = 1 , (2.27)

for ε = 0. We note that the amplitude a and phase φ are arbitrary in Eq. (2.27). The
perturbation ε(1− x2)ẋ might change, in principle, also the given frequency ω0 = 1
by an amount ∝ ε. In order to account for this “secular perturbation” we make the
ansatz

x(t) =
[

A(T )eit + A∗(T )e−i t
]

+ εx1 + · · · , A(T ) = A(εt) , (2.28)

which differs from the usual expansion x(t) → x0(t) + εx ′(t) + · · · of the full
solution x(t) of a dynamical system with respect to a small parameter ε.

Expansion From Eq. (2.28) we find to the order O(ε1)

x2 ≈ A2e2i t + 2|A|2 + (A∗)2e−2i t + 2εx1

[
Aeit + Ae−i t

]

ε(1 − x2) ≈ ε(1 − 2|A|2) − ε
[

A2e2i t + (A∗)2e−2i t
]
,

ẋ ≈
[
(εAT + i A) eit + c.c.

]
+ ε ẋ1, AT = ∂A(T )

∂T

ε(1 − x2)ẋ = ε(1 − 2|A|2)
[
i Aeit − i A∗e−i t

]

− ε
[

A2e2i t + (A∗)2e−2i t
] [

i Aeit − i A∗e−i t
]
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and

ẍ =
[(

ε2 AT T + 2iεAT − A
)

eit + c.c.
]

+ ε ẍ1

≈
[
(2iεAT − A) eit + c.c.

]
+ ε ẍ1 .

Substituting these expressions into Eq. (2.26) we obtain in the order O(ε1)

ẍ1 + x1 =
(
−2i AT + i A − i |A|2 A

)
eit − i A3e3i t + c.c. . (2.29)

The Solvability Condition Equation (2.29) is identical to a driven harmonic oscil-
lator, which will be discussed in Chap. 7 in more detail. The time dependencies

∼ eit and ∼ e3i t

of the two terms on the right-hand side of Eq. (2.29) are proportional to the unper-
turbed frequency ω0 = 1 and to 3ω0, respectively.

The term ∼ eit is therefore exactly at resonance and would induce a diverging
response x1 → ∞, in contradiction to the perturbative assumption made by ansatz
(2.28). Its prefactor must therefore vanish:

AT = ∂A

∂T
= 1

2

(
1 − |A|2

)
A,

∂A

∂t
= ε

2

(
1 − |A|2

)
A , (2.30)

where we have used T = εt . The solubility condition Eq. (2.30) can be written as

ȧ eiφ + i φ̇ a eiφ = ε

2

(
1 − a2

)
a eiφ

in phase-magnitude representation A(t) = a(t)eiφ(t), or

ȧ = ε
(
1 − a2

)
a/2,

φ̇ ∼ O(ε2) .
(2.31)

The system takes up energy for a < 1 and the amplitude a increases until the
saturation limit a → 1, the conserving point. For a > 1 the system dissipates
energy to the environment and the amplitude a decreases, approaching unity for
t → ∞, just as we discussed in connection with Eq. (2.2).

The solution x(t) ≈ 2 a cos(t), compare Eqs. (2.28) and (2.31), of the van der
Pol equations therefore constitutes an amplitude-regulated oscillation, as illustrated
in Fig. 2.9. This behavior was the technical reason for historical development of the
control systems that are described by the van der Pol equation (2.26).

Liénard Variables For large ε it is convenient to define, compare Eq. (2.26), with
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Fig. 2.9 The solution of the van der Pol oscillator, Eq. (2.26), for small ε and two different initial
conditions. Note the self-generated amplitude stabilization

ε
d

dt
Y (t) = ẍ(t) − ε

(
1 − x2(t)

)
ẋ(t) = −x(t) (2.32)

or

εẎ = Ẍ − ε
(

1 − X2
)

Ẋ , X (t) = x(t),

the Liénard variables X (t) and Y (t). Integration of Ẏ with respect to t yields

εY = Ẋ − ε

(
X − X3

3

)
,

where we have set the integration constant to zero. We obtain, together with
Eq. (2.32),

Ẋ = c
(

Y − f (X)
)

Ẏ = −X/c
f (X) = X3/3 − X , (2.33)

where we have set c ≡ ε, as we are now interested in the case c 	 1.

Relaxation Oscillations We discuss the solution of the van der Pol oscillator
Eq. (2.33) for a large driving c graphically, compare Fig. 2.10, by considering the
flow (Ẋ , Ẏ ) in phase space (X,Y ). For c 	 1 there is a separation of time scales,

(Ẋ , Ẏ ) ∼ (c, 1/c), Ẋ 	 Ẏ ,

which leads to the following dynamical behavior:

– Starting at a general (X (t0),Y (t0)) the orbit develops very fast ∼ c and nearly
horizontally until it hits the “isocline”1

1 The term isocline stands for “equal slope” in ancient Greek.
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Fig. 2.10 Van der Pol oscillator for a large driving c ≡ ε. Left: The relaxation oscillations with
respect to the Liénard variables Eq. (2.33). The arrows indicate the flow (Ẋ , Ẏ ), for c = 3, see
Eq. (2.33). Also shown is the Ẋ = 0 isocline Y = −X + X3/3 (solid line) and the limiting cycle,
which includes the dashed line with an arrow and part of the isocline. Right: The limiting cycle in
terms of the original variables (x, y) = (x, ẋ) = (x, v). Note that X (t) = x(t)

Ẋ = 0, Y = f (X) = −X + X3/3 . (2.34)

– Once the orbit is close to the Ẋ = 0 isocline Y = −X + X3/3 the motion slows
down and it develops slowly, with a velocity ∼ 1/c close-to (but not exactly on)
the isocline (Eq. (2.34)).

– Once the slow motion reaches one of the two local extrema X = ±a0 = ±1 of
the isocline, it cannot follow the isocline any more and makes a rapid transition
towards the other branch of the Ẋ = 0 isocline, with Y ≈ const. Note, that
trajectories may cross the isocline vertically, e.g. right at the extrema Ẏ |X=±1 =
∓1/c is small but finite.

The orbit therefore relaxes rapidly towards a limiting oscillatory trajectory, illus-
trated in Fig. 2.10, with the time needed to perform a whole oscillation depending
on the relaxation constant c; therefore the term “relaxation oscillation”. Relaxation
oscillators represent an important class of cyclic attractors, allowing to model sys-
tems going through several distinct and well characterized phases during the course
of one cycle. We will discuss relaxation oscillators further in Chap. 7.

2.4 Diffusion and Transport

Deterministic vs. Stochastic Time Evolution So far we have discussed some
concepts and examples of deterministic dynamical systems, governed by sets of
coupled differential equations without noise or randomness. At the other extreme
are diffusion processes for which the random process dominates the dynamics.

Dissemination of information through social networks is one of many examples
where diffusion processes plays a paramount role. The simplest model of diffusion
is the Brownian motion, which is the erratic movement of grains suspended in liquid
observed by the botanist Robert Brown as early as 1827. Brownian motion became
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the prototypical example of a stochastic process after the seminal works of Einstein
and Langevin at the beginning of the 20th century.

2.4.1 Random Walks, Diffusion and Lévy Flights

One-Dimensional Diffusion We consider the random walk of a particle along
a line, with the equal probability 1/2 to move left/right at every time step. The
probability

pt (x), x = 0,±1,±2, . . . , t = 0, 1, 2, . . .

to find the particle at time t at position x obeys the master equation

pt+1(x) = 1

2
pt (x − 1) + 1

2
pt (x + 1) . (2.35)

In order to obtain the limit of continuous time and space, we introduce explicitly the
steps Δx and Δt in space and time, and write

pt+Δt (x) − pt (x)

Δt
= (Δx)2

2Δt

pt (x + Δx) + pt (x − Δx) − 2pt (x)

(Δx)2
. (2.36)

Now, taking the limit Δx,Δt → 0 in such a way that (Δx)2/(2Δt) remains finite,
we obtain the diffusion equation

∂p(x, t)

∂t
= D

∂2 p(x, t)

∂x2
D = (Δx)2

2Δt
. (2.37)

Solution of the Diffusion Equation The solution to Eq. (2.37) is readily
obtained as2

p(x, t) = 1√
4πDt

exp

(
− x2

4Dt

)
,

∫ ∞

−∞
dx ρ(x, t) = 1 , (2.38)

for the initial condition ρ(x, t = 0) = δ(x). From Eq. (2.38) one concludes that the
variance of the displacement follows diffusive behavior, i.e.

〈x2(t)〉 = 2D t , x̄ =
√

〈x2(t)〉 = √
2D t . (2.39)

Diffusive transport is characterized by transport sublinear in time in contrast to
ballistic transport with x = vt , as illustrated in Fig. 2.11.

2 Note:
∫

e−x2/adx = √
aπ and lima→0 exp(−x2/a)/

√
aπ = δ(x).
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Fig. 2.11 Examples of random walkers with scale-free distributions ∼ |Δx |1+β for the real-space
jumps, see Eq. (2.40). Left: β = 3, which falls into the universality class of standard Brownian
motion. Right: β = 0.5, a typical Levy flight. Note the occurrence of longer-ranged jumps in
conjunction with local walking

Lévy Flights We can generalize the concept of a random walker, which is at the
basis of ordinary diffusion, and consider a random walk with distributions p(Δt)
and p(Δx) for waiting times Δti and jumps Δxi , at every step i = 1, 2, . . . of the
walk, as illustrated in Fig. 2.12. One may assume scale-free distributions

p(Δt) ∼ 1

(Δt)1+α
, p(Δx) ∼ 1

(Δx)1+β
, α, β > 0 . (2.40)

If α > 1 (finite mean waiting time) and β > 2 (finite variance), nothing spe-
cial happens. In this case the central limiting theorem for well behaved distribution
functions is valid for the spatial component and one obtains standard Brownian
diffusion. Relaxing the above conditions one finds four regimes: normal Brownian
diffusion, “Lévy flights”, fractional Brownian motion, also denoted “subdiffusion”
and generalized Lévy flights termed “ambivalent processes”. Their respective scal-
ing laws are listed in Table 2.1 and two examples are shown in Fig. 2.11.

Lévy flights occur in a wide range of processes, such as in the flight patterns of
wandering albatrosses or in human travel habits, which seem to be characterized by
a generalized Lévy flight with α, β ≈ 0.6.

Diffusion Within Networks Diffusion occurs in many circumstances. We con-
sider here the case of diffusion within a network, such as the diffusion of information
within social networks. This is an interesting issue as the control of information is
important for achieving social influence and prestige. We will however neglect in
the following the creation of new information, which is clearly relevant for real-life
applications.

Consider a network of i = 1, . . . , N vertices connected by edges with
weight Wi j , corresponding to the elements of the weighted adjacency matrix. We
denote by
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Fig. 2.12 A random walker with distributed waiting times Δti and jumps Δxi may become a
generalized Lévy flight

ρi (t),
N∑

i=1

ρi (t) = 1

the density of information present at time t and vertex i .

Flow of Information The information flow can then be described by the master
equation

ρi (t + Δt) = ρi (t) + J (+)
i (t)Δt − J (−)

i (t)Δt , (2.41)

where J (±)
i (t) denotes the density of information entering (+) and leaving (−) ver-

tex i per time interval Δt , given by

J (+)
i (t) =

∑
j

Wi j∑
k Wkj

ρ j (t), J (−)
i (t) =

∑
j

W ji∑
k Wki

ρi (t) = ρi (t) .

Introducing the time step Δt = 1 and the expressions for J (±)
i (t) into Eq. (2.41) we

find

ρi (t + Δt) − ρi (t)

Δt
= ∂

∂t
ρi (t) =

∑
j

Ti j ρ j (t) − ρi (t) , (2.42)

Table 2.1 The four regimes of a generalized walker with distribution functions, Eq. (2.40), char-
acterized by scalings ∝ (Δt)−1−α and ∝ (Δx)−1−β for the waiting times Δt and jumps Δx , as
depicted in Fig. 2.12

α > 1 β > 2 x̄ ∼ √
t Ordinary diffusion

α > 1 0 < β < 2 x̄ ∼ t1/β Lévy flights

0 < α < 1 β > 2 x̄ ∼ tα/2 Subdiffusion

0 < α < 1 0 < β < 2 x̄ ∼ tα/β Ambivalent processes
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where we have performed the limit Δt → 0 and defined

Ti j = Wi j∑
k Wkj

.

This equation can easily be cast into the following matrix form:

∂

∂t
ρ(t) = D ρ(t), Di j = Ti j − δi j , (2.43)

where �ρ = (ρ1, . . . , ρN ). It resembles the diffusion equation (2.36), so we may
denote D = (

Di j
)

as the diffusion matrix (or operator). Physically, Eq. (2.42) means
that T = (

Ti j
)

transfers (propagates) the energy density ρ(t) one step forward in
time. Due to this property, T has been termed the “transfer matrix”.

The Stationary State When no new information is created we may expect the
distribution of information to settle into a stationary state

∂ρi (t)

∂t
→ 0, ρi (t) → ρi (∞) .

Formally, the stationary state corresponds to the unitary eigenvalue of T, see
Eq. (2.42). Here we assume

ρi (∞) ∝
∑

j

W ji , (2.44)

in Eq. (2.42):

∑
j

Wi j∑
k Wkj

∑
k

Wkj =
∑

l

Wli ,
∑

j

Wi j =
∑

l

Wli . (2.45)

Consequently, a global steady state has the form of the ansatz (2.44) when the weight
of incoming links

∑
j Wi j equals the weight of outgoing links

∑
l Wli for every

vertex i . That is if there are no sinks or sources for information. The condition
Eq. (2.45) is fulfilled for symmetric weight matrices with Wi j = W ji . The informa-
tion density is proportional to the vertex degree, ρi (∞) ∝ ki , when the Wi j reduces
to the adjacency matrix.

2.4.2 The Langevin Equation and Diffusion

Diffusion as a Stochastic Process Langevin proposed to describe the diffusion of
a particle by the stochastic differential equation
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m v̇ = −m γ v + ξ(t), < ξ(t) >= 0, < ξ(t)ξ(t ′) >= Qδ(t − t ′),
(2.46)

where v(t) is the velocity of the particle and m > 0 its mass.

(i) The term −mγ v on the right-hand-side of Eq. (2.46) corresponds to a damping
term, the friction being proportional to γ > 0.

(ii) ξ(t) is a stochastic variable, viz noise. The brackets < . . . > denote ensemble
averages, i.e. averages over different noise realizations.

(iii) As white noise (in contrast to colored noise) one denotes noise with a flat power
spectrum (as white light), viz < ξ(t)ξ(t ′) >∝ δ(t − t ′).

(iv) The constant Q is a measure for the strength of the noise.

Solution of the Langevin Equation Considering a specific noise realization ξ(t),
one finds

v(t) = v0 e−γ t + e−γ t

m

∫ t

0
dt ′ eγ t ′ ξ(t ′) (2.47)

for the solution of the Langevin Eq. (2.46), where v0 ≡ v(0).

Mean Velocity For the ensemble average < v(t) > of the velocity one finds

< v(t) > = v0 e−γ t + e−γ t

m

∫ t

0
dt ′ eγ t ′ < ξ(t ′) >︸ ︷︷ ︸

0

= v0 e−γ t . (2.48)

The average velocity decays exponentially to zero.

Mean Square Velocity For the ensemble average < v2(t) > of the velocity
squared one finds

< v2(t) > = v2
0 e−2γ t + 2 v0 e−2γ t

m

∫ t

0
dt ′ eγ t ′ < ξ(t ′) >︸ ︷︷ ︸

0

+ e−2γ t

m2

∫ t

0
dt ′

∫ t

0
dt ′′ eγ t ′ eγ t ′′ < ξ(t ′)ξ(t ′′) >︸ ︷︷ ︸

Q δ(t ′−t ′′)

= v2
0 e−2γ t + Q e−2γ t

m2

∫ t

0
dt ′ e2γ t ′

︸ ︷︷ ︸
(e2γ t −1)/(2γ )

and finally

< v2(t) > = v2
0 e−2γ t + Q

2 γ m2

(
1 − e−2γ t

)
. (2.49)
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For long times the average squared velocity

lim
t→∞ < v2(t) > = Q

2 γ m2
(2.50)

becomes, as expected, independent of the initial velocity v0. Equation (2.50) shows
explicitly that the dynamics is driven exclusively by the stochastic process ∝ Q for
long time scales.

The Langevin Equation and Diffusion The Langevin equation is formulated in
terms of the particle velocity. In order to make connection with the time evolution
of a real-space random walker, Eq. (2.39), we multiply the Langevin equation (2.46)
by x and take the ensemble average:

< x v̇ > = −γ < x v > + 1

m
< x ξ > . (2.51)

We note that

x v = x ẋ = d

dt

x2

2
, x v̇ = x ẍ = d2

dt2

x2

2
−ẋ2, < xξ >= x < ξ >= 0 .

We then find for Eq. (2.51)

d2

dt2

< x2 >

2
− < v2 > = −γ

d

dt

< x2 >

2

or

d2

dt2
< x2 > + γ

d

dt
< x2 > = 2 < v2 > = Q

γm2
, (2.52)

where we have used the long-time result Eq. (2.50) for < v2 >. The solution of
Eq. (2.52) is

< x2 > = [
γ t − 1 + e−γ t ] Q

γ 3m2
. (2.53)

For long times we find

lim
t→∞ < x2 > = Q

γ 2m2
t ≡ 2D t, D = Q

2γ 2m2
(2.54)

diffusive behavior, compare Eq. (2.39). This shows that diffusion is microscopically
due to a stochastic process, since D ∝ Q.
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2.5 Noise-Controlled Dynamics

Stochastic Systems A set of first-order differential equations with a stochastic
term is generally denoted a “stochastic system”. The Langevin equation (2.46) dis-
cussed in Sect. 2.4.2 is a prominent example. The stochastic term corresponds quite
generally to noise. Depending on the circumstances, noise might be very important
for the long-term dynamical behavior. Some examples of this are as follows:

– Neural Networks: Networks of interacting neurons are responsible for the cog-
nitive information processing in the brain. They must remain functional also in
the presence of noise and need to be stable as stochastic systems. In this case
the introduction of a noise term to the evolution equation should not change the
dynamics qualitatively. This postulate should be valid for the vast majorities of
biological networks.

– Diffusion: The Langevin equation reduces, in the absence of noise, to a damped
motion without an external driving force, with v = 0 acting as a global attrac-
tor. The stochastic term is therefore essential in the long-time limit, leading to
diffusive behavior.

– Stochastic Escape and Stochastic Resonance: A particle trapped in a local min-
imum may escape this minimum by a noise-induced diffusion process; a phe-
nomenon called “stochastic escape”. Stochastic escape in a driven bistable sys-
tem leads to an even more subtle consequence of noise-induced dynamics, the
“stochastic resonance”.

2.5.1 Stochastic Escape

Drift Velocity We generalize the Langevin equation (2.46) and consider an external
potential V (x),

m v̇ = −m γ v + F(x) + ξ(t), F(x) = −V ′(x) = − d

dx
V (x) , (2.55)

where v,m are the velocity and the mass of the particle, < ξ(t) >= 0 and <

ξ(t)ξ(t ′) >= Qδ(t − t ′). In the absence of damping (γ = 0) and noise (Q = 0),
Eq. (2.55) reduces to Newton’s law.

We consider for a moment a constant force F(x) = F and the absence of noise,
ξ(t) ≡ 0. The system then reaches an equilibrium for t → ∞ when relaxation and
force cancel each other:

m v̇D = −m γ vD + F ≡ 0, vD = F

γm
. (2.56)

vD is called the “drift velocity”. A typical example is the motion of electrons in
a metallic wire. An applied voltage, which leads an electric field along the wire,
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induces an electrical current (Ohm’s law). This results in the drifting electrons being
continuously accelerated by the electrical field, while bumping into lattice imperfec-
tions or colliding with the lattice vibrations, i.e. the phonons.

The Fokker–Planck Equation We consider now an ensemble of particles diffus-
ing in an external potential, and denote with P(x, t) the density of particles at loca-
tion x and time t . Particle number conservation defines the particle current density
J (x, t) via the continuity equation

∂P(x, t)

∂t
+ ∂ J (x, t)

∂x
= 0. (2.57)

There are two contributions, JvD and Jξ , to the total particle current density, J =
JvD + Jξ , induced by the diffusion and by the stochastic motion respectively. We
derive these two contributions in two steps.

In a first step we consider with Q = 0 the absence of noise in Eq. (2.55). The
particles then move uniformly with the drift velocity vD in the stationary limit, and
the current density is

JvD = vD P(x, t) .

In a second step we set the force to zero, F = 0, and derive the contribution Jξ of
the noise term ∼ ξ(t) to the particle current density. For this purpose we rewrite the
diffusion equation (2.37)

∂P(x, t)

∂t
= D

∂2 P(x, t)

∂x2
≡ −∂ Jξ (x, t)

∂x

∂P(x, t)

∂t
+ ∂ Jξ (x, t)

∂x
= 0

as a continuity equation, which allows us to determine the functional form of Jξ ,

Jξ = −D
∂P(x, t)

∂x
. (2.58)

Using the relation D = Q/(2γ 2m2), see Eq. (2.54), and including the drift term we
find

J (x, t) = vD P(x, t) − D
∂P(x, t)

∂x
= F

γm
P(x, t) − Q

2γ 2m2

∂P(x, t)

∂x
(2.59)

for the total current density J = JvD + Jξ . Using expression (2.59) for the total par-
ticle current density in (2.57) one obtains the “Fokker–Planck” or “Smoluchowski”
equation

∂P(x, t)

∂t
= −∂vD P(x, t)

∂x
+ ∂2 D P(x, t)

∂x2
(2.60)

for the density distribution P(x, t).
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Fig. 2.13 Left: Stationary distribution P(x) of diffusing particles in a harmonic potential V (x).
Right: Stochastic escape from a local minimum, with ΔV = V (xmax)−V (xmin) being the potential
barrier height and J the escape current

The Harmonic Potential We consider the harmonic confining potential

V (x) = f

2
x2, F(x) = − f x ,

and a stationary density distribution,

dP(x, t)

dt
= 0 �⇒ dJ (x, t)

dx
= 0 .

Expression (2.59) yields then the differential equation

d

dx

[
f x

γ m
+ Q

2γ 2m2

d

dx

]
P(x) = 0 = d

dx

[
β f x + d

dx

]
P(x),

with β = 2γm/Q and where for the stationary distribution function P(x) =
limt→∞ P(x, t). The system is confined and the steady-state current vanishes con-
sequently. We find

P(x) = A e−β
f
2 x2 = A e−βV (x) A =

√
f γm

πQ
, (2.61)

where the prefactor is determined by the normalization condition
∫

dx P(x) = 1.
The density of diffusing particles in a harmonic trap is Gaussian-distributed, see
Fig. 2.13.

The Escape Current We now consider particles in a local minimum, as depicted
in Fig. 2.13, with a typical potential having a functional form like

V (x) ∼ −x + x3 . (2.62)



2.5 Noise-Controlled Dynamics 69

Without noise, the particle will oscillate around the local minimum eventually com-
ing to a standstill x → xmin under the influence of friction.

With noise, the particle will have a small but finite probability

∝ e−βΔV , ΔV = V (xmax) − V (xmin)

to reach the next saddlepoint, where ΔV is the potential difference between the
saddlepoint and the local minimum, see Fig. 2.13. The solution Eq. (2.61) for the
stationary particle distribution in a confining potential V (x) has a vanishing total
current J . For non-confining potentials, like Eq. (2.62), the particle current J (x, t)
never vanishes. Stochastic escape occurs when starting with a density of diffusing
particles close the local minimum, as illustrated in Fig. 2.13. The escape current will
be nearly constant whenever the escape probability is small. In this case the escape
current will be proportional to the probability a particle has to reach the saddlepoint,

J (x, t)
∣∣∣
x=xmax

∝ e−β [V (xmax)−V (xmin)] ,

when approximating the functional dependence of P(x) with that valid for the har-
monic potential, Eq. (2.61).

Kramer’s Escape When the escape current is finite, there is a finite probability
per unit of time for the particle to escape the local minima, the Kramer’s escape
rate rK ,

rK = ωmaxωmin

2π γ
exp [−β (V (xmax) − V (xmin))] , (2.63)

where the prefactors ωmin = √|V ′′(xmin)|/m and ωmax = √|V ′′(xmax)|/m can be
derived from a more detailed calculation, and where β = 2γm/Q.

Stochastic Escape in Evolution Stochastic escape occurs in many real-world sys-
tems. Noise allows the system to escape from a local minimum where it would
otherwise remain stuck for eternity.

As an example, we mention stochastic escape from a local fitness maximum (in
evolution fitness is to be maximized) by random mutations that play the role of
noise. These issues will be discussed in more detail in Chap. 6.

2.5.2 Stochastic Resonance

The Driven Double-Well Potential We consider diffusive dynamics in a driven
double-well potential, see Fig. 2.14,

ẋ = −V ′(x) + A0 cos(Ωt) + ξ(t), V (x) = −1

2
x2 + 1

4
x4 . (2.64)
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V(x, t)

Fig. 2.14 The driven double-well potential, V (x)− A0 cos(Ωt)x , compare Eq. (2.64). The driving
force is small enough to retain the two local minima

The following is to be remarked:

– Equation (2.64) corresponds to the Langevin equation (2.55) in the limit of very
large damping, γ 	 m, keeping γm ≡ 1 constant (in dimensionless units).

– The potential in Eq. (2.64) is in normal form, which one can always achieve by
rescaling the variables appropriately.

– The potential V (x) has two minima x0 at

−V ′(x) = 0 = x − x3 = x(1 − x2), x0 = ±1 .

The local maximum x0 = 0 is unstable.
– We assume that the periodic driving ∝ A0 is small enough, such that the effective

potential V (x)− A0 cos(Ωt)x retains two minima at all times, compare Fig. 2.14.

Transient State Dynamics The system will stay close to one of the two minima,
x ≈ ±1, for most of the time when both A0 and the noise strength are weak, see
Fig. 2.15. This is an instance of “transient state dynamics”, which will be discussed
in more detail in Chap. 8. The system switches between a set of preferred states.

Switching Times An important question is then: How often does the system switch
between the two preferred states x ≈ 1 and x ≈ −1? There are two time scales
present:

– In the absence of external driving, A0 ≡ 0, the transitions are noise driven
and irregular, with the average switching time given by Kramer’s lifetime
TK = 1/rK , see Fig. 2.15. The system is translational invariant with respect to
time and the ensemble averaged expectation value

< x(t) > = 0

therefore vanishes in the absence of an external force.
– When A0 �= 0 the external force induces a reference time and a non-zero response

x̄ ,

< x(t) > = x̄ cos(Ωt − φ̄) , (2.65)
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Fig. 2.15 Example trajectories x(t) for the driven double-well potential. The strength and the
period of the driving potential are A0 = 0.3 and 2π/Ω = 100, respectively. The noise level Q is
0.05, 0.3 and 0.8 (top/middle/bottom), see Eq. (2.64)

which follows the time evolution of the driving potential with a certain phase
shift φ̄, see Fig. 2.16.

The Resonance Condition When the time scale 2TK = 2/rK to switch back
and forth due to the stochastic process equals the period 2π/Ω , we expect a large
response x̄ , see Fig. 2.16. The time-scale matching condition

2π

Ω
≈ 2

rK

depends on the noise-level Q, via Eq. (2.63), for the Kramer’s escape rate rK . The
response x̄ first increases with rising Q and then becomes smaller again, for other-
wise constant parameters, see Fig. 2.16. Therefore the name “stochastic resonance”.

Stochastic Resonance and the Ice Ages The average temperature Te of the earth
differs by about ΔTe ≈ 10◦C in between a typical ice age and the interglacial
periods. Both states of the climate are locally stable.

– The Ice Age: The large ice covering increases the albedo of the earth and a larger
part of sunlight is reflected back to space. The earth remains cool.

– The Interglacial Period: The ice covering is small and a larger portion of the
sunlight is absorbed by the oceans and land. The earth remains warm.
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Fig. 2.16 The gain x̄ , see Eq. (2.65), as a function of noise level Q. The strength of the driving
amplitude A0 is 0.1, 0.2 and 0.3 (bottom/middle/top curves), see Eq. (2.64) and the period 2π/Ω =
100. The response x̄ is very small for vanishing noise Q = 0, when the system performs only
small-amplitude oscillations in one of the local minima

A parameter of the orbit of the planet earth, the eccentricity, varies slightly with a
period T = 2π/Ω ≈ 105 years. The intensity of the incoming radiation from the
sun therefore varies with the same period. Long-term climate changes can therefore
be modeled by a driven two-state system, i.e. by Eq. (2.64). The driving force, viz
the variation of the energy flux the earth receives from the sun, is however very
small. The increase in the amount of incident sunlight is too weak to pull the earth
out of an ice age into an interglacial period or vice versa. Random climatic fluctu-
ation, like variations in the strength of the gulf stream, are needed to finish the job.
The alternation of ice ages with interglacial periods may therefore be modeled as a
stochastic resonance phenomenon.

Neural Networks and Stochastic Resonance Neurons are driven bistable devices
operating in a noisy environment. It is therefore not surprising that stochastic reso-
nance may play a role for certain neural network setups with undercritical driving.

Beyond Stochastic Resonance Resonance phenomena generally occur when two
frequencies, or two time scales, match as a function of some control parameter. For
the case of stochastic resonance these two time scales correspond to the period of
the external driving and to the average waiting time for the Kramer’s escape respec-
tively, with the later depending directly on the level of the noise. The phenomenon is
denoted as “stochastic resonance” since one of the time scales involved is controlled
by the noise.

One generalization of this concept is the one of “coherence resonance”. In this
case one has a dynamical system with two internal time scales t1 and t2. These two
time scales will generally be affected to a different degree by an additional source of
noise. The stochastic term may therefore change the ratio t1/t2, leading to internal
resonance phenomena.
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2.6 Dynamical Systems with Time Delays

The dynamical systems we have considered so far all had instantaneous dynamics,
being of the type

d

dt
y(t) = f (y(t)), t > 0 (2.66)

y(t = 0) = y0 ,

when denoting with y0 the initial condition. This is the simplest case: one dimen-
sional (a single dynamical variable only), autonomous ( f (y) is not an explicit func-
tion of time) and deterministic (no noise).

Time Delays In many real-world applications the couplings between different sub-
systems and dynamical variables is not instantaneous. Signals and physical inter-
actions need a certain time to travel from one subsystem to the next. Time delays
are therefore encountered commonly and become important when the delay time T
becomes comparable with the intrinsic time scales of the dynamical system. We
consider here the simplest case, a noise-free one-dimensional dynamical system
with a single delay time,

d

dt
y(t) = f (y(t), y(t − T )), t > 0 (2.67)

y(t) = φ(t), t ∈ [−T, 0] .

Due to the delayed coupling we need now to specify an entire initial function φ(t).
Differential equations containing one or more time delays need to be considered
very carefully, with the time delay introducing an additional dimension to the prob-
lem. We will discuss here a few illustrative examples.

Linear Couplings We start with the linear differential equation

d

dt
y(t) = −ay(t) − by(t − T ), a, b > 0 . (2.68)

The only constant solution for a + b �= 0 is the trivial state y(t) ≡ 0. The trivial
solution is stable in the absence of time delays, T = 0, whenever a + b > 0. The
question is now, whether a finite T may change this.

We may expect the existence of a certain critical Tc, such that y(t) ≡ 0 remains
stable for small time delays 0 ≤ T < Tc. In this case the initial function φ(t) will
affect the orbit only transiently, in the long run the motion would be damped out,
approaching the trivial state asymptotically for t → ∞.

Hopf Bifurcation Trying our luck with the usual exponential ansatz, we find

λ = −a − be−λT , y(t) = y0eλt , λ = p + iq .
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Fig. 2.17 The solution e(p+iq)t of the time-delayed system, Eq. (2.68), for a = 0.1 and b = 1. The
state y(t) ≡ 0 become unstable whenever p > 0. q is given in units of π

Separating into a real and imaginary part we obtain

p + a = −be−pT cos(qT ),

q = be−pT sin(qT ).
(2.69)

For T = 0 the solution is p = −(a + b), q = 0, as expected, and the trivial solution
y(t) ≡ 0 is stable. A numerical solution is shown in Fig. 2.17 for a = 0.1 and
b = 1. The crossing point p = 0 is determined by

a = −b cos(qT ), q = b sin(qT ) . (2.70)

The first condition in Eq. (2.70) can be satisfied only for a < b. Taking the squares
in Eq. (2.70) and eliminating qT one has

q =
√

b2 − a2, T ≡ Tc = arccos(−a/b)/q .

One therefore has a Hopf bifurcation at T = Tc and the trivial solution becomes
unstable for T > Tc. For the case a = 0 one has simply q = b, Tc = π/(2b).
Note, that there is a Hopf bifurcation only for a < b, viz whenever the time-delay
dominates, and that q becomes non-zero well before the bifurcation point, compare
Fig. 2.17. One has therefore a region of damped oscillatory behavior with q �= 0
and p < 0.

Discontinuities For time-delayed differential equations one may specify an arbi-
trary initial function φ(t) and the solutions may in general show discontinuities in
their derivatives, as a consequence. As an example we consider the case a = 0,
b = 1 of Eq. (2.68), with a non-zero constant initial function,
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d

dt
y(t) = −y(t − T ), φ(t) ≡ 1 . (2.71)

The solution can be evaluated simply by stepwise integration,

y(t)−y(0) =
∫ t

0
dt ′ ẏ(t ′) = −

∫ t

0
dt ′y(t ′−T ) = −

∫ t

0
dt ′ = −t, 0 < t < T .

The first derivative in consequently discontinuous at t = 0,

lim
t→0−

d

dt
y(t) = 0, lim

t→0+
d

dt
y(t) = −1 .

For larger times, T < t < 2T , one finds

y(t) − y(T ) = −
∫ t

T
dt ′y(t ′ − T ) =

∫ t

T
dt ′
[
t ′ − 1

] = t2 − T 2

2
− (t − T ) ,

and the second derivative has a discontinuity at t = T .

Dependence on Initial Function The solution of ordinary differential equations is
determined by their initial condition and different initial conditions lead to distinct
trajectories (injectivity). This is not necessarily the case anymore in the presence of
time delays. We consider

d

dt
y(t) = y(t − T )

(
y(t) − 1

)
, φ(t = 0) = 1 . (2.72)

For any φ(t) with φ(0) = 1 the solution is y(t) ≡ 1 for all t ∈ [0,∞].
Non-Constant Time Delays Thinks may become rather weird when the time
delays are not constant anymore. Consider

d
dt y(t) = y

(
t − |y(t)| − 1

) + 1
2 , t > 0,

φ(t) =
{

0 −1 < t < 0
1 t < −1

.
(2.73)

It is easy to see, that both functions

y(t) = t

2
, y(t) = 3t

2
, t ∈ [0, 2] ,

are solutions of Eq. (2.73), with appropriate continuations for t > 2. Two different
solutions of the same differential equation and identical initial conditions, that can-
not happen for ordinary differential equations. It is evident, that especial care must
be taken when examining dynamical systems with time delays numerically.
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Exercises

THE LORENZ MODEL

Perform the stability analysis of the fixpoint (0, 0, 0) and of C+,− =
(±√

b(r − 1),±√
b(r − 1), r − 1) for the Lorenz model Eq. (2.21) with r,

b > 0. Discuss the difference between the dissipative case and the ergodic
case σ = −1 − b, see Eq. (2.23).

THE POINCARÉ MAP

For the Lorenz model Eq. (2.21) with σ = 10 and β = 8/3, evaluate numer-
ically the Poincaré map for (a) r = 22 (regular regime) and the plane z = 21
and (b) r = 28 (chaotic regime) and the plane z = 27.

THE HAUSDORFF DIMENSION

Calculate the Hausdorff dimension of a straight line and of the Cantor set,
which is generated by removing consecutively the middle-1/3 segment of a
line having a given initial length.

THE DRIVEN HARMONIC OSCILLATOR

Solve the driven, damped harmonic oscillator

ẍ + γ ẋ + ω2
0 x = ε cos(ωt)

in the long-time limit. Discuss the behavior close to the resonance ω → ω0.
CONTINUOUS-TIME LOGISTIC EQUATION

Consider the continuous-time logistic equation

ẏ(t) = αy(t)
[
1 − y(t)

]
.

(A) Find the general solution and (B) compare to the logistic map Eq. (2.8) for
discrete times t = 0, Δt, 2Δt, ...

INFORMATION FLOW IN NETWORKS

Choose a not-too-big social network and examine numerically the flow of
information, Eq. (2.41), through the network. Set the weight matrix Wi j identi-
cal to the adjacency matrix Ai j , with entries being either unity or zero. Evaluate
the steady-state distribution of information and plot the result as a function of
vertex degrees.

STOCHASTIC RESONANCE

Solve the driven double-well problem Eq. (2.64) numerically and try to repro-
duce Figs. 2.15 and 2.16.

DELAYED DIFFERENTIAL EQUATIONS

The delayed Eq. (2.68) allows for harmonically oscillating solutions for certain
sets of parameters a and b. Which are the conditions? Speciallize then for the
case a = 0.

CAR-FOLLOWING MODEL

A car moving with velocity ẋ(t) follows another car driving with velocity v(t)
via

ẍ(t + T ) = α(v(t) − ẋ(t)), α > 0 , (2.74)
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with T > 0 being the reaction time of the driver. Prove the stability of the
steady-state solution for a constant velocity v(t) ≡ v0 of the preceding car.

Further Reading

For further studies we refer to introductory texts for dynamical system theory
(Katok and Hasselblatt, 1995), classical dynamical systems (Goldstein, 2002),
chaos (Schuster and Just, 2005; Devaney, 1989; Gutzwiller, 1990, Strogatz, 1994),
stochastic systems (Ross, 1982; Lasota and Mackey, 1994) and differential
equations with time delays (Erneux, 2009). Other textbooks on complex and/or
adaptive systems are those by Schuster (2001) and Boccara (2003). For an
alternative approach to complex system theory via Brownian agents consult
Schweitzer (2003).

The interested reader may want to study some selected subjects in more depth,
such as the KAM theorem (Ott, 2002), relaxation oscillators (Wang, 1999), stochas-
tic resonance (Benzit et al., 1981; Gammaitoni et al., 1998), coherence resonance
(Pikovsky and Kurths, 1997), Lévy flights (Metzler and Klafter, 2000), the con-
nection of Lévy flights to the patterns of wandering albatrosses (Viswanathan
et al., 1996), human traveling (Brockmann et al., 2006) and diffusion of information
in networks (Eriksen et al., 2003).

The original literature provides more insight, such as the seminal works of Ein-
stein (1905) and Langevin (1908) on Brownian motion or the first formulation and
study of the Lorenz (1963) model.
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Chapter 3
Complexity and Information Theory

What do we mean when by saying that a given system shows “complex behavior”,
can we provide precise measures for the degree of complexity? This chapter offers
an account of several common measures of complexity and the relation of complex-
ity to predictability and emergence.

The chapter starts with a self-contained introduction to information theory and
statistics. We will learn about probability distribution functions, the law of large
numbers and the central limiting theorem. We will then discuss the Shannon entropy
and the mutual information, which play central roles both in the context of time
series analysis and as starting points for the formulation of quantitative measures
of complexity. This chapter then concludes with a short overview over generative
approaches to complexity.

3.1 Probability Distribution Functions

Statistics is ubiquitous in everyday life and we are used to chat, e.g., about the
probability that our child will have blue or brown eyes, the chances to win a lottery
or those of a candidate to win the presidential elections. Statistics is also ubiquitous
in all realms of the sciences and basic statistical concepts are used throughout these
lecture notes.1

Variables and Symbols Probability distribution functions may be defined for con-
tinuous or discrete variables as well as for sets of symbols,

x ∈ [0,∞], xi ∈ {1, 2, 3, 4, 5, 6}, α ∈ {blue, brown, green} .

For example we may define with p(x) the probability distribution of human life
expectancy x , with p(xi ) the chances to obtain xi when throwing a dice or with
p(α) the probability to meet somebody having eyes of color α. Probabilities are in
any case positive definite and the respective distribution functions normalized,

1 In some areas, like the neurosciences or artificial intelligence, the term “Bayesian” is used for
approaches using statistical methods, in particular in the context of hypothesis building, when
estimates of probability distribution functions are derived from observations.

C. Gros, Complex and Adaptive Dynamical Systems, 2nd ed.,
DOI 10.1007/978-3-642-04706-0_3, C© Springer-Verlag Berlin Heidelberg 2011
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p(x), p(xi ), p(α) ≥ 0,
∫ ∞

0
p(x) dx = 1 =

∑
α

p(α), . . . .

The notation used for a given variable will indicate in the following its nature, i.e.
whether it is a continuous or discrete variable, or denoting a symbol. For con-
tinuous variables the distribution ρ(x) represents a probability density function
(PDF).

Continuous vs. Discrete Stochastic Variables When discretizing a stochastic
variable, e.g. when approximating an integral by a Riemann sum,

∫ ∞

0
p(x) dx ≈

∞∑
i=0

p(xi )Δx, xi = Δx (0.5 + i) , (3.1)

the resulting discrete distribution function p(xi ) is not any more normalized; the
properly normalized discrete distribution function is p(xi )Δx . Note, that both nota-
tions pi and p(xi ) are used for discrete distribution functions.2

Mean, Median and Standard Deviation The average 〈x〉, denoted also by x̄ , and
the standard deviation σ are given by

〈x〉 =
∫

x p(x) dx, σ 2 =
∫

(x − x̄)2 p(x) dx . (3.2)

One also calls x̄ the expectation value or just the mean, and σ 2 the variance.3 For
everyday life situations the median x̃ ,

∫
x<x̃

p(x) dx = 1

2
=
∫

x>x̃
p(x) dx , (3.3)

is somewhat more intuitive than the mean. We have a 50% chance to meet somebody
being smaller/taller than the median height.

Exponential Distribution Let us consider, as an illustration, the exponential distri-
bution, which describes, e.g. the distribution of waiting times for radioactive decay,

p(t) = 1

T
e−t/T ,

∫ ∞

0
p(t) dt = 1 , (3.4)

2 The expression p(xi ) is therefore context specific and can denote both a properly normalized
discrete distribution function as well as the value of a continuous probability distribution function.
3 In formal texts on statistics and information theory the notation μ = E(X) is often used for the
mean μ, the expectation value E(X) and a random variable X , where X represents the abstract
random variable, whereas x denotes its particular value and pX (x) the probability distribution.
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Fig. 3.1 Left: The exponential distribution exp(−t/T )/T , for an average waiting time T = 1.
The shaded area, t ∈ [0, ln(2)], is 1/2, where ln(2) is the median. Right: The normal distribution
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2π having a standard deviation σ = 1. The probability to draw a result within

one/two standard deviations of the mean (x ∈ [−1, 1] and x ∈ [−2, 2] respectively, shaded
regions), is 68% and 95%

with the mean waiting time

〈t〉 = 1

T

∫ ∞

0
t e−t/T dt = t

T
e−t/T

∣∣∞
0 +

∫ ∞

0
e−t/T dt = T .

The median t̃ and the standard deviation σ are evaluated readily as

t̃ = T ln(2), σ = T .

In 50% of times we have to wait less than t̃ ≈ 0.69 T , which is smaller than our
average waiting time T , compare Fig. 3.1.

Standard Deviation and Bell Curve The standard deviation σ measures the size
of the fluctuations around the mean. The standard deviation is especially intuitive
for the “Gaussian distribution”

p(x) = 1

σ
√

2π
e− (x−μ)2

2σ2 , 〈x〉 = μ, 〈(x − x̄)2〉 = σ 2 , (3.5)

also denoted “Bell curve”, or “normal distribution”. Bell curves are ubiquitous in
daily life, characterizing cumulative processes (see Sect. 3.1.1).

The Gaussian falls off rapidly with distance from the mean μ, compare Fig. 3.1.
The probability to draw a value within n standard deviation of the mean, viz the
probability that x ∈ [μ− nσ,μ+ nσ ], is 68, 95, 99.7% for n = 1, 2, 3. Note, that
these numbers are valid only for the Gaussian, not for a general PDF.

Probability Generating Functions We recall the basic properties of the generating
function

G0(x) =
∑

k

pk xk , (3.6)
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introduced in Sect. 1.2.2, for the probability distribution pk of a discrete variable
k = 0, 1, 2, .., namely

G0(1) =
∑

k

pk = 1, G ′
0(1) =

∑
k

k pk = 〈k〉 ≡ k̄ (3.7)

for the normalization and the mean 〈k〉 respectively. The second moment 〈k2〉

〈k2〉 =
∑

k

k2 pk xk
∣∣∣
x=1

= d

dx

(
x G ′

0(x)
) ∣∣∣

x=1
(3.8)

allows to express the standard deviation σ as

σ 2 = 〈(k − k̄)2〉 = 〈k2〉 − k̄2 = d

dx

(
x G ′

0(x)
) ∣∣∣

x=1
− (

G ′
0(1)

)2
= G ′′

0(1) + G ′
0(1) − (

G ′
0(1)

)2
. (3.9)

The importance of probability generating functions lies in the fact that the distribu-
tion for the sum k = ∑

i ki of independent stochastic variables ki is generated by the

product of the generating functions G(i)
0 (x) of the respective individual processes

p(i)
ki

, viz

G0(x) =
∑

k

pk xk =
∏

i

G(i)
0 (x), G(i)

0 (x) =
∑

ki

p(i)
ki

xki ,

see Sect. 1.2.2 for further details and examples.

Bayesian Theorem Events and processes may have dependencies upon each other.
A physician will typically have to know, to give an example, the probability that a
patient has a certain illness, given that the patient shows a specific symptom.

Conditional Probability. The probability that an event x occurs, given that
an event y has happened, is denoted “conditional probability” p(x |y).

Throwing a dice twice, the probability that the first throw resulted in a 1, given that
the total result was 4 = 1 + 3 = 2 + 2 = 3 + 1, is 1/3. Obviously,

p(x) =
∫

p(x |y) p(y) dy (3.10)

holds. The probability distribution of throwing x in the first throw and y in the
second throw is determined, on the other hand, by the joint distribution p(x, y).

Joint Probability Distribution. The probability of events x and y occurring
is given by the “joint probability” p(x, y).
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Note, that
∫

p(x, y)dxdy = 1. The self-evident relation

p(x, y) = p(x |y) p(y) (3.11)

is denoted “Bayes’ theorem”. As a corollary of Eq. (3.11), p(y|x)p(x) =
p(x |y)p(y) holds.

3.1.1 The Law of Large Numbers

Throwing a dice many times and adding up the results obtained, the resulting aver-
age will be close to 3.5 N , where N is the number of throws. This is the typical
outcome for cumulative stochastic processes.4

Law of Large Numbers. Repeating N times a stochastic process with mean
x̄ and standard deviation σ , the mean and the standard deviation of the
cumulative result will approach x̄ N and σ

√
N respectively in the thermo-

dynamic limit N → ∞.

The law of large numbers implies, that one obtains x̄ as an averaged result, with a
standard deviation σ/

√
N for the averaged process. One needs to square the number

of trials in order to improve accuracy by a factor of two.

Proof For a proof of the law of large numbers we consider a discrete process pk

described by the generating functional G0(x). This is not really a restriction, since
PDFs of continuous variables can be discretized with arbitrary accuracy. The cumu-
lative stochastic process is then characterized by a generating functional

G N
0 (x), k̄(N ) = d

dx
G N

0 (x)
∣∣∣
x=1

= N G N−1
0 (x) G ′

0(x)
∣∣∣
x=1

= N k̄

and the mean k̄(N ) = Nk̄ respectively. For the standard deviation σ (N ) of the cumu-
lative process we use Eq. (3.9),

(
σ (N )

)2 = d

dx

(
x

d

dx
G N

0 (x)

) ∣∣∣
x=1

− (
Nk̄
)2

= d

dx

(
x N G N−1

0 (x) G ′
0(x)

)∣∣∣
x=1

− N 2 (G ′
0(1)

)2
= N G ′

0(1) + N (N − 1)
(
G ′

0(1)
)2 + N G ′′

0(1) − N 2 (G ′
0(1)

)2
= N

(
G ′′

0(1) + G ′
0(1) − (

G ′
0(1)

)2) ≡ N σ 2 , (3.12)

and obtain the law of large numbers.

4 Please take note of the difference between a cumulative stochastic process, when adding the
results of individual trials, and the “cumulative PDF” F(x) defined by F(x) = ∫ x

−∞ p(x ′)dx ′.
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Central Limiting Theorem The law of large numbers tells us, that the variance
σ 2 is additive for cumulative processes, not the standard deviation σ . The “central
limiting theorem” then tells us, that the limiting distribution function is a Gaussian.

Central Limiting Theorem. Given i = 1, . . . , N independent random vari-
ables xi , distributed with mean μi and standard deviations σi . The cumulative
distribution x = ∑

i xi is then described, for N → ∞, by a Gaussian with
mean μ = ∑

i μi and variance σ 2 = ∑
i σ

2
i .

In most cases one is not interested in the cumulative result, but in the averaged one,
which is obtained by rescaling of variables

y = x/N , μ̄ = μ/N , σ̄ = σ/N , p(y) = 1

σ̄
√

2π
e
− (y−μ̄)2

2σ̄2 .

The rescaled standard deviation scales with 1/
√

N . To see this, just consider identi-
cal processes with σi ≡ σ0,

σ̄ = 1

N

√∑
i

σ 2
i = σ0√

N
,

in accordance with the law of large numbers.

Is Everything Boring Then? One might be tempted to draw the conclusion that
systems containing a large number of variables are boring, since everything seems
to average out. This is actually not the case, the law of large numbers holds only
for statistically independent processes. Subsystems of distributed complex systems
are however dynamically dependent and these dynamical correlations may lead to
highly non-trivial properties in the thermodynamic limit.

3.1.2 Time Series Characterization

In many cases one is interested in estimating the probability distribution functions
for data generated by some known or unknown process, like the temperature mea-
surements of a weather station. It is important, when doing so, to keep a few caveats
in mind.

Binning of Variables Here we will be dealing mainly with the time series of data
generated by dynamical systems. As an example we consider the logistic map, com-
pare Sect. 2.2,

xn+1 = f (xn) ≡ r xn (1 − xn), xn ∈ [0, 1], r ∈ [0, 4] . (3.13)
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Fig. 3.2 For the logistic map with r = 3.9 and x0 = 0.6, two statistical analyses of the time series
xn , n = 0, . . . , N , with N = 106. Left: The distribution p(x) of the xn . Plotted is Nbin p(x)/N , for
Nbin = 10/100 bins (curve with square symbols and open vertical bars respectively). The data is
plotted at the midpoints of the respective bins. Right: The joint probabilities p±±, as defined by Eq.
(3.15), of consecutive increases/decreases of the xn . The probability p−− that the data decreases
consecutively twice vanishes

The dynamical variable is continuous and in order to estimate the probability distri-
bution of the xn we need to bin the data. In Fig. 3.2 the statistics of a time series in
the chaotic regime, for r = 3.9, is given.

One needs to select the number of bins Nbin and, in general, also the positions
and the widths of the bins. When the data is not uniformly distributed one may
place more bins in the region of interest, generalizing the relation (3.1) through
Δx → Δxi , with the Δxi being the width of the individual bins.

For our illustrative example see Fig. 3.2, we have selected Nbin = 10/100
equidistant bins. The data is distributed over more bins, when Nbin increases. In
order to make the distribution functions for different number of bins comparable
one needs to rescale them with Nbin, as it has been done for the data shown in
Fig. 3.2.

The selection of the binning procedure is in general a difficult choice. Fine struc-
ture will be lost when Nbin is too low, but statistical noise will dominate for a too
large number of bins.

Symbolization One denotes by “symbolization” the construction of a finite number
of symbols suitable for the statistical characterization of a given time series.5 The
binning procedure discussed above is a commonly used symbolization procedure.

For a further example of a symbolization procedure we denote with δt = ±1,

δt = sign(xt − xt−1) =
{

1 xt > xt−1
−1 xt < xt−1

(3.14)

5 For continuous-time data, as for an electrocardiogram, an additional symbolization step is nec-
essary, the discretization of time. Here we consider however only discrete-time series.
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the direction of the time development. The consecutive development of the δt may
then be encoded in higher-level symbolic stochastic variables. For example one
might be interested in the joint probabilities

p++ = 〈p(δt = 1, δt−1 = 1)〉t p+− = 〈p(δt = 1, δt−1 = −1)〉t

p−+ = 〈p(δt = −1, δt−1 = 1)〉t p−− = 〈p(δt = −1, δt−1 = −1)〉t
, (3.15)

where p++ gives the probability that the data increases at least twice consecutively,
etc., and where 〈. . . 〉t denotes the time average. In Fig. 3.2 the values for the joint
probabilities p±± are given for a selected time series of the logistic map in the
chaotic regime. The data never decreases twice consecutively, p−− = 0, a somewhat
unexpected result.

There are many possible symbolization procedures and the procedure used to
analyze a given time series determines the kind of information one may hope to
extract, as evident from the results illustrated in Fig. 3.2. The selection of the sym-
bolization procedures needs to be given attention, and will be discussed further in
Sect. 3.2.1.

Self Averaging A time series produced by a dynamical system depends on the
initial condition and so will generally also the statistical properties of the time series.
As an example we consider the XOR series6

σt+1 = XOR(σt , σt−1), σt = 0, 1 . (3.16)

The four initial conditions 00, 01, 10 and 11 give rise to the respective time series

. . . 000000000 . . . 101101101

. . . 110110110 . . . 011011011
(3.17)

where time runs from right to left and where we have underlined the initial condi-
tions σ1 and σ0. The typical time series, occurring for 75% of the initial conditions,
is ..011011011011.., with p(0) = 1/3 and p(1) = 2/3 for the probability to find
a 0/1. When averaging over all four initial conditions, we have on the other hand
(2/3)(3/4) = 1/2 for the probability to find a 1. Then

p(1) =
{

2/3 typical
1/2 average

.

When observing a single time series we are likely to obtain the typical probability,
analyzing many time series will result on the other hand in the average probability.

Self Averaging. When the statistical properties of a time series generated by
a dynamical process are independent of the respective initial conditions, one
says the time series is “self averaging”.

6 Remember, that XOR(0, 0) = 0 = XOR(1, 1) and XOR(0, 1) = 1 = XOR(1, 0).
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The XOR series is not self averaging and one can generally not assume self aver-
aging to occur. An inconvenient situation whenever only a single time series is
available, as it is the case for most historical data, e.g. of past climatic conditions.

XOR Series with Noise Most real-world processes involve a certain degree of
noise and one may be tempted to assume, that noise could effectively restart the
dynamics, leading to an implicitly averaging over initial conditions. This assumption
is not generally valid but works out for XOR process with noise,

σt+1 =
{

XOR(σt , σt−1) probability 1 − ξ

¬ XOR(σt , σt−1) probability ξ
0 ≤ ξ � 1 . (3.18)

For low level of noise, ξ → 0, the time series

. . . 000000001101101101011011011011101101101100000000 . . .

has stretches of regular behavior interseeded by four types of noise induced
dynamics (underlined, time running from right to left). Denoting with p000 and p011
the probability of finding regular dynamics of type . . . 000000000 . . . and . . . 011011
011 . . . respectively, we find the master equation

ṗ011 = ξp000 − ξp011/3 = − ṗ000 (3.19)

for the noise-induced transition probabilities. In the stationary case p000 = p011/3
for the XOR process with noise, the same ratio one would obtain for the determin-
istic XOR series averaged over the initial conditions.

The introduction of noise generally introduces a complex dynamics akin to the
master Eq. (3.19) and it is generally not to be expected that the time series becomes
such self-averaging. A simple counter example is the OR time series; we leave its
analysis to the reader.

Time Series Analysis and Cognition Time series analysis is a tricky business
whenever the fundamentals of the generative process are unknown, e.g. whether
noise is important or not. This is however the setting in which cognitive systems,
see Chap. 8, are operative. Our sensory organs, eyes and ears, provide us with a
continuous time series encoding environmental information. Performing an infor-
mative time series analysis is paramount for surviving.

3.2 Entropy and Information

Entropy is a venerable concept from physics encoding the amount of disorder
present in a thermodynamic system at a given temperature. The “Second Law of
Thermodynamics” states, that entropy can only increase in an isolated (closed) sys-
tem. The second law has far reaching consequences, e.g. determining the maxi-
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mal efficiency of engines and power plants, and philosophical implications for our
understanding of the fundamentals underpinning the nature of life as such.

Entropy and Life Living organisms have a body and such create ordered struc-
tures from basic chemical constituents. Living beings therefore decrease entropy
locally, in their bodies, seemingly in violation of the second law. In reality, the local
entropy depressions are created on the expense of corresponding entropy increases
in the environment, in agreement with the second law of thermodynamics. All living
beings need to be capable of manipulating entropy.

Information Entropy and Predictability Entropy is also a central concept in
information theory, where it is commonly denoted “Shannon entropy” or “informa-
tion entropy”. In this context one is interested in the amount of information encoded
by a sequence of symbols

. . . σt+2, σt+1, σt , σt−1, σt−2, . . . ,

e.g. when transmitting a message. Typically, in everyday computers, the σt are
words of bits. Let us consider two time series of bits, e.g.

. . . 101010101010 . . . , . . . 1100010101100 . . . . (3.20)

The first example is predictable, from the perspective of a time-series, and ordered,
from the perspective of an one-dimensional alignment of bits. The second example
is unpredictable and disordered respectively.

Information can be transmitted through a time series of symbols only when this
time series is not predictable. Talking to a friend, to illustrate this statement, we will
not learn anything new when capable of predicting his next joke. We have therefore
the following two perspectives,

high entropy =̂
{

large disorder physics
high information content information theory

,

and vice versa. Only seemingly disordered sequences of symbols are unpredictable
and thus potential carriers of information. Note, that the predictability of a given
time series, or its degree of disorder, may not necessarily be as self evident as in
above example, Eq. (3.20), depending generally on the analysis procedure used, see
Sect. 3.2.1.

Extensive Information In complex system theory, as well as in physics, we are
often interested in properties of systems composed of many subsystems.

Extensive and Intensive Properties. For systems composed of N subsystems
a property is denoted “extensive” if it scales as O(N 1) and “intensive” when
it scales with O(N 0).
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Fig. 3.3 Left: Plot of −x log2(x). Right: The logarithm log2(x) (full line) is concave, every cord
(dashed line) lies below the graph

A typical extensive property is the mass, a typical intensive property the density.
When lumping together two chunks of clay, their mass adds, but the density does
not change.

One demands, both in physics and in information theory, that the entropy should
be an extensive quantity. The information content of two independent transmission
channels should be just the sum of the information carried by the two individual
channels.

Shannon Entropy The Shannon entropy H [p] is defined by

H [p] = −
∑

xi

p(xi ) logb(p(xi )) = −〈 logb(p) 〉, H [p] ≥ 0 , (3.21)

where p(xi ) is a normalized discrete probability distribution function and where the
brackets in H [p] denote the functional dependence.7 Note, that −p log(p) ≥ 0 for
0 ≤ p ≤ 1, see Fig. 3.3, the entropy is therefore strictly positive.

b is the base of the logarithm used in Eq. (3.21). Common values of b are 2,
Euler’s number e and 10. The corresponding units of entropy are then termed “bit”
for b = 2, “nat” for b = e and “digit” for b = 10. In physics the natural logarithm is
always used and there is an additional constant (the Boltzmann constant kB) in front
of the definition of the entropy. Here we will use b = 2 and drop in the following
the index b.

Extensiveness of the Shannon Entropy The log-dependence in the definition of
the information entropy in Eq. (3.21) is necessary for obtaining an extensive quan-
tity. To see this, let us consider a system composed of two independent subsystems.
The joint probability distribution is multiplicative,

7 A function f (x) is a function of a variable x ; a functional F[ f ] is, on the other hand, functionally
dependent on a function f (x). In formal texts on information theory the notation H(X) is often
used for the Shannon entropy and a random variable X with probability distribution pX (x).
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p(xi , y j ) = pX (xi )pY (y j ), log(p(xi , y j )) = log(pX (xi ))+ log(pY (y j )) .

The logarithm is the only function which maps a multiplicative input onto an addi-
tive output. Consequently,

H [p] = −
∑
xi ,y j

p(xi , y j ) log(p(xi , y j ))

= −
∑
xi ,y j

pX (xi )pY (y j )
[

log(pX (xi )) + log(pY (y j ))
]

= −
∑

xi

pX (xi )
∑
y j

pY (y j ) log(pY (y j ))−
∑

y j

pY (y j )
∑

xi

pX (xi ) log(pX (xi ))

= H [pY ] + H [pX ] ,

as necessary for the extensiveness of H [p]. Hence the log-dependence in Eq. (3.21).

Degrees of Freedom We consider a discrete system with xi ∈ [1, . . . , n], having n
“degrees of freedom” in physics’ slang. If the probability of finding any value is
equally likely, as it is the case for a thermodynamic system at infinite temperatures,
the entropy is

H = −
∑

xi

p(xi ) log(p(xi )) = −n
1

n
log(1/n) = log(n) , (3.22)

a celebrated result. The entropy grows logarithmically with the number of degrees
of freedom.

Shannon’s Source Coding Theorem So far we have shown, that Eq. (3.21) is the
only possible definition, modulo renormalizing factors, for an extensive quantity
depending exclusively on the probability distribution. The operative significance of
the entropy H [p] in terms of informational content is given by Shannon’s theorem.

Source Coding Theorem. Given a random variable x with a PDF p(x) and
entropy H [p]. The cumulative entropy N H [p] is then, for N → ∞, a lower
bound for the number of bits necessary when trying to compress N indepen-
dent processes drawn from p(x).

If we compress more, we will lose information, the entropy H [p] is therefore a
measure of information content.

Entropy and Compression Let’s make an example. Consider we have words made
out of the four letter alphabet A, B, C and D. Suppose, that these four letters would
not occur with the same probability, the relative frequencies being

p(A) = 1

2
, p(B) = 1

4
, p(C) = 1

8
= p(D) .
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When transmitting a long series of words using this alphabet we will have the
entropy

H [p] = −1

2
log(1/2) − 1

4
log(1/4) − 1

8
log(1/8) − 1

8
log(1/8)

= 1

2
+ 2

4
+ 3

8
+ 3

8
= 1.75 , (3.23)

since we are using the logarithm with base b = 2. The most naive bit encoding,

A → 00, B → 01, C → 10, D → 11 ,

would use exactly two bit, which is larger than the Shannon entropy. An optimal
encoding would be, on the other hand,

A → 1, B → 01, C → 001, D → 000 , (3.24)

leading to an average length of words transmitted of

p(A) + 2p(B) + 3p(C) + 3p(D) = 1

2
+ 2

4
+ 3

8
+ 3

8
= 1.75 , (3.25)

which is the same as the information entropy H [p]. The encoding given in Eq.
(3.24) is actually “prefix-free”. When we read the words from left to right, we know
where a new word starts and stops,

110000010101 ←→ AADCBB ,

without ambiguity. Fast algorithms for optimal, or close to optimal encoding are
clearly of importance in the computer sciences and for the compression of audio
and video data.

Discrete vs. Continuous Variables When defining the entropy we have considered
hitherto discrete variables. The information entropy can also be defined for conti-
nous variables. We should be careful though, being aware that the transition from
continuous to discrete stochastic variables, and vice versa, is slightly non-trivial,
compare Eq. (3.1):

H [p]
∣∣∣
con

= −
∫

p(x) log(p(x)) dx ≈
∑

i

p(xi ) log(p(xi )))Δx

= −
∑

i

pi log(pi/Δx) = −
∑

i

pi log(pi ) +
∑

i

pi log(Δx)

= H [p]
∣∣∣
dis

+ log(Δx) , (3.26)
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where pi = p(xi )Δx is here the properly normalized discretized PDF, compare
Eq. (3.1). The difference log(Δx) between the continuous-variable entropy
H [p]∣∣con and the discretized version H [p]∣∣dis diverges for Δx → 0, the transition
is discontinuous.

Entropy of a Continuous PDF From Eq. (3.26) it follows, that the Shannon
entropy H [p]∣∣con can be negative for a continous probability distribution function.
As an example consider the flat distribution

p(x) =
{

1/ε for x ∈ [0, ε]
0 otherwise

,

∫ ε

0
p(x) dx = 1

in the small interval [0, ε], with the entropy

H [p]
∣∣∣
con

= −
∫ ε

0

1

ε
log(1/ε) dx = log(ε) < 0, for ε < 1 .

The absolute value of the entropy is hence not meaningful for continous PDFs, only
entropy differences. H [p]∣∣con is therefore also referred-to as “differential entropy”.

Maximal Entropy Distributions Which kind of distributions maximize entropy,
viz information content? Remembering that

lim
p→0,1

p log(p) = 0, log(1) = 0 ,

see Fig. 3.3, it is intuitive that a flat distribution might be optimal. This is indeed
correct in the absence of any further constraints. We consider three cases.

– No constraint: we need to maximize

H [p] =
∫

f (p(x)) dx, f (p) = −p log(p) , (3.27)

where the notation used will turn out useful later on. Maximizing a functional
like H [p] is a typical task of variational calculus. One considers with

p(x) = popt(x) + δp(x), δp(x) arbitrary

a general variation of δp(x) around the optimal function popt (x). At optimality,
the dependence of H [p] on the variation δp should be stationary,

0 ≡ δH [p] =
∫

f ′(p) δp dx, 0 = f ′(p) , (3.28)

where f ′(p) = 0 follows from the fact that δp is an arbitrary function. For
f (p) = −p log(p) we find then with
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f ′(p) = − log(p) − 1 = 0, p(x) = const. (3.29)

the expected flat distribution.
– Fixed mean: next we consider the entropy maximization under the constraint of

fixed average μ,

μ =
∫

x p(x) dx . (3.30)

This condition can be enforced by a Lagrange parameter λ via

f (p) = −p log(p) − λxp .

The stationary condition f ′(p) = 0 then leads to

f ′(p) = − log(p) − 1 − λx = 0, p(x) ∝ 2−λx ∼ e−x/μ (3.31)

the exponential distribution, see Eq. (3.4), with mean μ. The Lagrange parameter
λ needs to be determined such that the condition of fixed mean, Eq. (3.30), is
satisfied. For a support x ∈ [0,∞], as assumed above, we have λ loge(2) = 1/μ.

– Fixed mean and variance: Lastly we consider the entropy maximization under the
constraint of fixed average μ and variance σ 2,

μ =
∫

x p(x) dx, σ 2 =
∫

(x − μ)2 p(x) dx . (3.32)

We leave it to the reader to show that the entropy is the maximal for a
Gaussian.

3.2.1 Information Content of a Real-World Time Series

The Shannon entropy is a very powerful concept in information theory. The encod-
ing rules are typically known in information theory, there is no ambiguity regarding
the symbolization procedure (see Sect. 3.1.2) to employ when receiving a message
via some technical communication channel. This is however not any more the case,
when we are interested in determining the information content of real-world pro-
cesses, e.g. the time series of certain financial data or the data stream produced by
our sensory organs.

Symbolization and Information Content The result obtained for the information
content of a real-world time series {σt } depends in general on the symbolization
procedure used. Let us consider, as an example, the first time series of Eq. (3.20),

. . . 101010101010 . . . . (3.33)
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When using a one-bit symbolization procedure, we have

p(0) = 1

2
= p(1), H [p] = −2

1

2
log(1/2) = 1 ,

as expected. If, on the other hand, we use a two-bit symbolization, we find

p(00) = p(11) = p(01) = 0, p(10) = 1, H [p] = − log(1) = 0 .

When two-bit encoding is presumed, the time series is predictable and carries no
information. This seems intuitively the correct result and the question is: Can we
formulate a general guiding principle which tells us which symbolization procedure
would yield the more accurate result for the information content of a given time
series?

The Minimal Entropy Principle The Shannon entropy constitutes a lower bound
for the number of bits, per symbol, necessary when compressing the data without
loss of information. Trying various symbolization procedures, the symbolization
procedure yielding the lowest information entropy then allows us to represent, with-
out loss of information, a given time series with the least number of bits.

Minimal Entropy Principle. The information content of a time series with
unknown encoding is given by the minimum (actually the infimum) of the
Shannon entropy over all possible symbolization procedures.

The minimal entropy principle then gives us a definite answer with respect to the
information content of the time series given in Eq. (3.33). We have seen that at
least one symbolization procedure yields a vanishing entropy and one cannot get a
lower value, since H [p] ≥ 0. This is the expected result, since . . . 01010101 . . . is
predictable.

Information Content of a Predictable Time Series Note, that a vanishing infor-
mation content H [p] = 0 only implies that the time series is strictly predictable,
not that it is constant. One therefore needs only a finite amount of information to
encode the full time series, viz for arbitrary lengths N → ∞. When the time series
is predictable, the information necessary to encode the series is intensive and not
extensive.

Symbolization and Time Horizons The minimal entropy principle is rather
abstract. In practice one may not be able than to try out more than a handful of
different symbolization procedures. It is therefore important to gain an understand-
ing of the time series at hand.

An important aspect of many time series is the intrinsic time horizon τ . Most
dynamical processes have certain characteristic time scales and memories of past
states are effectively lost for times exceeding these intrinsic time scales. The sym-
bolization procedure used should therefore match the time horizon τ

This is what happened when analyzing the time series given in Eq. (3.33), for
which τ = 2. A one-bit symbolization procedure implicitly presumes that σt and
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σt+1 are statistically independent and such missed the intrinsic time scale τ = 2, in
contrast to the two-bit symbolization procedure.

3.2.2 Mutual Information

We have been considering so far the statistical properties of individual stochastic
processes as well as the properties of cumulative processes generated by the sum
of stochastically independent random variables. In order to understand complex
systems we need to develop tools for the description of a large number of interde-
pendent processes. As a first step towards this direction we consider in the following
the case of two stochastic processes, which may now be statistically correlated.

Two Channels – Markov Process We start by considering an illustrative example
of two correlated channels σt and τt , with

σt+1 = XOR(σt , τt ), τt+1 =
{

XOR(σt , τt ) probability 1 − ξ

¬XOR(σt , τt ) probability ξ
. (3.34)

This dynamics has the “Markov property”, the value for the state {σt+1, τt+1}
depends only on the state at the previous time step, viz on {σt , τt }.

Markov Process. A discrete-time memory-less dynamical process is denoted
a “Markov process”. The likelihood of future states depends only on the
present state, and not on any past states.

When the state space is finite, as in our example, the term “Markov chain” is also
used. We will not adhere here to the distinction which is sometimes made between
discrete and continuous time, with Markov processes being formulated for discrete
time and “master equations” describing stochastic processes for continuous time.

Joint Probabilities A typical time series of the Markov chain specified in Eq.
(3.34) looks like

. . . σt+1σt . . . : 0 0 0 1 0 0 0 0 0 0 1 0 1 0 . . .

. . . τt+1τt . . . : 0 0 0 1 1 0 0 0 0 0 1 1 1 1 . . .
,

where we have underlined instances of noise-induced transitions. For ξ = 0 the
stationary state is {σt , τt } = {0, 0} and therefore fully correlated. We now calculate
the joint probabilities p(σ, τ ) for general values of noise ξ , using the transition
probabilities

pt+1(0, 0)= (1 − ξ)
[

pt (1, 1) + pt (0, 0)
]

pt+1(1, 1)= (1 − ξ)
[

pt (1, 0) + pt (0, 1)
], pt+1(1, 0)= ξ

[
pt (0, 1) + pt (1, 0)

]
pt+1(0, 1)= ξ

[
pt (0, 0) + pt (1, 1)

] ,
for the ensemble averaged joint probability distributions pt (σ, τ ) = 〈p(σt , τt )〉ens ,
where the average 〈..〉ens denotes the average over an ensemble of time series. For
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the solution in the stationary case pt+1(σ, τ ) = pt (σ, τ ) ≡ p(σ, τ ) we use the
normalization

p(1, 1) + p(0, 0) + p(1, 0) + p(0, 1) = 1 .

We find

p(1, 1) + p(0, 0) = 1 − ξ, p(1, 0) + p(0, 1) = ξ ,

by adding the terms ∝ (1 − ξ) and ∝ ξ respectively. It then follows immediately

p(0, 0) = (1 − ξ)2

p(1, 1) = (1 − ξ)ξ
,

p(1, 0) = ξ2

p(0, 1) = ξ(1 − ξ)
. (3.35)

For ξ = 1/2 the two channels become 100% uncorrelated, as the τ -channel is
then fully random. The dynamics of the Markov process given in Eq. (3.34) is self
averaging and it is illustrative to verify the result for the joint distribution function,
Eq. (3.35), by a straightforward numerical simulation.

Entropies Using the notation

pσ (σ
′) =

∑
τ ′

p(σ ′, τ ′), pτ (τ
′) =

∑
σ ′

p(σ ′, τ ′)

for the “marginal distributions” pσ and pτ , we find from Eq. (3.35)

pσ (0) = 1 − ξ

pσ (1) = ξ
,

pτ (0) = 1 − 2ξ(1 − ξ)

pτ (1) = 2ξ(1 − ξ)
(3.36)

for the distributions of the two individual channels. We may now evaluate both the
entropies of the individual channels, H [pσ ] and H [pτ ], the “marginal entropies”,
viz

H [pσ ] = −〈log(pσ )〉, H [pτ ] = −〈log(pτ )〉 , (3.37)

as well as the entropy of the combined process, termed “joint entropy”,

H [p] = −
∑
σ ′,τ ′

p(σ ′, τ ′) log(p(σ ′, τ ′)) . (3.38)

In Fig. 3.4 the respective entropies are plotted as a function of noise strength ξ .
Some observations:

• In the absence of noise, ξ = 0, both the individual channels as well as the com-
bined process are predictable and all three entropies, H [p], H [pσ ] and H [pτ ],
vanish consequently.

• For maximal noise ξ = 0.5, the information content of both individual chains is
one bit and of the combined process two bits, implying statistical independence.
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Fig. 3.4 For the two-channel XOR-Markov chain {σt , τt } with noise ξ , see Eq. (3.34), the entropy
H [p] of the combined process (full line, Eq. (3.38)), of the individual channels (dashed lines,
Eq. (3.37)), H [pσ ] and H [pτ ], and of the sum of the joint entropies (dot-dashed line). Note the
positiveness of the mutual information, I (σ, τ ) = H [pσ ] + H [pτ ] − H [p] > 0

• For general noise strengths 0 < ξ < 0.5, the two channels are statistically corre-
lated. The information content of the combined process H [p] is consequently
smaller than the sum of the information contents of the individual channels,
H [pσ ] + H [pτ ].

Mutual Information The degree of statistical dependency of two channels can be
measured by comparing the joint entropy with the respective marginal entropies.

Mutual Information. For two stochastic processes σt and τt the difference

I (σ, τ ) = H [pσ ] + H [pτ ] − H [p] (3.39)

between the sum of the marginal entropies H [pσ ] + H [pτ ] and the joint
entropy H [p] is denoted “mutual information” I (σ, τ ).

When two dynamical processes become correlated, information is lost and this
information loss is given by the mutual information. Note, that I (σ, τ ) = I [p]
is a functional of the joint probability distribution p only, the marginal distribution
functions pσ and pτ being themselves functionals of p.

Positiveness We will now discuss some properties of the mutual information,
considering the general case of two stochastic processes described by the joint
PDF p(x, y) and the respective marginal PDFs pX (x) = ∫

p(x, y)dy, pY (y) =∫
p(x, y)dx .
The mutual information

I (X,Y ) = 〈log(p)〉 − 〈log(pX )〉 − 〈log(pY )〉 I (X,Y ) ≥ 0 , (3.40)

is strictly positive. Rewriting the mutual information as
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I (X,Y ) =
∫

p(x, y)
[

log(p(x, y)) − log(pX (x)) − log(pY (y))
]
dx dy (3.41)

=
∫

p(x, y) log

(
p(x, y)

pX (x)pY (y)

)
dx dy = −

∫
p log

(
pX pY

p

)
dx dy ,

we can easily show that I (X,Y ) ≥ 0 follows from the concaveness of the loga-
rithm, see Fig. 3.3,

log(p1x1 + p2x2) ≥ p1 log(x1) + p2 log(x2), ∀x1, x2 ∈ [0,∞] , (3.42)

and p1, p2 ∈ [0, 1], with p1 + p2 = 1; any cord of a concave function lies below
the graph. We can regard p1 and p2 as the coefficients of a distribution function and
generalize,

p1δ(x − x1) + p2δ(x − x2) −→ p(x) ,

where p(x) is now a generic, properly normalized PDF. The concaveness condition,
Eq. (3.42), then reads

log

(∫
p(x) x dx)

)
≥
∫

p(x) log(x) dx , ϕ (〈x〉) ≥ 〈ϕ(x) 〉 , (3.43)

the “Jensen inequality”, which holds for any concave function ϕ(x). This inequality
remains valid when substituting x → pX pY /p for the argument of the logarithm.8

We then obtain for the mutual information, Eq. (3.41),

I (X,Y ) = −
∫

p log

(
pX pY

p

)
dx dy ≥ − log

(∫
ppX pY /p dx dy

)

= − log

(∫
pX (x) dx

∫
pY (y) dy

)
= − log(1) = 0 ,

viz I (X,Y ) is non-negative. Information can only be loost when correlating two
previously independent processes.

Conditional Entropy There are various ways to rewrite the mutual information,
using Bayes theorem p(x, y) = p|(x |y)pY (y) between the joint PDF p(x, y), the
conditional PDF p|(x |y) and the marginal PDF pY (y), e.g.

I (X,Y ) =
〈
log

(
p

pX pY

)〉
=
∫

p(x, y) log

(
p(x |y)
pX (x)

)
dx dy

≡ H [pX ] − H [p|] ,

8 For a proof consider the generic substitution x → q(x) and a transformation of variables x → q
via dx = dq/q ′, with q ′ = dq(x)/dx , for the integration in Eq. (3.43).
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where we have defined the “conditional entropy”

H [p|] = −〈 log(p|) 〉 = −
∫

p(x, y) log(p|(x |y)) dx dy . (3.44)

The conditional entropy is positive for discrete processes, since

−p(xi , y j ) log(p|(xi |y j )) = −p|(xi |y j )pY (y j ) log(p|(xi |y j ))

is positive, as −p| log(p|) ≥ 0 in the interval p| ∈ [0, 1], compare Fig. 3.3 and Eq.
(3.26) for the change-over from continous to discrete variables. Several variants of
the conditional entropy may be used to extend the statistical complexity measures
discussed in Sect. 3.3.1.

Kullback-Leibler Divergence The mutual information, Eq. (3.41), is a special
case of the “Kullback-Leibler Divergence”

Kullback-Leibler Divergence. Given two probability distribution functions
p(x) and q(x) the functional

K [p; q] =
∫

p(x) log

(
p(x)

q(x)

)
dx ≥ 0 (3.45)

is a non-symmetric measure of the difference between p(x) and q(x).

The Kullback-Leibler divergence K [p; q] is also denoted “relative entropy” and the
proof for K [p; q] ≥ 0 is analogous to the one for the mutual information given
above. The Kullback-Leibler divergence vanishes for p(x) ≡ q(x).

Example As a simple example we consider two distributions, p(σ ) and q(σ ), for
a binary variable σ = 0, 1,

p(0) = 1/2 = p(1), q(0) = α, q(1) = 1 − α , (3.46)

with p(σ ) being flat and α ∈ [0, 1]. The Kullback-Leibler divergence,

K [p; q] =
∑
σ=0,1

p(σ ) log

(
p(σ

q(σ )

)
= −1

2
log(2α) − 1

2
log(2(1 − α))

= − log(4(1 − α)α) / 2 ≥ 0 ,

is unbounded, since limα→0,1 K [p; q] → ∞. Interchanging p ↔ q we find

K [q; p] = α log(2α) + (1 − α) log(2(1 − α))

= log(2) + α log(α) + (1 − α) log(1 − α) ≥ 0 ,
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Fig. 3.5 Left: For the two PDFs p and q parametrized by α, see Eq. (3.46), the respective Kullback-
Leibler divergences K [p; q] (dashed line) and K [q; p] (full line). Note the maximal asymmetry
for α → 0, 1, where limα→0,1 K [p; q] = ∞. Right: The degree of complexity (full line) should
be minimal both in the fully ordered and the fully disordered regime. For some applications it may
however be meaningful to consider complexity measures maximal for random states (dashed line)

which is now finite in the limit limα→0,1. The Kullback-Leibler divergence is highly
asymmetric, compare Fig. 3.5.

3.3 Complexity Measures

Can we provide a single measure, or a small number of measures, suitable for
characterizing the “degree of complexity” of any dynamical system at hand? This
rather philosophical question has fascinated researchers for decades and no defini-
tive answer is known.

The quest of complexity measures touches many interesting topics in dynam-
ical system theory and has led to a number of powerful tools suitable for study-
ing dynamical systems, the original goal of developing a one-size-fit-all measure
for complexity seems however not anymore a scientifically valid target. Complex
dynamical systems can show a huge variety of qualitatively different behaviors, one
of the reasons why complex system theory is so fascinating, and it is not appropriate
to shove all complex systems into a single basket for the purpose of measuring their
degree of complexity with a single yardstick.

Intuitive Complexity The task of developing a mathematically well defined mea-
sure for complexity is handicapped by the lack of a precisely defined goal. In the
following we will discuss some selected prerequisites and constraints one may pos-
tulate for a valid complexity measure. In the end it is, however, up to our intuition
for deciding whether these requirements are appropriate or not.

An example of a process one may intuitively attribute a high degree of com-
plexity are the intricate spatio-temporal patterns generated by the forest fire model
discussed in Sect. 5.3, and illustrated in Fig. 5.6, with perpetually changing fronts
of fires burning through a continuously regrowing forest.

Complexity vs. Randomness A popular proposal for a complexity measure is the
information entropy H [p], see Eq. (3.21). It vanishes when the system is regular,
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which agrees with our intuitive presumption that complexity is low when nothing
happens. The entropy is however maximal for random dynamics, as shown in
Fig. 3.4.

It is a question of viewpoints to which extend one should consider random sys-
tems as complex, compare Fig. 3.5. For some considerations, e.g. when dealing
with “algorithmic complexity” (see Sect. 3.3.2) it makes sense to attribute maximal
complexity degrees to completely random sets of objects. In general, however, com-
plexity measures should be concave and minimal for regular behavior as well as for
purely random sequences.

Complexity of Multi-Component Systems Complexity should be a positive quan-
tity, like entropy. Should it be, however, extensive or intensive? This is a difficult and
highly non-trivial question to ponder.

Intuitively one may demand complexity to be intensive, as one would not expect
to gain complexity when considering the behavior of a set of N independent and
identical dynamical systems. On the other side we cannot rule out that N strongly
interacting dynamical systems could show more and more complex behavior with
an increasing number of subsystems, e.g. we consider intuitively the global brain
dynamics to be orders of magnitude more complex than the firing patterns of the
individual neurons.

There is no simple way out of this quandary when searching for a single one-
size-fits-all complexity measure. Both intensive and extensive complexity measures
have their areas of validity.

Complexity and Behavior The search for complexity measures is not just an
abstract academic quest. As an example consider how bored we are when our envi-
ronment is repetitive, having low complexity, and how stressed when the complexity
of our sensory inputs is too large. There are indeed indications that a valid behav-
ioral strategy for highly developed cognitive systems may consist in optimizing the
degree of complexity. Well defined complexity measures are necessary in order to
quantify this intuitive statement mathematically.

3.3.1 Complexity and Predictability

Interesting complexity measures can be constructed using statistical tools, general-
izing concepts like information entropy and mutual information. We will consider
here time series generated from a finite set of symbols. One may, however, inter-
change the time label with a space label in the following, whenever one is concerned
with studying the complexity of spatial structures.

Stationary Dynamical Processes As a prerequisite we need stationary dynami-
cal processes, viz dynamical processes which do not change their behavior and
their statistical properties qualitatively over time. In practice this implies that the
time series considered, as generated by some dynamical system, has a finite time
horizon τ . The system might have several time scales τi ≤ τ , but for large times
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t 	 τ all correlation functions need to fall off exponentially, like the autocorrelation
function defined in Sect. 5.2. Note, that this assumption may break down for critical
dynamical systems, which are characterized, as discussed in Chap. 5, by dynamical
and statistical correlations decaying only slowly, with an inverse power of time.

Measuring Joint Probabilities For times t0, t1, .., a set of symbols X , and a time
series containing n elements,

xn, xn−1, . . . , x2, x1, xi = x(ti ), xi ∈ X (3.47)

we may define the joint probability distribution

pn : p(xn, . . . , x1) . (3.48)

The joint probability p(xn, . . . , x1) is not given a priori. It needs to be measured
from an ensemble of time series. This is a very demanding task as p(xn, . . . , x1)

has (Ns)
n components, with Ns being the number of symbols in X .

It clearly makes no sense to consider joint probabilities pn for time differences
tn 	 τ , the evaluation of joint probabilities exceeding the intrinsic time horizon τ

is a waste of effort. In practice finite values of n are considered, taking subsets of
length n of a complete time series containing normally a vastly larger number of
elements. This is an admissible procedure for stationary dynamical processes.

Entropy Density We recall the definition of the Shannon entropy

H [pn] = −
∑

xn ,..,x1∈X

p(xn, . . . , x1) log(p(xn, . . . , x1)) ≡ −〈 log(pn) 〉pn ,

(3.49)
which needs to be measured for an ensemble of time series of length n or greater.
Of interest is the entropy density in the limit of large times,

h∞ = lim
n→∞

1

n
H [pn] , (3.50)

which exists for stationary dynamical processes with finite time horizons. The
entropy density is the mean number of bits per time step needed for encoding the
time series statistically.

Excess Entropy We define the “excess entropy” E as

E = lim
n→∞

(
H [pn] − n h∞

) ≥ 0 . (3.51)

The excess entropy is just the non-extensive part of the entropy, it is the coefficient
of the term ∝ n0 when expanding the entropy in powers of 1/n,

H [pn] = n h∞ + E + O(1/n), n → ∞ , (3.52)
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Fig. 3.6 The entropy (full line) H [pn] of a time series of length n increases monotonically, with
the limiting slope (dashed line) h∞. For large n → ∞ the entropy H [pn] ≈ E + h∞n, with the
excess entropy E given by the intercept of asymptote with the y-axis

compare Fig. 3.6. The excess entropy E is positive as long as H [pn] is concave as
a function of n (we leave the proof of this statement as an exercise to the reader),
which is the case for stationary dynamical processes. For practical purposes one
may approximate the excess entropy using

h∞ = lim
n→∞ hn, hn = H [pn+1] − H [pn] , (3.53)

since h∞ corresponds to the asymptotic slope of H [pn], compare Fig. 3.6.

• One may also use Eqs. (3.53) and (3.44) for rewriting the entropy density hn in
terms of an appropriately generalized conditional entropy.

• Using Eq. (3.52) we may rewrite the excess entropy as

∑
n

[
H [pn]

n
− h∞

]
.

In this form the excess entropy is known as the “effective measure complexity”
(EMC) or “Grassberger entropy”.

Excess Entropy and Predictability The excess entropy vanishes both for a ran-
dom and for an ordered system. For a random system

H [pn] = n H [pX ] ≡ n h∞ ,

where pX is the marginal probability. The excess entropy, Eq. (3.51) vanishes con-
sequently. For an example of a system with ordered states we consider the dynamics

. . . 000000000000000 . . . , . . . 111111111111111 . . . ,

for a binary variable, occurring with probabilities α and 1−α respectively. This kind
of dynamics is the natural output of logical AND or OR rules. The joint probability
distribution then has only two non-zero components,
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p(0, . . . , 0) = α, p(1, . . . , 1) = 1 − α, ∀n ,

all other p(xn, .., x1) vanish and

H [pn] ≡ −α log(α) − (1 − α) log(1 − α), ∀n .

The entropy density h∞ vanishes and the excess entropy E becomes H [pn]; it van-
ishes for α → 0, 1, viz in the deterministic limit.

The excess entropy therefore fulfills the concaveness criteria illustrated in
Fig. 3.5, vanishing both in the absence of predictability (random states) and for
the case of strong predictability (i.e. for deterministic systems). The excess entropy
does however not vanish in above example for 0 < α < 1, when two predictable
states are superimposed statistically in an ensemble of time series. Whether this
behavior is compatible with our intuitive notion of complexity is, to a certain extent,
a matter of taste.

Discussion The excess entropy is a nice tool for time series analysis, satisfying
several basic criteria for complexity measures, and there is a plethora of routes for
further developments, e.g. for systems showing structured dynamical activity both in
the time as well as in the spatial domain. The excess entropy is however exceedingly
difficult to evaluate numerically and its scope of applications therefore limited to
theoretical studies.

3.3.2 Algorithmic and Generative Complexity

We have discussed so far descriptive approaches using statistical methods for the
construction of complexity measures. One may, on the other hand, be interested in
modelling the generative process. The question is then: which is the simplest model
able to explain the observed data?

Individual Objects For the statistical analysis of a time series we have been con-
cerned with ensembles of time series, as generated by the identical underlying
dynamical system, and with the limit of infinitely long times. In this section we
will be dealing with individual objects composed of a finite number of n symbols,
like

0000000000000000000000, 0010000011101001011001 .

The question is then: which dynamical model can generate the given string of sym-
bols? One is interested, in particular, in strings of bits and in computer codes capable
of reproducing them.

Turing Machine The reference computer codes in theoretical informatics is the
set of instructions needed for a “Turing machine” to carry out a given computation.
The exact definition for a Turing machine is not of relevance here, it is essentially
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a finite-state machine working on a set of instructions called code. The Turing
machine plays a central role in the theory of computability, e.g. when one is inter-
ested in examining how hard it is to find the solution to a given set of problems.

Algorithmic Complexity The notion of algorithmic complexity tries to find an
answer to the question of how hard it is to reproduce a given time series in the
absence of prior knowledge.

Algorithmic Complexity. The “algorithmic complexity” of a string of bits is
the length of the shortest program that prints the given string of bits and then
halts.

The algorithmic complexity is also called “Kolmogorov complexity”. Note, that the
involved computer or Turing machine is supposed to start with a blank memory, viz
with no prior knowledge.

Algorithmic Complexity and Randomness Algorithmic complexity is a very
powerful concept for theoretical considerations in the context of optimal com-
putability. It has, however, two drawbacks, being not computable and attributing
maximal complexity to random sequences.

A random number generator can only be approximated by any finite state
machine like the Turing machine and would need an infinite code length to be
perfect. That is the reason why real-world codes for random number generators
are producing only “pseudo random numbers”, with the degree of randomness to be
tested by various statistical measures. Algorithmic complexity therefore conflicts
with the common postulate for complexity measures to vanish for random states,
compare Fig. 3.5.

Deterministic Complexity There is a vast line of research trying to understand
the generative mechanism of complex behavior not algorithmically but from the
perspective of dynamical system theory, in particular for deterministic systems. The
question is then: in the absence of noise, which are the features needed to produce
interesting and complex trajectories?

Of interest are in this context the sensitivity to initial condition for systems having
a transition between chaotic and regular states in phase space, see Chap. 4, the effect
of bifurcations and non-trivial attractors like strange attractors, see Chap. 2, and the
consequences of feedback and tendencies toward synchronization, see Chap. 7. This
line of research is embedded in the general quest of understanding the properties and
the generative causes of complex and adaptive dynamical systems.

Complexity and Emergence Intuitively, we attribute a high degree of complex-
ity to ever changing structure emerging from possibly simple underlying rules,
an example being the forest fires burning their way through the forest along self-
organized fire fronts, compare Fig. 5.6 for an illustration. This link between com-
plexity and “emergence” is, however, not easy to mathematize, as no precise mea-
sure for emergence has been proposed to date.
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Exercises

THE LAW OF LARGE NUMBERS

Generalize the derivation for the law of large numbers given in Sect. 3.1.1
for the case of i = 1, . . . , N independent discrete stochastic processes p(i)

k ,

described by their respective generating functionals Gi (x) = ∑
k p(i)

k xk .
SYMBOLIZATION OF FINANCIAL DATA

Generalize the symbolization procedure defined for the joint probabilities p±±
defined by Eq. (3.15) to joint probabilities p±±±. E.g. p+++ would measure
the probability of three consecutive increases. Download from the Internet the
historical data for your favorite financial asset, like the Dow Jones or the Nas-
daq stock indices, and analyze it with this symbolization procedure. Discuss,
whether it would be possible, as a matter of principle, to develop in this way a
money-making scheme.

THE OR TIME SERIES WITH NOISE

Consider the time series generated by a logical OR, akin to Eq. (3.16). Evaluate
the probability p(1) for finding a 1, with and without averaging over initial
conditions, both without and in presence of noise. Discuss the result.

MAXIMAL ENTROPY DISTRIBUTION FUNCTION

Determine the probability distribution function p(x), having a given mean μ

and a given variance σ 2, compare Eq. (3.32), which maximizes the Shannon
entropy.

TWO-CHANNEL MARKOV PROCESS

Consider, in analogy to Eq. (3.34) the two-channel Markov process {σt , τt },

σt+1 = AND(σt , τt ), τt+1 =
{

O R(σt , τt ) probability 1 − α

¬O R(σt , τt ) probability α
.

Evaluate the joint and marginal distribution functions, the respective entropies
and the resulting mutual information. Discuss the result as a function of noise
strength α.

KULLBACK-LEIBLER DIVERGENCE

Try to approximate an exponential distribution function by a scale-invariant
PDF, considering the Kullback-Leibler divergence K [p; q], Eq. (3.45), for the
two normalized PDFs

p(x) = e−(x−1), q(x) = γ − 1

xγ
, x, γ > 1 .

Which exponent γ minimizes K [p; q]? How many times do the graphs for
p(x) and q(x) cross?

CHI-SQUARED TEST

The quantity
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χ2[p; q] =
N∑

i=1

(pi − qi )
2

pi
(3.54)

measures the similarity of two normalized probability distribution functions
pi and qi . Show, that the Kullback-Leibler divergence K [p; q], Eq. (3.45),
reduces to χ2[p; q]/2 if the two distributions are quite similar.

EXCESS ENTROPY

Use the representation

E = lim
n→∞ En, En ≈ H [pn] − n

(
H [pn+1] − H [pn]

)

to prove that E ≥ 0, compare Eqs. (3.51) and (3.53), as long as H [pn] is
concave as a function of n.

TSALLIS ENTROPY

The “Tsallis Entropy”

Hq [p] = 1

1 − q

∑
k

[(
pk
)q − pk

]
, 0 < q ≤ 1

of a probability distribution function p is a popular non-extensive generaliza-
tion of the Shannon entropy H [p]. Prove that

lim
q→1

Hq [p] = H [p] , Hq [p] ≥ 0,

and the non-extensiveness

Hq [p] = Hq [pX ] + Hq [pY ] + (1 − q) Hq [pX ] Hq [pY ], p = pX pY

for two statistically independent systems X and Y . For which distribution func-
tion p is Hq [p] maximal?

Further Reading

We recommend for further readings introductions to information theory (Cover and
Thomas, 2006), to Bayesian statistics (Bolstad, 2004), to complex system theory in
general (Boccara, 2003), and to algorithmic complexity (Li and Vitanyi, 1997)

For further studies we recommend several review articles, on evolutionary devel-
opment of complexity in organisms (Adami, 2002), on complexity and predictability
(Boetta et al., 2003), a critical assessement of various complexity measures (Olbrich
et al., 2008) and a thoughtful discussion on various approaches to the notion of
complexity (Manson, 2001).
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For some further, somewhat more specialized topics, we recommend
Binder (2008) for a perspective on the interplay between dynamical frustration and
complexity, Binder (2009) for the question of decidability in complex systems, and
Tononi and Edelman (1998) on possible interrelations between consciousness and
complexity.
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Chapter 4
Random Boolean Networks

Complex system theory deals with dynamical systems containing a very large
number of variables. The resulting dynamical behavior can be arbitrary complex
and sophisticated. It is therefore important to have well controlled benchmarks,
dynamical systems which can be investigated and understood in a controlled way
for large numbers of variables.

Networks of interacting binary variables, i.e. boolean networks, constitute such
canonical complex dynamical system. They allow the formulation and investigation
of important concepts like phase transition in the resulting dynamical state. They
are also recognized to be the starting points for the modeling of gene expression and
protein regulation networks; the fundamental networks at the basis of all life.

4.1 Introduction

Boolean Networks In this chapter, we describe the dynamics of a set of N binary
variables.

Boolean Variables. A boolean or binary variable has two possible values,
typically 0 and 1.

The actual values chosen for the binary variable are irrelevant; ±1 is an alternative
popular choice. These elements interact with each other according to some given
interaction rules denoted as coupling functions.

Boolean Coupling Functions. A boolean function {0, 1}K → {0, 1} maps
K boolean variables onto a single one.

The dynamics of the system is considered to be discrete, t = 0, 1, 2, . . .. The value
of the variables at the next time step are determined by the choice of boolean cou-
pling functions.

The Boolean Network. The set of boolean coupling functions interconnect-
ing the N boolean variables can be represented graphically by a directed
network, the boolean network.

C. Gros, Complex and Adaptive Dynamical Systems, 2nd ed.,
DOI 10.1007/978-3-642-04706-0_4, C© Springer-Verlag Berlin Heidelberg 2011
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1
2

3

4

Fig. 4.1 Illustration of a boolean network with N = 4 sites. σ1(t +1) is determined by σ2(t), σ3(t)
and σ4(t) (K = 3). The controlling elements of σ2 are σ1 and σ3 (K = 2). The connectivity of σ3
and σ4 is K = 1

In Fig. 4.1 a small boolean network is illustrated. Boolean networks at first sight
seem to be quite esoteric, devoid of the practical significance for real-world phe-
nomena. Why are they then studied so intensively?

Cell Differentiation in Terms of Stable Attractors The field of boolean networks
was given the first big boost by the seminal study of Kauffman in the late 1960s.
Kauffman casted the problem of gene expression in terms of a gene regulation net-
work and introduced the so-called N–K model in this context. All cells of an animal
contain the same genes and cell differentiation, i.e. the fact that a skin cell differs
from a muscle cell, is due to differences in the gene activities in the respective cells.
Kauffman proposed that different stable attractors, viz cycles, in his random boolean
gene expression network correspond to different cells in the bodies of animals.

The notion is then that cell types correspond to different dynamical states of
a complex system, i.e. the gene expression network, viz that gene regulation net-
works are the underpinnings of life. This proposal by Kauffman has received strong
support from experimental studies in the last years. In Sect. 3.5.2 we will discuss
the case of the yeast cell division cycle.

Boolean Networks are Everywhere Kauffman’s original work on gene expression
networks was soon generalized to a wide spectrum of applications, such as, to give a
few examples, the modeling of neural networks by random boolean networks and of
the “punctuated equilibrium” in long-term evolution; a concept that we will discuss
in Chap. 6.

Dynamical systems theory (see Chap. 2) deals with dynamical systems contain-
ing a relatively small number of variables. General dynamical systems with large
numbers of variables are very difficult to analyze and control. Random boolean net-
works can hence be considered, in a certain sense, as being of prototypical impor-
tance in this field, as they provide well defined classes of dynamical systems for
which the thermodynamical limit N → ∞ can be taken. They show chaotic as
well as regular behavior, despite their apparent simplicity, and many other typical
phenomena of dynamical systems. In the thermodynamic limit there can be phase
transitions between chaotic and regular regimes. These are the issues studied in this
chapter.
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N–K Networks There are several types of random boolean networks. The most
simple realization is the N–K model. It is made up of N boolean variables, each
variable interacting exactly with K other randomly chosen variables. The respective
coupling functions are also chosen randomly from the set of all possible boolean
functions mapping K boolean inputs onto one boolean output.

There is no known realization of N–K models in nature. All real physical or
biological problems have very specific couplings determined by the structure and
the physical and biological interactions of the system considered. The topology of
the couplings is, however, often very complex and, in many instances, completely
unknown. It is then often a good starting point to model the real-world system by a
generic model, like the N–K model.

Binary Variables Modeling real-world systems by a collection of interacting
binary variables is often a simplification, as real-world variables are often continu-
ous. For the case of the gene expression network, one just keeps two possible states
for every single gene: active or inactive.

Thresholds, viz parameter regimes at which the dynamical behavior changes
qualitatively, are wide-spread in biological systems. Examples are neurons, which
fire or do not fire depending on the total strength of presynaptic activity. Similar
thresholds occur in metabolic networks in the form of activation potentials for
the chemical reactions involved. Modeling real-world systems based on threshold
dynamics with binary variables is, then, a viable first step towards an understanding.

4.2 Random Variables and Networks

Boolean networks have a rich variety of possible concrete model realizations and
we will discuss in the following the most important ones.

4.2.1 Boolean Variables and Graph Topologies

Boolean Variables and State Space We denote by

σi ∈ {0, 1}, i = 1, 2, . . . , N

the N binary variables and by Σt the state of the system at time t ,

Σt = {σ1(t), σ2(t), . . . , σN (t)} . (4.1)

Σt can be thought of as a vector pointing to one of the Ω = 2N edges of an
N -dimensional hypercube, where Ω is the number of possible configurations. For
numerical implementations and simulations it is useful to consider Σt as the binary
representation of an integer number 0 ≤ Σt < 2N .
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Time Dependence Time is assumed to be discrete,

σi = σi (t), t = 1, 2, . . .

The value of a given boolean element σi at the next time step is determined by the
values of K controlling variables.

Controlling Elements. The controlling elements σ j1(i), σ j2(i), . . ., σ jKi (i)
of

a boolean variable σi determine its time evolution by

σi (t + 1) = fi (σ j1(i)(t), σ j2(i)(t), . . . , σ jKi (i)
(t)) . (4.2)

Here fi is a boolean function associated with σi . The set of controlling elements
might include σi itself. Some exemplary boolean functions are given in Table 4.1.

Model Definition For a complete definition of the model we then need to specify
several parameters:

– The Connectivity: The first step is to select the connectivity Ki of each element,
i.e. the number of its controlling elements. With

〈K 〉 = 1

N

N∑
i=1

Ki

the average connectivity is defined. Here we will consider mostly the case in
which the connectivity is the same for all nodes: Ki = K , i = 1, 2, . . . , N .

– The Linkages: The second step is to select the specific set of controlling elements{
σ j1(i), σ j2(i), . . ., σ jKi (i)

}
on which the element σi depends. See Fig. 4.1 for an

illustration.

Table 4.1 Examples of boolean functions of three arguments. (a) A particular random function.
(b) A canalizing function of the first argument. When σ1 = 0, the function value is 1. If σ1 = 1,
then the output can be either 0 or 1. (c) An additive function. The output is 1 (active) if at least two
inputs are active. (d) The generalized XOR, which is true when the number of 1-bits is odd

f (σ1, σ2, σ3)

σ1 σ2 σ3 Random Canalizing Additive Gen. XOR

0 0 0 0 1 0 0
0 0 1 1 1 0 1
0 1 0 1 1 0 1
0 1 1 0 1 1 0
1 0 0 1 0 0 1
1 0 1 0 1 1 0
1 1 0 1 0 1 0
1 1 1 1 0 1 1
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K = 4

Fig. 4.2 Translational invariant linkages for a completely ordered one-dimensional lattice with
connectivities K = 2, 4, 6

– The Evolution Rule: The third step is to choose the boolean function fi deter-
mining the value of σi (t + 1) from the values of the linkages

{
σ j1(i)(t), σ j2(i)(t),

. . . , σ jKi (i)
(t)
}
.

The Geometry of the Network The way the linkages are assigned determines
the topology of the network and networks can have highly diverse topologies, see
Chap. 1. It is custom to consider two special cases:

Lattice Assignment. The boolean variables σi are assigned to the nodes of
a regular lattice. The K controlling elements

{
σ j1(i), σ j2(i), . . ., σ jK (i)

}
are

then chosen in a regular, translational invariant manner, see Fig. 4.2 for an
illustration.
Uniform Assignment. In a uniform assignment the set of controlling ele-
ments are randomly drawn from all N sites of the network. This is the case for
the N–K model, also called the Kauffman net. In terms of graph theory one
also speaks of an Erdös–Rényi random graph.

All intermediate cases are possible. Small-world networks, to give an example, with
regular short-distance links and random long-distance links are popular models in
network theory, as discussed extensively in Chap. 1.

4.2.2 Coupling Functions

Number of Coupling Functions The coupling function

fi : {
σ j1(i), . . . , σ jK (i)

} → σi

has 2K different arguments. To each argument value one can assign either 0 or 1.
Thus there are a total of

N f = 2
(
2K
)

= 22K =
⎧⎨
⎩

4 K = 1
16 K = 2

256 K = 3
(4.3)

possible coupling functions. In Table 4.1 we present several examples for the case
K = 3, out of the 223 = 256 distinct K = 3 boolean functions.
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Types of Coupling Ensembles There are a range of different possible choices for
the probability distribution of coupling functions. The following are some examples:

– Uniform Distribution: As introduced originally by Kauffman, the uniform distri-
bution specifies all possible coupling functions to occur with the same probability
1/Nf .

– Magnetization Bias1: The probability of a coupling function to occur is propor-
tional to p if the outcome is 0 and proportional to 1 − p if the outcome is 1.

– Forcing Functions: Forcing functions are also called “canalizing function”. The
function value is determined when one of its arguments, say m ∈ {1, . . . , K }, is
given a specific value, say σm = 0 (compare Table 4.1). The function value is not
specified if the forcing argument has another value, here when σm = 1.

– Additive Functions: In order to simulate the additive properties of inter-neural
synaptic activities one can choose

σi (t + 1) = Θ( fi (t)), fi (t) = h +
N∑

j=1

ci j σ j (t), ci j ∈ {0, 1} ,

where Θ(x) is the Heaviside step function and h a bias. The value of σi (t + 1)
depends only on a weighted sum of its controlling elements at time t .

Classification of Coupling Functions For small numbers of connectivity K one
can completely classify all possible coupling functions:

– K = 0
There are only two constant functions, f = 1 and f = 0.

– K = 1
Apart from the two constant functions, which
one may denote together by A, there are the
identity 1 and the negation ¬σ , which one can
lump together into a class B.

σ Class A Class B
0 0 1 0 1
1 0 1 1 0

– K = 2
There are four classes of functions f (σ1, σ2), with each class being invariant
under the interchange 0 ↔ 1 in either the arguments or the value of f : A
(constant functions), B1 (fully canalizing functions for which one of the argu-
ments determines the output deterministically), B2 (normal canalizing functions),
C (non-canalizing functions, sometimes also denoted “reversible functions”).
Compare Table 4.2.

1 Magnetic moments often have only two possible directions (up or down in the language of spin-
1/2 particles). A compound is hence magnetic when more moments point into one of the two
possible directions, viz if the two directions are populated unequally.



4.2 Random Variables and Networks 115

4.2.3 Dynamics

Model Realizations A given set of linkages and boolean functions { fi } defines
what one calls a realization of the model. The dynamics then follows from Eq. (4.2).
For the updating of all elements during one time step one has several choices:

– Synchronous Update: All variables σi (t) are updated simultaneously.
– Serial Update (or asynchronous update): Only one variable is updated at every

step. This variable may be picked at random or by some predefined ordering
scheme.

The choice of updating does not affect thermodynamic properties, like the phase
diagram discussed in Sect. 4.3.2. The occurrence and the properties of cycles and
attractors, as discussed in Sect. 4.4, however, crucially depends on the form of
update.

Selection of the Model Realization There are several alternatives for choosing the
model realization during numerical simulations.

– The Quenched Model2: One specific realization of coupling functions is selected
at the beginning and kept throughout all time.

– The Annealed Model3: A new realization is randomly selected after each time
step. Then either the linkages or the coupling functions or both change with every
update, depending on the choice of the algorithm.

– The Genetic Algorithm: If the network is thought to approach a predefined goal,
one may employ a genetic algorithm in which the system slowly modifies its
realization with passing time.

Real-world systems are normally modeled by quenched systems with synchronous
updating. All interactions are then fixed for all times.

Table 4.2 The 16 boolean functions for K = 2. For the definition of the various classes see p. 114
and Aldana et al. (2003)

σ1 σ2 Class A Class B1 Class B2 Class C
0 0 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1
1 0 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1
1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

2 An alloy made up of two or more substances is said to be “quenched” when it is cooled so
quickly that it remains stuck in a specific atomic configuration, which does not change anymore
with time.
3 A compound is said to be “annealed” when it has been kept long enough at elevated temperatures
such that the thermodynamic stable configuration has been achieved.
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Fig. 4.3 A boolean network with N = 3 sites and connectivities Ki ≡ 2. Left: Definition of the
network linkage and coupling functions. Right: The complete network dynamics (from Luque and
Sole, 2000)

Cycles and Attractors Boolean dynamics correspond to a trajectory within a finite
state space of size Ω = 2N . Any trajectory generated by a dynamical system with
unmutable dynamical update rules, as for the quenched model, will eventually lead
to a cyclical behavior. No trajectory can generate more than Ω distinct states in a
row. Once a state is revisited,

Σt = Σt−T , T < Ω ,

part of the original trajectory is retraced and cyclic behavior follows. The resulting
cycle acts as an attractor for a set of initial conditions.

Cycles of length 1 are fixpoint attractors. The fixpoint condition σi (t + 1) =
σi (t) (i = 1, . . . , N ) is independent of the updating rules, viz synchronous vs.
asynchronous. The order of updating the individual σi is irrelevant when none of
them changes.

An Example In Fig. 4.3 a network with N = 3 and K = 2 is fully defined. The
time evolution of the 23 = 8 states Σt is given for synchronous updating. One can
observe one cycle of length 2 and two cycles of length 1 (fixpoints).

4.3 The Dynamics of Boolean Networks

We will now examine how we can characterize the dynamical state of boolean
networks in general and of N–K nets in particular. Two concepts will turn out to
be of central importance, the relation of robustness to the flow of information and
the characterization of the overall dynamical state, which we will find to be either
frozen, critical or chaotic.
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4.3.1 The Flow of Information Through the Network

The Response to Changes For random models the value of any given variable
σi , or its change with time, is, per se, meaningless. Of fundamental importance,
however, for quenched models is its response to changes. We may either change the
initial conditions, or some specific coupling function, and examine its effect on the
time evolution of the variable considered.

Robustness Biological systems need to be robust. A gene regulation network, to
give an example, for which even small damage routinely results in the death of the
cell, will be at an evolutionary disadvantage with respect to a more robust gene
expression set-up. Here we will examine the sensitivity of the dynamics with regard
to the initial conditions. A system is robust if two similar initial conditions lead to
similar long-time behavior.

The Hamming Distance and the Divergence of Orbits We consider two different
initial states,

Σ0 = {σ1(0), σ2(0), . . . , σN (0)}, Σ̃0 = {σ̃1(0), σ̃2(0), . . . , σ̃N (0)} .

Typically we are interested in the case when Σ0 and Σ̃0 are close, viz when they
differ in the values of only a few elements. A suitable measure for the distance is
the “Hamming distance” D(t) ∈ [0, N ],

D(t) =
N∑

i =1

(
σi (t) − σ̃i (t)

)2
, (4.4)

which is just the sum of elements that differ in Σ0 and Σ̃0. As an example we
consider

Σ1 = {1, 0, 0, 1}, Σ2 = {0, 1, 1, 0}, Σ3 = {1, 0, 1, 1} .

We have 4 for the Hamming distance Σ1-Σ2 and 1 for the Hamming distance
Σ1-Σ3. If the system is robust, two close-by initial conditions will never move far
apart with time passingwith passing time, in terms of the Hamming distance.

The Normalized Overlap The normalized overlap a(t) ∈ [0, 1] between two con-
figurations is defined as

a(t) = 1 − D(t)

N
= 1 − 1

N

N∑
i=1

(
σ 2

i (t) − 2σi (t)σ̃i (t) + σ̃ 2
i (t)

)

≈ 2

N

N∑
i=1

σi (t)σ̃i (t) , (4.5)
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where we have assumed the absence of any magnetization bias, namely

1

N

∑
i

σ 2
i ≈ 1

2
≈ 1

N

∑
i

σ̃ 2
i ,

in the last step. The normalized overlap Eq. (4.5) is then like a normalized scalar
product between Σ and Σ̃ . Two arbitrary states have, on the average, a Hamming
distance of N/2 and a normalized overlap a = 1 − D/N of 1/2.

Information Loss/Retention for Long Time Scales The difference between two
initial states Σ and Σ̃ can also be interpreted as an information for the system. One
then has than two possible behaviors:

– Loss of Information: limt→∞ a(t) → 1
a(t) → 1 implies that two states are identical, or that they differ only by a finite
number of elements, in the thermodynamic limit. This can happen when two
states are attracted by the same cycle. All information about the starting states
is lost.

– Information Retention: limt→∞ a(t) = a∗ < 1
The system “remembers” that the two configurations were initially different, with
the difference measured by the respective Hamming distance.

The system is very robust when information is routinely lost. Robustness depends
on the value of a∗ when information is kept. If a∗ > 0 then two trajectories retain a
certain similarity for all time scales.

Percolation of Information for Short Time Scales Above we considered how
information present in initial states evolves for very long times. Alternatively one
may ask, and this a typical question in dynamical system theory, how information is
processed for short times. We write

D(t) ≈ D(0) eλt , (4.6)

where 0 < D(0) � N is the initial Hamming distance and where λ is called the
“Lyapunov exponent”, which we discussed in somewhat more detail in Chap. 2.

The question is then whether two initially close trajectories, also called “orbits”
within dynamical systems theory, converge or diverge initially. One may generally
distinguish between three different types of behaviors or phases:

– The Chaotic Phase: λ > 0
The Hamming distance grows exponentially, i.e. information is transferred to an
exponential large number of elements. Two initially close orbits soon become
very different. This behavior is found for large connectivities K and is not suit-
able for real-world biological systems.

– The Frozen Phase: λ < 0
Two close trajectories typically converge, as they are attracted by the same
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attractor. This behavior arises for small connectivities K . The system is locally
robust.

– The Critical Phase: λ = 0
An exponential time dependence, when present, dominates all other contribu-
tions. There is no exponential time dependence when the Lyapunov exponent
vanishes and the Hamming distance then typically depends algebraically on time,
D(t) ∝ tγ .

All three phases can be found in the N–K model when N → ∞. We will now
study the N–K model and determine its phase diagram.

4.3.2 The Mean-Field Phase Diagram

A mean-field theory, also denoted “molecular-field theory” is a simple treatment
of a microscopic model by averaging the influence of many components, lumping
them together into a single mean- or molecular-field. Mean-field theories are ubiq-
uitous and embedded into the overall framework of the “Landau Theory of Phase
Transitions”, which we are going to discuss in Sect. 5.1.

Mean-Field Theory We consider two initial states

Σ0, Σ̃0, D(0) =
N∑

i =1

(
σi − σ̃i

)2
.

We remember that the Hamming distance D(t) measures the number of elements
differing in Σt and Σ̃t .

For the N–K model, every boolean coupling function fi is as likely to occur
and every variable is, on the average, a controlling element for K other variables.
Therefore, the variables differing in Σt and Σ̃t affect on the average KD(t) coupling
functions, see Fig. 4.4 for an illustration. Every coupling function changes with
probability half of its value, in the absence of a magnetization bias. The number
of elements different in Σt+1 and Σ̃t+1 , viz the Hamming distance D(t + 1) will
then be

D(t + 1) = K

2
D(t), D(t) =

(
K

2

)t

D(0) = D(0) et ln(K/2) . (4.7)

The connectivity K then determines the phase of the N–K network:

– Chaotic K > 2
Two initially close orbits diverge, the number of different elements, i.e. the rela-
tive Hamming distance grows exponentially with time t .



120 4 Random Boolean Networks

Σ t 10 00011

Σ t + 1

Σ t

Σ t + 1
∼

∼
1 0 1 0 1 0 0

Fig. 4.4 The time evolution of the overlap between two states Σt and Σ̃t . The vertices (given by
the squares) can have values 0 or 1. Vertices with the same value in both states Σt and Σ̃t are
highlighted by a gray background. The values of vertices at the next time step, t + 1, can only
differ if the corresponding arguments are different. Therefore, the vertex with gray background
at time t + 1 must be identical in both states. The vertex with the striped background can have
different values in both states at time, t + 1, with a probability 2 p (1 − p), where p/(1 − p) are
the probabilities of having vertices with 0/1, respectively

– Frozen (K < 2)
The two orbits approach each other exponentially. All initial information con-
tained D(0) is lost.

– Critical (Kc = 2)
The evolution of Σt relative to Σ̃t is driven by fluctuations. The power laws
typical for critical regimes cannot be deduced within mean-field theory, which
discards fluctuations.

The mean-field theory takes only average quantities into account. The evolution law
D(t +1) = (K/2)D(t) holds only on the average. Fluctuations, viz the deviation of
the evolution from the mean-field prediction, are however of importance only close
to a phase transition, i.e. close to the critical point K = 2.

The mean-field approximation generally works well for lattice physical systems
in high spatial dimensions and fails in low dimensions, compare Chap. 2. The Kauff-
man network has no dimension per se, but the connectivity K plays an analogous
role.

Phase Transitions in Dynamical Systems and the Brain The notion of a “phase
transition” originally comes from physics, where it denotes the transition between
two or more different physical phases, like ice, water and gas, see Chap. 2, which
are well characterized by their respective order parameters.

The term phase transition therefore classically denotes a transition between two
stationary states. The phase transition discussed here involves the characterization of
the overall behavior of a dynamical system. They are well defined phase transitions
in the sense that 1 − a∗ plays the role of an order parameter; its value uniquely
characterizes the frozen phase and the chaotic phase in the thermodynamic limit.

An interesting, completely open and unresolved question is then, whether
dynamical phase transitions play a role in the most complex dynamical system
known, the mammalian brain. It is tempting to speculate that the phenomena of
consciousness may result from a dynamical state characterized by a yet unknown
order parameter. Were this true, then this phenomena would be “emergent” in the
strict physical sense, as order parameters are rigorously defined only in the thermo-
dynamic limit.
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Let us stress, however, that these considerations are very speculative at this point.
In Chap. 8, we will discuss a somewhat more down-to-earth approach to cognitive
systems theory in general and to aspects of the brain dynamics in particular.

4.3.3 The Bifurcation Phase Diagram

In deriving Eq. (4.7) we assumed that the coupling functions fi of the system acquire
the values 0 and 1 with the same probability p = 1/2. We generalize this approach
and consider the case of a magnetic bias in which the coupling functions are

fi =
{

0, with probability p
1, with probability 1 − p

.

For a given value of the bias p and connectivity K , there are critical values

Kc(p), pc(K ) ,

such that for K < Kc (K > Kc) the system is in the frozen phase (chaotic phase).
When we consider a fixed connectivity and vary p, then pc(K ) separates the system
into a chaotic phase and a frozen phase.

The Time Evolution of the Overlap We note that the overlap a(t) = 1 − D(t)/N
between two states Σt and Σ̃t at time t is the probability that two vertices have
the same value both in Σt and in Σ̃t . The probability that all arguments of the
function fi will be the same for both configurations is then

ρK = [
a(t)

]K
. (4.8)

As illustrated by Fig. 4.4, the values at the next time step differ with a proba-
bility 2p(1 − p), but only if the arguments of the coupling functions are non-
different. Together with the probability that at least one controlling element has
different values in Σt and Σ̃t , 1−ρK , this gives the probability, (1−ρK )2p(1− p),
of values being different in the next time step. We then have

a(t + 1) = 1 − (1 − ρK ) 2p(1 − p) = 1 − 1 − [a(t)]K

Kc
, (4.9)

where Kc is given in terms of p as

Kc = 1

2p(1 − p)
, p1,2

c = 1

2
±
√

1

4
− 1

2K
. (4.10)

The fixpoint a∗ of Eq. (4.9) obeys
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Fig. 4.5 Solution of the self-consistency condition a∗ = 1−[1 − (a∗)K
]
/Kc, see Eq. (4.11). Left:

Graphical solution equating both sides. Right: Numerical result for a∗ for Kc = 3. The fixpoint
a∗ = 1 becomes unstable for K > Kc = 3

a∗ = 1 − 1 − [a∗]K

Kc
. (4.11)

This self-consistency condition for the normalized overlap can be solved graphi-
cally or numerically by simple iterations, see Fig. 4.5.

Stability Analysis The trivial fixpoint

a∗ = 1

always constitutes a solution of Eq. (4.11). We examine its stability under the time
evolution Eq. (4.9) by considering a small deviation δat > 0 from the fixpoint
solution, at = a∗ − δat :

1 − δat+1 = 1 − 1 − [1 − δat ]K

Kc
, δat+1 ≈ K δat

Kc
. (4.12)

The trivial fixpoint a∗ = 1 therefore becomes unstable for K/Kc > 1, viz when
K > Kc = (

2p(1 − p)
)−1.

Bifurcation Equation (4.11) has two solutions for K > Kc, a stable fixpoint
a∗ < 1 and the unstable solution a∗ = 1. One speaks of a bifurcation, which is
shown in Fig. 4.5. We note that

Kc

∣∣∣
p=1/2

= 2 ,

in agreement with our previous mean-field result, Eq. (4.7), and that

lim
K→∞ a∗ = lim

K→∞

(
1 − 1 − [a∗]K

Kc

)
= 1 − 1

Kc
= 1 − 2p(1 − p) ,
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Fig. 4.6 Phase diagram for the N–K model. The curve separating the chaotic phase from the
ordered (frozen) phase is Kc = [2p(1 − p)]−1. The insets are simulations for N = 50 networks
with K = 3 and p = 0.60 (chaotic phase), p = 0.79 (on the critical line) and p = 0.90 (frozen
phase). The site index runs horizontally, the time vertically. Notice the fluctuations for p = 0.79
(from Luque and Sole, 2000)

since a∗ < 1 for K > Kc, compare Fig. 4.5. Notice that a∗ = 1/2 for p = 1/2
corresponds to the average normalized overlap for two completely unrelated states
in the absence of the magnetization bias, p = 1/2. Two initial similar states then
become completely uncorrelated for t → ∞ in the limit of infinite connectivity K .

Rigidity of the Kauffman Net We can connect the results for the phase diagram
of the N–K network illustrated in Fig. 4.6 with our discussion on robustness, see
Sect. 4.3.1.

– The Chaotic Phase: K > Kc

The infinite time normalized overlap a∗ is less than 1 even when two trajectories
Σt and Σ̃t start out very close to each other. a∗, however, always remains above
the value expected for two completely unrelated states. This is so as the two orbits
enter two different attractors consecutively, after which the Hamming distance
remains constant, modulo small-scale fluctuations that do not contribute in the
thermodynamic limit N → ∞.

– The Frozen Phase: K < Kc

The infinite time overlap a∗ is exactly one. All trajectories approach essentially
the same configuration independently of the starting point, apart from fluctua-
tions that vanish in the thermodynamic limit. The system is said to “order”.

Lattice Versus Random Networks The complete loss of information in the
ordered phase observed for the Kauffman net does not occur for lattice networks,



124 4 Random Boolean Networks

0 100 200 300 400 500

t
t

0.007

0.008

0.009

0.010
D(t)/N D(t)/N

100

10−1

10−2
100

10−1

10−2

10−3

10−4

10−5

p = 0.4
p = 0.4

pc = 0.15

pc = 0.27

pc = 0.1464

p = 0.05

p = 0.1

1 10 100 1000

1 10 100 1000

Fig. 4.7 Normalized Hamming distance D(t)/N for a Kauffman net (left) and a square lattice
(right) with N = 10, 000 variables, connectivity K = 4 and D(0) = 100, viz D(0)/N = 0.01.
Left: (top) Frozen phase (p = 0.05), critical (pc � 0.1464) and chaotic (p = 0.4) phases, plotted
with a logarithmic scale; (bottom) Hamming distance for the critical phase (p = pc) but in a
non-logarithmic graph. Right: Frozen phase (p = 0.1), critical (pc � 0.27) and chaotic (p = 0.4)
phases, plotted with a logarithmic scale. Note that a∗ = limt→∞(1 − D(t)/N ) < 1 in the frozen
state of the lattice system, compare Fig. 4.5 (from Aldana et al., 2003)

for which a∗ < 1 for any K > 0. This behavior of lattice systems is born out
by the results of numerical simulations presented in Fig. 4.7. The finite range of
the linkages in lattice systems allows them to store information about the initial
data in spatially finite proportions of the system, specific to the initial state. For the
Kauffman graph every region of the network is equally close to any other and local
storage of information is impossible.

Percolation Transition in Lattice Networks For lattice boolean networks the
frozen and chaotic phases cannot be distinguished by examining the value of the
long-term normalized overlap a∗, as it is always smaller than unity. The lattice
topology, however, allows for a connection with percolation theory. One considers
a finite system, e.g. a 100 × 100 square lattice, and two states Σ0 and Σ̃0 that differ
only along one edge. If the damage, viz the difference in between Σt and Σ̃t spreads
for long times to the opposite edge, then the system is said to be percolating and in
the chaotic phase. If the damage never reaches the opposite edge, then the system is
in the frozen phase. Numerical simulations indicate, e.g. a critical pc � 0.298 for
the two-dimensional square lattice with connectivity K = 4, compare Fig. 4.7.

Numerical Simulations The results of the mean-field solution for the Kauffman
net are confirmed by numerical solutions of finite-size networks. In Fig. 4.7 the
normalized Hamming distance, D(t)/N , is plotted for both Kauffman graphs and a
two-dimensional squared lattice, both containing N = 10, 000 elements and con-
nectivity K = 4.

For both cases results are shown for parameters corresponding to the frozen phase
and to the chaotic phase, in addition to a parameter close to the critical line. Note
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that 1 − a∗ = D(t)/N → 0 in the frozen phase for the random Kauffman network,
but not for the lattice system.

4.3.4 Scale-Free Boolean Networks

The Kauffman model is a reference model which can be generalized in various ways,
e.g. by considering small-world or scale-free networks.

Scale-Free Connectivity Distributions Scale-free connectivity distributions

P(K ) = 1

ζ(γ )
K −γ , ζ(γ ) =

∞∑
K=1

K −γ , γ > 1 (4.13)

abound in real-world networks, as discussed in Chap. 1. Here P(K ) denotes the
probability to draw a coupling function fi (·) having Z arguments. The distribution
Eq. (4.13) is normalizable for γ > 1.

The average connectivity 〈K 〉 is

〈K 〉 =
∞∑

K=1

K P(K ) =
⎧⎨
⎩

∞ if 1 < γ ≤ 2

ζ(γ−1)
ζ(γ )

< ∞ if γ > 2
, (4.14)

where ζ(γ ) is the Riemann zeta function.

Annealed Approximation We consider again two states Σt and Σ̃t and the nor-
malized overlap

a(t) = 1 − D(t)/N ,

which is identical to the probability that two vertices in Σ and Σ̃ have the same
value. In Sect. 4.3.3 we derived, for a magnetization bias p,

a(t + 1) = 1 − (1 − ρK ) 2p(1 − p) (4.15)

for the time-evolution of a(t), where

ρK = [a(t)]K →
∞∑

K=1

[a(t)]K P(K ) (4.16)

is the average probability that the K = 1, 2, . . . controlling elements of the coupling
function fi () are all identical. In Eq. (4.16) we have generalized Eq. (4.8) to a non-
constant connectivity distribution P(K ). We then find
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a(t + 1) = 1 − 2p(1 − p)

{
1 −

∞∑
K=1

aK (t) P(K )

}
≡ F(a(t)) , (4.17)

compare Eq. (4.9). Effectively we have used here an annealed model, due to the
statistical averaging in Eq. (4.16).

Fixpoints Within the Annealed Approximation In the limit t → ∞, Eq. (4.17)
becomes the self-consistency equation

a∗ = F(a∗) ,

for the fixpoint a∗, where F(a) is defined as the right-hand-side of Eq. (4.17). Again,
a∗ = 1 is always a fixpoint of Eq. (4.17), since

∑
K P(K ) = 1 per definition.

Stability of the Trivial Fixpoint We repeat the stability analysis of the trivial fix-
point a∗ = 1 of Sect. 4.3.3 and assume a small deviation δa > 0 from a∗:

a∗ − δa = F(a∗ − δa) = F(a∗) − F ′(a∗)δa, δa = F ′(a∗)δa .

The fixpoint a∗ becomes unstable if F ′(a∗) > 1. We find for a∗ = 1

1 = lim
a→1−

dF(a)

da
= 2p(1 − p)

∞∑
k=1

K P(K )

= 2p(1 − p) 〈K 〉 . (4.18)

For lima→1− dF(a)/da < 1 the fixpoint a∗ = 1 is stable, otherwise it is unstable.
The phase transition is then given by

2p(1 − p)〈K 〉 = 1 . (4.19)

For the classical N–K model all elements have the same connectivity, Ki = 〈K 〉 =
K , and Eq. (4.19) reduces to Eq. (4.12).

The Frozen and Chaotic Phases for the Scale-Free Model For 1 < γ ≤ 2 the
average connectivity is infinite, see Eq. (4.14). F ′(1) = 2p(1 − p) 〈K 〉 is then
always larger than unity and a∗ = 1 unstable, as illustrated in Fig. 4.8. Equation
(4.17) then has a stable fixpoint a∗ �= 1; the system is in the chaotic phase for all
p ∈]0, 1[.

For γ >2 the first moment of the connectivity distribution P(K ) is finite and the
phase diagram is identical to that of the N–K model shown in Fig. 4.6, with K
replaced by ζ(γc − 1)/ζ(γc). The phase diagram in γ –p space is presented in
Fig. 4.8. One finds that γc ∈ [2, 2.5] for any value of p. There is no chaotic scale-
free network for γ > 2.5. It is interesting to note that γ ∈ [2, 3] for many real-world
scale-free networks.
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Fig. 4.8 Phase diagram for a scale-free boolean network with connectivity distribution ∝ K −γ .
The average connectivity diverges for γ < 2 and the network is chaotic for all p (from Aldana and
Cluzel, 2003)

4.4 Cycles and Attractors

We have emphasized so far the general properties of boolean networks, such as
the phase diagram. We now turn to a more detailed inspection of the dynamics,
particulary regarding the structure of the attractors.

4.4.1 Quenched Boolean Dynamics

Self-Retracting Orbits From now on we consider quenched systems for which
the coupling functions fi (σi1 , . . . , σiK ) are fixed for all times. Any orbit eventually
partly retraces itself, since the state space Ω = 2N is finite. The long-term trajectory
is therefore cyclic.

Attractors. An attractor A0 of a discrete dynamical system is a region
{Σt } ⊂ Ω in phase space that maps completely onto itself under the time
evolution At+1 = At ≡ A0.

Attractors are typically cycles

Σ(1) → Σ(2) → . . . → Σ(1) ,

see Figs. 4.3 and 4.9 for some examples. Fixed points are cycles of length 1.

The Attraction Basin. The attraction basin B of an attractor A0 is the set
{Σt } ⊂ Ω for which there is a time T < ∞ such that ΣT ∈ A0.

The probability to end up in a given cycle is directly proportional, for randomly
drawn initial conditions, to the size of its basin of attraction. The three-site network
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Fig. 4.9 Cycles and linkages. Left: Sketch of the state space where every bold point stands for
a state Σt = {σ1, . . . , σN }. The state space decomposes into distinct attractor basins for each
cycle attractor or fixpoint attractor. Right: Linkage loops for an N = 20 model with K = 1. The
controlling elements are listed in the center column. Each arrow points from the controlling ele-
ment toward the direct descendant. There are three modules of uncoupled variables (from Aldana
et al., 2003)

illustrated in Fig. 4.3 is dominated by the fixpoint {1, 1, 1}, which is reached with
probability 5/8 for random initial starting states.

Attractors are Everywhere Attractors and fixpoints are generic features of
dynamical systems and are very important for their characterization, as they dom-
inate the time evolution in state space within their respective basins of attraction.
Random boolean networks allow for very detailed studies of the structure of attrac-
tors and of the connection to network topology. Of special interest in this context
is how various properties of the attractors, like the cycle length and the size of the
attractor basins, relate to the thermodynamic differences between the frozen phase
and the chaotic phase. These are the issues that we shall now discuss.

Linkage Loops, Ancestors and Descendants Every variable σi can appear as an
argument in the coupling functions for other elements; it is said to act as a control-
ling element. The collections of all such linkages can be represented graphically by a
directed graph, as illustrated in Figs. 4.1, 4.3 and 4.9, with the vertices representing
the individual binary variables. Any given element σi can then influence a large
number of different states during the continued time evolution.

Ancestors and Descendants. The elements a vertex affects consecutively via
the coupling functions are called its descendants. Going backwards in time
one find ancestors for each element.

In the 20-site network illustrated in Fig. 4.9 the descendants of σ11 are σ11, σ12
and σ14.
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When an element is its own descendant (and ancestor) it is said to be part of a
“linkage loop”. Different linkage loops can overlap, as is the case for the linkage
loops

σ1 → σ2 → σ3 → σ4 → σ1, σ1 → σ2 → σ3 → σ1

shown in Fig. 4.1. Linkage loops are disjoint for K = 1, compare Fig. 4.9.

Modules and Time Evolution The set of ancestors and descendants determines
the overall dynamical dependencies.

Module. The collection of all ancestors and descendants of a given element
σi is called the module (or component) to which σi belongs.

If we go through all variables σi , i = 1, . . . , N we find all modules, with every
element belonging to one and only one specific module. Otherwise stated, disjoint
modules correspond to disjoint subgraphs, the set of all modules constitute the full
linkage graph. The time evolution is block-diagonal in terms of modules; σi (t) is
independent of all variables not belonging to its own module, for all times t .

In lattice networks the clustering coefficient (see Chap. 1) is large and closed
linkage loops occur frequently. For big lattice systems with a small mean linkage
K we expect far away spatial regions to evolve independently, due the lack of long-
range connections.

Relevant Nodes and Dynamic Core Taking a look at dynamics of the 20-site
model illustrated in Fig. 4.9, we notice that, e.g., the elements σ12 and σ14 just
follow the dynamics of σ11, they are “enslaved” by σ11. These two elements do not
control any other element and one could just delete them from the system wihout
qualitative changes to the overall dynamics.

Relevant Nodes. A node is termed relevant if its state is not constant and if
it controls at least one other relevant element (eventually itself).

An element is constant if it evolves, indepedently of the initial conditions, always
to the same state and not constant otherwise. The set of relevant nodes, the dynamic
core, controls the overall dynamics. The dynamics of all other nodes can be disre-
garded without changing the attractor structure. The node σ13 of the 20-site network
illustrated in Fig. 4.9 is relevant if the boolean function connecting it to itself is
either the identity or the negation (see p. 114).

The concept of a dynamic core is of great importance for practical applications.
Gene expression networks may be composed of thousands of nodes, but contain
generally a relatively small dynamic core controlling the overall network dynamics.
This is the case, e.g., for the gene regulation network controlling the yeast cell cycle
discussed in Sect. 4.5.2.

Lattice Nets versus Kauffman Nets For lattice systems the linkages are short-
ranged and whenever a given element σ j acts as a controlling element for another
element σi there is a high probability that the reverse is also true, viz that σi is an
argument of f j .
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The linkages are generally non-reciprocal for the Kauffman net; the probability
for reciprocality is just K/N and vanishes in the thermodynamic limit for finite K .
The number of disjoint modules in a random network therefore grows more slowly
than the system size. For lattice systems, on the other hand, the number of modules is
proportional to the size of the system. The differences between lattice and Kauffman
networks translate to different cycle structures, as every periodic orbit for the full
system is constructed out of the individual attractors of all modules present in the
network considered.

4.4.2 The K = 1 Kauffman Network

We start our discussion of the cycle structure of Kauffman nets with the case K = 1,
which can be solved exactly. The maximal length for a linkage loop lmax is on the
average of the order of

lmax ∼ N 1/2 . (4.20)

The linkage loops determine the cycle structure together with the choice of the cou-
pling ensemble. As an example we discuss the case of an N = 3 linkage loop.

The Three-site Linkage Loop with Identities For K = 1 there are only two
non-constant coupling functions, i.e. the identity I and the negation ¬, see p. 114.
We start by considering the case of all the coupling functions being the identity:

ABC → CAB → BCA → ABC → . . . ,

where we have denoted by A, B,C the values of the binary variables σi , i = 1, 2, 3.
There are two cycles of length 1, in which all elements are identical. When the three
elements are not identical, the cycle length is 3. The complete dynamics is then:

000 → 000
111 → 111

100 → 010 → 001 → 100
011 → 101 → 110 → 011

Three-Site Linkage Loops with Negations Let us consider now the case that all
three coupling functions are negations:

ABC → C̄ Ā B̄ → BCA → Ā B̄C̄ → . . . Ā = ¬A, etc. .

The cycle length is 2 if all elements are identical

000 → 111 → 000

and of length 6 if they are not.

100 → 101 → 001 → 011 → 010 → 110 → 100 .
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The complete state space Ω = 23 = 8 decomposes into two cycles, one of length 6
and one of length 2.

Three-Site Linkage Loops with a Constant Function Let us see what happens if
any of the coupling functions are a constant function. For illustration purposes we
consider the case of two constant functions 0 and 1 and the identity:

ABC → 0A1 → 001 → 001 . (4.21)

Generally it holds that the cycle length is 1 if any of the coupling functions is an
identity and that there is then only a single fixpoint attractor. Equation (4.21) holds
for all A, B,C ∈ {0, 1}; the basin of attraction for 001 is therefore the whole state
space, and 001 is a global attractor.

The Kauffman net can contain very large linkage loops for K = 1, see Eq. (4.20),
but then the probability that a given linkage loop contains at least one constant
function is also very high. The average cycle length therefore remains short for the
K = 1 Kauffman net.

Loops and Attractors The attractors are made up of the set of linkage loops. As
an example we consider a 5-site network with two linkage loops,

A →I B →I C →I A, D →I E →I D ,

with all coupling functions being the identity I . The states

00000, 00011, 11100, 11111

are fixpoints in phase space Σ = ABCDE. Examples of cyclic attractors of length 3
and 6 are

10000 → 01000 → 00100 → 10000

and

10010 → 01001 → 00110 → 10001 → 01010 → 00101 → 10010 .

In general, the length of an attractor is given by the least common multiple of the
periods of the constituent loops. This relation holds for K = 1 Boolean networks,
for general K the attractors are composed of the cycles of the constituent set of
modules.

Critical K = 1 Boolean networks When the coupling ensemble is selected uni-
formly, compare Sect. 4.2.2, the K = 1 network is in the frozen state. If we do
however restrict our coupling ensemble to the identity I and to the negation ¬, the
value of one node is just copied or inverted to exactly one other node. There is no
loss of information anymore, when disregarding the two constant K = 1 coupling
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functions (see p. 114). The information is not multiplied either, being transmitted
to exactly one and not more nodes. The network is hence critical, as pointed out in
Sect. 4.3.1.

4.4.3 The K = 2 Kauffman Network

The K = 2 Kauffman net is critical, as discussed in Sects. 4.3.1 and 4.3.2.
When physical systems undergo a (second-order) phase transition, power laws
are expected right at the point of transition for many response functions; see the
discussion in Chap. 2. It is therefore natural to expect the same for critical dynamical
systems, such as a random boolean network.

This expectation was indeed initially born out of a series of mostly numerical
investigations, which indicated that both the typical cycle lengths, as well as the
mean number of different attractors, would grow algebraically with N , namely like√

N . It was therefore tempting to relate many of the power laws seen in natural
organisms to the behavior of critical random boolean networks.

Undersampling of the State Space The problem to determine the number and the
length of cycles is, however, numerically very difficult. In order to extract power
laws one has to simulate systems with large N . The state space Ω = 2N , however,
grows exponentially, so that an exhaustive enumeration of all cycles is impossible.
One has therefore to resort to a weighted sampling of the state space for any given
network realization and to extrapolate from the small fraction of states sampled to
the full state space. This method yielded the

√
N dependence referred to above.

The weighted sampling is, however, not without problems; it might in principle
undersample the state space. The number of cycles found in the average state space
might not be representative for the overall number of cycles, as there might be small
fractions of state space with very high number of attractors dominating the total
number of attractors.

This is indeed the case. One can prove rigorously that the number of attractors
grows faster than any power for the K = 2 Kauffman net. One might still argue,
however, that for biological applications the result for the “average state space” is
relevant, as biological systems are not too big anyway. The hormone regulation
network of mammals contains of the order of 100 elements, the gene regulation
network of the order of 20,000 elements.

4.4.4 The K = N Kauffman Network

Mean-field theory holds for the fully connected network K = N and we can evalu-
ate the average number and length of cycles using probability arguments.

The Random Walk Through Configuration Space We consider an orbit starting
from an arbitrary configuration Σ0 at time t = 0. The time evolution generates a
series of states
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Σ 0 Σ 1

1 − ρt

ρt

Σ 2 Σ 3 Σ t Σ t+1

Σ t + 1

Fig. 4.10 A random walk in configuration space. The relative probability of closing the loop at
time t , ρt = (t + 1)/Ω , is the probability that Σt+1 ≡ Σt ′ , with a certain t ′ ∈ [0, t]

Σ0, Σ1, Σ2, . . .

through the configuration space of size Ω = 2N . We consider all Σt to be uncor-
related, viz we consider a random walk. This assumption holds due to the large
connectivity K = N .

Closing the Random Walk The walk through configuration space continues until
we hit a previously visited point, see Fig. 4.10. We define by

– qt : the probability that the trajectory remains unclosed after t steps;
– Pt : the probability of terminating the excursion exactly at time t .

If the trajectory is still open at time t , we have already visited t + 1 different
sites (including the sites Σ0 and Σt ). Therefore, there are t + 1 ways of termi-
nating the walk at the next time step. The relative probability of termination is then
ρt = (t + 1)/Ω and the overall probability Pt+1 to terminate the random walk at
time t + 1 is

Pt+1 = ρt qt = t + 1

Ω
qt .

The probability of still having an open trajectory after t + 1 steps is

qt+1 = qt (1 − ρt ) = qt

(
1 − t + 1

Ω

)
= q0

t+1∏
i=1

(
1 − i

Ω

)
, q0 = 1 .

The phase space Ω = 2N diverges in the thermodynamic limit N → ∞ and the
approximation

qt =
t∏

i=1

(
1 − i

Ω

)
≈

t∏
i=1

e−i/Ω = e−∑i i/Ω = e−t (t+1)/(2Ω) (4.22)

becomes exact in this limit. For large times t we have t (t + 1)/(2Ω) ≈ t2/(2Ω) in
Eq. (4.22). The probability
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Ω∑
t=1

Pt �
∫ ∞

0
dt

t

Ω
e−t2/(2Ω) = 1

for the random walk to close at all is unity.

Cycle Length Distribution The probability 〈Nc(L)〉 that the system contains a
cycle of length L is

〈Nc(L)〉 = qt=L

Ω

Ω

L
= exp[−L2/(2Ω)]

L
, (4.23)

where we used Eq. (4.22). 〈· · · 〉 denotes an ensemble average over realizations. In
deriving Eq. (4.23) we used the following considerations:

(i) The probability that Σt+1 is identical to Σ0 is 1/Ω .
(ii) There are Ω possible starting points (factor Ω).

(iii) Factor 1/L corrects for the overcounting of cycles when considering the L
possible starting sites of the L-cycle.

Average Number of Cycles We are interested in the mean number N̄c of cycles,

N̄c =
N∑

L=1

〈Nc(L)〉 �
∫ ∞

1
d L 〈Nc(L)〉 . (4.24)

When going from the sum
∑

L to the integral
∫

dL in Eq. (4.24) we neglected terms
of order unity. We find

N̄c =
∫ ∞

1
dL

exp[−L2/(2Ω)]
L

=
∫ 1

1/
√

2Ω
du

e−u2

u︸ ︷︷ ︸
≡ I1

+
∫ ∞

1
du

e−u2

u︸ ︷︷ ︸
≡ I2

,

where we rescaled the variable by u = L/
√

2Ω . For the separation
∫∞

1/
√

2Ω =∫ c
1/

√
2Ω + ∫∞

c of the integral above we used c = 1 for simplicity; any other finite
value for c would do also the job.

The second integral, I2, does not diverge as Ω → ∞. For I1 we have

I1 =
∫ 1

1/
√

2Ω
du

e−u2

u
=
∫ 1

1/
√

2Ω
du

1

u

(
1 − u2 + 1

2
u4 + . . .

)

≈ ln(
√

2Ω) , (4.25)

since all further terms ∝ ∫ 1
1/

√
2Ω du un−1 < ∞ for n = 2, 4, . . . and Ω → ∞. The

average number of cycles is then
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N̄c = ln(
√

2N ) + O(1) = N ln 2

2
+ O(1) (4.26)

for the N = K Kauffman net in thermodynamic limit N → ∞.

Mean Cycle Length The average length L̄ of a random cycle is

L̄ = 1

N̄c

∞∑
L=1

L 〈Nc(L)〉 ≈ 1

N̄c

∫ ∞

1
dL L

exp[−L2/(2Ω)]
L

= 1

N̄c

∫ ∞

1
dL e−L2/(2Ω) =

√
2Ω

N̄c

∫ ∞

1/
√

2Ω
du e−u2

(4.27)

after rescaling with u = L/
√

2Ω and using Eq. (4.23). The last integral on the
right-hand-side of Eq. (4.27) converges for Ω → ∞ and the mean cycle length L̄
consequently scales as

L̄ ∼ Ω1/2/N = 2N/2/N (4.28)

for the K = N Kauffman net, when using Eq. (4.24), N̄c ∼ N .

4.5 Applications

4.5.1 Living at the Edge of Chaos

Gene Expression Networks and Cell Differentiation Kauffman introduced the
N–K model in the late 1960s for the purpose of modeling the dynamics and time
evolution of networks of interacting genes, i.e. the gene expression network. In this
model an active gene might influence the expression of any other gene, e.g. when
the protein transcripted from the first gene influences the expression of the second
gene.

The gene expression network of real-world cells is not random. The web of
linkages and connectivities among the genes in a living organism is, however, very
intricate, and to model the gene–gene interactions as randomly linked is a good 0-th
order approximation. One might then expect to gain a generic insight into the prop-
erties of gene expression networks; insights that are independent of the particular
set of linkages and connectivities realized in any particular living cell.

Dynamical Cell Differentiation Whether random or not, the gene expression net-
work needs to result in a stable dynamics in order for the cell to keep functioning.
Humans have only a few hundreds of different cell types in their bodies. Considering
the fact that every single cell contains the identical complete genetic material, in
1969 Kauffman proposed an, at that time revolutionary, suggestion that every cell
type corresponds to a distinct dynamical state of the gene expression network. It is
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natural to assume that these states correspond to attractors, viz in general to cycles.
The average length L̄ of a cycle in a N–K Kauffman net is

L̄ ∼ 2αN

in the chaotic phase, e.g. for N = K where α = 1/2, see Eq. (4.28), The mean
cycle length L̄ is exponentially large; consider that N ≈ 20, 000 for the human
genome. A single cell would take the universe’s lifetime to complete a single cycle,
which is an unlikely setting. It then follows that gene expression networks of living
organisms cannot be operational in the chaotic phase.

Living at the Edge of Chaos If the gene expression network cannot operate in
the chaotic phase there are but two possibilities left: the frozen phase or the critical
point. The average cycle length is short in the frozen phase, see Sect. 4.4.2, and
the dynamics stable. The system is consequently very resistant to damage of the
linkages.

But what about Darwinian evolution? Is too much stability good for the adapt-
ability of cells in a changing environment? Kauffman suggested that gene expression
networks operate at the edge of chaos, an expression that has become legendary. By
this he meant that networks close to criticality may benefit from the stability prop-
erties of the close-by frozen phase and at the same time exhibit enough sensitivity
to changes in the network structure so that Darwinian adaption remains possible.

But how can a system reach criticality by itself? For the N–K network there is
no extended critical phase, only a single critical point K = 2. In Chap. 5 we will
discuss mechanisms that allow certain adaptive systems to evolve their own internal
parameters autonomously in such a way that they approach the critical point. This
phenomenon is called “self-organized criticality”.

One could then assume that Darwinian evolution trims the gene expression net-
works towards criticality: Cells in the chaotic phase are unstable and die; cells deep
in the frozen phase cannot adapt to environmental changes and are selected out in
the course of time.

4.5.2 The Yeast Cell Cycle

The Cell Division Process Cells have two tasks: to survive and to multiply. When
a living cell grows too big, a cell division process starts. The cell cycle has been
studied intensively for the budding yeast. In the course of the division process the
cell goes through a distinct set of states

G1 → S → G2 → M → G1 ,

with G1 being the “ground state” in physics slang, viz the normal cell state and the
chromosome division takes place during the M phase. These states are character-



4.5 Applications 137

Cell Size
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Fig. 4.11 The N = 11 core network responsible for the yeast cell cycle. Acronyms denote protein
names, solid arrows excitatory connections and dashed arrows inhibitory connections. Cln3 is
inactive in the resting state G1 and becomes active when the cell reaches a certain size (top),
initiating the cell division process (compare Li et al., 2004)

ized by distinct gene activities, i.e. by the kinds of proteins active in the cell. All
eukaryote cells have similar cell division cycles.

The Yeast Gene Expression Network From the ≈ 800 genes involved only 11–13
core genes are actually regulating the part of the gene expression network respon-
sible for the division process; all other genes are more or less just descendants of
the core genes. The cell dynamics contains certain checkpoints, where the cell divi-
sion process can be stopped if something were to go wrong. When eliminating the
checkpoints a core network with only 11 elements remains. This network is shown
in Fig. 4.11.

Boolean Dynamics The full dynamical dependencies are not yet known for the
yeast gene expression network. The simplest model is to assume

σi (t) =
{

1 if ai (t) > 0
0 if ai (t) ≤ 0

, ai (t) =
∑

j

wi jσ j (t) , (4.29)

i.e. a boolean dynamics4 for the binary variables σi (t) = 0, 1 representing the acti-
vation/deactivation of protein i , with couplings wi j = ± 1 for an excitatory/inhi-
bitory functional relation.

4 Genes are boolean variables in the sense that they are either expressed or not. The quantitative
amount of proteins produced by a given active gene is regulated via a separate mechanism involving
microRNA, small RNA snippets.
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Fig. 4.12 The yeast cell cycle as an attractor trajectory of the gene expression network. Shown
are the 1764 states (green dots, out of the 211 = 2048 states in phase space Ω) making up the
basin of attraction of the biologically stable G1 state (at the bottom). After starting with the excited
G1 normal state (the first state in the biological pathway represented by blue arrows), compare
Fig. 4.11, the boolean dynamics runs through the known intermediate states (blue arrows) until the
G1 states attractor is again reached, representing the two daughter cells (from Li et al., 2004)

Fixpoints The 11-site network has 7 attractors, all cycles of length 1, viz fixpoints.
The dominating fixpoint has an attractor basin of 1,764 states, representing about
72% of the state space Ω = 211 = 2048. Remarkably, the protein activation pattern
of the dominant fixpoint corresponds exactly to that of the experimentally deter-
mined G1 ground state of the living yeast cell.

The Cell Division Cycle In the G1 ground state the protein Cln3 is inactive. When
the cell reaches a certain size it becomes expressed, i.e. it becomes active. For the
network model one then just starts the dynamics by setting

σCln3 → 1, at t = 0

in the G1 state. The ensuing simple boolean dynamics, induced by Eq. (4.29), is
depicted in Fig. 4.12.

The remarkable result is that the system follows an attractor pathway that runs
through all experimentally known intermediate cell states, reaching the ground state
G1 in 12 steps.

Comparison with Random Networks The properties of the boolean network
depicted in Fig. 4.11 can be compared with those of a random boolean network. A
random network of the same size and average connectivity would have more attrac-
tors with correspondingly smaller basins of attraction. Living cells clearly need a
robust protein network to survive in harsh environments.

Nevertheless, the yeast protein network shows more or less the same susceptibil-
ity to damage as a random network. The core yeast protein network has an average
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Ensembles of neurons
a b

Random boolean network
with cycles and attractors

t

t

Time−dependent output−
cycles depend on input

Fig. 4.13 Illustration of ensemble (a) and time (b) encoding. Left: All receptor neurons corre-
sponding to the same class of input signals are combined, as occurs in the nose for different odors.
Right: The primary input signals are mixed together by a random neural network close to criticality
and the relative weights are time encoded by the output signal

connectivity of 〈K 〉 = 27/11 � 2.46. The core network has only N = 11 sites, a
number far too small to allow comparison with the properties of N–K networks in
the thermodynamic limit N → ∞. Nevertheless, an average connectivity of 2.46 is
remarkably close to K = 2, i.e. the critical connectivity for N–K networks.

Life as an Adaptive Network Living beings are complex and adaptive dynamical
systems; a subject that we will further dwell on in Chap. 6. The here discussed
preliminary results on the yeast gene expression network indicate that this statement
is not just an abstract notion. Adaptive regulative networks constitute the core of all
living.

4.5.3 Application to Neural Networks

Time Encoding by Random Neural Networks There is some debate in neuro-
science whether, and to which extent, time encoding is used in neural processing.

– Ensemble Encoding: Ensemble encoding is present when the activity of a sen-
sory input is transmitted via the firing of certain ensembles of neurons. Every
sensory input, e.g. every different smell sensed by the nose, has its respective
neural ensemble.

– Time Encoding: Time encoding is present if the same neurons transmit more than
one piece of sensory information by changing their respective firing patterns.

Cyclic attractors in a dynamical ensemble are an obvious tool to generate time
encoded information. For random boolean networks as well as for random neural
networks appropriate initial conditions, corresponding to certain activity patterns
of the primary sensory organs, will settle into a cycle, as discussed in Sect. 4.4.
The random network may then be used to encode initial firing patterns by the time
sequence of neural activities resulting from the firing patterns of the corresponding
limiting cycle, see Fig. 4.13.
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Fig. 4.14 The primary response of sensory receptors can be enhanced by many orders of magni-
tude using the non-linear amplification properties of a random neural network close to criticality

Critical Sensory Processing The processing of incoming information is qualita-
tively different in the various phases of the N–K model, as discussed in Sect. 4.3.1.

The chaotic phase is unsuitable for information processing, any input results in
an unbounded response and saturation. The response in the frozen phase is strictly
proportional to the input and is therefore well behaved, but also relatively uninter-
esting. The critical state, on the other hand, has the possibility of nonlinear signal
amplification.

Sensory organs in animals can routinely process physical stimuli, such as light,
sound, pressure or odorant concentrations, which vary by many orders of magnitude
in intensity. The primary sensory cells, e.g. the light receptors in the retina, have,
however a linear sensibility to the intensity of the incident light, with a relatively
small dynamical range. It is therefore conceivable that the huge dynamical range
of sensory information processing of animals is a collective effect, as it occurs in a
random neural network close to criticality. This mechanism, which is plausible from
the view of possible genetic encoding mechanisms, is illustrated in Fig. 4.14.

Exercises

K = 1 KAUFFMAN NET

Analyze some K = 1 Kauffman nets with N = 3 and a cyclic linkage tree:
σ1 = f1(σ2), σ2 = f2(σ3), σ3 = f3(σ1). Consider:
(i) f1 = f2 = f3 = identity,
(ii) f1 = f2 = f3 = negation and
(iii) f1 = f2 = negation, f 3 = identity.
Construct all cycles and their attraction basin.

N = 4 KAUFFMAN NET

Consider the N = 4 graph illustrated in Fig. 4.1. Assume all coupling functions
to be generalized XOR-functions (1/0 if the number of input-1’s is odd/even).
Find all cycles.

SYNCHRONOUS VS. ASYNCHRONOUS UPDATING

Consider the dynamics of the three-site network illustrated in Fig. 4.3 under
sequential asynchronous updating. At every time step first update σ1 then σ2
and then σ3. Determine the full network dynamics, find all cycles and fixpoints
and compare with the results for synchronous updating shown in Fig. 4.3.
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LOOPS AND ATTRACTORS

Consider, as in Sect. 4.4.2, a K = 1 network with two linkage loops,

A →I B →¬ C →I A, D →¬ E →¬ D ,

with I denoting the identity coupling and ¬ the negation, compare p. 114. Find
all attractors by considering first the dynamics of the individual linkage loops.
Is there any state in phase space which is not part of any cycle?

RELEVANT NODES AND DYNAMIC CORE

How many constant nodes does the network shown in Fig. 4.3 have? Replace
then the AND function with XOR and calculated the complete dynamics. How
many relevant nodes are there now?

THE HUEPE AND ALDANA NETWORK

Solve the boolean neural network with uniform coupling functions and noise,

σi (t + 1) =

⎧⎪⎪⎨
⎪⎪⎩

sign
(∑K

j=1 σi j (t)
)

with probability 1 − η,

−sign
(∑K

j=1 σi j (t)
)

with probability η,

via mean-field theory, where σi = ±1, by considering the order parameter

Ψ = lim
T →∞

1

T

∫ T

0
|s(t)| dt, s(t) = lim

N→∞
1

N

N∑
i=1

σi (t) .

See Huepe and Aldana-González (2002) and additional hints in the solutions
section.

BOND PERCOLATION

Consider a finite L × L two-dimensional square lattice. Write a code that gen-
erates a graph by adding with probability p ∈ [0, 1] nearest-neighbor edges.
Try to develop an algorithm searching for a non-interrupted path of bonds from
one edge to the opposite edge; you might consult web resources. Try to deter-
mine the critical pc, for p > pc, a percolating path should be present with
probability 1 for very large systems L .

Further Reading

The interested reader may want to take a look at Kauffman’s (1969) seminal work
on random boolean networks, or to study his book (Kauffman, 1993). For reviews
on boolean networks please consult Aldana, Coppersmith and Kadanoff (2003) and
the corresponding chapter by B. Drossel in Schuster (2008).

Examples of additional applications of boolean network theory regarding
the modeling of neural networks (Wang et al., 1990) and of evolution (Born-
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holdt and Sneppen, 1998) are also recommended. Some further interesting orig-
inal literature concerns the connection of Kauffman nets with percolation the-
ory (Lam, 1988), as well as the exact solution of the Kauffman net with con-
nectivity one (Flyvbjerg and Kjaer, 1988), numerical studies of the Kauffman net
(Flyvbjerg, 1989; Kauffman, 1969, 1990; Bastolla and Parisi, 1998), as well as the
modeling of the yeast reproduction cycle by boolean networks (Li et al., 2004).

Some of the new developments concern the stability of the Kauffman net
(Bilke and Sjunnesson, 2001) and the number of attractors (Samuelsson and
Troein, 2003) and applications to time encoding by the cyclic attractors (Huerta and
Rabinovich, 2004) and nonlinear signal amplification close to criticality (Kinouchi
and Copelli, 2006).
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Chapter 5
Cellular Automata and Self-Organized
Criticality

The notion of “phase transition” is a key concept in the theory of complex systems.
We encountered an important class of phase transitions in Chap. 4, viz transitions
in the overall dynamical state induced by changing the average connectivity in net-
works of randomly interacting boolean variables.

The concept of phase transition originates from physics. At its basis lies the “Lan-
dau theory of phase transition”, which we will discuss in this chapter. Right at the
point of transition between one phase and another, systems behave in a very special
fashion; they are said to be “critical”. Criticality is reached normally when tuning
an external parameter, such as the temperature for many physical phase transitions
or the average connectivity for the case of random boolean networks.

The central question discussed in this chapter is whether “self-organized criti-
cality” is possible in complex adaptive systems, i.e. whether a system can adapt its
own parameters in a way to move towards criticality on its own, as a consequence of
a suitable adaptive dynamics. The possibility of self-organized criticality is a very
intriguing outlook. In this context, we discussed in Chap. 4, the notion of “life at the
edge of chaos”, viz the hypothesis that the dynamical state of living beings may be
close to self-organized criticality.

We will introduce and discuss “cellular automata” in this chapter, an important
and popular class of standardized dynamical systems. Cellular automata allow a
very intuitive construction of models, such as the famous “sandpile model”, showing
the phenomenon of self-organized criticality. The chapter then concludes with a dis-
cussion of whether self-organized criticality occurs in the most adaptive dynamical
system of all, namely in the context of long-term evolution.

5.1 The Landau Theory of Phase Transitions

One may describe the physics of thermodynamic phases either microscopically with
the tools of statistical physics, or by considering the general properties close to a
phase transition. The Landau theory of phase transitions does the latter, providing a
general framework valid irrespectively of the microscopic details of the material.

Second-Order Phase Transitions Phase transitions occur in many physical sys-
tems when the number of components diverges, viz “macroscopic” systems. Every
phase has characteristic properties. The key property, which distinguishes one phase

C. Gros, Complex and Adaptive Dynamical Systems, 2nd ed.,
DOI 10.1007/978-3-642-04706-0_5, C© Springer-Verlag Berlin Heidelberg 2011
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Fig. 5.1 Phase diagram of a magnet in an external magnetic field h. Left: The order parameter
M (magnetization) as a function of temperature across the phase transition. The arrows illustrate
typical arrangements of the local moments. In the ordered phase there is a net magnetic moment
(magnetization). For h = 0/h > 0 the transition disorder–order is a sharp transition/crossover.
Right: The T − h phase diagram. A sharp transition occurs only for vanishing external field h

from another, is denoted the “order parameter”. Mathematically one can classify the
type of ordering according to the symmetry of the ordering breaks.

The Order Parameter. In a continuous or “second-order” phase transition
the high-temperature phase has a higher symmetry than the low-temperature
phase and the degree of symmetry breaking can be characterized by an order
parameter φ.

Note that all matter is disordered at high enough temperatures and ordered phases
occur at low to moderate temperatures in physical systems.

Ferromagnetism in Iron The classical example for a phase transition is that of a
magnet like iron. Above the Curie temperature of Tc = 1, 043 K the elementary
magnets are disordered, see Fig. 5.1 for an illustration. They fluctuate strongly and
point in random directions. The net magnetic moment vanishes. Below the Curie
temperature the moments point on the average to a certain direction creating such
a macroscopic magnetic field. Since magnetic fields are generated by circulating
currents and since an electric current depends on time, one speaks of a breaking of
“time-reversal symmetry” in the magnetic state of a ferromagnet like iron. Some
further examples of order parameters characterizing phase transitions in physical
systems are listed in Table 5.1.

Free Energy A statistical mechanical system takes the configuration with the low-
est energy at zero temperature. A physical system at finite temperatures T > 0 does
not minimize its energy but a quantity called the free energy F, which differs from
the energy by a term proportional to the entropy and to the temperature.1

Close to the transition temperature Tc the order parameter φ is small and one
assumes within the Landau–Ginsburg model that the free energy density f = F/V ,

1 Details can be found in any book on thermodynamics and phase transitions, e.g. Callen (1985),
they are, however, not necessary for an understanding of the following discussions.
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f = f (T, φ, h) ,

can be expanded for a small order parameter φ and a small external field h:

f (T, φ, h) = f0(T, h) − h φ + a φ2 + b φ4 + . . . (5.1)

where the parameters a = a(T ) and b = b(T ) are functions of the temperature T
and of an external field h, e.g. a magnetic field for the case of magnetic systems.
Note the linear coupling of the external field h to the order parameter in lowest
order and that b > 0 (stability for large φ), compare Fig. 5.2.

Spontaneous Symmetry Breaking All odd terms ∼ φ2n+1 vanish in the expansion
(5.1). The reason is simple. The expression (5.1) is valid for all temperatures close
to Tc and the disordered high-temperature state is invariant under the symmetry
operation

f (T, φ, h) = f (T,−φ,−h), φ ↔ −φ, h ↔ −h .

This relation must therefore hold also for the exact Landau–Ginsburg functional.
When the temperature is lowered the order parameter φ will acquire a finite expec-
tation value. One speaks of a “spontaneous” breaking of the symmetry inherent to
the system.

The Variational Approach The Landau–Ginsburg functional (5.1) expresses the
value that the free-energy would have for all possible values of φ. The true physical
state, which one calls the “thermodynamical stable state”, is obtained by finding the
minimal f (T, φ, h) for all possible values of φ:

δ f =
(
−h + 2 a φ + 4 b φ3

)
δφ = 0,

0 = −h + 2 a φ + 4 b φ3 , (5.2)

where δ f and δφ denote small variations of the free energy and of the order param-
eter, respectively. This solution corresponds to a minimum in the free energy if

Table 5.1 Examples of important types of phase transitions in physical systems. When the tran-
sition is continuous/discontinuous one speaks of a second-/first-order phase transition. Note that
most order parameters are non-intuitive. The superconducting state, notable for its ability to carry
electrical current without dispersion, breaks what one calls the U (1)-gauge invariance of the nor-
mal (non-superconducting) metallic state

Transition Type Order parameter φ

Superconductivity Second-order U(1)-gauge
Magnetism Mostly second-order Magnetization
Ferroelectricum Mostly second-order Polarization
Bose–Einstein Second-order Amplitude of k = 0 state
Liquid–gas First-order Density
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Fig. 5.2 Left: The functional dependence of the Landau–Ginzburg free energy f (T, φ, h) −
f0(T, h) = −h φ + a φ2 + b φ4, with a = (t − 1)/2. Plotted is the free energy for a < 0
and h > 0 (dashed line) and h = 0 (full line) and for a > 0 (dotted line). Right: Graphical solution
of Eq. (5.9) for a non-vanishing field h �= 0; φ0 is the order parameter in the disordered phase
(t > 1, dotted line), φ1, φ3 the stable solutions in the order phase (t < 1, dashed line) and φ2 the
unstable solution, compare the left-hand side illustration

δ2 f > 0, δ2 f =
(

2 a + 12 b φ2
)
(δφ)2 . (5.3)

One also says that the solution is “locally stable”, since any change in φ from its
optimal value would raise the free energy.

Solutions for h = 0 We consider first the case with no external field, h = 0. The
solution of Eq. (5.2) is then

φ =
{

0 for a > 0
±√−a/(2 b) for a < 0

. (5.4)

The trivial solution φ = 0 is stable,

(
δ2 f

)
φ=0

= 2 a (δφ)2 , (5.5)

if a > 0. The nontrivial solutions φ = ±√−a/(2 b) of Eq. (5.4) are stable,

(
δ2 f

)
φ �=0

= −4 a (δφ)2 , (5.6)

for a < 0. Graphically this is immediately evident, see Fig. 5.2. For a > 0 there is
a single global minimum at φ = 0, for a < 0 we have two symmetric minima.

Continuous Phase Transition We therefore find that the Ginsburg–Landau func-
tional (5.1) describes continuous phase transitions when a = a(T ) changes sign at
the critical temperature Tc. Expanding a(T ) for small T − Tc we have

a(T ) ∼ T − Tc, a = a0 (t − 1), t = T/Tc, a0 > 0 ,
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where we have used a(Tc) = 0. For T < Tc (ordered phase) the solution Eq. (5.4)
then takes the form

φ = ±
√

a0

2 b
(1 − t), t < 1, T < Tc . (5.7)

Simplification by Rescaling We can always rescale the order parameter φ, the
external field h and the free energy density f such that a0 = 1/2 and b = 1/4. We
then have

a = t − 1

2
, f (T, φ, h) − f0(T, h) = −h φ + t − 1

2
φ2 + 1

4
φ4

and

φ = ±√
1 − t, t = T/Tc (5.8)

for the non-trivial solution Eq. (5.7).

Solutions for h �= 0 The solutions of Eq. (5.2) are determined in rescaled form by

h = (t − 1) φ + φ3 ≡ P(φ) , (5.9)

see Fig. 5.2. In general one finds three solutions φ1 < φ2 < φ3. One can show (see
the Exercises) that the intermediate solution is always locally instable and that φ3
(φ1) is globally stable for h > 0 (h < 0).

First-Order Phase Transition We note, see Fig. 5.2, that the solution φ3 for h > 0
remains locally stable when we vary the external field slowly (adiabatically)

(h > 0) → (h = 0) → (h < 0)

in the ordered state T < Tc. At a certain critical field, see Fig. 5.3, the order param-
eter changes sign abruptly, jumping from the branch corresponding to φ3 > 0 to
the branch φ1 < 0. One speaks of hysteresis, a phenomenon typical for first-order
phase transitions.

Susceptibility When the system is disordered and approaches the phase transition
from above, it has an increased sensitivity towards ordering under the influence of
an external field h.

Susceptibility. The susceptibility χ of a system denotes its response to an
external field:

χ =
(
∂φ

∂h

)
T

, (5.10)

where the subscript T indicates that the temperature is kept constant. The
susceptibility measures the relative amount of the induced order φ = φ(h).
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Fig. 5.3 Left: Discontinuous phase transition and hysteresis in the Landau model. Plotted is the
solution φ = φ(h) of h = (t − 1)φ + φ3 in the ordered phase (t < 1) when changing the
field h. Right: The susceptibility χ = ∂φ/∂h for h = 0 (solid line) and h > 0 (dotted line). The
susceptibility divergence in the absence of an external field (h = 0), compare Eq. (5.11)

Diverging Response Taking the derivative with respect to the external field h in
Eq. (5.9), h = (t − 1) φ + φ3, we find for the disordered phase T > Tc,

1 =
[
(t − 1) + 3φ2

] ∂φ
∂h

, χ(T )

∣∣∣
h→0

= 1

t − 1
= Tc

T − Tc
, (5.11)

since φ(h = 0) = 0 for T > Tc. The susceptibility diverges at the phase transition
for h = 0, see Fig. 5.3. This divergence is a typical precursor of ordering for a
second-order phase transition. Exactly at Tc, viz at criticality, the response of the
system is, strictly speaking, infinite.

A non-vanishing external field h �= 0 induces a finite amount of ordering φ �= 0
at all temperatures and the phase transition is masked, compare Fig. 5.1. In this
case, the susceptibility is a smooth function of the temperature, see Eq. (5.11) and
Fig. 5.3.

5.2 Criticality in Dynamical Systems

Length Scales Any physical or complex system normally has well defined time
and space scales. As an example we take a look at the Schrödinger equation for the
hydrogen atom,

i h̄
∂Ψ (t, r)

∂t
= H Ψ (t, r), H = − h̄2Δ

2m
− Ze2

|r| ,

where

Δ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
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is the Laplace operator. We do not need to know the physical significance of the
parameters to realize that we can rewrite the differential operator H , called the
“Hamilton” operator, as

H = −ER

(
a2

0Δ + 2a0

|r|
)
, ER = m Z2e4

2h̄2
, a0 = h̄2

m Ze2
.

The length scale a0 = 0.53 Å/Z is called the “Bohr radius” and the energy scale
ER = 13.6 eV the “Rydberg energy”, which corresponds to a frequency scale of
ER/h̄ = 3.39 · 1015 Hz. The energy scale ER determines the ground state energy
and the characteristic excitation energies. The length scale a0 determines the mean
radius of the ground state wavefunction and all other radius-dependent properties.

Similar length scales can be defined for essentially all dynamical systems defined
by a set of differential equations. The damped harmonic oscillator and the diffusion
equations, e.g. are given by

ẍ(t) − γ ẋ(t) + ω2x(t) = 0,
∂ρ(t, r)

∂t
= DΔρ(t, r) . (5.12)

The parameters 1/γ and 1/ω, respectively, determine the time scales for relaxation
and oscillation, and D is the diffusion constant.

Correlation Function A suitable quantity to measure and discuss the properties
of the solutions of dynamical systems like the ones defined by Eq. (5.12) is the
equal-time correlation function S(r), which is the expectation value

S(r) = 〈 ρ(t0, x) ρ(t0, y) 〉, r = |x − y| . (5.13)

Here ρ(t0, x) denotes the particle density, for the case of the diffusion equation or
when considering a statistical mechanical system of interacting particles. The exact
expression for ρ(t0, x) in general depends on the type of dynamical system consid-
ered; for the Schrödinger equation ρ(t, x) = Ψ ∗(t, x)Ψ (t, x), i.e. the probability to
find the particle at time t at the point x.

The equal-time correlation function then measures the probability to find a par-
ticle at position x when there is one at y. S(r) is directly measurable in scattering
experiments and therefore a key quantity for the characterization of a physical sys-
tem. Often one is interested in the deviation of the correlation from the average
behaviour. In this case one considers 〈 ρ(x) ρ( y) 〉 − 〈 ρ(x) 〉〈 ρ( y) 〉 for the correla-
tion function S(r).

Correlation Length Of interest is the behavior of the equal-time correlation func-
tion S(r) for large distances r → ∞. In general we have two possibilities:

S(r)
∣∣∣
r→∞ ∼

{
e−r/ξ non-critical

1/rd−2+η critical
. (5.14)
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In any “normal” (non-critical) system, correlations over arbitrary large distances
cannot be built up, and the correlation function decays exponentially with the
“correlation length” ξ . The notation d − 2 + η > 0 for the decay exponent of the
critical system is a convention from statistical physics, where d = 1, 2, 3, . . . is the
dimensionality of the system.

Scale-Invariance and Self-Similarity If a control parameter, often the tempera-
ture, of a physical system is tuned such that it sits exactly at the point of a phase
transition, the system is said to be critical. At this point there are no characteristic
length scales.

Scale Invariance. If a measurable quantity, like the correlation function,
decays like a power of the distance ∼ (1/r)δ , with a critical exponent δ, the
system is said to be critical or scale-invariant.

Power laws have no scale; they are self-similar,

S(r) = c0

(r0

r

)δ ≡ c1

(r1

r

)δ
, c0 r δ0 = c1 r δ1 ,

for arbitrary distances r0 and r1.

Universality at the Critical Point The equal-time correlation function S(r) is
scale-invariant at criticality, compare Eq. (5.14). This is a surprising statement,
since we have seen before that the differential equations determining the dynamical
system have well defined time and length scales. How then does the solution of
a dynamical system become effectively independent of the parameters entering its
governing equations?

Scale invariance implies that fluctuations occur over all length scales, albeit
with varying probabilities. This can be seen by observing snapshots of statistical
mechanical simulations of simple models, compare Fig. 5.4. The scale invariance of
the correlation function at criticality is a central result of the theory of phase transi-
tions and statistical physics. The properties of systems close to a phase transition are
not determined by the exact values of their parameters, but by the structure of the
governing equations and their symmetries. This circumstance is denoted “universal-
ity” and constitutes one of the reasons for classifying phase transitions according to
the symmetry of their order parameters, see Table 5.1.

Autocorrelation Function The equal-time correlation function S(r) measures
real-space correlations. The corresponding quantity in the time domain is the auto-
correlation function

Γ (t) = 〈A(t + t0)A(t0)〉 − 〈A〉2

〈A2〉 − 〈A〉2
, (5.15)

which can be defined for any time-dependent measurable quantity A, e.g. A(t) =
ρ(t, �r). Note that the autocorrelations are defined relative to 〈A〉2, viz the mean
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Fig. 5.4 Simulation of the 2D-Ising model H = ∑
<i, j> σiσ j , < i, j > nearest neighbors on

a square lattice. Two magnetization orientations σi = ±1 correspond to the dark/light dots. For
T < Tc (left, ordered), T ≈ Tc (middle, critical) and T > Tc (right, disordered). Note the
occurrence of fluctuations at all length scales at criticality (self-similarity)

(time-independent) fluctuations. The denominator in Eq. (5.15) is a normalization
convention, namely Γ (0) ≡ 1.

In the non-critical regime, viz the diffusive regime, no long-term memory is
present in the system and all information about the initial state is lost exponentially,

Γ (t) ∼ e−t/τ , t → ∞ . (5.16)

τ is called the relaxation time. The relaxation or autocorrelation time τ is the time
scale of diffusion processes.

Dynamical Critical Exponent The relaxation time entering Eq. (5.16) diverges at
criticality, as does the real-space correlation length ξ entering Eq. (5.14). One can
then define an appropriate exponent z, dubbed the “dynamical critical exponent” z,
in order to relate the two power laws for τ and ξ via

τ ∼ ξ z, for ξ = |T − Tc|−ν → ∞ .

The autocorrelation time is divergent in the critical state T → Tc.

Self-Organized Criticality We have seen that phase transitions can be character-
ized by a set of exponents describing the respective power laws of various quantities
like the correlation function or the autocorrelation function. The phase transition
occurs generally at a single point, viz T = Tc for a thermodynamical system. At
the phase transition the system becomes effectively independent of the details of its
governing equations, being determined by symmetries.

It then comes as a surprise that there should exist complex dynamical systems
that attain a critical state for a finite range of parameters. This possibility, denoted
“self-organized criticality” and the central subject of this chapter, is to some extent
counter intuitive. We can regard the parameters entering the evolution equation as
given externally. Self-organized criticality then signifies that the system effectively
adapts to changes in the external parameters, e.g. to changes in the given time and
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length scales, in such a way that the stationary state becomes independent of those
changes.

5.2.1 1/f Noise

So far we have discussed the occurrence of critical states in classical thermody-
namics and statistical physics. We now ask ourselves for experimental evidence that
criticality might play a central role in certain time-dependent phenomena.

1/f Noise The power spectrum of the noise generated by many real-world dynami-
cal processes falls off inversely with frequency f . This 1/ f noise has been observed
for various biological activities, like the heart beat rhythms, for functioning electri-
cal devices or for meteorological data series. Per Bak and coworkers have pointed
out that the ubiquitous 1/ f noise could be the result of a self-organized phe-
nomenon. Within this view one may describe the noise as being generated by a
continuum of weakly coupled damped oscillators representing the environment.

Power Spectrum of a Single Damped Oscillator A system with a single relax-
ation time τ , see Eq. (5.12), and eigenfrequency ω0 has a Lorentzian power spectrum

S(ω, τ) = Re
∫ ∞

0
dt eiωt e−iω0t−t/τ = Re

−1

i(ω − ω0) − 1/τ
= τ

1 + τ 2(ω − ω0)2
.

For large frequencies ω 	 1/τ the power spectrum falls off like 1/ω2. Being inter-
ested in the large- f behavior we will neglect ω0 in the following.

Distribution of Oscillators The combined power or frequency spectrum of a con-
tinuum of oscillators is determined by the distribution D(τ ) of relaxation times τ .
For a critical system relaxation occurs over all time scales, as discussed in Sect. 5.2
and we may assume a scale-invariant distribution

D(τ ) ≈ 1

τα
(5.17)

for the relaxation times τ . This distribution of relaxation times yields a frequency
spectrum

S(ω) =
∫

dτ D(τ )
τ

1 + (τω)2
∼
∫

dτ
τ 1−α

1 + (τω)2

= 1

ωω1−α

∫
d(ωτ)

(ωτ)1−α

1 + (τω)2
∼ ωα−2 . (5.18)

For α = 1 we obtain 1/ω, the typical behavior of 1/ f noise.
The question is then how assumption (5.17) can be justified. The wide-spread

appearance of 1/ f noise can only happen when scale-invariant distribution of
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relaxation times are ubiquitous, viz if they were self-organized. The 1/ f noise
therefore constitutes an interesting motivation for the search of possible mechanisms
leading to self-organized criticality.

5.3 Cellular Automata

Cellular automata are finite state lattice systems with discrete local update rules.

zi → fi (zi , zi+δ, . . .), zi ∈ [0, 1, . . . , n] , (5.19)

where i+δ denote neighboring sites of site i . Each site or “cell” of the lattice follows
a prescribed rule evolving in discrete time steps. At each step the new value for a
cell depends only on the current state of itself and on the state of its neighbors.

Cellular automata differ from the dynamical networks we studied in Chap. 4, in
two aspects:

(i) The update functions are all identical: fi () ≡ f (), viz they are translational
invariant.

(ii) The number n of states per cell is usually larger than 2 (boolean case).

Cellular automata can give rise to extremely complex behavior despite their decep-
tively simple dynamical structure. We note that cellular automata are always updated
synchronously and never sequentially or randomly. The state of all cells is updated
simultaneously.

Number of Update Rules The number of possible update rules is huge. Take, e.g.
a two-dimensional model (square lattice), where each cell can take only one of two
possible states,

zi = 0, (dead), zi = 1, (alive) .

We consider, for simplicity, rules for which the evolution of a given cell to the next
time step depends on the current state of the cell and on the values of each of its
eight nearest neighbors. In this case there are

29 = 512 configurations, 2512 = 1.3 × 10154 possible rules ,

since any one of the 512 configurations can be mapped independently to “live” or
“dead”. For comparison note that the universe is only of the order of 3×1017 seconds
old.

Totalistic Update Rules It clearly does not make sense to explore systematically
the consequences of arbitrary updating rules. One simplification is to consider a
mean-field approximation that results in a subset of rules called “totalistic”. For
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mean-field rules the new state of a cell depends only on the total number of living
neighbors and on its own state. The eight-cell neighborhood has

9 possible total occupancy states of neighboring sites,

2 · 9 = 18 configurations, 218 = 262, 144 totalistic rules .

This is a large number, but it is exponentially smaller than the number of all possible
update rules for the same neighborhood.

5.3.1 Conway’s Game of Life

The “game of life” takes its name because it attempts to simulate the reproductive
cycle of a species. It is formulated on a square lattice and the update rule involves the
eight-cell neighborhood. A new offspring needs exactly three parents in its neigh-
borhood. A living cell dies of loneliness if it has less than two live neighbors, and
of overcrowding if it has more than three live neighbors. A living cell feels comfort-
able with two or three live neighbors; in this case it survives. The complete set of
updating rules is listed in Table 5.2.

Living Isolated Sets The time evolution of an initial set of a cluster of living cells
can show extremely varied types of behavior. Fixpoints of the updating rules, such
as a square

{
(0, 0), (1, 0), (0, 1), (1, 1)

}

of four neighboring live cells, survive unaltered. There are many configurations of
living cells which oscillate, such as three live cells in a row or column,

{
(−1, 0), (0, 0), (1, 0)

}
,

{
(0,−1), (0, 0), (0, 1)

}
.

It constitutes a fixpoint of f ( f (.)), alternating between a vertical and a horizontal
bar. The configuration

Table 5.2 Updating rules for the game of life; zi = 0, 1 corresponds to empty and living cells. An
“x” as an entry denotes what is going to happen for the respective number of living neighbors

zi (t) zi (t + 1) Number of living neighbors

0 1 2 3 4..8

0 1 x
0 x x x x

1 1 x x
0 x x x
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(a) block (b) blinker

(c)  glider

Fig. 5.5 Time evolution of some living configurations for the game of life, see Table 5.2. (a) The
“block”; it quietly survives. (b) The “blinker”; it oscillates with period 2. (c) The “glider”; it shifts
by (−1, 1) after four time steps

{
(0, 0), (0, 1), (0, 2), (1, 2), (2, 1)

}

is dubbed “glider”, since it returns to its initial shape after four time steps but is
displaced by (−1, 1), see Fig. 5.5. It constitutes a fixpoint of f ( f ( f ( f (.)))) times
the translation by (−1, 1). The glider continues to propagate until it encounters a
cluster of other living cells.

The Game of Life as a Universal Computer It is interesting to investigate, from
an engineering point of view, all possible interactions between initially distinct sets
of living cells in the game of life. In this context one finds that it is possible to
employ gliders for the propagation of information over arbitrary distances. One
can prove that arbitrary calculations can be performed by the game of life, when
identifying the gliders with bits. Suitable and complicated initial configurations are
necessary for this purpose, in addition to dedicated living subconfigurations per-
forming logical computations, in analogy to electronic gates, when hit by one or
more gliders.

5.3.2 The Forest Fire Model

The forest fires automaton is a very simplified model of real-world forest fires. It is
formulated on a square lattice with three possible states per cell,

zi = 0, (empty), zi = 1, (tree), zi = 2, (fire) .

A tree sapling can grow on every empty cell with probability p < 1. There is no
need for nearby parent trees, as sperms are carried by wind over wide distances.
Trees do not die in this model, but they catch fire from any burning nearest neighbor
tree. The rules are:
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Fig. 5.6 Simulations of the forest fire model. Left: Fires burn in characteristic spirals for a growth
probability p = 0.005 and no lightning, f = 0 (from Clar et al., 1996). Right: A snapshot of the
forest fire model with a growth probability p = 0.06 and a lightning probability f = 0.0001. Note
the characteristic fire fronts with trees in front and ashes behind

The forest fire automaton differs from typical rules, such as Conway’s game of
life, because it has a stochastic component. In order to have an interesting dynamics
one needs to adjust the growth rate p as a function of system size, so as to keep the
fire burning continuously. The fires burn down the whole forest when trees grow too
fast. When the growth rate is too low, on the other hand, the fires, being surrounded
by ashes, may die out completely.

When adjusting the growth rate properly one reaches a steady state, the sys-
tem having fire fronts continually sweeping through the forest, as is observed for
real-world forest fires; this is illustrated in Fig. 5.6. In large systems stable spiral
structures form and set up a steady rotation.

Criticality and Lightning The forest fire model, as defined above, is not critical,
since the characteristic time scale 1/p for the regrowth of trees governs the dynam-
ics. This time scale translates into a characteristic length scale 1/p, which can be
observed in Fig. 5.6, via the propagation rule for the fire.

Self-organized criticality can, however, be induced in the forest fire model when
introducing an additional rule, namely that a tree might ignite spontaneously with a
small probability f , when struck by lightning, causing also small patches of forest
to burn. We will not discuss this mechanism in detail here, treating instead in the
next section the occurrence of self-organized criticality in the sandpile model on a
firm mathematical basis.

zi (t) zi (t + 1) Condition

Empty Tree With probability p < 1
Tree Tree No fire close by
Tree Fire At least one fire close by
Fire Empty Always
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5.4 The Sandpile Model and Self-Organized Criticality

Self-Organized Criticality We have learned in Chap. 4 about the concept “life at
the edge of chaos”. Namely, that certain dynamical and organizational aspects of
living organisms may be critical. Normal physical and dynamical systems, however,
show criticality only for selected parameters, e.g. T = Tc, see Sect. 5.1. For criti-
cality to be biologically relevant, the system must evolve into a critical state starting
from a wide range of initial states – one speaks of “self-organized criticality”.

The Sandpile Model Per Bak and coworkers introduced a simple cellular automa-
ton that mimics the properties of sandpiles, i.e. the BTW model. Every cell is char-
acterized by a force

zi = z(x, y) = 0, 1, 2, . . . , x, y = 1, . . . , L

on a finite L × L lattice. There is no one-to-one correspondence of the sandpile
model to real-world sandpiles. Loosely speaking one may identify the force zi with
the slope of real-world sandpiles. But this analogy is not rigorous, as the slope of
a real-world sandpile is a continuous variable. The slopes belonging to two neigh-
boring cells should therefore be similar, whereas the values of zi and z j on two
neighboring cells can differ by an arbitrary amount within the sandpile model.

The sand begins to topple when the slope gets too big:

z j → z j − Δi j , if z j > K ,

where K is the threshold slope and with the toppling matrix

Δi, j =
⎧⎨
⎩

4 i = j
−1 i, j nearest neighbors

0 otherwise
. (5.20)

This update rule is valid for the four-cell neighborhood {(0,±1), (±1, 0)}. The
threshold K is arbitrary, a shift in K simply shifts zi . It is customary to consider
K = 3. Any initial random configuration will then relax into a steady-state final
configuration (called the stable state) with

zi = 0, 1, 2, 3, (stable state) .

Open Boundary Conditions The update rule Eq. (5.20) is conserving:

Conserving Quantities. If there is a quantity that is not changed by the
update rule it is said to be conserving.

The sandpile model is locally conserving. The total height
∑

j z j is constant due to∑
j Δi, j = 0. Globally, however, it is not conserving, as one uses open boundary
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Fig. 5.7 The progress of an avalanche, with duration t = 3 and size s = 13, for a sandpile
configuration on a 5 × 5 lattice with K = 3. The height of the sand in each cell is indicated by
the numbers. The shaded region is where the avalanche has progressed. The avalanche stops after
step 3

conditions for which excess sand is lost at the boundary. When a site at the boundary
topples, some sand is lost there and the total

∑
j z j is reduced by one.

However, here we have only a vague relation of the BTW model to real-world
sandpiles. The conserving nature of the sandpile model mimics the fact that sand
grains cannot be lost in real-world sandpiles. This interpretation, however, contrasts
with the previously assumed correspondence of zi with the slope of real-world sand-
piles.

Avalanches When starting from a random initial state with zi � K the system
settles in a stable configuration when adding “grains of sand” for a while. When a
grain of sand is added to a site with zi = K

zi → zi + 1, zi = K ,

a toppling event is induced, which may in turn lead to a whole series of topplings.
The resulting avalanche is characterized by its duration t and the size s of affected
sites. It continues until a new stable configuration is reached. In Fig. 5.7 a small
avalanche is shown.

Distribution of Avalanches We define with D(s) and D(t) the distributions of the
size and of the duration of avalanches. One finds that they are scale-free,

D(s) ∼ s−αs , D(t) ∼ t−αt , (5.21)

as we will discuss in the next section. Equation (5.21) expresses the essence of self-
organized criticality. We expect these scale-free relations to be valid for a wide range
of cellular automata with conserving dynamics, independent of the special values of
the parameters entering the respective update functions. Numerical simulations and
analytic approximations for d = 2 dimensions yield

αs ≈ 5

4
, αt ≈ 3

4
.
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Conserving Dynamics and Self-Organized Criticality We note that the toppling
events of an avalanche are (locally) conserving. Avalanches of arbitrary large sizes
must therefore occur, as sand can be lost only at the boundary of the system. One
can indeed prove that Eqs. (5.21) are valid only for locally conserving models.
Self-organized criticality breaks down as soon as there is a small but non-vanishing
probability to lose sand somewhere inside the system.

Features of the Critical State The empty board, when all cells are initially empty,
zi ≡ 0, is not critical. The system remains in the frozen phase when adding sand;
compare Chap. 4, as long as most zi < K . Adding one sand corn after the other the
critical state is slowly approached. There is no way to avoid the critical state.

Once the critical state is achieved the system remains critical. This critical state
is paradoxically also the point at which the system is dynamically most unstable. It
has an unlimited susceptibility to an external driving (adding a grain of sand), using
the terminology of Sect. 5.1, as a single added grain of sand can trip avalanches of
arbitrary size.

It needs to be noted that the dynamics of the sandpile model is deterministic,
once the grain of sand has been added, and that the disparate fluctuations in terms of
induced avalanches are features of the critical state per se and not due to any hidden
stochasticity, as discussed in Chap. 2, or due to any hidden deterministic chaos.

5.5 Random Branching Theory

Branching theory deals with the growth of networks via branching. Networks
generated by branching processes are loopless; they typically arise in theories of
evolutionary processes.

5.5.1 Branching Theory of Self-Organized Criticality

Avalanches have an intrinsic relation to branching processes: at every time step the
avalanche can either continue or stop. Random branching theory is hence a suitable
method for studying self-organized criticality.

Branching in Sandpiles A typical update during an avalanche is of the form

time 0: zi → zi − 4 z j → z j + 1 ,

time 1: zi → zi + 1 z j → z j − 4 ,

when two neighboring cells i and j initially have zi = K + 1 and z j = K . This
implies that an avalanche typically intersects with itself. Consider, however, a gen-
eral d-dimensional lattice with K = 2d − 1. The self-interaction of the avalanche
becomes unimportant in the limit 1/d → 0 and the avalanche can be mapped rig-
orously to a random branching process. Note that we encountered an analogous
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Fig. 5.8 Branching processes. Left: The two possible processes of order n = 1. Right: A generic
process of order n = 3 with an avalanche of size s = 7

situation in the context of high-dimensional or random graphs, discussed in Chap. 1,
which are also loopless in the thermodynamic limit.

Binary Random Branching In d → ∞ the notion of neighbors loses meaning,
avalanches then have no spatial structure. Every toppling event affects 2d neighbors,
on a d-dimensional hypercubic lattice. However, only the cumulative probability of
toppling of the affected cells is relevant, due to the absence of geometric constraints
in the limit d → ∞. All that is important then is the question whether an avalanche
continues, increasing its size continuously, or whether it stops.

We can therefore consider the case of binary branching, viz that a toppling event
creates two new active sites.

Binary Branching. An active site of an avalanche topples with the probabil-
ity p and creates two new active sites.

For p < 1/2 the number of new active sites decreases on the average and the
avalanche dies out. pc = 1/2 is the critical state with (on the average) conserving
dynamics. See Fig. 5.8 for some examples of branching processes.

Distribution of Avalanche Sizes The properties of avalanches are determined by
the probability distribution,

Pn(s, p),
∞∑

s=1

Pn(s, p) = 1 ,

describing the probability to find an avalanche of size s in a branching process of
order n. Here s is the (odd) number of sites inside the avalanche, see Figs. 5.8 and
5.9 for some examples.

Generating Function Formalism In Chap. 4, we introduced the generating
functions for probability distribution. This formalism is very useful when one
has to deal with independent stochastic processes, as the joint probability of two
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Fig. 5.9 Branching processes of order n = 2 with avalanches of sizes s = 3, 5, 7 (left, middle,
right) and boundaries σ = 0, 2, 4

independent stochastic processes is equivalent to the simple multiplication of the
corresponding generating functions.

We define via

fn(x, p) =
∑

s

Pn(s, p) xs, fn(1, p) =
∑

s

Pn(s, p) = 1 (5.22)

the generating functional fn(x, p) for the probability distribution Pn(s, p). We note
that

Pn(s, p) = 1

s!
∂s fn(x, p)

∂xs

∣∣∣
x=0

, n, p fixed . (5.23)

Small Avalanches For small s and large n one can evaluate the probability for
small avalanches to occur by hand and one finds for the corresponding generating
functionals:

Pn(1, p) = 1 − p, Pn(3, p) = p(1 − p)2, Pn(5, p) = 2p2(1 − p)3 ,

compare Figs. 5.8 and 5.9. Note that Pn(1, p) is the probability to find an avalanche
of just one site.

The Recursion Relation For generic n the recursion relation

fn+1(x, p) = x (1 − p) + x p f 2
n (x, p) (5.24)

is valid. To see why, one considers building the branching network backwards,
adding a site at the top:

– With the probability (1 − p)
one adds a single-site avalanche described by the generating functional x .

– With the probability p
one adds a site, described by the generating functional x , which generated two
active sites, described each by the generating functional fn(x, p).

In the terminology of branching theory, one also speaks of a decomposition of
the branching process after its first generation, a standard procedure.
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The Self-Consistency Condition For large n and finite x the generating func-
tionals fn(x, p) and fn+1(x, p) become identical, leading to the self-consistency
condition

fn(x, p) = fn+1(x, p) = x (1 − p) + x p f 2
n (x, p) , (5.25)

with the solution

f (x, p) ≡ fn(x, p) = 1 −√
1 − 4x2 p(1 − p)

2xp
(5.26)

for the generating functional f (x, p). The normalization condition

f (1, p) = 1 −√
1 − 42 p(1 − p)

2p
= 1 −√

(1 − 2p)2

2p
= 1

is fulfilled for p ∈ [0, 1/2]. For p > 1/2 the last step in above equation would not
be correct.

The Subcritical Solution Expanding Eq. (5.26) in powers of x2 we find terms like

1

p

[
4p(1 − p)

]k
(
x2
)k

x
= 1

p

[
4p(1 − p)

]k
x2k−1 .

Comparing this with the definition of the generating functional Eq. (5.22) we note
that s = 2k − 1, k = (s + 1)/2 and that

P(s, p) ∼ 1

p

√
4p(1 − p)

[
4p(1 − p)

]s/2 ∼ e−s/sc(p) , (5.27)

where we have used the relation

as/2 = eln(as/2) = e−s(ln a)/(−2), a = 4p(1 − p) ,

and where we have defined the avalanche correlation size

sc(p) = −2

ln[4p(1 − p)] , lim
p→1/2

sc(p) → ∞ .

For p < 1/2 the size correlation length sc(p) is finite and the avalanche is conse-
quently not scale-free, see Sect. 5.2. The characteristic size of an avalanche sc(p)
diverges for p → pc = 1/2. Note that sc(p) > 0 for p ∈]0, 1[.
The Critical Solution We now consider the critical case with

p = 1/2, 4p(1 − p) = 1, f (x, p) = 1 − √
1 − x2

x
.
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The expansion of
√

1 − x2 with respect to x is

√
1 − x2 =

∞∑
k=0

1
2

(
1
2 − 1

) (
1
2 − 2

)
· · ·

(
1
2 − k + 1

)
k!

(
− x2

)k

in Eq. (5.26) and therefore

Pc(k) ≡ P(s = 2k−1, p = 1/2) =
1
2

(
1
2 − 1

) (
1
2 − 2

)
· · ·

(
1
2 − k + 1

)
k! (−1)k .

This expression is still unhandy. We are, however, only interested in the asymptotic
behavior for large avalanche sizes s. For this purpose we consider the recursive
relation

Pc(k + 1) = 1/2 − k

k + 1
(−1)Pc(k) = 1 − 1/(2k)

1 + 1/k
Pc(k)

in the limit of large k = (s + 1)/2, where 1/(1 + 1/k) ≈ 1 − 1/k,

Pc(k + 1) ≈
[
1 − 1/(2k)

] [
1 − 1/k

]
Pc(k) ≈

[
1 − 3/(2k)

]
Pc(k) .

This asymptotic relation leads to

Pc(k + 1) − Pc(k)

1
= −3

2k
Pc(k),

∂Pc(k)

∂k
= −3

2k
Pc(k) ,

with the solution

Pc(k) ∼ k−3/2, D(s) = Pc(s) ∼ s−3/2, αs = 3

2
, (5.28)

for large k, s, since s = 2k − 1.

Distribution of Relaxation Times The distribution of the duration n of avalanches
can be evaluated in a similar fashion. For this purpose one considers the probability
distribution function

Qn(σ, p)

for an avalanche of duration n to have σ cells at the boundary, see Fig. 5.9.
One can then derive a recursion relation analogous to Eq. (5.24) for the corre-

sponding generating functional and solve it self-consistently. We leave this as an
exercise for the reader.
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The distribution of avalanche durations is then given by considering Qn = Qn

(σ = 0, p = 1/2), i.e. the probability that the avalanche stops after n steps.
One finds

Qn ∼ n−2, D(t) ∼ t−2, αt = 2 . (5.29)

Tuned or Self-Organized Criticality? The random branching model discussed in
this section had only one free parameter, the probability p. This model is critical
only for p → pc = 1/2, giving rise to the impression that one has to fine tune the
parameters in order to obtain criticality, just like in ordinary phase transitions.

This, however, is not the case. As an example we could generalize the sandpile
model to continuous forces zi ∈ [0,∞] and to the update rules

zi → zi − Δi j , if zi > K ,

and

Δi, j =

⎧⎪⎪⎨
⎪⎪⎩

K i = j
−c K/4 i, j nearest neighbors

−(1 − c) K/8 i, j next-nearest neighbors
0 otherwise

(5.30)

for a square-lattice with four nearest neighbors and eight next-nearest neighbors
(Manhattan distance). The update rules are conserving,

∑
j

Δi j = 0, ∀c ∈ [0, 1] .

For c = 1 this model corresponds to the continuous field generalization of the
BTW model. The model defined by Eqs. (5.30), which has not yet been studied
in the literature, might be expected to map in the limit d → ∞ to an appropriate
random branching model with p = pc = 1/2 and to be critical for all values of the
parameters K and c, due to its conserving dynamics.

5.5.2 Galton-Watson Processes

Galton-Watson processes are generalizations of the binary branching processes con-
sidered so far, with interesting applications in evolution theory and some everyday
experiences.

The History of Family Names Family names are handed down traditionally from
father to son. Family names regularly die out, leading over the course of time to
a substantial reduction of the pool of family names. This effect is especially pro-
nounced in countries looking back on millenia of cultural continuity, like China,
where 22% of the population are sharing only three family names.



5.5 Random Branching Theory 167

. . . . . . . . . . 

p2

p1 p3

q

0
10.80.60.40.20

0.2

0.4

0.6

0.8

1

W = 1

 W = 2  W > 1

Fig. 5.10 Galton-Watson processes. Left: Example of a reproduction tree, pm being the probabili-
ties of having m = 0, 1, . . . offsprings. Right: Graphical solution for the fixpoint equation (5.33),
for various average numbers of offsprings W

The evolution of family names is described by a Galton-Watson process and a
key quantity of interest is the extinction probabilty, viz the probability that the last
person bearing a given family name dies without descendants.

The Galton-Watson Process The basic reproduction statistics determines the evo-
lution of family names, see Fig. 5.10.

We denote with pm the probability that an individual has m offsprings and with
G0(x) = ∑

m pm xm its generating function. Defining with p(n)
m the probability of

finding a total of m descendants in the n-th generation, we find the recursion relation

G(n+1)(x) =
∑

m

p(n)
m [G0(x)]

m = G(n)(G0(x)), G(n)(x) =
∑

m

p(n)
m xm

for the respective generating function. Using the initial condition G(0)(x) = x we
may rewrite this recursion relation as

G(n)(x) = G0(G0(. . . G0(x) . . . )) = G0

(
G(n−1)(x)

)
. (5.31)

This recursion relation is the basis for all further considerations; we consider here
the extinction probability q.

Extinction Probability The reproduction process dies out when there is a genera-
tion with zero members. The probability of having zero persons bearing the given
family name in the n-th generation is

q = p(n)
0 = G(n)(0) = G0

(
G(n−1)(0)

)
= G0(q) , (5.32)

where we have used the recursion relation Eq. (5.31) and the stationary condition
G(n)(0) ≈ G(n−1)(0). The extinction probability q is hence given by the fixpoint
q = G0(q) of the generating functional G0(x) of the reproduction probability.
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Binary Branching as a Galton-Watson Process As an example we consider the
case that

G0(x) = 1 − W

2
+ W

2
x2, G ′

0(1) = W ,

viz that people may not have but either zero or two sons, with probabilities 1− W/2
and W/2 < 1 respectively. The expected number of offsprings W is also called
the fitness in evolution theory, see Chap. 6. This setting corresponds to the case of
binary branching, see Fig. 5.8, with W/2 being the branching probability, describing
the reproductive dynamics of unicellular bacteria.

The self-consistency condition (5.32) for the extinction probability q = q(W )

then reads

q = 1 − W

2
+ W

2
q2, q(W ) = 1

W
±
√

1

W 2
− (2 − W )2

W 2
, (5.33)

with the smaller root being here of relevance. The extinction probability vanishes
for a reproduction rate of two,

q(W ) =
⎧⎨
⎩

0 W = 2
q ∈ ]0, 1[ 1 < W < 2

1 W ≤ 1

and is unity for a fitness below one, compare Fig. 5.10.

5.6 Application to Long-Term Evolution

An application of the techniques developed in this chapter can be used to study a
model for the evolution of species proposed by Bak and Sneppen.

Fitness Landscapes Evolution deals with the adaption of species and their fitness
relative to the ecosystem they live in.

Fitness Landscapes. The function that determines the chances of survival of
a species, its fitness, is called the fitness landscape.

In Fig. 5.11 a simple fitness landscape, in which there is only one dimension in the
genotype (or phenotype)2 space, is illustrated.

The population will spend most of its time in a local fitness maximum, whenever
the mutation rate is low with respect to the selection rate, since there are fitness

2 The term “genotype” denotes the ensemble of genes. The actual form of an organism, the
“phenotype”, is determined by the genotype plus environmental factors, like food supply during
growth.
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Fig. 5.11 A one-dimensional fitness landscape. A species evolving from an adaptive peak P to a
new adaptive peak Q needs to overcome the fitness barrier B

barriers, see Fig. 5.11, between adjacent local fitness maxima. Mutations are random
processes and the evolution from one local fitness maximum to the next can then
happen only through a stochastic escape, a process we discussed in Chap. 2.

Coevolution It is important to keep in mind for the following discussion that an
ecosystem, and with it the respective fitness landscapes, is not static on long time
scales. The ecosystem is the result of the combined action of geophysical factors,
such as the average rainfall and temperature, and biological influences, viz the prop-
erties and actions of the other constituting species. The evolutionary progress of
one species will therefore, in general, trigger adaption processes in other species
appertaining to the same ecosystem, a process denoted “coevolution”.

Evolutionary Time Scales In the model of Bak and Sneppen there are no explicit
fitness landscapes like the one illustrated in Fig. 5.11. Instead the model attempts
to mimic the effects of fitness landscapes, viz the influence of all the other species
making up the ecosystem, by a single number, the “fitness barrier”. The time needed
for a stochastic escape from one local fitness optimum increases exponentially with
the barrier height. We may therefore assume that the average time t it takes to mutate
across a fitness barrier of height B scales as

t = t0 eB/T , (5.34)

where t0 and T are constants. The value of t0 merely sets the time scale and is not
important. The parameter T depends on the mutation rate, and the assumption that
mutation is low implies that T is small compared with the typical barrier heights B
in the landscape. In this case the time scales t for crossing slightly different barriers
are distributed over many orders of magnitude and only the lowest barrier is relevant.

The Bak and Sneppen Model The Bak and Sneppen model is a phenomenologi-
cal model for the evolution of barrier heights. The number N of species is fixed and
each species has a respective barrier
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Bi = Bi (t) ∈ [0, 1], t = 0, 1, 2, . . .

for its further evolution. The initial Bi (0) are drawn randomly from [0, 1]. The
model then consists of the repetition of two steps:

(1) The times for a stochastic escape are exponentially distributed, see Eq. (5.34).
It is therefore reasonable to assume that the species with the lowest barrier Bi

mutates and escapes first. After escaping, it will adapt quickly to a new local
fitness maximum. At this point it will then have a new barrier for mutation,
which is assumed to be uniformly distributed in [0, 1].

(2) The fitness function for a species i is given by the ecological environment it lives
in, which is made up of all the other species. When any given species mutates it
therefore influences the fitness landscape for a certain number of other species.
Within the Bak and Sneppen model this translates into assigning new random
barriers B j for K − 1 neighbors of the mutating species i .

The Bak and Sneppen model therefore tries to capture two essential ingredients of
long-term evolution: The exponential distribution of successful mutations and the
interaction of species via the change of the overall ecosystem, when one constituting
species evolves.

The Random Neighbor Model The topology of the interaction between species
in the Bak–Sneppen model is unclear. It might be chosen as two-dimensional, if
the species are thought to live geographically separated, or one-dimensional in a
toy model. In reality the topology is complex and can be assumed to be, in first
approximation, random, resulting in the soluble random neighbor model.

Evolution of Barrier Distribution Let us discuss qualitatively the redistribution
of barrier heights under the dynamics, the sequential repetition of steps (1) and (2)
above, see Fig. 5.12. The initial barrier heights are uniformly distributed over the
interval [0, 1] and the lowest barrier, removed in step (1), is small. The new heights
reassigned in steps (1) and (2) will therefore lead, on the average, to an increase of
the average barrier height with passing time.

With increasing average barrier height the characteristic lowest barrier is also
raised and eventually a steady state will be reached, just as in the sandpile model
discussed previously. It turns out that the characteristic value for the lowest barrier is
about 1/K at equilibrium in the mean-field approximation and that the steady state
is critical.

Molecular Field Theory In order to solve the Bak–Sneppen model, we define the
barrier distribution function,

p(x, t) ,

viz the probability to find a barrier of hight x ∈ [0, 1] at time step t = 1, 2, . . . . In
addition, we define with Q(x) the probability to find a barrier above x :
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Q(x) =
∫ 1

x
dx ′ p(x ′), Q(0) = 1, Q(1) = 0 . (5.35)

The dynamics is governed by the size of the smallest barrier. The distribution func-
tion p1(x) for the lowest barrier is

p1(x) = N p(x) QN−1(x) , (5.36)

given by the probability p(x) for one barrier (out of the N barriers) to have the
barrier height x , while all the other N − 1 barriers are larger. p1(x) is normalized,

∫ 1

0
dx p1(x) = (−N )

∫ 1

0
dx QN−1(x)

∂Q(x)

∂x
= −QN (x)

∣∣∣x=1

x=0
= 1 ,

where we used p(x) = −Q′(x), Q(0) = 1 and Q(1) = 0, see Eq. (5.35).

Time Evolution of Barrier Distribution The time evolution for the barrier distri-
bution consists in taking away one (out of N ) barrier, the lowest, via

p(x, t) − 1

N
p1(x, t) ,

and by removing randomly K − 1 barriers from the remaining N − 1 barriers, and
adding K random barriers:

p(x, t + 1) = p(x, t) − 1

N
p1(x, t) (5.37)

− K − 1

N − 1

(
p(x, t) − 1

N
p1(x, t)

)
+ K

N
.

We note that p(x, t + 1) is normalized whenever p(x, t) and p1(x, t) were normal-
ized correctly:

∫ 1

0
dx p(x, t + 1) = 1 − 1

N
− K − 1

N − 1

(
1 − 1

N

)
+ K

N

=
(

1 − K − 1

N − 1

)
N − 1

N
+ K

N
= N − K

N
+ K

N
≡ 1 .

Stationary Distribution After many iterations of Eq. (5.37) the barrier distribu-
tion will approach a stationary solution p(x, t + 1) = p(x, t) ≡ p(x), as can be
observed from the numerical simulation shown in Fig. 5.12. The stationary distribu-
tion corresponds to the fixpoint condition

0 = p1(x)
1

N

(
K − 1

N − 1
− 1

)
− p(x)

K − 1

N − 1
+ K

N
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Fig. 5.12 The barrier values (dots) for a 100 species one-dimensional Bak–Sneppen model after
50, 200 and 1,600 steps of a simulation. The horizontal line in each frame represents the approxi-
mate position of the upper edge of the “gap”. A few species have barriers below this level, indicat-
ing that they were involved in an avalanche at the moment when the snapshot of the system was
taken

of Eq. (5.37). Using the expression p1 = N p QN−1, see Eq. (5.36), for p1(x) we
then have

0 = N p(x) QN−1(x)(K − N ) − p(x) (K − 1)N + K (N − 1) .

Using p(x) = − ∂Q(x)
∂x we obtain

0 = N (N − K )
∂Q(x)

∂x
QN−1 + (K − 1)N

∂Q(x)

∂x
+ K (N − 1)

0 = N (N − K ) QN−1 d Q + (K − 1)N d Q + K (N − 1) dx .

We can integrate this last expression with respect to x ,

0 = (N − K ) QN (x) + (K − 1)N Q(x) + K (N − 1) (x − 1) , (5.38)

where we took care of the boundary condition Q(1) = 0, Q(0) = 1.

Solution in the Thermodynamic Limit The polynomial Eq. (5.38) simplifies in
the thermodynamic limit, with N → ∞ and K/N → 0, to

0 = QN (x) + (K − 1) Q(x) − K (1 − x) . (5.39)

We note that Q(x) ∈ [0, 1] and that Q(0) = 1, Q(1) = 0. There must therefore be
some x ∈]0, 1[ for which 0 < Q(x) < 1. Then

QN (x) → 0, Q(x) ≈ K

K − 1
(1 − x) . (5.40)

Equation (5.40) remains valid as long as Q < 1, or x > xc:

1 = K

K − 1
(1 − xc), xc = 1

K
.
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Fig. 5.13 The distribution Q(x) to find a fitness barrier larger than x ∈ [0, 1] for the Bak and Snep-
pen model, for the case of random barrier distribution (dashed line) and the stationary distribution
(dashed-dotted line), compare Eq. (5.41)

We then have in the limit N → ∞

lim
N→∞ Q(x) =

{
1 for x < 1/K

(1 − x)K/(K − 1) for x > 1/K
, (5.41)

compare Fig. 5.13, and, using p(x) = −∂Q(x)/∂x ,

lim
N→∞ p(x) =

{
0 for x < 1/K

K/(K − 1) for x > 1/K
. (5.42)

This result compares qualitatively well with the numerical results presented in
Fig. 5.12. Note, however, that the mean-field solution Eq. (5.42) does not predict
the exact critical barrier height, which is somewhat larger for K = 2 and a one-
dimensional arrangement of neighbors, as in Fig. 5.12.

1/N Corrections Equation (5.42) cannot be rigorously true for N < ∞, since there
is a finite probability for barriers with Bi < 1/K to reappear at every step. One can
expand the solution of the self-consistency Eq. (5.38) in powers of 1/N . One finds

p(x) �
{

K/N for x < 1/K
K/(K − 1) for x > 1/K

. (5.43)

We leave the derivation as an exercise for the reader.

Distribution of the Lowest Barrier If the barrier distribution is zero below the
self-organized threshold xc = 1/K and constant above, then the lowest barrier must
be below xc with equal probability:

p1(x) →
{

K for x < 1/K
0 for x > 1/K

,

∫ 1

0
dx p1(x) = 1 . (5.44)

Equations (5.44) and (5.36) are consistent with Eq. (5.43) for x < 1/K .
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Fig. 5.14 A time series of evolutionary activity in a simulation of the one-dimensional Bak–
Sneppen model with K = 2 showing coevolutionary avalanches interrupting the punctuated equi-
librium. Each dot represents the action of choosing a new barrier value for one species

Coevolution and Avalanches When the species with the lowest barrier mutates
we assign new random barrier heights to it and to its K − 1 neighbors. This causes
an avalanche of evolutionary adaptations whenever one of the new barriers becomes
the new lowest fitness barrier. One calls this phenomenon “coevolution” since the
evolution of one species drives the adaption of other species belonging to the same
ecosystem. We will discuss this and other aspects of evolution in more detail in
Chap. 6. In Fig. 5.14 this process is illustrated for the one-dimensional model. The
avalanches in the system are clearly visible and well separated in time. In between
the individual avalanches the barrier distribution does not change appreciably; one
speaks of a “punctuated equilibrium”.

Critical Coevolutionary Avalanches In Sect. 5.5 we discussed the connection
between avalanches and random branching. The branching process is critical when
it goes on with a probability of 1/2. To see whether the coevolutionary avalanches
within the Bak and Sneppen model are critical we calculate the probability pbran
that at least one of the K new, randomly selected, fitness barriers will be the new
lowest barrier.

With probability x one of the new random barriers is in [0, x] and below the
actual lowest barrier, which is distributed with p1(x), see Eq. (5.44). We then have

pbran = K
∫ 1

0
p1(x) x dx = K

∫ 1/K

0
K x dx = K 2

2
x2
∣∣∣1/K

0
≡ 1

2
,

viz the avalanches are critical. The distribution of the size s of the coevolutionary
avalanches is then
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D(s) ∼
(

1

s

)3/2

,

as evaluated within the random branching approximation, see Eq. (5.28), and inde-
pendent of K . The size of a coevolutionary avalanche can be arbitrarily large and
involve, in extremis, a finite fraction of the ecosystem, compare Fig. 5.14.

Features of the Critical State The sandpile model evolves into a critical state
under the influence of an external driving, when adding one grain of sand after
another. The critical state is characterized by a distribution of slopes (or heights) zi ,
one of its characteristics being a discontinuity; there is a finite fraction of slopes with
zi = Z − 1, but no slope with zi = Z , apart from some of the sites participating in
an avalanche.

In the Bak and Sneppen model the same process occurs, but without external
drivings. At criticality the barrier distribution p(x) = ∂Q(x)/∂x has a discontinu-
ity at xc = 1/K , see Fig. 5.13. One could say, cum grano salis, that the system
has developed an “internal phase transition”, namely a transition in the barrier dis-
tribution p(x), an internal variable. This emergent state for p(x) is a many-body
or collective effect, since it results from the mutual reciprocal interactions of the
species participating in the formation of the ecosystem.

Exercises

SOLUTIONS OF THE LANDAU–GINZBURG FUNCTIONAL

Determine the order parameter for h �= 0 via Eq. (5.9) and Fig. 5.2. Discuss
the local stability condition Eq. (5.3) for the three possible solutions and their
global stability. Note that F = f V , where F is the free energy, f the free
energy density and V the volume.

ENTROPY AND SPECIFIC HEAT WITHIN THE LANDAU MODEL

Determine the entropy S(T ) = ∂F
∂T and the specific heat cV = T ∂S

∂T within the
Landau–Ginzburg theory Eq. (5.1) for phase transitions.

THE GAME OF LIFE

Consider the evolution of the following states, see Fig. 5.5, under the rules for
Conway’s game of life:
{(0,0),(1,0),(0,1),(1,1)}
{(0,−1),(0,0),(0,1)}
{(0,0),(0,1),(1,0),(−1,0),(0,−1)}
{(0,0),(0,1),(0,2),(1,2),(2,1)}
The predictions can be checked with Java-applets you may easily find in the
Internet.

THE GAME OF LIFE ON A SMALL-WORLD NETWORK

Write a program to simulate the game of life on a 2D lattice. Consider this lattice
as a network with every site having edges to its eight neighbors. Rewire the
network such that (a) the local connectivities zi ≡ 8 are retained for every site
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and (b) a small-world network is obtained. This can be achieved by cutting two
arbitrary links with probability p and rewiring the four resulting stubs randomly.
Define an appropriate dynamical order parameter and characterize the changes
as a function of the rewiring probability. Compare Chaps. 1 and 2.

THE FOREST FIRE MODEL

Develop a mean-field theory for the forest fire model by introducing appropriate
probabilities to find cells with trees, fires and ashes. Find the critical number of
nearest neighbors Z for fires to continue burning.

THE REALISTIC SANDPILE MODEL

Propose a cellular automata model that simulates the physics of real-world sand-
piles somewhat more realistically than the BTW model. The cell values z(x, y)
should correspond to the local height of the sand. Write a program to simulate
the model.

THE RANDOM BRANCHING MODEL

Derive the distribution of avalanche durations Eq. (5.29) in analogy to the steps
explained in Sect. 5.5, by considering a recursion relation for the integrated
duration probability Q̃n = ∑n

n′=0 Qn(0, p), viz for the probability that an
avalanche last maximally n time steps.

THE GALTON-WATSON PROCESS

Use the fixpoint condition, Eq. (5.32) and show that the extinction probability
is unity if the average reproduction rate is smaller than one.

THE BAK AND SNEPPEN MODEL

Write a program to simulate the Bak and Sneppen model in Sect. 5.6 and com-
pare it with the molecular field solution Eq. (5.38).

Further Reading

Introductory texts to cellular automata and to the game of life are Wolfram (1986),
Creutz (1997) and Berlekamp et al. (1982). For a review of the forest fire and several
related models, see Clar et al. (1996); for a review of sandpiles, see Creutz (2004),
and for a general review of self-organized criticality, see Paczuski and Bak (1999).
Exemplary textbooks on statistical physics and phase transitions have been written
by Callen (1985) and Goldenfeld (1992).

Some general features of 1/ f noise are discussed by Press (1978); its possible
relation to self-organized criticality has been postulated by Bak et al. (1987). The
formulation of the Bak and Sneppen (1993) model for long-term coevolutionary
processes and its mean-field solution are discussed by Flyvbjerg et al. (1993).

The interested reader may also glance at some original research literature, such
as a numerical study of the sandpile model (Priezzhev et al., 1996) and the applica-
tion of random branching theory to the sandpile model (Zapperi et al., 1995). The
connection of self-organized criticality to local conservation rules is worked out by
Tsuchiya and Katori (2000), and the forest fire model with lightning is introduced
by Drossel and Schwabl (1992).
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Chapter 6
Darwinian Evolution, Hypercycles
and Game Theory

Adaptation and evolution are quasi synonymous in popular language and Darwinian
evolution is a prime application of complex adaptive system theory. We will see
that adaptation does not happen automatically and discuss the concept of “error
catastrophe” as a possible root for the downfall of a species. Venturing briefly into
the mysteries surrounding the origin of life, we will investigate the possible advent
of a “quasispecies” in terms of mutually supporting hypercycles. The basic theory
of evolution is furthermore closely related to game theory, the mathematical theory
of interacting agents, viz of rationally acting economic persons.

We will learn in this chapter, on the one hand, that every complex dynamical
system has its distinct characteristics to be considered. In the case of Darwinian
evolution these are concepts like fitness, selection and mutation. General notions
from complex system theory are, on the other hand, important for a thorough under-
standing. An example is the phenomenon of stochastic escape discussed in Chap. 2,
which is operative in the realm of Darwinian evolution.

6.1 Introduction

Microevolution The ecosystem of the earth is a complex and adaptive system. It
formed via Darwinian evolution through species differentiation and adaptation to a
changing environment. A set of inheritable traits, the genome, is passed from parent
to offspring and the reproduction success is determined by the outcome of random
mutations and natural selection – a process denoted “microevolution”1

Asexual Reproduction. One speaks of asexual reproduction when an indi-
vidual has a single parent.

Here we consider mostly models for asexual reproduction, though most concepts
can be easily generalized to the case of sexual reproduction.

1 Note that the term “macroevolution”, coined to describe the evolution at the level of organisms,
is nowadays somewhat obsolete.

C. Gros, Complex and Adaptive Dynamical Systems, 2nd ed.,
DOI 10.1007/978-3-642-04706-0_6, C© Springer-Verlag Berlin Heidelberg 2011
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Basic Terminology Let us introduce some basic variables needed to formulate the
approach.

– Population M : The number of individuals.
We assume here that M does not change with time, modeling the competition for
a limited supply of resources.

– Genome N : Size of the genome.
We encode the inheritable traits by a set of N binary variables,

s = (s1, s2, . . . , sN ), si = ±1 .

N is considered fixed.
– Generations

We consider time sequences of non-overlapping generations, like in a wheat field.
The population present at time t is replaced by their offspring at generation t +1.

In Table 6.1 some typical values for the size N of the genome are listed. Note
the three orders of magnitude between simple eucaryotic life forms and the human
genome.

State of the Population The state of the population at time t can be described by
specifying the genomes of all the individuals,

{sα(t)}, α = 1 . . . M, s = (s1, . . . , sN ) .

We define by

Xs(t),
∑

s

Xs(t) = M , (6.1)

the number of individuals with genome s for each of the 2N points s in the genome
space. Typically, most of these occupation numbers vanish; biological populations
are extremely sparse in genome space.

Table 6.1 Genome size N and the spontaneous mutation rates μ, compare Eq. (6.3), per base
for two RNA-based bacteria and DNA-based eucaryotes. From Jain and Krug (2006) and Drake
et al. (1998)

Organism Genome size Rate per base Rate per genome

Bacteriophage Qβ 4.5 × 103 1.4 × 10−3 6.5
Bacteriophage λ 4.9 × 104 7.7 × 10−8 0.0038
E. Coli 4.6 × 106 5.4 × 10−10 0.0025
C. Elegans 8.0 × 107 2.3 × 10−10 0.018
Mouse 2.7 × 109 1.8 × 10−10 0.49
Human 3.2 × 109 5.0 × 10−11 0.16
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Combinatorial Genetics of Alleles Classical genetics focuses on the presence (or
absence) of a few characteristic traits. These traits are determined by specific sites,
denoted “loci”, in the genome. The genetic realizations of these specific loci are
called “alleles”. Popular examples are alleles for blue, brown and green eyes.

Combinatorial genetics deals with the frequency change of the appearance of
a given allele resulting from environmental changes during the evolutionary pro-
cess. Most visible evolutionary changes are due to a remixing of alleles, as mutation
induced changes in the genome are relatively rare; compare the mutation rates listed
in Table 6.1.

Beanbag Genetics Without Epistatic Interactions One calls “epistasis” the fact
that the effect of the presence of a given allele in a given locus may depend on which
alleles are present in some other loci. Classical genetics neglects epistatic interac-
tions. The resulting picture is often called “beanbag genetics”, as if the genome were
nothing but a bag carrying the different alleles within itself.

Genotype and Phenotype We note that the physical appearance of an organism
is not determined exclusively by gene expression. One distinguishes between the
genotype and the phenotype.

– The Genotype: The genotype of an organism is the class to which that organism
belongs as determined by the DNA that was passed to the organism by its parents
at the organism’s conception.

– The Phenotype: The phenotype of an organism is the class to which that organ-
ism belongs as determined by the physical and behavioral characteristics of the
organism, for example its size and shape, its metabolic activities and its pattern
of movement.

Selection acts, strictly speaking, only upon phenotypes, but only the genotype is
bequeathed. The variations in phenotypes then act as a source of noise for the selec-
tion process.

Speciation One denotes by “speciation” the process leading to the differentiation
of an initial species into two distinct species. Speciation occurs due to adaptation to
different ecological niches, often in distinct geographical environments. We will not
treat the various theories proposed for speciation here.

6.2 Mutations and Fitness in a Static Environment

Constant Environment We consider here the environment to be static; an assump-
tion that is justified for the case of short-term evolution. This assumption clearly
breaks down for long time scales, as already discussed in Chap. 5 since the evolu-
tionary change of one species might lead to repercussions all over the ecosystem to
which it appertains.



182 6 Darwinian Evolution, Hypercycles and Game Theory

Independent Individuals An important issue in the theory of evolution is the
emergence of specific kinds of social behavior. Social behavior can only arise if
the individuals of the same population interact. We discuss some of these issues
in Sect. 6.6 in the context of game theory. Until then we assume non-interacting
individuals, which implies that the fitness of a given genetic trait is independent
of the frequency of this and of other alleles, apart from the overall competition for
resources.

Constant Mutation Rates We furthermore assume that the mutation rates are

– constant over time,
– independent of the locus in the genome, and
– not subject to genetic control.

Any other assumption would require a detailed microbiological modeling; a subject
beyond our scope.

Stochastic Evolution The evolutionary process can then be modeled as a three-
stage stochastic process:

1. Reproduction: The individual α at generation t is the offspring of an individual
α′ living at generation t − 1. Reproduction is thus represented as a stochastic
map

α −→ α′ = Gt (α) , (6.2)

where Gt (α) is the parent of the individual α, and is chosen at random among
the M individuals living at generation t − 1.

2. Mutation: The genomes of the offspring differ from the respective genomes of
their parents through random changes.

3. Selection: The number of surviving offspring of each individual depends on its
genome; it is proportional to its “fitness”, which is a functional of the genome.

Point Mutations and Mutation Rate Here we consider mostly independent point
mutations, namely that every element of the genome is modified independently of
the other elements,

sαi (t) = −sGt (α)
i (t − 1) with probability μ , (6.3)

where the parameter μ∈[0,1/2] is the microscopic “mutation rate”. In real organ-
isms, more complex phenomena take place, like global rearrangements of the
genome, copies of some part of the genome, displacements of blocks of elements
from one location to another, and so on. The values for the real-world mutation
rates μ for various species listed in Table 6.1 are therefore to be considered as
effective mutation rates.
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Fitness and Fitness Landscape The fitness W (s), also called “Wrightian fitness”,
of a genotype trait s is proportional to the average number of offspring an individual
possessing the trait s has. It is strictly positive and can therefore be written as

W (s) = ek F(s) ∝ average number of offspring of s. (6.4)

Selection acts in first place upon phenotypes, but we neglect here the difference,
considering the variations in phenotypes as a source of noise, as discussed above.
The parameters in Eq. (6.4) are denoted:

– W (s): Wrightian fitness,
– F(s): fitness landscape,
– k: inverse selection temperature,2 and
– w(s): Malthusian fitness, when rewriting Eq. (6.4) as W (s) = ew(s)Δt , where

Δt is the generation time.

We will work here with discrete time, viz with non-overlapping generations, and
make use only of the Wrightian fitness W (s).

Fitness of Individuals Versus Fitness of Species We remark that this notion of
fitness is a concept defined at the level of individuals in a homogeneous population.
The resulting fitness of a species or of a group of species needs to be explicitly
evaluated and is model-dependent.

Fitness Ratios The assumption of a constant population size makes the reproduc-
tive success a relative notion. Only the ratios

W (s1)

W (s2)
= ek F(s1)

ek F(s2)
= ek[F(s1)−F((s2)] (6.5)

are important. It follows that the quantity W (s) is defined up to a proportionality
constant and, accordingly, the fitness landscape F(s) only up to an additive constant,
much like the energy in physics.

The Fitness Landscape The graphical representation of the fitness function F(s)
is not really possible for real-world fitness functions, due to the high dimensional 2N

of the genome space. It is nevertheless customary to draw a fitness landscape, like
the one shown in Fig. 6.1. However, one must bear in mind that these illustrations
are not to be taken at face value, apart from model considerations.

The Fundamental Theorem of Natural Selection The so-called fundamental
theorem of natural selection, first stated by Fisher in 1930, deals with adaptation

2 The probability to find a state with energy E in a thermodynamic system with temperature T is
proportional to the Boltzmann factor exp(−β E). The inverse temperature is β = 1/(kB T ), with
kB being the Boltzmann constant.
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Fig. 6.1 (Smooth) one-dimensional model fitness landscapes F(s). Real-world fitness landscapes,
however, contain discontinuities. Left: A fitness landscape with peaks and valleys, metaphorically
also called a “rugged landscape”. Right: A fitness landscape containing a single smooth peak, as
described by Eq. (6.25)

in the absence of mutations and in the thermodynamic limit M → ∞. An infinite
population size allows one to neglect fluctuations.

The theorem states that the average fitness of the population cannot decrease in
time under these circumstances, and that the average fitness becomes stationary only
when all individuals in the population have the maximal reproductive fitness.

The proof is straightforward. We define by

〈W 〉t ≡ 1

M

M∑
α=1

W
(
sα(t)

) = 1

M

∑
s

W (s) Xs(t) , (6.6)

the average fitness of the population. Note that the
∑

s in Eq. (6.6) contains 2N

terms. The evolution equations are given in the absence of mutations by

Xs(t + 1) = W (s)
〈W 〉t

Xs(t) , (6.7)

where W (s)/〈W 〉t is the relative reproductive success. The overall population size
remains constant,

∑
s

Xs(t + 1) = 1

〈W 〉t

∑
s

Xs(t)W (s) = M , (6.8)

where we have used Eq. (6.6) for 〈W 〉t . Then

〈W 〉t+1 = 1

M

∑
s

W (s) Xs(t + 1) =
1
M

∑
s W 2(s)Xs(t)

1
M

∑
s′ W (s′)Xs′(t)

= 〈W 2〉t

〈W 〉t
≥ 〈W 〉t , (6.9)

since 〈W 2〉t − 〈W 〉2
t = 〈ΔW 2〉t ≥ 0. The steady state

〈W 〉t+1 = 〈W 〉t , 〈W 2〉t = 〈W 〉2
t ,
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is only possible when all individuals 1 . . . M in the population have the same fitness,
viz the same genotype.

6.3 Deterministic Evolution

Mutations are random events and the evolution process is therefore a stochastic
process. But stochastic fluctuations become irrelevant in the limit of infinite popula-
tion size M → ∞; they average out. In this limit the equations governing evolution
become deterministic and only the average transition rates are relevant. One can then
study in detail the condition necessary for adaptation to occur for various mutation
rates.

6.3.1 Evolution Equations

The Mutation Matrix The mutation matrix

Qμ(s′ → s),
∑

s

Qμ(s′ → s) = 1 (6.10)

denotes the probabilities of obtaining a genotype s when attempting to reproduce
an individual with genotype s′. The mutation rates Qμ(s′ → s) may depend on a
parameter μ determining the overall mutation rate. The mutation matrix includes
the absence of any mutation, viz the transition Qμ(s′ → s′). It is normalized.

Deterministic Evolution with Mutations We generalize Eq. (6.7), which is valid
in the absence of mutations, by including the effect of mutations via the mutation
matrix Qμ(s′ → s):

Xs(t + 1)/M =
(∑

s′
Xs′(t)W (s′)Qμ(s′ → s)

)/(∑
s′

Ws′ Xs′(t)

)
,

or

xs(t + 1) =
∑

s′ xs′(t)W (s′)Qμ(s′ → s)
〈W 〉t

, 〈W 〉t =
∑

s′
Ws′ xs′(t) , (6.11)

where we have introduced the normalized population variables

xs(t) = Xs(t)

M
,

∑
s

xs(t) = 1 . (6.12)

The evolution dynamics Eq. (6.11) retains the overall size
∑

s Xs(t) of the popula-
tion, due to the normalization of the mutation matrix Qμ(s′ → s), Eq. (6.10).
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The Hamming Distance The Hamming distance

dH(s, s′) =
N∑

i=1

(si − s′
i )

2

4
= N

2
− 1

2

N∑
i=1

si s
′
i (6.13)

measures the number of units that are different in two genome configurations s and
s′, e.g. before and after the effect of a mutation event.

The Mutation Matrix for Point Mutations We consider the simplest mutation
pattern, viz the case of fixed genome length N and random transcription errors
afflicting only individual loci. For this case, namely point mutations, the overall
mutation probability

Qμ(s′ → s) = μdH(1 − μ)N−dH (6.14)

is the product of the independent mutation probabilities for all loci i = 1, . . . , N ,
with dH denoting the Hamming distance dH(s, s′) given by Eq. (6.13) and μ the
mutation rate μ defined in Eq. (6.3). One has

∑
s

Qμ(s′ → s) =
∑
dH

(
N

dH

)
(1 − μ)N−dN μdN = (1 − μ + μ)N ≡ 1

and the mutation matrix defined by Eq. (6.14) is consequently normalized. We
rewrite the mutation matrix as

Qμ(s′ → s) = ∝ exp
(
[log(μ)− log(1 −μ)]dH

)
∝ exp

(
β
∑

i

si s
′
i

)
, (6.15)

where we denoted by β an effective inverse temperature, defined by

β = 1

2
log

(
1 − μ

μ

)
. (6.16)

The relation of the evolution equation (6.15) to the partition function of a thermo-
dynamical system, hinted at by the terminology “inverse temperature” will become
evident below.

Evolution Equations for Point Mutations Using the exponential representation
W (s) = exp[k F(s)], see Eq. (6.4), of the fitness W (s) and Eq. (6.15) for the muta-
tion matrix, we can write the evolution Eq. (6.12) via

xs(t + 1) = 1

〈W 〉t

∑
s′

xs′(t) exp

(
β
∑

i

si s
′
i + k F(s′)

)
(6.17)

in a form that is suggestive of a statistical mechanics analogy.



6.3 Deterministic Evolution 187

Evolution Equations in Linear Form The evolution Eq. (6.17) is non-linear in
the dynamical variables xs(t), due to the normalization factor 1/〈W 〉t . A suitable
change of variables does, however, allow the evolution equation to be cast into a
linear form.

For this purpose we introduce the unnormalized variables ys(t) via

xs(t) = ys(t)∑
s′ ys′(t)

, 〈W 〉t =
∑

s

W (s)xs(t) =
∑

s W (s)ys(t)∑
s′ ys′(t)

. (6.18)

Note that ys(t) are determined by Eq. (6.18) implicitly and that the normalization∑
s′ ys′(t) can be chosen freely for every generation t = 1, 2, 3, . . .. The evolution

Eq. (6.17) then becomes

ys(t + 1) = Zt

∑
s′

ys′(t) exp

(
β
∑

i

si s
′
i + k F(s′)

)
, (6.19)

where

Zt =
∑

s′ ys′(t + 1)∑
s W (s)ys(t)

.

Choosing a different normalization for ys(t) and for ys(t + 1) we may achieve
Zt ≡ 1. Equation (6.19) is then linear in ys(t).

Statistical Mechanics of the Ising Model In the following we will make use of
analogies to notations commonly used in statistical mechanics. Readers who are
unfamiliar with the mathematics of the one-dimensional Ising model may skip the
mathematical details and concentrate on the interpretation of the results.

We write the linear evolution Eq. (6.19) as

ys(t +1) =
∑

s′
eβH [s,s′] ys′(t), ys(t+1) =

∑
s(t)

eβH [s(t+1),s(t)] ys(t) , (6.20)

where we denote by H [s, s′] an effective Hamiltonian3

βH [s, s′] = β
∑

i

si s
′
i + k F(s′) , (6.21)

and where we renamed the variables s by s(t + 1) and s′ by s(t). Equation (6.20)
can be solved iteratively,

3 The energy of a state depends in classical mechanics on the values of the available degrees of
freedom, like the position and the velocity of a particle. This function is denoted Hamiltonian. In
Eq. (6.21) the Hamiltonian is a function of the binary variables s and s′.
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ys(t+1) =
∑

s(t),...,s(0)

eβH [s(t+1),s(t)] · · · eβH [s(1),s(0)] ys(0) , (6.22)

with the two-dimensional Ising-type Hamiltonian4

βH = β
∑
i,t

si (t + 1)si (t) + k
∑

t

F(s(t)) . (6.23)

A Short Detour: The Bra-ket Notation The evolution equation (6.22) can be car-
ried out in a straight-forward manner. For readers interested in the cross-correlations
to the quantum mechanics of transfer matrices we make here a small detour into the
Bra-ket notation, which may otherwise be skipped.

One denotes with the “bra” 〈y| and with the “ket” |y〉 the respective row and
column vectors

〈y| =̂ (y∗
1 , y∗

2 , . . . , y∗
2N ), |y〉 =̂

⎛
⎜⎝

y1
...

y2N

⎞
⎟⎠ , y j =̂ ys

of a vector y, where y∗
j is the conjugate complex of y j . Our variables are, however,

all real and y∗
j ≡ y j . The scalar product x · y of two vectors is then

x · y ≡
∑

j

x∗
j y j = 〈x |y〉 .

The expectation value 〈A〉y is given in bra-ket notation as

〈A〉y =
∑
i, j

y∗
i Ai j y j = 〈y|A|y〉 ,

where Ai j are the elements of the matrix A. In this notation we may rewrite the
evolution equation (6.22) as

ys(t+1) = 〈s(t + 1)|eβH |y(0)〉 , (6.24)

with ys(t) = 〈s|y(t)〉. We are interested in the asymptotic limit t → ∞ of the
population state |y(t) >.

4 Any system of binary variables is equivalent to a system of interacting Ising spins, which retains
only the classical contribution to the energy of interacting quantum mechanical spins (the magnetic
moments).
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6.3.2 Beanbag Genetics – Evolutions Without Epistasis

The Fujiyama Landscape The fitness function

F(s) =
N∑

i=1

hi si , W (s) =
N∏

i=1

ekhi si , (6.25)

is denoted the “Fujiyama landscape” since it corresponds to a single smooth peak
as illustrated in Fig. 6.1. To see why, we consider the case hi > 0 and rewrite
Eq. (6.25) as

F(s) = s0 · s, s0 = (h1, h2, . . . , hN ) .

The fitness of a given genome s is directly proportional to the scalar product with
the master sequence s0, with a well defined gradient pointing towards the master
sequence.

The Fujiyama Hamiltonian No epistatic interactions are present in the smooth
peak landscape Eq. (6.25). In terms of the corresponding Hamiltonian, see
Eq. (6.23), this fact expresses itself as

βH = β

N∑
i=1

Hi , Hi =
∑

t

si (t + 1)si (t) + khi

β

∑
t

si (t) . (6.26)

Every locus i corresponds exactly to the one-dimensional t = 1, 2, . . . Ising-model
βHi in an effective uniform magnetic field khi/β.

The Transfer Matrix The Hamiltonian Eq. (6.26) does not contain interactions
between different loci of the genome; we can just consider a single Hamiltonian Hi

and find for the iterative solution Eq. (6.22)

〈yi (t + 1)|eβHi |yi (0)〉 = 〈yi (t + 1)|
(

t∏
t ′=0

Tt ′

)
|yi (0)〉 , (6.27)

with the 2 × 2 transfer matrix Tt = eβHi [si (t+1),si (t)] given by

(Tt )s,s′ = < s|Tt |s′ >, Tt =
(

eβ+khi e−β

e−β eβ−khi

)
, (6.28)

where we have used s, s′ = ±1 and the symmetrized form

βHi = β
∑

t

si (t + 1)si (t) + khi

2

∑
t

[
si (t + 1) + si (t)

]
.

of the one-dimensional Ising model.
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Eigenvalues of the Transfer Matrix We consider

hi ≡ 1

and evaluate the eigenvalues ω of Tt :

ω2 − 2ω eβ cosh(k) + e2β − e−2β = 0 .

The solutions are

ω1,2 = eβ cosh(k) ±
√

e2β cosh2(k) − e2β + e−2β .

The larger eigenvalue ω1 thus has the form

ω1 = eβ cosh(k) +
√

e2β sinh2(k) + e−2β . (6.29)

Eigenvectors of the Transfer Matrix For ω1 > ω2 the eigenvector |ω1〉 corre-
sponding to the larger eigenvalue ω1 dominates in the t → ∞ limit and its compo-
nents determine the genome distribution. It is determined by

( 〈+|ω1〉
〈−|ω1〉

)
=
(

A+
A−

)
,

(
eβ+k − ω1

)
A+ + e−β A− = 0 ,

where

ω1 − eβ+k =
√

e2β sinh2(k) + e−2β − eβ sinh(k) .

This yields

(
A+
A−

)
= 1√

Nω

(
e−β√

e2β sinh2(k) + e−2β − eβ sinh(k)

)
, (6.30)

with the normalization

Nω = A2+ + A2− = e−2β + e2β sinh2(k)

+
(

e2β sinh2(k) + e−2β
)

+ 2eβ sinh(k)
√

e2β sinh2(k) + e−2β

= 2e−2β + e2β sinh2(k) − 2eβ sinh(k)
√

e2β sinh2(k) + e−2β .

The Order Parameter The one-dimensional Ising model does not have phase tran-
sitions. Thus we reach the conclusion that evolution in the Fujiyama landscape takes
place in a single phase, where there is always some degree of adaptation. One can
evaluate the amount of adaptation by introducing the order parameter5

5 The concept of order parameters in the theory of phase transition is discussed in Chap. 5.
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m = lim
t→∞〈s(t)〉 = A+ − A− , (6.31)

which corresponds to the uniform magnetization in the Ising model analogy. One
obtains

m = 1

Nω

[
e−β −

√
e2β sinh2(k) + e−2β + eβ sinh(k)

]
. (6.32)

In order to interpret this result for the amount m of adaptation in the smooth
Fujiyama landscape we recall that (see Eqs. (6.16) and (6.4))

β = 1

2
log

(
1 − μ

μ

)
, W (s) = ek F(s) ,

where μ is the mutation rate for point mutations. Thus we see that there is some
degree of adaptation whenever the fitness landscape does not vanish (k > 0). Note
that μ → 1/2, β → 0 corresponds to a diverging temperature in the Ising model
analogy (6.26), but with an diverging effective magnetic field khi/β.

6.3.3 Epistatic Interactions and the Error Catastrophe

The result of the previous Sect. 6.3.2, i.e. the occurrence of adaptation in a smooth
fitness landscape for any non-trivial model parameter, is due to the absence of
epistatic interactions in the smooth fitness landscape. Epistatic interactions intro-
duce a phase transition to a non-adapting regime once the mutation rate becomes
too high.

The Sharp Peak Landscape One possibility to study this phenomenon is the lim-
iting case of very strong epistatic interactions; in this case, a single element of the
genotype does not give any information on the value of the fitness. This fitness is
defined by the equation

W (s) =
{

1 if s = s0

1 − σ otherwise
. (6.33)

It is also denoted a fitness landscape with a “tower”. In this case, all genome
sequences have the same fitness, which is lower than the one of the master
sequence s0. The corresponding landscape F(s), defined by W (s) = ek F(s) is then
equally discontinuous. This landscape has no gradient pointing towards the master
sequence of maximal fitness.

Relative Notation We define by xk the fraction of the population whose genotype
has a Hamming distance k from the preferred genotype,
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xk(t) = 1

M

∑
s

δdH(s,s0),k Xs(t) . (6.34)

The evolution equations can be formulated entirely in terms of these xk ; they cor-
respond to the fraction of the population being k point mutations away from the
master sequence.

Infinite Genome Limit We take the N → ∞ limit and scale the mutation rate, see
Eq. (6.3),

μ = u/N , (6.35)

for point mutations such that the average number of mutations

u = Nμ

occurring at every step remains finite.

The Absence of Back Mutations We consider starting from the optimal genome s0
and consider the effect of mutations. Any successful mutation increases the distance
k from the optimal genome s0. Assuming u � 1 in Eq. (6.35) implies that

– multiple mutations do not appear, and that
– one can neglect back mutations that reduce the value of k, since they have a

relative probability proportional to

k

N − k
� 1 .

The Linear Chain Model The model so defined consequently has the structure of
a linear chain. k = 0 being the starting point of the chain.

We have two parameters: u, which measures the mutation rate and σ , which
measures the strength of the selection. Remembering that the fitness W (s) is pro-
portional to the number of offspring, see Eq. (6.33), we then find

x0(t + 1) = 1

〈W 〉
[
x0(t) (1 − u)

]
, (6.36)

x1(t + 1) = 1

〈W 〉
[
ux0(t) + (1 − u) (1 − σ) x1(t)

]
; (6.37)

xk(t + 1) = 1

〈W 〉
[
uxk−1(t) + (1 − u)xk(t)

]
(1 − σ) , k > 1, (6.38)

where 〈W 〉 is the average fitness. These equations describe a linear chain model
as illustrated in Fig. 6.2. The population of individuals with the optimal genome
x0 constantly loses members due to mutations. But it also has a higher number of
offspring than all other populations due to its larger fitness.
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x0 x1 x2 x3 x4

Fig. 6.2 The linear chain model for the tower landscape, Eq. (6.33), with k denoting the number
of point mutations necessary to reach the optimal genome. The population fraction xk+1(t + 1) is
only influenced by the value of xk and its own value at time t

Stationary Solution The average fitness of the population is given by

〈W 〉 = x0 + (1 − σ)(1 − x0) = 1 − σ(1 − x0) . (6.39)

We look for the stationary distribution {x∗
k }. The equation for x∗

0 does not involve
the x∗

k with k > 0:

x∗
0 = x∗

0 (1 − u)

1 − σ(1 − x∗
0 )

, 1 − σ(1 − x∗
0 ) = 1 − u .

The solution is

x∗
0 =

{
1 − u/σ if u < σ

0 if u ≥ σ
, (6.40)

due to the normalization condition x∗
0 ≤1. For u>σ the model becomes ill defined.

The stationary solutions for the x∗
k are for k = 1

x∗
1 = u

1 − σ(1 − x∗
0 ) − (1 − u)(1 − σ)

x∗
0 ,

which follows directly from Eqs. (6.37) and (6.39), and for k > 1

x∗
k = (1 − σ)u

1 − σ(1 − x∗
0 ) − (1 − u)(1 − σ)

x∗
k−1 , (6.41)

which follows from Eqs. (6.38) and (6.39).

Phase Transition and the Order Parameter We can thus distinguish two regimes
determined by the magnitude of the mutation rate μ = u/N relative to the fitness
parameter σ , with

u = σ

being the transition point. In physics language the epistatic interaction corresponds
to many-body interactions and the occurrence of a phase transition in the sharp peak
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u = 0.30, σ = 0.5

u = 0.40, σ = 0.5

u = 0.45, σ = 0.5

u = 0.49, σ = 0.5

Fig. 6.3 Quasispecies formation within the sharp peak fitness landscape, Eq. (6.33). The stationary
population densities x∗

k , see Eq. (6.41), are peaked around the genome with maximal fitness, k = 0.
The population tends to spread out in genome space when the overall mutation rate u approaches
the critical point u → σ

model is due to the many-body interactions which were absent in the smooth fitness
landscape model considered in Sect. 6.3.2.

The Adaptive Regime and Quasispecies In the regime of small mutation rates,
u < σ , one has x∗

0 > 0 and in fact the whole population lies a finite distance away
from the preferred genotype. To see why, we note that

σ(1 − x∗
0 ) = σ(1 − 1 + u/σ) = u

and take a look at Eq. (6.41):

(1 − σ)u

1 − u − (1 − u)(1 − σ)
=
(

1 − σ

1 − u

)( u

σ

)
≤ 1, for u < σ .

The x∗
k therefore form a geometric series,

x∗
k ∼

(
1 − σ

1 − u

u

σ

)k

,

which is summable when u < σ . In this adaptive regime the population forms what
Manfred Eigen denoted a “quasispecies”, see Fig. 6.3.

Quasispecies. A quasispecies is a population of genetically close but not
identical individuals.
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The Wandering Regime and The Error Threshold In the regime of a large
mutation rate, u > σ , we have x∗

k = 0, ∀k. In this case, a closer look at the finite
genome situation shows that the population is distributed in an essentially uniform
way over the whole genotype space. The infinite genome limit therefore becomes
inconsistent, since the whole population lies an infinite number of mutations away
from the preferred genotype. In this wandering regime the effects of finite popula-
tion size are prominent.

Error Catastrophe. The transition from the adaptive (quasispecies) regime
to the wandering regime is denoted the “error threshold” or “error catastro-
phe”.

The notion of error catastrophe is a quite generic feature of quasispecies theory,
independent of the exact nature of the fitness landscape containing epistatic interac-
tions. A quasispecies can no longer adapt, once its mutation rate becomes too large.
In the real world the error catastrophe implies extinction.

6.4 Finite Populations and Stochastic Escape

Punctuated Equilibrium Evolution is not a steady process, there are regimes of
rapid increase of the fitness and phases of relative stasis. This kind of overall dynam-
ical behavior is denoted the “punctuated equilibrium”.

In this context, adaptation can result either from local optimization of the fitness
of a single species or via coevolutionary avalanches, as discussed in Chap. 5.

The Neutral Regime. The stage where evolution is essentially driven by ran-
dom mutations is called the neutral (or wandering) regime.

The quasispecies model is inconsistent in the neutral regime. In fact, the population
spreads out in genome space in the neutral regime and the infinite population limit
is no longer reachable. In this situation, the fluctuations of the reproductive process
in a finite population have to be taken into account.

Deterministic Versus Stochastic Evolution Evolution is driven by stochastic pro-
cesses, since mutations are random events. Nevertheless, randomness averages out
and the evolution process becomes deterministic in the thermodynamic limit, as
discussed in Sect. 6.3, when the number M of individuals diverges, M → ∞.

Evolutionary processes in populations with a finite number of individuals dif-
fer from deterministic evolution quantitatively and sometimes also qualitatively, the
later being our focus of interest here.

Stochastic Escape. Random mutations in a finite population might lead to
a decrease in the fitness and to a loss of the local maximum in the fitness
landscape with a resulting dispersion of the quasispecies.

We have given a general account of the theory of stochastic escape in Chap. 2.
Here we will discuss in some detail under which circumstances this phenomenon is
important in evolutionary processes of small populations.
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6.4.1 Strong Selective Pressure and Adaptive Climbing

Adaptive Walks We consider a coarse-grained description of population dynamics
for finite populations. We assume that

(a) the population is finite,
(b) the selective pressure is very strong, and
(c) the mutation rate is small.

It follows from (b) that one can represent the population by a single point in genome
space; the genomes of all individuals are taken to be equal. The evolutionary dynam-
ics is then the following:

(A) At each time step, only one genome element of some individual in the popula-
tion mutates.

(B) If, because of this mutation, one obtains a genotype with higher fitness, the new
genotype spreads rapidly throughout the entire population, which then moves
altogether to the new position in genome space.

(C) If the fitness of the new genotype is lower, the mutation is rejected and the
population remains at the old position.

Physicists would call this type of dynamics a Monte Carlo process at zero tem-
perature. As is well known, this algorithm does not lead to a global optimum, but to
a “typical" local optimum. Step (C) holds only for the infinite population limit. We
will relax this condition further below.

The Random Energy Model It is thus important to investigate the statistical prop-
erties of the local optima, which depend on the properties of the fitness landscape.
A suitable approach is to assume a random distribution of the fitness.

The Random Energy Model. The fitness landscape F(s) is uniformly dis-
tributed between 0 and 1.

The random energy model is illustrated in Fig. 6.4. It captures, as we will see further
below two ingredients expected for real-world fitness landscapes, namely a large
number of local fitness optima close to the global fitness maximum.

Local Optima in the Random Energy Model Let us denote by N the number of
genome elements. The probability that a point with fitness F(s) is a local optimum
is simply given by

F N = F N (s) ,

since we have to impose that the N nearest neighbors

(s1, . . . ,−si , . . . , sN ), (i = 1, . . . , N ), s = (s1, . . . , sN ) ,
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0

1
N = 2

Fig. 6.4 Local fitness optima in a one-dimensional random fitness distribution; the number of
neighbors is two. This simplified picture does not corresponds directly to the N = 2 random
energy model, for which there are just 22 = 4 states in genome space. It shows, however, that
random distributions may exhibit an enormous number of local optima (filled circles), which are
characterized by lower fitness values both on the left-hand side as well as on the right-hand side

of the point have fitness less than F . The probability that a point in genome space is
a local optimum is given by

P {local optimum} =
∫ 1

0
F N dF = 1

N + 1
, (6.42)

since the fitness F is equally distributed in [0, 1]. There are therefore many local
optima, namely 2N/(N+1). A schematic picture of the large number of local optima
in a random distribution is given in Fig. 6.4.

Average Fitness at a Local Optimum The typical fitness of a local optimum is

Ftyp = 1

1/(N + 1)

∫ 1

0
F F N dF = N + 1

N + 2
= 1 + 1/N

1 + 2/N
≈ 1 − 1/N , (6.43)

viz very close the global optimum of 1, when the genome length N is large. At every
successful step the distance from the top is divided, on average, by a factor of 2.

Successful Mutations We now consider the adaptation process. Any mutation
results in a randomly distributed fitness of the offspring. A mutation is successful
whenever the fitness of the offspring is bigger than the fitness of its parent. The
typical fitness attained after � successful steps is then of the order of

1 − 1

2�+1
,

when starting (l = 0) from an average initial fitness of 1/2. It follows that the typical
number of successful mutations after which an optimum is attained is

Ftyp = 1 − 1/N = 1 − 1

2�t yp+1
, �t yp + 1 = log N

log 2
, (6.44)

i.e. it is relatively small.
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Fig. 6.5 Climbing process and stochastic escape. The higher the fitness, the more difficult it
becomes to climb further. With an escape probability pesc the population jumps somewhere else
and escapes a local optimum

The Time Needed for One Successful Mutation Even though the number of
successful mutations Eq. (6.44) needed to arrive at the local optimum is small, the
time to climb to the local peak can be very long; see Fig. 6.5 for an illustration of
the climbing process.

We define by

tF =
∑

n

n Pn, n : number of generations

the average number of generations necessary for the population with fitness F to
achieve one successful mutation, with Pn being the probability that it takes exactly
n generations. We obtain:

tF = 1 (1 − F) + 2 (1 − F)F + 3 (1 − F)F2 + 4 (1 − F)F3 + · · ·

= 1 − F

F

∞∑
n=0

n Fn = 1 − F

F

(
F

∂

∂F

∞∑
n=0

Fn

)
= (1 − F)

∂

∂F

1

1 − F

= 1

1 − F
. (6.45)

The average number of generations necessary to further increase the fitness by a
successful mutation diverges close to the global optimum F → 1.

The Total Climbing Time Every successful mutation decreases the distance 1− F
to the top by 1/2 and therefore increases the factor 1/(1 − F) on the average by 2.
The typical number �typ, see Eq. (6.44), of successful mutations needed to arrive at a
local optimum determines, via Eq. (6.45), the expected total number of generations
Topt to arrive at the local optimum. It is therefore on the average

Topt = 1 tF + 2 tF + 22 tF + . . . + 2�typ tF
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= tF
1 − 2�typ+1

1 − 2
≈ tF 2�typ+1 = tF e(�typ+1) log 2

≈ tF elog N = N

1 − F
≈ 2 N , (6.46)

where we have used Eq. (6.44) and F ≈ 1/2 for a typical starting fitness. The time
needed to climb to a local maximum in the random fitness landscape is therefore
proportional to the length of the genome.

6.4.2 Adaptive Climbing Versus Stochastic Escape

In Sect. 6.4.1 the average properties of adaptive climbing have been evaluated. We
now take the fluctuations in the reproductive process into account and compare the
typical time scales for a stochastic escape with those for adaptive climbing.

Escape Probability When a favorable mutation appears it spreads instantaneously
into the whole population, under the condition of strong selection limit, as assumed
in our model.

We consider a population situated at a local optimum or very close to a local
optimum. Every point mutation then leads to a lower fitness and the probability pesc
for stochastic escape is

pesc ≈ uM ,

where M is the number of individuals in the population and u ∈ [0, 1] the mutation
rate per genome, per individual and per generation, compare Eq. (6.35). The escape
can only happen when a mutation occurs in every member of the population within
the same generation (see also Fig. 6.5). If a single individual does not mutate it
retains its higher fitness of the present local optimum and all other mutations are
discarded within the model, assuming a strong selective pressure.

Stochastic Escape and Stasis We now consider a population climbing towards a
local optimum. The probability that the fitness of a given individual increases is
(1 − F)u. It needs to mutate with a probability u and to achieve a higher fitness,
when mutating, with probability 1 − F . We denote by

a = 1 − (1 − F)u

the probability that the fitness of an individual does not increase with respect to
the current fitness F of the population. The probability qbet that at least one better
genotype is found is then given by

qbet = 1 − aM .
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Considering a population close to a local optimum, a situation typical for real-world
ecosystems, we can then distinguish between two evolutionary regimes:

– Adaptive Walk: The escape probability pesc is much smaller than the probability
to increase the fitness, qbet 	 pesc. The population continuously increases its
fitness via small mutations.

– The Wandering Regime: Close to a local optimum the adaptive dynamics slows
down and the probability of stochastic escape pesc becomes comparable to that
of an adaptive process, pesc ≈ qbet. The population wanders around in genome
space, starting a new adaptive walk after every successful escape.

Typical Escape Fitness During the adaptive walk regime the fitness F increases
steadily, until it reaches a certain typical fitness Fesc for which the probability of
stochastic escape becomes substantial, i.e. when pesc ≈ qbet and

pesc = uM = 1 − [1 − (1 − Fesc)u]M = qbet

holds. As (1− Fesc) is then small we can expand the above expression in (1− Fesc),

uM ≈ 1 − [1 − M(1 − Fesc)u] = M(1 − Fesc)u ,

obtaining

1 − Fesc = uM−1/M . (6.47)

The fitness Fesc necessary for the stochastic escape to become relevant is exponen-
tially close to the global optimum F = 1 for large populations M .

The Relevance of Stochastic Escape The stochastic escape occurs when a local
optimum is reached, or when we are close to a local optimum. We may estimate the
importance of the escape process relative to that of the adaptive walk by comparing
the typical fitness Ftyp of a local optimum achieved by a typical climbing process
with the typical fitness Fesc needed for the escape process to become important:

Ftyp = 1 − 1

N
≡ Fesc = 1 − uM−1

M
,

1

N
= uM−1

M
,

where we have used Eq. (6.43) for Ftyp. The last expression is now independent
of the details of the fitness landscape, containing only the measurable parameters
N , M and u. This condition can be fulfilled only when the number of individuals M
is much smaller than the genome length N , as u < 1. The phenomenon of stochastic
escape occurs only for very small populations.
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6.5 Prebiotic Evolution

Prebiotic evolution deals with the question of the origin of life. Is it possible to
define chemical autocatalytic networks in the primordial soup having properties akin
to those of the metabolistic reaction networks going on continuously in every liv-
ing cell?

6.5.1 Quasispecies Theory

The quasispecies theory was introduced by Manfred Eigen to describe the evolution
of a system of information carrying macromolecules through a set of equations for
chemical kinetics,

d

dt
xi = ẋi = Wii xi +

∑
j �=i

Wi j x j − xiφ(t) , (6.48)

where the xi denote the concentrations of i = 1 . . . N molecules. Wii is the (auto-
catalytic) self-replication rate and the off-diagonal terms Wi, j (i �= j) the respective
mutation rates.

Mass Conservation We can choose the flux −xφ(t) in Eigen’s equations (6.48)
for prebiotic evolution such that the total concentration C , viz the total mass

C =
∑

i

xi

is conserved for long times. Summing Eq. (6.48) over i we obtain

Ċ =
∑

i j

Wi j x j − C φ, φ(t) =
∑

i j

Wi j x j (t) , (6.49)

for a suitable choice for the field φ(t), leading to

Ċ = φ (1 − C),
d

dt
(C − 1) = −φ (C − 1) . (6.50)

The total concentration C(t) will therefore approach 1 for t → ∞ for φ > 0, which
we assume to be the case here, implying total mass conservation. In this case the
autocatalytic rates Wii dominate with respect to the transmolecular mutation rates
Wi j (i �= j).

Quasispecies We can write the evolution equation (6.48) in matrix form

d

dt
x(t) = (W − 1φ) x(t), x =

⎛
⎜⎜⎝

x1
x1
· · ·
xN

⎞
⎟⎟⎠ , (6.51)
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A B

Fig. 6.6 The simplest hypercycle. A and B are self-replicating molecules. A acts as a catalyst for
B, i.e. the replication rate of B increases with the concentration of A. Likewise the presence of B
favors the replication of A

where W is the matrix {Wi j }. We assume here for simplicity a symmetric mutation
matrix Wi j = W ji . The solutions of the linear differential equation (6.51) are then
given in terms of the eigenvectors �eλ of W :

W eλ = λ eλ, x(t) =
∑
λ

aλ(t) eλ, ȧλ = [λ − φ(t)] aλ .

The eigenvector eλmax with the largest eigenvalue λmax will dominate for t → ∞,
due to the overall mass conservation Eq. (6.50). The flux will adapt to the largest
eigenvalue,

lim
t→∞

(
λmax − φ(t)

)
→ 0 ,

leading to the stationary condition ẋi = 0 for the evolution equation (6.51) in the
long time limit.

If W is diagonal (no mutations) a single macromolecule will remain in the pri-
mordial soup for t → ∞. For small but finite mutation rates Wi j (i �= j), a quasis-
pecies will emerge, made up of different but closely related macromolecules.

The Error Catastrophe The mass conservation equation (6.50) cannot be retained
when the mutation rates become too big, viz when the eigenvectors �eλ become
extended. In this case the flux φ(t) diverges, see Eq. (6.49), and the quasispecies
model consequently becomes inconsistent. This is the telltale sign of the error catas-
trophe.

The quasispecies model Eq. (6.48) is equivalent to the random energy model for
microevolution studied in Sect. 6.4, with the autocatalytic rates Wii corresponding
to the fitness of the xi , which corresponds to the states in genome space. The analysis
carried through in Sect. 6.3.3 for the occurrence of an error threshold is therefore
also valid for Eigen’s prebiotic evolutionary equations.

6.5.2 Hypercycles and Autocatalytic Networks

RNA World The macromolecular evolution equations (6.48) do not contain terms
describing the catalysis of molecule i by molecule j . This process is, however,
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I4 I3

I2In

I4 I3

I2

par

kpar

(a) (b)

Fig. 6.7 Hypercycles of higher order. (a) A hypercycle of order n consists of n cyclically cou-
pled self-replicating molecules Ii , and each molecule provides catalytic support for the subsequent
molecule in the cycle. (b) A hypercycle with a single self-replicating parasitic molecule “par”
coupled to it via kpar. The parasite gets catalytic support from I2 but does not give back catalytic
support to the molecules in the hypercycle

important both for the prebiotic evolution, as stressed by Manfred Eigen, as well
as for the protein reaction network in living cells.

Hypercycles. Two or more molecules may form a stable catalytic (hyper)
cycle when the respective intermolecular catalytic rates are large enough to
mutually support their respective synthesis.

An illustration of some hypercycles is given in Figs. 6.6 and 6.7. The most
likely chemical candidate for the constituent molecules is RNA, functioning both
enzymatically and as a precursor of the genetic material. One speaks also of an
“RNA world”.

Reaction Networks We disregard mutations in the following and consider the cat-
alytic reaction equations

ẋi = xi

⎛
⎝λi +

∑
j

κi j x j − φ

⎞
⎠ (6.52)

φ =
∑

k

xk

⎛
⎝λk +

∑
j

κk j x j

⎞
⎠ , (6.53)

where xi are the respective concentrations, λi the autocatalytic growth rates and κi j

the transmolecular catalytic rates. The field φ has been chosen, Eq. (6.53), such that
the total concentration C = ∑

i xi remains constant

Ċ =
∑

i

ẋi =
∑

i

xi

⎛
⎝λi +

∑
j

κi j x j

⎞
⎠− C φ = (1 − C) φ → 0

for C → 1.
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Fig. 6.8 The autocatalytic growth rates λi (left axis), as in Eq. (6.54) with α = 1, and the stationary
solution x∗

i (right axis) of the concentrations, Eq. (6.57), constituting a prebiotic quasispecies,
for various mean intercatalytic rates κ ≡ ω. The horizontal axis i = 1, 2, . . . , 50 denotes the
respective molecules

The Homogeneous Network We consider the case of homogeneous “interactions”
κi �= j and uniformly distributed autocatalytic growth rates:

κi �= j = κ, κi i = 0, λi = α i , (6.54)

compare Fig. 6.8, leading to

ẋi = xi

⎛
⎝λi + κ

∑
j �=i

x j − φ

⎞
⎠ = xi

(
λi + κ − κxi − φ

)
, (6.55)

where we have used
∑

i xi = 1. The fixed points x∗
i of Eq. (6.55) are

x∗
i =

{
(λi + κ − φ)/κ

0
λi = α, 2α, . . . , Nα , (6.56)

where the non-zero solution is valid for λi − κ − φ > 0. The flux φ in Eq. (6.56)
needs to obey Eq. (6.53), as the self-consistency condition.

The Stationary Solution The case of homogeneous interactions, Eq. (6.54), can
be solved analytically. Dynamically, the xi (t) with the largest growth rates λi will
dominate and obtain a non-zero steady-state concentration x∗

i . We may therefore
assume that there exists an N∗ ∈ [1, N ] such that

x∗
i =

{
(λi + κ − φ)/κ N∗ ≤ i ≤ N

0 1 ≤ i < N∗ , (6.57)
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compare Fig. 6.8, where N∗ and φ are determined by the normalization condition

1 =
N∑

i=N∗
x∗

i =
N∑

i=N∗

λi + κ − φ

κ
= α

κ

N∑
i=N∗

i +
[
κ − φ

κ

] (
N + 1 − N∗)

= α

2κ

[
N (N + 1) − N∗(N∗ − 1)

]
+
[
κ − φ

κ

] (
N + 1 − N∗) (6.58)

and by the condition that x∗
i = 0 for i = N∗ − 1:

0 = λN∗−1 + κ − φ

κ
= α(N∗ − 1)

κ
+ κ − φ

κ
. (6.59)

We eliminate (κ − φ)/κ from Eqs. (6.58) and (6.59) for large N , N∗:

2κ

α
� N 2 − (

N∗)2 − 2N∗ (N − N∗)
= N 2 − 2N∗N + (

N∗)2 = (N − N∗)2 .

The number of surviving species N − N∗ is therefore

N − N∗ �
√

2κ

α
, (6.60)

which is non-zero for a finite and positive inter-molecular catalytic rate κ . A hyper-
cycle of mutually supporting species (or molecules) has formed.

The Origin of Life The scientific discussions concerning the origin of life are
highly controversial to date and it is speculative whether hypercycles have anything
to do with it. Hypercycles describe closed systems of chemical reactions which
have to come to a stillstand eventually, as a consequence of the continuous energy
dissipation. In fact, a tellpoint sign of biological activities is the buildup of local
structures, resulting in a local reduction of entropy, possible only at the expense of
an overall increase of the environmental entropy. Life, as we understand it today, is
possible only as an open system driven by a constant flux of energy.

Nevertheless it is interesting to point out that Eq. (6.60) implies a clear divi-
sion between molecules i = N∗, . . . , N which can be considered to form a pri-
mordial “life form” separated by molecules i = 1, . . . , N∗ − 1 belonging to the
“environment”, since the concentrations of the latter are reduced to zero. This clear
separation between participating and non-participating substances is a result of the
non-linearity of the reaction equations (6.52). The linear evolution equations (6.48)
would, on the other hand, result in a continuous density distribution, as illustrated
in Fig. 6.3 for the case of the sharp peak fitness landscape. One could then con-
clude that life is possible only via cooperation, resulting from non-linear evolution
equations.
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Fig. 6.9 Top: Evolutionary process of a single (quasi) species in a fixed fitness landscape (fixed
ecosystem), here with tower-like structures, see Eq. (6.33). Bottom: A coevolutionary process
might be regarded as changing the respective fitness landscapes

6.6 Coevolution and Game Theory

The average number of offsprings, viz the fitness, is the single relevant reward func-
tion within Darwinian evolution. There is hence a direct connection between evo-
lutionary processes, ecology and game theory, which deals with interacting agents
trying to maximize a single reward function denoted utility. Several types of games
may be considered in this context, namely games of interacting species giving rise
to coevolutionary phenomena or games of interacting members of the same species,
pursuing distinct behavioral strategies.

Coevolution In the discussion so far we first considered the evolution of a single
species and then in Sect. 6.5.2, the stabilization of an “ecosystem” made of a hyper-
cycle of mutually supporting species.

Coevolution. When two or more species form an interdependent ecosystem
the evolutionary progress of part of the ecosystem will generally induce coevo-
lutionary changes also in the other species.

One can view the coevolutionary process also as a change in the respective fitness
landscapes, see Fig. 6.9. A prominent example of phenomena arising from coevolu-
tion is the “red queen” phenomenon.

The Red Queen Phenomenon. When two or more species are interdepen-
dent then “It takes all the running, to stay in place” (from Lewis Carroll’s
children’s book “Through the Looking Glass”).

A well-known example of the red queen phenomenon is the “arms race” between
predator and prey commonly observed in natural ecosystems.
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The Green World Hypothesis Plants abound in real-world ecosystems, geology
and climate permitting, they are rich and green. Naively one may expect that herbi-
vores should proliferate when food is plenty, keeping vegetation constantly down.
This doesn’t seem to happen in the world and Hairston, Smith and Slobodkin pro-
posed that coevolution gives rise to a trophic cascade, where predators keep the
herbivores substantially below the support level of the bioproductivity of the plants.
This “green world hypothesis” arises natural in evolutionary models, but has been
difficult to verify in field studies.

Avalanches and Punctuated Equilibrium In Chap. 5 we discussed the Bak and
Sneppen model of coevolution. It may explain the occurrence of coevolutionary
avalanches within a state of punctuated equilibrium.

Punctuated Equilibrium. Most of the time the ecosystem is in equilibrium,
in the neutral phase. Due to rare stochastic processes periods of rapid coevo-
lutionary processes are induced.

The term punctuated equilibrium was proposed by Gould and Eldredge in 1972 to
describe a characteristic feature of the evolution of simple traits observed in fossil
records. In contrast to the gradualistic view of evolutionary changes, these traits
typically show long periods of stasis interrupted by very rapid changes.

The random events leading to an increase in genome optimization might be a rare
mutation bringing one or more individuals to a different peak in the fitness landscape
(microevolution) or a coevolutionary avalanche.

Strategies and Game Theory One is often interested, in contrast to the stochastic
considerations discussed so far, in the evolutionary processes giving rise to very
specific survival strategies. These questions can be addressed within game theory,
which deals with strategically interacting agents in economics and beyond. When
an animal meets another animal it has to decide, to give an example, whether con-
frontation, cooperation or defection is the best strategy. The basic elements of game
theory are:

– Utility: Every participant, also called an agent, plays for himself, trying to maxi-
mize its own utility.

– Strategy: Every participant follows a set of rules of what to do when encountering
an opponent; the strategy.

– Adaptive Games: In adaptive games the participants change their strategy in order
to maximize future return. This change can be either deterministic or stochastic.

– Zero-Sum Games: When the sum of utilities is constant, you can only win what
the others lose.

– Nash Equilibrium: Any strategy change by a participant leads to a reduction of
his utility.

Hawks and Doves This simple evolutionary game tries to model competition in
terms of expected utilities between aggressive behavior (by the “hawk”) and peace-
ful (by the “dove”) demeanor. The rules are:
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The expected returns, the utilities, can be cast in matrix form,

A =
(

AH H AH D

ADH ADD

)
=
( 1

2 (V − C) V
0 V

2

)
.

A is denoted the “payoff” matrix. The question is then, under which conditions it
pays to be peaceful or aggressive.

Adaptation by Evolution The introduction of reproductive capabilities for the par-
ticipants turns the hawks-and-doves game into an evolutionary game. In this con-
text one considers the behavioral strategies to result from the expression of distinct
alleles.

The average number of offspring of a player is proportional to its fitness, which
in turn is assumed to be given by its expected utility,

ẋH =
(

AH H xH + AH DxD − φ(t)
)

xH

ẋD =
(

ADH xH + ADDxD − φ(t)
)

xD

, (6.61)

where xD and xH are the density of doves and hawks, respectively, and where the
flux

φ(t) = xH AH H xH + xH AH DxD + xD ADH xH + xD ADDxD

ensures an overall constant population, xH + xD = 1.

The Steady State Solution We are interested in the steady-state solution of
Eq. (6.61), with ẋD = 0 = ẋH . Setting

xH = x, xD = 1 − x ,

we find

φ(t) = x2

2
(V − C) + V x(1 − x) + V

2
(1 − x)2 = V

2
− C

2
x2

and

Dove meets Dove ADD = V/2 They divide the territory
Hawk meets Dove AH D = V , ADH = 0 The Hawk gets all the territory, the Dove

retreats and gets nothing
Hawk meets Hawk AH H = (V − C)/2 They fight, get injured, and win half the

territory
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ẋ =
(

V − C

2
x + V (1 − x) − φ(t)

)
x =

(
V

2
− V

2
x + C

2

(
x2 − x

))
x

= C

2
x

(
x2 − C + V

C
x + V

C

)
= C

2
x (x − 1) (x − V/C)

= − d

dx
V (x) ,

with

V (x) = − x2

4
V + x3

6
(V + C) − x4

8
C .

The steady state solution is given by

V ′(x) = 0, x = V/C ,

apart from the trivial solution x = 0 (no hawks) and x = 1 (only hawks). For
V > C there will be no doves left in the population, but for V < C there will be
an equilibrium with x = V/C hawks and 1 − V/C doves. A population consisting
exclusively of cooperating doves (x = 0) is unstable against the intrusion of hawks.

The Prisoner’s Dilemma The payoff matrix of the prisoner’s dilemma is given by

A =
(

R S
T P

)
T > R > P > S

2R > S + T
cooperator =̂ dove

defector =̂ hawk
. (6.62)

Here “cooperation” between the two prisoners is implied and not cooperation
between a suspect and the police. The prisoners are best off if both keep silent.
The standard values are

T = 5, R = 3, P = 1, S = 0 .

The maximal global utility N R is obtained when everybody cooperates, but in a
situation where agents interact randomly, the only stable Nash equilibrium is when
everybody defects, with a global utility N P:

reward for cooperators = Rc =
[

RNc + S(N − Nc)
]
/N ,

reward for defectors = Rd =
[
T Nc + P(N − Nc)

]
/N ,

where Nc is the number of cooperators and N the total number of agents. The
difference is

Rc − Rd ∼ (R − T )Nc + (S − P)(N − Nc) < 0 ,
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Fig. 6.10 Time series of the spatial distribution of cooperators (gray) and defectors (black) on a
lattice of size N = 40 × 40. The time is given by the numbers of generations in brackets. Initial
condition: Equal number of defectors and cooperators, randomly distributed. Parameters for the
payoff matrix, {T ; R; P; S} = {3.5; 3.0; 0.5; 0.0} (from Schweitzer et al., 2002)

as R − T < 0 and S − P < 0. The reward for cooperation is always smaller than
that for defecting.

Evolutionary Games on a Lattice The adaptive dynamics of evolutionary games
can change completely when the individual agents are placed on a regular lattice
and when they adapt their strategies based on past observations. A possible simple
rule is the following:

– At each generation (time step) every agent evaluates its own payoff when inter-
acting with its four neighbors, as well as the payoff of its neighbors.

– The individual agent then compares his own payoff one-by-one with the payoffs
obtained by his four neighbors.

– The agent then switches his strategy (to cooperate or to defect) to the strategy of
his neighbor if the neighbor received a higher payoff.

This simple rule can lead to complex real-space patterns of defectors intruding in a
background of cooperators, see Fig. 6.10. The details depend on the value chosen
for the payoff matrix.

Nash Equilibria and Coevolutionary Avalanches Coevolutionary games on a
lattice eventually lead to an equilibrium state, which by definition has to be a Nash
equilibrium. If such a state is perturbed from the outside, a self-critical coevolu-
tionary avalanche may follow, in close relation to the sandpile model discussed in
Chap. 5.

Game Theory and Memory Standard game theory deals with an anonymous soci-
ety of agents, with agents having no memory of previous encounters. Generalizing
this standard setup it is possible to empower the agents with a memory of their
own past strategies and achieved utilities. Considering additionally individualized
societies, this memory may then include the names of the opponents encountered
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previously, and this kind of games provides the basis for studying the emergence of
sophisticated survival strategies, like altruism, via evolutionary processes.

Opinion Dynamics Agents in classical game theory aim to maximize their respec-
tive utilities. Many social interactions between interacting agents however do not
need explicitly the concept of rewards or utilities in order to describe interesting
phenomena.

Examples of reward-free games are opinion dynamics models. In a simple model
for continuous opinion dynamics i = 1, . . . , N agents have continuous opinions
xi = xi (t). When two agents interact they change their respective opinions accord-
ing to

xi (t + 1) =
{ [xi (t) + x j (t)]/2 |xi (t) − x j (t)| < θ

xi (t) |xi (t) − x j (t)| ≥ θ
, (6.63)

where θ is the confidence interval. Consensus can be reached step by step only when
the initial opinions are not too contrarian. For large confidence intervals θ , relative to
the initial scatter of opinions, global consensus will be reached, clusters of opinions
emerge on the other side for a small confidence interval.

Exercises

THE ONE-DIMENSIONAL ISING MODEL

Solve the one-dimensional Ising model

H = J
∑

i

si si+1 + B
∑

i

si

by the transfer matrix method presented in Sect. 6.3.2 and calculate the free
energy F(T,B), the magnetization M(T, B) and the susceptibility χ(T ) =
limB→0

∂M(T,B)
∂B .

ERROR CATASTROPHE

For the prebiotic quasispecies model Eq. (6.51) consider tower-like autocat-
alytic reproduction rates W j j and mutation rates Wi j (i �= j) of the form

Wii =
{

1 i = 1
1 − σ i > 1

, Wi j =
⎧⎨
⎩

u+ i = j + 1
u− i = j − 1
0 i �= j otherwise

,

with σ, u± ∈ [0, 1]. Determine the error catastrophe for the two cases u+ =
u− ≡ u and u+ = u, u− = 0. Compare it to the results for the tower landscape
discussed in Sect. 6.3.3.
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Hint: For the stationary eigenvalue equation (6.51), with ẋi = 0 (i = 1, . . .),
write x j+1 as a function of x j and x j−1. This two-step recursion relation leads
to a 2 × 2 matrix. Consider the eigenvalues/vectors of this matrix, the initial
condition for x1, and the normalization condition

∑
i xi < ∞ valid in the

adapting regime.

MODELS OF LIFE

Go to the Internet, e.g. http://cmol.nbi.dk/javaapp.php, and try a few
JAVA applets simulating models of life. Select a model of your choice and study
the literature given.

COMPETITION FOR RESOURCES

The competition for scarce resources has been modelled in the quasispecies
theory, see Eq. (6.48), by an overall constraint on population density. With

ẋi = Wii xi Wii = f ri − d, ḟ = a − f
∑

i

ri xi (6.64)

one models the competition for the resource f explicitly, with a ( f ri ) being
the regeneration rate of the resource f (species i) and d the mortality rate. Eq.
(6.64) does not contain mutation terms ∼ Wi j describing a simple ecosystem.
Which is the steady-state value of the total population density C = ∑

i xi and
of the resource level f ? Is the ecosystem stable?

HYPERCYCLES

Consider the reaction equations (6.52) and (6.53) for N = 2 molecules and a
homogeneous network. Find the fixpoints and discuss their stability.

THE PRISONER’S DILEMMA ON A LATTICE

Consider the stability of intruders in the prisoner’s dilemma Eq. (6.62) on a
square lattice, as the one illustrated in Fig. 6.10. Namely, the case of just
one and of two adjacent defectors/cooperators in a background of coopera-
tors/defectors. Who survives?

NASH EQUILIBRIUM

Examine the Nash equilibrium and its optimality for the following two-player
game:
Each player acts either cautiously or riskily. A player acting cautiously always
receives a low pay-off. A player playing riskily gets a high pay-off if the other
player also takes a risk. Otherwise, the risk-taker obtains no reward.

Further Reading

A comprehensive account of the earth’s biosphere can be found in Smil (2002); a
review article on the statistical approach to Darwinian evolution in Peliti (1997)
and Drossel (2001). Further general textbooks on evolution, game-theory and
hypercycles are Nowak (2006), Kimura (1983), Eigen (1971), Eigen and
Schuster (1979) and Schuster (2001). For a review article on evolution and spe-

http://cmol.nbi.dk/javaapp.php
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ciation see Drossel (2001), for an assessment of punctuated equilibrium Gould and
Eldredge (2000).

The relation between life and self-organization is further discussed by
Kauffman (1993), a review of the prebiotic RNA world can be found in Orgel (1998)
and critical discussions of alternative scenarios for the origin of life in Orgel (1998)
and Pereto (2005).

The original formulation of the fundamental theorem of natural selection was
given by Fisher (1930). For the reader interested in coevolutionary games we refer
to Ebel and Bornholdt (2002); for an interesting application of game theory to world
politics as an evolving complex system see Cederman (1997) and for a field study
on the green world hypothesis Terborgh et al. (2006).
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Chapter 7
Synchronization Phenomena

Here we consider the dynamics of complex systems constituted of interacting local
computational units that have their own non-trivial dynamics. An example for a local
dynamical system is the time evolution of an infectious disease in a certain city that
is weakly influenced by an ongoing outbreak of the same disease in another city; or
the case of a neuron in a state where it fires spontaneously under the influence of the
afferent axon potentials.

A fundamental question is then whether the time evolutions of these local units
will remain dynamically independent of each other or whether, at some point, they
will start to change their states all in the same rhythm. This is the notion of “synchro-
nization”, which we will study throughout this chapter, learning that the synchro-
nization process may be driven either by averaging dynamical variables or through
causal mutual influences.

7.1 Frequency Locking

In this chapter we will be dealing mostly with autonomous dynamical systems which
may synchronize spontaneously. A dynamical system may also be driven by outside
influences, being forced to follow the external signal synchronously.

The Driven Harmonic Oscillator As an example we consider the driven harmonic
oscillator

ẍ + γ ẋ + ω2
0 x = F

(
eiωt + c.c.

)
, γ > 0 . (7.1)

In the absence of external driving, F ≡ 0, the solution is

x(t) ∼ eλt , λ ± = −γ

2
±
√

γ 2

4
− ω2

0 , (7.2)

which is damped/critical/overdamped for γ < 2ω0, γ = 2ω0 and γ > 2ω0.

Frequency Locking In the long time limit, t → ∞, the dynamics of the system
follows the external driving, for all F �= 0, due the damping γ > 0. We therefore
consider the ansatz

C. Gros, Complex and Adaptive Dynamical Systems, 2nd ed.,
DOI 10.1007/978-3-642-04706-0_7, C© Springer-Verlag Berlin Heidelberg 2011

215



216 7 Synchronization Phenomena

x(t) = aeiωt + c.c., (7.3)

where the amplitude a may contain an additional time-independent phase. Using
this ansatz for Eq. (7.1) we obtain

F = a
(
−ω2 + iωγ + ω2

0

)

= −a
(
ω2 − iωγ − ω2

0

)
= −a (ω + iλ+) (ω + iλ−) ,

where the eigenfrequencies λ± are given by Eq. (7.2). The solution for the amplitude
a can then be written in terms of λ± or alternatively as

a = −F(
ω2 − ω2

0

)− iωγ
. (7.4)

The response becomes divergent, viz a → ∞, at resonance ω = ω0 and small
damping γ → 0.

The General Solution The driven, damped harmonic oscillator Eq. (7.1) is an
inhomogeneous linear differential equation and its general solution is given by
the superposition of the special solution Eq. (7.4) with the general solution of the
homogeneous system Eq. (7.2). The latter dies out for t → ∞ and the system
synchronizes with the external driving frequency ω.

7.2 Synchronization of Coupled Oscillators

Any set of local dynamical systems may synchronize, whenever their dynamical
behaviours are similarly and the mutual couplings substantial. We start by dis-
cussing the simplest non-trivial set-up, viz harmonically coupled harmonic oscil-
lators.

Limiting Cycles A free rotation

x(t) = r
(

cos(ωt + φ0), sin(ωt + φ0)
)
, θ(t) = ωt + θ0, θ̇ = ω

often occurs (in suitable coordinates) as limiting cycles of dynamical systems, see
Chap. 2. One can then use the phase variable θ(t) for an effective description.

Coupled Dynamical Systems We consider a collection of individual dynamical
systems i = 1, . . . , N , which have limiting cycles with natural frequencies ωi . The
coupled system then obeys
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θ̇i = ωi +
N∑

j=1

Γi j (θi , θ j ), i = 1, . . . , N , (7.5)

where the Γi j are suitable coupling constants.

The Kuramoto Model A particularly tractable choice for the coupling constants
Γi j has been proposed by Kuramoto:

Γi j (θi , θ j ) = K

N
sin(θ j − θi ) , (7.6)

where K ≥ 0 is the coupling strength and the factor 1/N ensures that the model is
well behaved in the limit N → ∞.

Two Coupled Oscillators We consider first the case N = 2:

θ̇1 = ω1 + K

2
sin(θ2 − θ1), θ̇2 = ω2 + K

2
sin(θ1 − θ2) ,

or

Δθ̇ = Δω − K sin(Δθ), Δθ = θ2 − θ1, Δω = ω2 − ω1 . (7.7)

The system has a fixpoint Δθ∗ for which

d

dt
Δθ∗ = 0, sin(Δθ∗) = Δω

K
(7.8)

and therefore

Δθ∗ ∈ [−π/2, π/2], K > |Δω| . (7.9)

This condition is valid for attractive coupling constants K > 0. For repulsive K < 0
anti-phase states are stabilized. We analyze the stability of the fixpoint using Δθ =
Δθ∗ + δ and Eq. (7.7). We obtain

d

dt
δ = − (K cosΔθ∗) δ, δ(t) = δ0 e−K cosΔθ∗t .

The fixpoint is stable since K >0 and cosΔθ∗>0, due to Eq. (7.9). We therefore
have a bifurcation.

– For K < |Δω| there is no phase coherence between the two oscillators, they are
drifting with respect to each other.

– For K > |Δω| there is phase locking and the two oscillators rotate together with
a constant phase difference.

This situation is illustrated in Fig. 7.1.
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Fig. 7.1 The relative phase Δθ(t) of two coupled oscillators, obeying Eq. (7.7), with Δω = 1 and
a critical coupling strength Kc = 1. For an undercritical coupling strength K = 0.9 the relative
phase increases steadily, for an overcritical coupling K = 1.01 it locks

Natural Frequency Distribution We now consider the case of many coupled
oscillators, N → ∞. The individual systems have different individual frequencies
ωi with a probability distribution

g(ω) = g(−ω),

∫ ∞

−∞
g(ω) dω = 1 . (7.10)

We note that the choice of a zero average frequency

∫ ∞

−∞
ω g(ω) dω = 0

implicit in Eq. (7.10) is actually generally possible, as the dynamical equations (7.5)
and (7.6) are invariant under a global translation

ω → ω + Ω, θi → θi + Ωt ,

with Ω being the initial non-zero mean frequency.

The Order Parameter The complex order parameter

r eiψ = 1

N

N∑
j=1

eiθ j (7.11)

is a macroscopic quantity that can be interpreted as the collective rhythm produced
by the assembly of the interacting oscillating systems. The radius r(t) measures the
degree of phase coherence and ψ(t) corresponds to the average phase.
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Fig. 7.2 Spontaneous synchronization in a network of limit cycle oscillators with distributed indi-
vidual frequencies. Color coding: slowest (red)–fastest (violet) natural frequency. With respect to
Eq. (7.5) an additional distribution of individual radii ri (t) has been assumed, the asterisk denotes
the mean field reiψ = ∑

i ri eiθi /N , compare Eq. (7.11), and the individual radii ri (t) are slowly
relaxing (from Strogatz, 2001)

Molecular Field Representation We rewrite the order parameter definition
Eq. (7.11) as

r ei(ψ−θi ) = 1

N

N∑
j=1

ei(θ j −θi ), r sin(ψ − θi ) = 1

N

N∑
j=1

sin(θ j − θi ) ,

retaining the imaginary component of the first term. Inserting the second expression
into the governing equation (7.5) we find

θ̇i = ωi + K

N

∑
j

sin(θ j − θi ) = ωi + Kr sin(ψ − θi ) . (7.12)

The motion of every individual oscillator i = 1, . . . , N is coupled to the other oscil-
lators only through the mean-field phase ψ ; the coupling strength being proportional
to the mean-field amplitude r .

The individual phases θi are drawn towards the self-consistently determined
mean phase ψ , as can be seen in the numerical simulations presented in Fig. 7.2.
Mean-field theory is exact for the Kuramoto model. It is nevertheless non-trivial to
solve, as the self-consistency condition (7.11) needs to be fulfilled.
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Fig. 7.3 The region of locked and drifting natural frequencies ωi → ω within the Kuramoto model

The Rotating Frame of Reference The order parameter reiψ performs a free
rotation in the thermodynamic limit,

r(t) → r, ψ(t) → Ωt, N → ∞ ,

and one can transform via

θi → θi + ψ = θi + Ωt, θ̇i → θi + Ω, ωi → ω + Ω

to the rotating frame of reference. The governing equation (7.12) then becomes

θ̇i = ωi − Kr sin(θi ) . (7.13)

This expression is identical to the one for the case of two coupled oscillators,
Eq. (7.7), when substituting Kr by K . It then follows directly that ωi = Kr consti-
tutes a special point.

Drifting and Locked Components Equation (7.13) has a fixpoint θ∗
i for which

θ̇∗
i = 0 and

Kr sin(θ∗
i ) = ωi , |ωi | < Kr, θ∗

i ∈ [−π

2
,
π

2
] . (7.14)

θ̇∗
i = 0 in the rotating frame of reference means that the participating limit cycles

oscillate with the average frequency ψ ; they are “locked” to ψ , see Figs. 7.2 and 7.3.
For |ωi | > Kr the participating limit cycle drifts, i.e. θ̇i never vanishes. They do,

however, slow down when they approach the locked oscillators, see Eq. (7.13) and
Fig. 7.1.

Stationary Frequency Distribution We denote by

ρ(θ, ω) dθ

the fraction of drifting oscillators with natural frequency ω that lie between θ and
θ + dθ . It obeys the continuity equation

∂ρ

∂t
+ ∂

∂θ

(
ρ θ̇
)

= 0 ,



7.2 Synchronization of Coupled Oscillators 221

where ρθ̇ is the respective current density. In the stationary case, ρ̇ = 0, the station-
ary frequency distribution ρ(θ, ω) needs to be inversely proportional to the speed

θ̇ = ω − Kr sin(θ) .

The oscillators pile up at slow places and thin out at fast places on the circle. Hence

ρ(θ, ω) = C

|ω − Kr sin(θ)| ,
∫ π

−π

ρ(θ, ω) dθ = 1 , (7.15)

for ω > 0, where C is an appropriate normalization constant.

Formulation of the Self-Consistency Condition We write the self-consistency
condition (7.11) as

〈eiθ 〉 = 〈eiθ 〉locked + 〈eiθ 〉drifting = r eiψ ≡ r , (7.16)

where the brackets 〈·〉 denote population averages and where we have used the fact
that we can set the average phase ψ to zero.

Locked Contribution The locked contribution is

〈eiθ 〉locked =
∫ Kr

−Kr
eiθ∗(ω)g(ω) dω =

∫ Kr

−Kr
cos

(
(θ∗(ω)

)
g(ω) dω ,

where we have assumed g(ω) = g(−ω) for the distribution g(ω) of the natural
frequencies within the rotating frame of reference. Using Eq. (7.14),

dω = Kr cos θ∗ dθ∗ ,

for θ∗(ω) we obtain

〈eiθ 〉locked =
∫ π/2

−π/2
cos(θ∗) g(Kr sin θ∗) Kr cos(θ∗) dθ∗ (7.17)

= Kr
∫ π/2

−π/2
cos2(θ∗) g(Kr sin θ∗) dθ∗ .

The Drifting Contribution The drifting contribution

〈eiθ 〉drifting =
∫ π

−π

dθ
∫

|ω|>Kr
dω eiθρ(θ, ω)g(ω) = 0

to the order parameter actually vanishes. Physically this is clear: oscillators that are
not locked to the mean field cannot contribute to the order parameter. Mathemati-
cally it follows from g(ω) = g(−ω), ρ(θ +π,−ω) = ρ(θ, ω) and ei(θ+π) = −eiθ .
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Fig. 7.4 Left: The solution r = √
1 − Kc/K for the order parameter r in the Kuramoto model.

Right: Normalized distribution for the frequencies of clappings of one chosen individual from 100
samplings (Néda et al., 2000a, b)

Second-Order Phase Transition The population average 〈eiθ 〉 of the order param-
eter Eq. (7.16) is then just the locked contribution Eq. (7.17)

r = 〈eiθ 〉 ≡ 〈eiθ 〉locked = Kr
∫ π/2

−π/2
cos2(θ∗) g(Kr sin θ∗) dθ∗ . (7.18)

For K < Kc Eq. (7.18) has only the trivial solution r = 0; for K > Kc a finite order
parameter r > 0 is stabilized, see Fig. 7.4. We therefore have a second-order phase
transition, as discussed in Chap. 5.

Critical Coupling The critical coupling strength Kc can be obtained considering
the limes r → 0+ in Eq. (7.18):

1 = Kc g(0)
∫ π/2

−π/2
cos2 θ∗ dθ∗ = Kc g(0)

π

2
, Kc = 2

πg(0)
. (7.19)

The self-consistency condition Eq. (7.18) can actually be solved exactly with the
result

r =
√

1 − Kc

K
, Kc = 2

πg(0)
, (7.20)

as illustrated in Fig. 7.4.

The Physics of Rhythmic Applause A nice application of the Kuramoto model
is the synchronization of the clapping of an audience after a performance, which
happens when everybody claps at a slow frequency and in tact. In this case the dis-
tribution of “natural clapping frequencies” is quite narrow and K > Kc ∝ 1/g(0).

When an individual wants to express especial satisfaction with the performance
he/she increases the clapping frequency by about a factor of 2, as measured exper-
imentally, in order to increase the noise level, which just depends on the clapping
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frequency. Measurements have shown, see Fig. 7.4, that the distribution of natural
clapping frequencies is broader when the clapping is fast. This leads to a drop in g(0)
and then K < Kc ∝ 1/g(0). No synchronization is possible when the applause is
intense.

7.3 Synchronization with Time Delays

Synchronization phenomena need the exchange of signals from one subsystem to
another and this information exchange typically needs a certain time. These time
delays become important when they are comparable to the intrinsic time scales of
the individual subsystems. A short introduction into the intricacies of time-delayed
dynamical systems has been given in Sect. 2.6, here we discuss the effect of time
delays on the synchronization process.

The Kuramoto Model with Time Delays We start with two limiting-cycle oscil-
lators, coupled via a time delay T :

θ̇1(t) = ω1+ K

2
sin[θ2(t−T )−θ1(t)], θ̇2(t) = ω2+ K

2
sin[θ1(t−T )−θ2(t)] .

In the steady state,

θ1(t) = ω t, θ2(t) = ω t + Δθ∗ , (7.21)

there is a synchronous oscillation with a yet to be determined locking frequency ω

and a phase slip Δθ∗. Using sin(α + β) = sin(α) cos(β) + cos(α) sin(β) we find

ω = ω1 + K

2

[− sin(ωT ) cos(Δθ∗) + cos(ωT ) sin(Δθ∗)
]
, (7.22)

ω = ω2 + K

2

[− sin(ωT ) cos(Δθ∗) − cos(ωT ) sin(Δθ∗)
]
.

Taking the difference we obtain

Δω = ω2 − ω1 = K sin(Δθ∗) cos(ωT ) , (7.23)

which generalizes Eq. (7.8) to the case of a finite time delay T . Equations (7.22)
and (7.23) then determine together locking frequency ω and the phase slip Δθ∗.

Multiple Synchronization Frequencies For finite time delays T , there are gener-
ally more than one solution for the synchronization frequency ω. For concreteness
we consider now the case

ω1 = ω2 ≡ 1, Δθ∗ ≡ 0, ω = 1 − K

2
sin(ωT ) , (7.24)
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Fig. 7.5 Left: Graphical solution of the self-consistency condition (7.24), given by the intersections
of the solid line with the dashed lines, for the locking frequency ω, and time delays T = 1 (one
solution) and T = 6 (three solutions in the interval ω ∈ [0, 1.5]). The coupling constant is K =
1.8. Right: An example of a directed ring, containing five sites

compare Eqs. (7.23) and (7.22). This equation can be solved graphically, see
Fig. 7.5.

For T → 0 the two oscillators are phase locked, oscillating with the original
natural frequency ω = 1. A finite time delay then leads to a change of the synchro-
nization frequency and eventually, for large enough time delay T and couplings K ,
to multiple solutions for the locking frequency. These solutions are stable for

K cos(ωT ) > 0 ; (7.25)

we leave the derivation as an exercise to the reader. The time delay such results in a
qualitative change in the structure of the phase space.

Rings of Delayed-Coupled Oscillators As an example of the possible complexity
arising from delayed couplings we consider a ring of N oscillators, as illustrated in
Fig. 7.5, coupled unidirectionally,

θ̇ j = ω j + K sin[θ j−1(t − T ) − θ j (t)], j = 1, .., N . (7.26)

The periodic boundary conditions imply that N+1=̂1 in Eq. (7.26). We specialize to
the uniform case ω j ≡ 1. The network is then invariant under rotations of multiples
of 2π/N .

We consider plane-wave solutions1 with frequency ω and momentum k,

1 In the complex plane ψ j (t) = eiθ j (t) = ei(ωt−k j) corresponds to a plane wave on a periodic
ring. Eq. (7.26) is then equivalent to the phase evolution of the wavefunction ψ j (t). The system is
invariant under translations j → j + 1 and the discrete momentum k is therefore a good quantum
number, in the jargon of quantum mechanics. The periodic boundary condition ψ j+N = ψ j is
satisfied for the momenta k = 2πnk/N .
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θ j = ω t − k j, k = nk
2π

N
, nk = 0, .., N − 1 , (7.27)

where j = 1, .., N . For N = 2 only in-phase k = 0 and anti-phase k = π solutions
exist. The locking frequency ω is then determined by the self-consistency condition

ω = 1 + K sin(k − ωT ) . (7.28)

For a given momentum k a set of solutions is obtained. The resulting solutions θ j (t)
are characterized by complex spatio-temporal symmetries, oscillating fully in phase
only for vanishing momentum k → 0. Note however, that additional unlocked solu-
tions cannot be excluded and may show up in numerical solutions. It is important
to remember in this context, as discussed in Sect. 2.6, that initial conditions in the
entire interval t ∈ [−T, 0] need to be provided.

7.4 Synchronization via Aggregate Averaging

The synchronization of the limiting cycle oscillators discussed in Sect. 7.2 is medi-
ated by the molecular field, which is an averaged quantity. Averaging plays a central
role in many synchronization processes and may act both on a local basis and on a
global level. Alternatively, synchronization may be driven by the casual influence
of temporally well defined events, a route to synchronization we will discuss in
Sect. 7.5.

Pairwise Averaging The coupling term of the Kuramoto model, see Eq. (7.6), con-
tains differences θi − θ j in the respective dynamical variables θi and θ j . With an
appropriate sign of the coupling constant, this coupling results in a driving force
towards the average,

θ1 → θ1 + θ2

2
, θ2 → θ1 + θ2

2
.

This driving force competes with the differences in the time-development of the
individual oscillators, which is present whenever their natural frequencies ωi and
ω j do not coincide. A detailed analysis is then necessary, as carried out in Sect. 7.2,
in order to study this competition between the synchronizing effect of the coupling
and the desynchronizing influence of a non-trivial natural frequency distribution.

Aggregate Variables Generalizing above considerations we consider now a set of
dynamical variables xi , with ẋi = fi (xi ) being the evolution rule for the isolated
units. The geometry of the couplings is given by the normalized weighted adjacency
matrix

Ai j ,
∑

j

Ai j = 1 .
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The matrix elements are Ai j > 0 if the units i and j are coupled, and zero otherwise,
compare Chap. 1, with Ai j representing the relative weight of the link. We define
now the aggregate variables x̄i = x̄i (t) by

x̄i = (1 − κi )xi + κi

∑
j

Ai j x j , (7.29)

where κi ∈ [0, 1] is the local coupling strength. The aggregate variables x̄i corre-
spond to a superposition of xi with the weighted mean activity

∑
j Ai j x j of all its

neighbors.

Coupling via Aggregate Averaging A quite general class of dynamical networks
can now be formulated in terms of aggregate variables through

ẋi = fi (x̄i ), i = 1, . . . , N , (7.30)

with the x̄i given by Eq. (7.29). The fi describe the local dynamical systems which
could be, e.g., harmonic oscillators, relaxation oscillators or chaotic systems.

Expansion around the Synchronized State In order to expand Eq. (7.30) around
the globally synchronized state we first rewrite the aggregate variables as

x̄i = (1 − κi )xi + κi

∑
j

Ai j (x j − xi + xi ) (7.31)

= xi

(
1 − κi + κi

∑
j

Ai j

)
+ κi

∑
j

Ai j (x j − xi ) = xi + κi

∑
j

Ai j (x j − xi ) ,

where we have used the normalization
∑

j Ai j = 1. The differences in activities
x j − xi are small close to the synchronized state and we may expand

fi (x̄i ) ≈ fi (xi ) + f ′
i (xi )κi

∑
j

Ai j (x j − xi ) . (7.32)

Differential couplings ∼ (x j − xi ) between the nodes of the network are hence
equivalent, close to synchronization, to the aggregate averaging of the local dynam-
ics via the respective x̄i .

General Coupling Functions We may go one step further and define with

ẋi = f (xi ) +
∑

j

gi j (x j − xi ) (7.33)

a general system of i = 1, . . . , N dynamical units interacting via the coupling
functions gi j (x j − xi ). Close to the synchronized state we may expand Eq. (7.33) as



7.4 Synchronization via Aggregate Averaging 227

ẋi ≈ f (xi ) +
∑

j

g′
i j (0)(x j − xi ), g′

i j (0) =̂ f ′
i (xi )κi Ai j . (7.34)

The equivalence of g′
i j (0) and f ′

i (xi )κi Ai j is only local in time, with the later being
time dependent, but this equivalence is sufficient for a local stability analysis; the
synchronized state of the system with differential couplings, Eq. (7.33), is locally
stable then and only then if the corresponding system with aggregate couplings,
Eq. (7.30), is also stable against perturbations.

Synchronization via Aggregated Averaging The equivalence of Eqs. (7.30) and
(7.33) tells us that the driving forces leading to synchronization are aggregated aver-
aging processes of neighboring dynamical variables.

Till now we considered globally synchronized states. Synchronization processes
are however in general quite intricate processes, we mention here two alternative
possibilities. Above discussion concerning aggregate averaging remains however
valid, when generalized suitably, also for these more generic synchronized states.

– We saw, when discussing the Kuramoto model in Sect. 7.2, that generically not
all nodes of a network participate in a synchronization process. For the Kuramoto
model the oscillators with natural frequencies far away from the average do not
become locked to the time development of the order parameter, see Fig. 7.3,
retaining drifting trajectories.

– Generically, synchronization takes the form of coherent time evolution with
phase lags, we have seen an example when discussing two coupled oscillators
in Sect. 7.2. The synchronized orbit is then

xi (t) = x(t) + Δxi , Δxi const. ,

viz the elements i = 1, . . . , N are all locked in.

Stability Analysis via the Second-Largest Lyapunov Exponent The stability of
a globally synchronized state, xi (t) = x(t) for i = 1, . . . , N , can be determined
by considering small perturbations, viz

xi (t) = x(t) + δi ct , |c|t = eλt , (7.35)

where λ is the Lyapunov exponent. The eigenvectors (δ1, . . . , δN ) of the perturba-
tion are determined by the equation of motion linearized around the synchronized
trajectory. There is one Lyapunov exponent for every eigenvector, N in all:

λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λN .

In general the largest eigenvector λ1 > 0 will correspond to the synchronized direc-
tion,
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λ1, δi = δ, i = 1, . . . , N ,

corresponding to the dominant flow in phase space. The second largest Lyapunov
exponent determines hence the stability of the synchronized orbit:

(λ2 < 0) ⇔ stability ,

and vice versa.

Coupled Logistic Maps As an example we consider two coupled logistic maps,
see Fig. 2.4,

xi (t + 1) = r x̄i (t)
(
1 − x̄i (t)

)
, i = 1, 2, r ∈ [0, 4] , (7.36)

with

x̄1 = (1 − κ)x1 + κx2, x̄2 = (1 − κ)x2 + κx1

and κ ∈ [0, 1] being the coupling strength. Using Eq. (7.35) as an Ansatz we obtain

c

(
δ1
δ2

)
= r

(
1 − 2x(t)

) ( (1 − κ) κ

κ (1 − κ)

)(
δ1
δ2

)
,

which determines c as the eigenvalues of the Jacobian of Eq. (7.36). We have hence
two local pairs of eigenvalues and eigenvectors, namely

c1 = r(1 − 2x) (δ1, δ2) = 1√
2
(1, 1)

c2 = r(1 − 2x)(1 − 2κ) (δ1, δ2) = 1√
2
(1,−1)

corresponding to the respective local Lyapunov exponents, λ = log |c|,

λ1 = log |r(1 − 2x)|, λ2 = log |r(1 − 2x)(1 − 2κ)| . (7.37)

As expected, λ1 > λ2, since λ1 corresponds to a perturbation along the synchronized
orbit. The overall stability of the synchronized trajectory can be examined by aver-
aging above local Lyapunov exponents over the full time development, obtaining
such the maximal Lyapunov exponent, see Eq. (2.16).

Synchronization of Coupled Chaotic Maps The Lyapunov exponents need to be
evaluated numerically, but we can obtain an lower bound for the coupling strength
κ needed for stable synchronization by observing that |1 − 2x | ≤ 1 and hence

|c2| ≤ r |1 − 2κ| .
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The synchronized orbit is stable for |c2| < 1. Considering the case κ ∈ [0, 1/2] we
find

1 > r(1 − 2κs) ≥ |c2|, κs >
r − 1

2r

for the lower bound for κs . The logistic map is chaotic for r > r∞ ≈ 3.57 and
above result, being valid for all r ∈ [0, 4], therefore proves that also chaotic coupled
systems may synchronize.

For the maximal reproduction rate, r = 4, synchronization is guaranteed for
3/8 < κs ≤ 1/2. Note that x̄1 = x̄2 for κ = 1/2, synchronization through aggregate
averaging is hence achieved in one step for κ = 1/2.

7.5 Synchronization via Causal Signaling

The synchronization of the limiting cycle oscillators discussed in Sect. 7.2 is very
slow, see Fig. 7.2, as the information between the different oscillators is exchanged
only indirectly via the molecular field, which is an averaged quantity. Synchroniza-
tion may be sustantially faster, when the local dynamical units influence each other
with precisely timed signals, the route to synchronization discussed here.

Relaxational oscillators, like the van der Pol oscillator discussed in Chap. 2 have
a non-uniform cycle and the timing of the stimulation of one element by another is
important. This is a characteristic property of real-world neurons in particular and
of many models of artificial neurons, like the so-called integrate-and-fire models.
Relaxational oscillators are hence well suited to study the phenomena of synchro-
nization via causal signaling.

Terman–Wang Oscillators There are many variants of relaxation oscillators rele-
vant for describing integrate-and-fire neurons, starting from the classical Hodgkin–
Huxley equations. Here we discuss the particularly transparent dynamical system
introduced by Terman and Wang, namely

ẋ = f (x) − y + I

ẏ = ε
(
g(x) − y

) f (x) = 3x − x3 + 2

g(x) = α
(
1 + tanh(x/β)

) . (7.38)

Here x corresponds in neural terms to the membrane potential and I represents the
external stimulation to the neural oscillator. The amount of dissipation is given by

∂ ẋ

∂x
+ ∂ ẏ

∂y
= 3 − 3x2 − ε = 3(1 − x2) − ε .

For small ε � 1 the system takes up energy for membrane potentials |x | < 1 and
dissipates energy for |x | > 1.

Fixpoints The fixpoints are determined via



230 7 Synchronization Phenomena

21
x

0

4

8

y

−2 –1

dy/dt = 0 dy/dt = 0

dx/dt = 0
dx/dt = 0

relaxational state
I > 0

LB RB

21–2–
x

0

4

8

y

PI

excitable state
I < 0

0 10

Fig. 7.6 The ẏ = 0 (thick dashed-dotted lines) and the ẋ = 0 (thick full lines) isocline of the
Terman–Wang oscillator, Eq. (7.38), for α = 5, β = 0.2, ε = 0.1. Left: I = 0.5 with the limiting
relaxational cycle for ε � 1 (thin dotted line with arrows). Right: I = −0.5 with the stable
fixpoint: PI

ẋ = 0

ẏ = 0

y = f (x) + I

y = g(x)

by the intersection of the two functions f (x) + I and g(x), see Fig. 7.6. We find
two parameter regimes:

– For I ≥ 0 we have one unstable fixpoint (x∗, y∗) with x∗ � 0.
– For I < 0 and |I | large enough we have two additional fixpoints given by the

crossing of the sigmoid α
(
1 + tanh(x/β)

)
with the left branch (LB) of the cubic

f (x) = 3x − x3 + 2, with one fixpoint being stable.

The stable fixpoint PI is indicated in Fig. 7.6.

The Relaxational Regime For the case I > 0 the Terman–Wang oscillator relaxes
in the long time limit to a periodic solution, see Fig. 7.6, which is very similar to the
limiting relaxation oscillation of the Van der Pol oscillator discussed in Chap. 2.

Silent and Active Phases In its relaxational regime, the periodic solution jumps
very fast (for ε � 1) between trajectories that approach closely the right branch
(RB) and the left branch (LB) of the ẋ = 0 isocline. The time development on
the RB and the LB are, however, not symmetric, see Figs. 7.6 and 7.7, and we can
distinguish two regimes:

The Silent Phase. We call the relaxational dynamics close to the LB (x < 0)
of the ẋ = 0 isocline the silent phase or the refractory period.

The Active Phase. We call the relaxational dynamics close to the RB (x > 0)
of the ẋ = 0 isocline the active phase.

The relative rate of the time development ẏ in the silent and active phases are deter-
mined by the parameter α, compare Eq. (7.38).
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Terman–Wang oscillator Eq. (7.38) for α = 5, β = 0.2, ε = 0.1. Left: I = 0.5 exhibiting
spiking behavior, having silent/active phases for negative/positive x . Right: I = −0.5, relaxing to
the stable fixpoint

The active phase on the RB is far from the ẏ = 0 isocline for α 	 1, see Fig. 7.6,
and the time development ẏ is then fast. The silent phase on the LB is, however,
always close to the ẏ = 0 isocline and the system spends considerable time there.

The Spontaneously Spiking State and the Separation of Time Scales In its
relaxational phase, the Terman–Wang oscillator can therefore be considered as a
spontaneously spiking neuron, see Fig. 7.7, with the spike corresponding to the
active phase, which might be quite short compared to the silent phase for α 	 1.

The Terman–Wang differential equations (7.38) are examples of a standard tech-
nique within dynamical system theory, the coupling of a slow variable, y, to a fast
variable, x , which results in a separation of time scales. When the slow variable
y(t) relaxes below a certain threshold, see Fig. 7.7, the fast variable x(t) responds
rapidly and resets the slow variable. We will encounter further applications of this
procedure in Chap. 8.

The Excitable State The neuron has an additional phase with a stable fixpoint PI

on the LB (within the silent region), for negative external stimulation (suppression)
I < 0. The dormant state at the fixpoint PI is “excitable”: A positive external
stimulation above a small threshold will force a transition into the active phase,
with the neuron spiking continuously.

Synchronization via Fast Threshold Modulation Limit cycle oscillators can
synchronize, albeit slowly, via the common molecular field, as discussed in
Sect. 7.2. A much faster synchronization can be achieved via fast threshold syn-
chronization for a network of interacting relaxation oscillators.

The idea is simple. Relaxational oscillators have distinct states during their cycle;
we called them the “silent phase” and the “active phase” for the case of the Terman–
Wang oscillator. We then assume that a neural oscillator in its (short) active phase
changes the threshold I of the other neural oscillator in Eq. 7.38 as
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Fig. 7.8 Fast threshold modulation for two excitatory coupled Terman–Wang oscillators,
Eq. (7.38) o1 = o1(t) and o2 = o2(t), which start at time 0. When o1 jumps at t = t1 the
cubic ẋ = 0 isocline for o2 is raised from C to CE . This induces o2 to jump as well. Note that
the jumping from the right branches (R B and R BE ) back to the left branches occurs in the reverse
order: o2 jumps first (from Wang, 1999)

I → I + ΔI, ΔI > 0 ,

such that the second neural oscillator changes from an excitable state to the oscil-
lating state. This process is illustrated graphically in Fig. 7.8; it corresponds to a
signal send from the first to the second dynamical unit. In neural terms: when the
first neuron fires, the second neuron follows suit.

Propagation of Activity We consider a simple model

1 ⇒ 2 ⇒ 3 ⇒ . . .

of i = 1, . . . , N coupled oscillators xi (t), yi (t), all being initially in the excitable
state with Ii ≡ −0.5. They are coupled via fast threshold modulation, specifi-
cally via

ΔIi (t) = Θ(xi−1(t)) , (7.39)

where Θ(x) is the Heaviside step function. That is, we define an oscillator i to be
in its active phase whenever xi > 0. The resulting dynamics is shown in Fig. 7.9.
The chain is driven by setting the first oscillator of the chain into the spiking state
for a certain period of time. All other oscillators start to spike consecutively in rapid
sequence.
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Fig. 7.9 Sample trajectories xi (t) (lines) for a line of coupled Terman–Wang oscillators, an exam-
ple of synchronization via causal signaling. The relaxational oscillators are in excitable states, see
Eq. (7.38), with α = 10, β = 0.2, ε = 0.1 and I = −0.5. For t ∈ [20, 100] a driving current
ΔI1 = 1 is added to the first oscillator. x1 then starts to spike, driving the other oscillators one by
one via a fast threshold modulation

7.6 Synchronization and Object Recognition in Neural Networks

Synchronization phenomena can be observed in many realms of the living world.
As an example we discuss here the hypothesis of object definition via synchronous
neural firing, a proposal by Singer and von der Malsburg which is at the same time
both fascinating and controversial.

Temporal Correlation Theory The neurons in the brain have time-dependent
activities and can be described by generalized relaxation oscillators, as outlined in
the previous section. The “temporal correlation theory” assumes that not only the
average activities of individual neurons (the spiking rate) are important, but also the
relative phasing of the individual spikes. Indeed, experimental evidence supports
the notion of object definition in the visual cortex via synchronized firing. In this
view neurons encoding the individual constituent parts of an object, like the mouth
and the eyes of a face, fire in tact. Neurons being activated simultaneously by other
objects in the visual field, like a camera, would fire independently.

The LEGION Network of Coupled Relaxation Oscillators As an example of
how object definition via coupled relaxation oscillators can be achieved we consider
the LEGION (local excitatory globally inhibitory oscillator network) network by
Terman and Wang. Each oscillator i is defined as

ẋi = f (xi ) − yi + Ii + Si + ρ

ẏi = ε
(
g(xi ) − yi

) f (x) = 3x − x3 + 2
g(x) = α

(
1 + tanh(x/β)

) . (7.40)
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There are two terms in addition to the ones necessary for the description of a single
oscillator, compare Eq. (7.38):

ρ: a random-noise term and
Si : the interneural interaction.

The interneural coupling in Eq. (7.40) occurs exclusively via the modulation of the
threshold, the three terms Ii + Si + ρ constitute an effective threshold.

Interneural Interaction The interneural interaction is given for the LEGION net-
work by

Si =
∑

l∈N (i)

Til Θ(xl − xc) − WzΘ(z − zc) , (7.41)

where Θ(z) is the Heaviside step function. The parameters have the following
meaning:

Til > 0 : Interneural excitatory couplings.
N (i) : Neighborhood of neuron i .

xc : Threshold determining the active phase.
z : Variable for the global inhibitor.

−Wz < 0: Coupling to the global inhibitor z.
zc : Threshold for the global inhibitor.

Global Inhibition Global inhibition is a quite generic strategy for neural networks
with selective gating capabilities. A long-range or global inhibition term assures that
only one or only a few of the local computational units are active coinstantaneously.
In the context of the Terman–Wang LEGION network it is assumed to have the
dynamics

ż = (σz − z) φ, φ > 0 , (7.42)

where the binary variable σz is determined by the following rule:

σz = 1 if at least one oscillator is active.
σz = 0 if all oscillators are silent or in the excitable state.

This rule is very non-biological, the LEGION network is just a proof of the prin-
ciple for object definition via fast synchronization. When at least one oscillator is in
its active phase the global inhibitor is activated, z → 1, and inhibition is turned off
whenever the network is completely inactive.

Simulation of the LEGION Network A simulation of a 20×20 LEGION network
is presented in Fig. 7.10. We observe the following:
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Fig. 7.10 a A pattern used to stimulate a 20 × 20 LEGION network. b Initial random activities of
the relaxation oscillators. c, d, e, f Snapshots of the activities at different sequential times. g The
corresponding time-dependent activities of selected oscillators and of the global inhibitor (from
Wang, 1999)

– The network is able to discriminate between different input objects.
– Objects are characterized by the coherent activity of the corresponding neurons,

while neurons not belonging to the active object are in the excitable state.
– Individual input objects pop up randomly one after the other.

Working Principles of the LEGION Network The working principles of the
LEGION network are the following:

– When the stimulus begins there will be a single oscillator k, which will jump first
into the active phase, activating the global inhibitor, Eq. (7.42), via σz → 1. The
noise term ∼ ρ in Eq. (7.40) determines the first active unit randomly from the
set of all units receiving an input signal ∼ Ii , whenever all input signals have
the same strength.
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– The global inhibitor then suppresses the activity of all other oscillators, apart
from the stimulated neighbors of k, which also jump into the active phase, having
set the parameters such that

I + Tik − Wz > 0, I : stimulus

is valid. The additional condition

I − Wz < 0

assures, that units receiving an input, but not being topologically connected to
the cluster of active units, are suppressed. No two distinct objects can then be
activated coinstantaneously.

– This process continues until all oscillators representing the stimulated pattern are
active. As this process is very fast, all active oscillators fire nearly simultaneously,
compare also Fig. 7.9.

– When all oscillators in a pattern oscillate in phase, they also jump back to the
silent state simultaneously. At that point the global inhibitor is turned off: σz → 0
in Eq. (7.42) and the game starts again with a different pattern.

Discussion Even though the network nicely performs its task of object recognition
via coherent oscillatory firing, there are a few aspects worth noting:

– The functioning of the network depends on the global inhibitor triggered by the
specific oscillator that jumps first. This might be difficult to realize in biological
networks, like the visual cortex, which do not have well defined boundaries.

– The first active oscillator sequentially recruits all other oscillators belonging to its
pattern. This happens very fast via the mechanism of rapid threshold modulation.
The synchronization is therefore not a collective process in which the input data is
processed in parallel; a property assumed to be important for biological networks.

– The recognized pattern remains active for exactly one cycle and no longer.

We notice, however, that the design of neural networks capable of fast synchroniza-
tion via a collective process remains a challenge, since collective processes have
an inherent tendency towards slowness, due to the need to exchange information,
e.g. via molecular fields. Without reciprocal information exchange, a true collective
state, as an emergent property of the constituent dynamical units, is not possible.

7.7 Synchronization Phenomena in Epidemics

There are illnesses, like measles, that come and go recurrently. Looking at the local
statistics of measle outbreaks, see Fig. 7.11, one can observe that outbreaks occur in
quite regular time intervals within a given city. Interestingly though, these outbreaks
can be either in phase (synchronized) or out of phase between different cities.
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Fig. 7.11 Observation of the number of infected persons in a study on illnesses. a Weekly cases of
measle cases in Birmingham (red line) and Newcastle (blue line). b Weekly cases of measle cases
in Cambridge (green line) and in Norwich (pink line) (from He, 2003)

The oscillations in the number of infected persons are definitely not harmonic,
they share many characteristics with relaxation oscillations, which typically have
silent and active phases, compare Sect. 7.5.

The SIRS Model A standard approach to model the dynamics of infectious dis-
eases is the SIRS model. At any time an individual can belong to one of the three
classes:

S : susceptible,
I : infected,

R : recovered.

The dynamics is governed by the following rules:

(a) Susceptibles pass to the infected state, with a certain probability, after coming
into contact with one infected individual.

(b) Infected individuals pass to the recovered state after a fixed period of time τI .
(c) Recovered individuals return to the susceptible state after a recovery time τR ,

when immunity is lost, and the S→I→R→ S cycle is complete.

When τR → ∞ (lifelong immunity) the model reduces to the SIR-model.

The Discrete Time Model We consider a discrete time SIRS model with t =
1, 2, 3, . . . and τI = 1: The infected phase is normally short and we can use it
to set the unit of time. The recovery time τR is then a multiple of τI = 1.
We define with
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Fig. 7.12 Example of the course of an individual infection within the SIRS model with an infection
time τI = 1 and a recovery time τR = 3. The number of individuals recovering at time t is just the
sum of infected individuals at times t − 1, t − 2 and t − 3, compare Eq. (7.43)

xt the fraction of infected individuals at time t ,
st the percentage of susceptible individuals at time t ,

which obey

st = 1 − xt −
τR∑

k=1

xt−k = 1 −
τR∑

k=0

xt−k , (7.43)

as the fraction of susceptible individuals is just 1 minus the number of infected
individuals minus the number of individuals in the recovery state, compare Fig. 7.12.

The Recursion Relation We denote with a the rate of transmitting an infection
when there is a contact between an infected individual and a susceptible individual:

xt+1 = axt st = axt

(
1 −

τR∑
k=0

xt−k

)
. (7.44)

Relation to the Logistic Map For τR = 0 the discrete time SIRS model (7.44)
reduces to the logistic map

xt+1 = axt (1 − xt ) ,

which we studied in Chap. 2. For a < 1 it has only the trivial fixpoint xt ≡ 0, the
illness dies out. The non-trivial steady state is

x (1) = 1 − 1

a
, for 1 < a < 3 .

For a = 3 there is a Hopf bifurcation and for a > 3 the system oscillates with a
period of 2. Equation (7.44) has a similar behavior, but the resulting oscillations may
depend on the initial condition and for τR 	 τI ≡ 1 show features characteristic of
relaxation oscillators, see Fig. 7.13.

Two Coupled Epidemic Centers We consider now two epidemic centers with
variables

s(1,2)t , x (1,2)
t ,
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Fig. 7.13 Example of a solution to the SIRS model, Eq. (7.44), for τR = 6. The number of infected
individuals might drop to very low values during the silent phase in between two outbreaks as most
of the population is first infected and then immunized during an outbreak

denoting the fraction of susceptible/infected individuals in the respective cities. Dif-
ferent dynamical couplings are conceivable, via exchange or visits of susceptible or
infected individuals. We consider with

x (1)
t+1 = a

(
x (1)

t + e x (2)
t

)
s(1)t , x (2)

t+1 = a
(

x (2)
t + e x (1)

t

)
s(2)t (7.45)

the visit of a small fraction e of infected individuals to the other center. Equation
(7.45) determines the time evolution of the epidemics together with Eq. (7.43), gen-
eralized to both centers. For e = 1 there is no distinction between the two centers
anymore and their dynamics can be merged via xt = x (1)

t + x (2)
t and st = s(1)t + s(2)t

to the one of a single center.

In Phase Versus Out of Phase Synchronization We have seen in Sect. 7.2 that
a strong coupling of relaxation oscillators during their active phase leads in a quite
natural way to a fast synchronization. Here the active phase corresponds to an out-
break of the illness and Eq. (7.45) indeed implements a coupling equivalent to the
fast threshold modulation discussed in Sect. 7.5, since the coupling is proportional
to the fraction of infected individuals.

In Fig. 7.14 we present the results from a numerical simulation of the cou-
pled model, illustrating the typical behavior. We see that the outbreaks of epi-
demics in the SIRS model indeed occur in phase for a moderate to large coupling
constant e. For very small coupling e between the two centers of epidemics on the
other hand, the synchronization becomes antiphase, as is sometimes observed in
reality, see Fig. 7.11.

Time Scale Separation The reason for the occurrence of out of phase synchroniza-
tion is the emergence of two separate time scales in the limit tR 	 1 and e � 1.
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Fig. 7.14 Time evolution of the fraction of infected individuals x (1)(t) and x (2)(t) within the SIRS
model, Eq. (7.45), for two epidemic centers i = 1, 2 with recovery times τR = 6 and infection
rates a = 2, see Eq. (7.44). For a very weak coupling e = 0.005 (top) the outbreaks occur out of
phase, for a moderate coupling e = 0.1 (bottom) in phase

A small seed ∼ eax (1)s(2) of infections in the second city needs substantial time to
induce a full-scale outbreak, even via exponential growth, when e is too small. But
in order to remain in phase with the current outbreak in the first city the outbreak
occurring in the second city may not lag too far behind. When the dynamics is
symmetric under exchange 1 ↔ 2 the system then settles in antiphase cycles.

Exercises

THE DRIVEN HARMONIC OSCILLATOR

Solve the driven harmonic oscillator, Eq. (7.1), for all times t and compare it
with the long time solution t → ∞, Eqs. (7.3) and (7.4).

SELF-SYNCHRONIZATION

Consider an oscillator with feedback,

θ̇ (t) = ω0 + K sin[θ(t − T ) − θ(t)] .

Discuss the self-synchronization in analogy to Sect. 7.3, the stability of the
steady-state solutions and the auto-locking frequencies in the limit of strong
self-coupling K → ∞.



Further Reading 241

SYNCHRONIZATION OF CHAOTIC MAPS

The Bernoulli shift map f (x) = ax mod 1 with x ∈ [0, 1] is chaotic for a > 1.
Consider with

x1(t + 1) = f
(
(1 − κ)x1(t) + κx2(t − T )

)
x2(t + 1) = f

(
(1 − κ)x2(t) + κx1(t − T )

) (7.46)

two coupled chaotic maps, with κ ∈ [0, 1] being the coupling strength and T
the time delay, compare Eq. (7.30). Discuss the stability of the synchronized
states x1(t) = x2(t) ≡ x̄(t) for general time delays T . What drives the synchro-
nization process?

THE TERMAN–WANG OSCILLATOR

Discuss the stability of the fixpoints of the Terman–Wang oscillator, Eq. (7.38).
Linearize the differential equations around the fixpoint solution and consider
the limit β → 0.

THE SIRS MODEL – ANALYTICAL

Find the fixpoints xt ≡ x∗ of the SIRS model, Eq. (7.44), for all τR , as a function
of a and study their stability for τR = 0, 1.

THE SIRS MODEL – NUMERICAL

Study the SIRS model, Eq. (7.44), numerically for various parameters a and
τR = 0, 1, 2, 3. Try to reproduce Figs. 7.13 and 7.14.

Further Reading

A nice review of the Kuramoto model, together with historical annotations, has
been published by Strogatz (2000), for a textbook containing many examples of
synchronization see Pikovsky et al. (2003). Some of the material discussed in this
chapter requires a certain background in theoretical neuroscience, see e.g. Dayan
and Abbott (2001).

We recommend that the interested reader takes a look at some of the original
research literature, such as the exact solution of the Kuramoto (1984) model, the
Terman and Wang (1995) relaxation oscillators, the concept of fast threshold syn-
chronization (Somers and Kopell, 1993), the temporal correlation hypothesis for
cortical networks (von der Malsburg and Schneider, 1886), and its experimen-
tal studies (Gray et al., 1989), the LEGION network (Terman and Wang, 1995),
the physics of synchronized clapping (Néda et al., 2000a, b) and synchronization
phenomena within the SIRS model of epidemics (He and Stone, 2003). For an
introductory-type article on synchronization with delays see (D’Huys et al., 2008).
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Chapter 8
Elements of Cognitive Systems Theory

The brain is without doubt the most complex adaptive system known to humanity,
arguably also a complex system about which we know very little.

Throughout this book we have considered and developed general guiding prin-
ciples for the understanding of complex networks and their dynamical properties;
principles and concepts transcending the details of specific layouts realized in real-
world complex systems. We follow the same approach here, considering the brain
as just one example of what is called a cognitive system, a specific instance of what
one denotes, cum grano salis, a living dynamical system.

In the first part we will treat general layout considerations concerning dynamical
organizational principles, an example being the role of diffuse controlling and home-
ostasis for stable long-term cognitive information processing. Special emphasis will
be given to the motivational problem – how the cognitive system decides what to
do – in terms of survival parameters of the living dynamical system and the so-called
emotional diffusive control.

In the second part we will discuss two specific generalized neural networks
implementing various aspects of these general principles: a dense and homogeneous
associative network (dHAN) for environmental data representation and associative
thought processes, and the simple recurrent network (SRN) for concept extraction
from universal prediction tasks.

8.1 Introduction

We start with a few basic considerations concerning the general setting.

What is a Cognitive System? A cognitive system may be either biological, like
the brain, or artificial. It is, in both instances, a dynamical system embedded into an
environment, with which it mutually interacts.

Cognitive Systems. A cognitive system is a continuously active complex
adaptive system autonomously exploring and reacting to the environment with
the capability to “survive”.

For a cognitive system, the only information source about the outside is given, to be
precise, by its sensory data input stream, viz the changes in a subset of variables trig-

C. Gros, Complex and Adaptive Dynamical Systems, 2nd ed.,
DOI 10.1007/978-3-642-04706-0_8, C© Springer-Verlag Berlin Heidelberg 2011

243



244 8 Elements of Cognitive Systems Theory

sensory signals

survivial variables

cognitive
system

output signals − actions

environment
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Fig. 8.1 A cognitive system is placed in an environment (compare Sect. 8.2.4) from which it
receives two kinds of signals. The status of the survival parameters, which it needs to regulate (see
Sect. 8.3.2), and the standard sensory input. The cognitive system generates output signals via its
autonomous dynamics, which act back onto the outside world, viz the environment

gered by biophysical processes in the sensory organs or sensory units. The cognitive
system does therefore not react directly to environmental events but to the resulting
changes in the sensory data input stream, compare Fig. 8.1.

Living Dynamical Systems A cognitive system is an instance of a living dynam-
ical system, being dependent on a functioning physical support unit, the body. The
cognitive system is terminated when its support unit ceases to work properly.

Living Dynamical Systems. A dynamical system is said to “live” in an
abstract sense if it needs to keep the ongoing dynamical activity in certain
parameter regimes.

As an example we consider a dynamical variable y(t) ≥ 0, part of the cognitive
system, corresponding to the current amount of pain or hunger. This variable could
be directly set by the physical support unit, i.e. the body, of the cognitive system,
telling the dynamical system about the status of its support unit.

The cognitive system can influence the value of y(t) indirectly via its motor
output signals, activating its actuators, e.g. the limbs. These actions will, in gen-
eral, trigger changes in the environment, like the uptake of food, which in turn will
influence the values of the respective survival variables. One could then define the
termination of the cognitive system when y(t) surpasses a certain threshold yc. The
system “dies” when y(t) > yc. These issues will be treated in depth in Sect. 8.3.2.

Cognition Versus Intelligence A cognitive system is not necessarily intelligent,
but it might be in principle. Cognitive system theory presumes that artificial intel-
ligence can be achieved only once autonomous cognitive systems have been devel-
oped. This stance is somewhat in contrast with the usual paradigm of artificial intel-
ligence (AI), which follows an all-in-one-step approach to intelligent systems.

Universality Simple biological cognitive systems are dominated by cognitive
capabilities and algorithms hard-wired by gene expression. These features range
from simple stimulus–response reactions to sophisticated internal models for limb
dynamics.



8.2 Foundations of Cognitive Systems Theory 245

A priori information is clearly very useful for task solving in particular and for
cognitive systems in general. A main research area in AI is therefore the develop-
ment of efficient algorithms making maximal use of a priori information about the
environment. A soccer-playing robot normally does not acquire the ball dynamics
from individual experience. Newton’s law is given to the robot by its programmer
and hard-wired within its code lines.

Cognitive system theory examines, on the other hand, universal principles and
algorithms necessary for the realization of an autonomous cognitive system. This
chapter will be devoted to the discussion and possible implementations of such
universal principles.

A cognitive system should therefore be able to operate in a wide range of envi-
ronmental conditions, performing tasks of different kinds. A rudimentary cognitive
system does not need to be efficient. Performance boosting specialized algorithms
can always be added afterwards.

A Multitude of Possible Formulations Fully functional autonomous cognitive
systems may possibly have very different conceptual foundations. The number of
consistent approaches to cognitive system theory is not known, it may be substan-
tial. This is a key difference to other areas of research treated in this book, like graph
theory, and is somewhat akin to ecology, as there are a multitude of fully functional
ecological systems.

It is, in any case, a central challenge to scientific research to formulate and to
examine self-consistent building principles for rudimentary but autonomous cog-
nitive systems. The venue treated in this chapter represents a specific approach
towards the formulation and the understanding of the basic requirements needed
for the construction of a cognitive system.

Biologically Inspired Cognitive Systems Cognitive system theory has two long-
term targets: To understand the functioning of the human brain and to develop an
autonomous cognitive system. The realization of both goals is still far away, but they
may be combined to a certain degree. The overall theory is however at an early stage
and it is presently unclear to which extent the first implemented artificial cognitive
systems will resemble our own cognitive organ, the brain.

8.2 Foundations of Cognitive Systems Theory

8.2.1 Basic Requirements for the Dynamics

Homeostatic Principles Several considerations suggest that self-regulation via
adaptive means, viz homeostatic principles, are widespread in the domain of life
in general and for biological cognitive systems in particular.

– There are concrete instances for neural algorithms, like the formation of topolog-
ical neural maps, based on general, self-regulating feedback. An example is the
topological map connecting the retina to the primary optical cortex.
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– The number of genes responsible for the development of the brain is relatively
low, perhaps a few thousands. The growth of about 100 billion neurons and of
around 1015 synapses can only result in a functioning cognitive system if very
general self-regulating and self-guiding algorithms are used.

– The strength and the number of neural pathways interconnecting different regions
of the brain or connecting sensory organs to the brain may vary substantially
during development or during lifetime, e.g. as a consequence of injuries. This
implies, quite generally, that the sensibility of neurons to the average strength of
incoming stimuli must be adaptive.

It is tempting to speak in this context of “target-oriented self-organization”, since
mere “blind”, viz basic self-organizational processes might be insufficient tools for
the successful self-regulated development of the brain in a first step and of the neural
circuits in a second step.

Self-Sustained Dynamics Simple biological neural networks, e.g. the ones in most
worms, just perform stimulus–response tasks. Highly developed mammal brains,
on the other side, are not directly driven by external stimuli. Sensory information
influences the ongoing, self-sustained neuronal dynamics, but the outcome cannot
be predicted from the outside viewpoint.

Indeed, the human brain is on the whole occupied with itself and continuously
active even in the sustained absence of sensory stimuli. A central theme of cogni-
tive systems theory is therefore to formulate, test and implement the principles that
govern the autonomous dynamics of a cognitive system.

Transient State Versus Fluctuation Dynamics There is a plurality of approaches
for the characterization of the time development of a dynamical system. A key
questions in this context regards the repeated occurrence of well defined dynamical
states, that is, of states allowing for a well defined characterization of the current
dynamical state of the cognitive system, like the ones illustrated in Fig. 8.2.

Transient States. A transient state of a dynamical system corresponds to a
quasistationary plateau in the value of the variables.

Transient state dynamics can be defined mathematically in a rigorous way. It is
present in a dynamical system if the governing equations of the system contain
parameters that regulate the length of the transient state, viz whenever it is possible,
by tuning theses parameters, to prolong the length of the plateaus arbitrarily.

In the case of the human brain, several experiments indicate the occurrence
of spontaneously activated transient neural activity patterns in the cortex,1 on
timescales corresponding to the cognitive timescale2 of about 80−100 ms. It is
therefore natural to assume that both fluctuating states and those corresponding to
transient activity are characteristic for biological inspired cognitive systems. In this

1 See, e.g., Abeles et al. (1995) and Kenet et al. (2003).
2 Humans can distinguish cognitively about 10–12 objects per second.
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time

Fig. 8.2 Fluctuating (top) and transient state (bottom) dynamics

chapter we will especially emphasize the transient state dynamics and discuss the
functional roles of the transient attractors generated by this kind of dynamics.

Competing Dynamics The brain is made up of many distinct regions that are
highly interconnected. The resulting dynamics is thought to be partly competing.

Competing Dynamics. A dynamical system made up of a collection of inter-
acting centers is said to show competing dynamics if active centers try to
suppress the activity level of the vast majority of competing centers.

In neural network terminology, competing dynamics is also called a winners-take-all
setup. In the extreme case, when only a single neuron is active at any given time,
one speaks of a winner-take-all situation.

The Winning Coalition. In a winners-take-all network the winners are nor-
mally formed by an ensemble of mutually supportive centers, which one also
denotes the “winning coalition”.

A winning coalition needs to be stable for a certain minimal period of time, in
order to be well characterized. Competing dynamics therefore frequently results in
transient state dynamics.

Competing dynamics in terms of dynamically forming winning coalitions is a
possible principle for achieving the target-oriented self-organization needed for a
self-regulating autonomously dynamical systems. We will treat this subject in detail
in Sect. 8.4.

States-of-the-Mind and the Global Workspace A highly developed cognitive
system is capable of generating autonomously a very large number of different
transient states, which represent the “states-of-the-mind”. This feature plays an
important role in present-day investigations of the neural correlates of conscious-
ness, which we shall now briefly mention for completeness. We will not discuss the
relation of cognition and consciousness any further in this chapter.
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Edelman and Tononi3 argued that these states-of-the-mind can be characterized
by “critical reentrant events”, constituting transient conscious states in the human
brain. Several authors have proposed the notion of a “global workspace”. This
workspace would be the collection of neural ensembles contributing to global brain
dynamics. It could serve, among other things, as an exchange platform for con-
scious experience and working memory.4 The constituting neural ensembles of the
global workspace have also been dubbed “essential nodes”, i.e. ensembles of neu-
rons responsible for the explicit representation of particular aspects of visual scenes
or other sensory information.5

Spiking Versus Non-Spiking Dynamics Neurons emit an axon potential called a
spike, which lasts about a millisecond. They then need to recover for about 10 ms,
the refractory period. Is it then important for a biologically inspired cognitive system
to use spiking dynamics? We note here in passing that spiking dynamics can be
generated by interacting relaxation oscillators, as discussed in Chap. 7.

The alternative would be to use a network of local computational units having
a continuously varying activity, somewhat akin to the average spiking intensity of
neural ensembles. There are two important considerations in this context:

– At present, it does not seem plausible that spiking dynamics is a condition sine
qua non for a cognitive system. It might be suitable for a biological system, but
not a fundamental prerequisite.

– Typical spiking frequencies are in the range of 5–50 spikes per second. A typ-
ical cortical neuron receives input from about ten thousand other neurons, viz
50–500 spikes per millisecond. The input signal for typical neurons is therefore
quasicontinuous.

The exact timing of neural spikes is clearly important in many areas of the brain, e.g.
for the processing of acoustic data. Individual incoming spikes are also of relevance,
when they push the postsynaptic neuron above the firing threshold. However, the
above considerations indicate a reduced importance of precise spike timing for the
average all-purpose neuron.

Continuous Versus Discrete Time Dynamics Neural networks can be modeled
either by using a discrete time formulation t = 1, 2, 3, . . . or by employing contin-
uous time t ∈ [0,∞].

Synchronous and Asynchronous Updating. A dynamical system with dis-
crete time is updated synchronously (asynchronously) when all variables are
evaluated simultaneously (one after another).

3 See Edelman and Tononi (2000).
4 See Dehaene and Naccache (2003) and Baars and Franklin (2003).
5 See Crick and Koch (2003).
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For a continuous time formulation there is no difference between synchronous and
asynchronous updating however, it matters for a dynamical system with discrete
time, as we discussed in Chap. 4.

The dynamics of a cognitive system needs to be stable. This condition requires
that the overall dynamical feature cannot depend, e.g., on the number of components
or on the local numerical updating procedure. Continuous or quasi-continous time
is therefore the only viable option for real-world cognitive systems.

Continuous Dynamics and Online Learning The above considerations indicate
that a biologically inspired cognitive system should be continuously active.

Online Learning. When a neural network type system learns during its nor-
mal mode of operation one speaks of “online learning”. The case of “offline
learning” is given when learning and performance are separated in time.

Learning is a key aspect of cognition and online learning is the only possible
learning paradigm for an autonomous cognitive system. Consequently there can be
no distinct training and performance modes. We will come back to this issue in
Sect. 8.4.3.

8.2.2 Cognitive Information Processing Versus Diffusive Control

A cognitive system is an (exceedingly) complex adaptive system per excellence. As
such it needs to be adaptive on several levels.

Biological considerations suggest to use networks of local computational units
with primary variables xi = (x0

i , x1
i , . . .). Typically x0

i would correspond to the
average firing rate and the other xα

i (α = 1, . . .) would characterize different dynam-
ical properties of the ensemble of neurons represented by the local computational
unit as well as the (incoming) synaptic weights.

The cognitive system, as a dynamical system, is governed by a set of differential
equations, such as

ẋi = f i (x1, . . . , xN ), i = 1, . . . , N . (8.1)

Primary and Secondary Variables The functions f i governing the time evolution
equation (8.1) of the primary variables {xi } generally depend on a collection of
parameters {γi }, such as learning rates, firing thresholds, etc.:

f i (x1, . . . , xN ) = f i (γ1, γ2, . . . |x1, x2, . . .) . (8.2)

The time evolution of the system is fully determined by Eq. (8.1) whenever the
parameters γ j are unmutable, that is, genetically predetermined. Normally, however,
the cognitive system needs to adjust a fraction of these parameters with time, viz

γ̇i = gi (γ1, γ2, . . . |x1, x2, . . .) , (8.3)
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Fig. 8.3 General classification scheme for the variables and the parameters of a cognitive system.
The variables can be categorized as primary variables and as secondary variables (parameters).
The primary variables can be subdivided into the variables characterizing the current state of
the local computational units x and into generalized synaptic weights w. The “parameters” γ are
slow variables adjusted for homeostatic regulation. The true unmutable (genetically predetermined)
parameters are γ ′

In principle one could merge {x j } and {γi } into one large set of dynamical variables
{yl} = {γi |x j }. It is, however, meaningful to keep them separated whenever their
respective time evolution differs qualitatively and quantitatively.

Fast and Slow Variables. When the average rate changes of two variables
x = x(t) and y = y(t) are typically very different in magnitude, |ẋ | 	 |ẏ|,
then one calls x(t) the fast variable and y(t) the slow variable.

The parameters {γ j } are, per definition, slow variables. One can then also call them
“secondary variables” as they follow the long-term average of the primary vari-
ables {xi }.
Adiabatic Approximation The fast variables {xi } change rapidly with respect to
the time development of the slow variables {γ j } in Eq. (8.3). It is then often a good
approximation to substitute the xi by suitable time-averages 〈xi 〉t . In physics jargon
one speaks then of an “adiabatic approximation”.

Adaptive Parameters A cognitive system needs to self-adapt over a wide range
of structural organizations, as discussed in Sect. 8.2.1. Many parameters relevant
for the sensibility to presynaptic activities, for short-term and long-term learning, to
give a few examples, need therefore to be adaptive, viz time-dependent.

Metalearning. The time evolution of the slow variables, the parameters, is
called “metalearning” in the context of cognitive systems theory.

With (normal) learning we denote the changes in the synaptic strength, i.e. the con-
nections between distinct local computational units. Learning (of memories) there-
fore involves part of the primary variables.

The other primary variables characterize the current state of a local computa-
tional unit, such as the current average firing rate. Their time evolution corresponds
to the actual cognitive information processing, see Fig. 8.3.

Diffusive Control Neuromodulators, like dopamine, serotonin, noradrenaline and
acetylcholine, serve in the brain as messengers for the transmission of general infor-
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mation about the internal status of the brain, and for overall system state control. A
release of a neuromodulator by the appropriate specialized neurons does not influ-
ence individual target neurons, but extended cortical areas.

Diffusive Control. A signal by a given part of a dynamical system is called
a “diffusive control signal” if it tunes the secondary variables in an extended
region of the system.

A diffusive control signal6 does not influence the status of individual computational
units directly, i.e. their primary variables. Diffusive control has a wide range of
tasks. It plays an important role in metalearning and reinforcement learning.

As an example of the utility of diffusive control signals we mention the “learning
from mistakes” approach, see Sect. 8.2.4. Within this paradigm synaptic plasticities
are degraded after an unfavorable action has been performed. For this purpose a
diffusive control signal is generated whenever a mistake has been made, with the
effect that all previously active synapses are weakened.

8.2.3 Basic Layout Principles

There is, at present, no fully developed theory for real-world cognitive systems. Here
we discuss some recent proposals for a possible self-consistent set of requirements
for biologically inspired cognitive systems.

(A) Absence of A Priori Knowledge About the Environment
Preprogrammed information about the outside world is normally a necessary
ingredient for the performance of robotic systems at least within the artificial
intelligence paradigm. However, a rudimentary system needs to perform dom-
inantly on the base of universal principles.

(B) Locality of Information Processing
Biologically inspired models need to be scalable and adaptive to structural
modifications. This rules out steps in information processing needing non-local
information, as is the case for the standard back-propagation algorithm, viz the
minimization of a global error function.

(C) Modular Architecture
Biological observations motivate a modular approach, with every individual
module being structurally homogeneous. An autonomous cognitive system
needs modules for various cognitive tasks and diffusive control. Well defined
interface specifications are then needed for controlled intermodular information
exchange. Homeostatic principles are necessary for the determination of the
intermodule connections, in order to allow for scalability and adaptability to
structural modifications.

6 Note that neuromodulators are typically released in the intercellular medium from where they
physically diffuse towards the surrounding neurons.
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(D) Metalearning via Diffusive Control
Metalearning, i.e. the tuning of control parameters for learning and sensitivity
to internal and external signals, occurs exclusively via diffusive control. The
control signal is generated by diffusive control units, which analyze the overall
status of the network and become active when certain conditions are achieved.

(E) Working Point Optimization
The length of the stability interval of the transient states relative to the length
of the transition time from one state-of-mind to the next (the working point of
the system) needs to be self-regulated by homeostatic principles.
Learning influences the dynamical behavior of the cognitive system in general
and the time scales characterizing the transient state dynamics in particular.
Learning rules therefore need to be formulated in a way that autonomous work-
ing point optimization is guaranteed.

The Central Challenge The discovery and understanding of universal principles,
especially for cognitive information processing, postulated in (A)–(F) is the key to
ultimately understanding the brain or to building an artificial cognitive system. In
Sect. 8.5 we will discuss an example for a universal principle, namely environmental
model building via universal prediction tasks.

The Minimal Set of Genetic Knowledge No cognitive system can be universal in
a strict sense. Animals, to give an example, do not need to learn that hunger and pain
are negative reward signals. This information is genetically preprogrammed. Other
experiences are not genetically fixed, e.g. some humans like the taste of coffee,
others do not.

No cognitive system could be functioning with strictly zero a priori knowl-
edge, it would have no “purpose”. A minimal set of goals is necessary, as we
will discuss further in depth in Sect. 8.3. A minimal goal of fundamental signif-
icance is to “survive” in the sense that certain internal variables need to be kept
within certain parameter ranges. A biological cognitive system needs to keep the
pain and hunger signals that it receives from its own body at low average levels,
otherwise its body would die. An artificial system could be given corresponding
tasks.

Consistency of Local Information Processing with Diffusive Control We note
that the locality principle (B) for cognitive information processing is consistent with
non-local diffusive control (D). Diffusive control regulates the overall status of the
system, like attention focusing and sensibilities, but it does not influence the actual
information processing directly.

Logical Reasoning Versus Cognitive Information Processing Very intensive
research on logical reasoning theories is carried out in the context of AI. From
(A) it follows that logical manipulation of concepts is, however, not suitable as an
exclusive framework for universal cognitive systems. Abstract concepts cannot be
formed without substantial knowledge about the environment, but this knowledge
is acquired by an autonomous cognitive system only step-by-step during its
“lifetime”.
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8.2.4 Learning and Memory Representations

With “learning” one denotes quite generally all modifications that influence the
dynamical state and the behavior. One distinguishes the learning of memories and
actions.

Memories. By memory one denotes the storage of a pattern found within
the incoming stream of sensory data, which presumably encodes information
about the environment.

The storage of information about its own actions, i.e. about the output signals of a
cognitive system is also covered by this definition. Animals probably do not remem-
ber the output signal of the motor cortex directly, but rather the optical or acoustical
response of the environment as well as the feedback of its body via appropriate
sensory nerves embedded in the muscles.

The Outside World – The Cognitive System as an Abstract Identity A rather
philosophical question is whether there is, from the perspective of a cognitive sys-
tem, a true outside world. The alternative would be to postulate that only the internal
representations of the outside world, i.e. the environment, are known to the cognitive
system. For all practical purposes it is useful to postulate an environment existing
independently of the cognitive system.

It is, however, important to realize that the cognitive system per se is an abstract
identity, i.e. the dynamical activity patterns. The physical support, i.e. computer
chips and brain tissue, are not part of the cybernetic or of the human cognitive sys-
tem, respectively. We, as cognitive systems, are abstract identities and the physical
brain tissue therefore also belongs to our environment!

One may differentiate this statement to a certain extent, as direct manipulations
of our neurons may change the brain dynamics directly. This may possibly occur
without our external and internal sensory organs noticing the manipulatory process.
In this respect the brain tissue is distinct from the rest of the environment, since
changes in the rest of the environment influence the brain dynamics exclusively via
sensory inputs, which may be either internal, such as a pain signal, or external, like
an auditory signal.

For practical purposes, when designing an artificial environment for a cognitive
system, the distinction between a directly observable part of the outside world and
the non-observable part becomes important. Only the observable part generates, per
definition, sensorial stimuli, but one needs to keep in mind that the actions of the
cognitive system may also influence the non-observable environment.

Classification of Learning Procedures It is customary to broadly classify possi-
ble learning procedures. We discuss briefly the most important cases of learning
algorithms; for details we refer to the literature.

– Unsupervised Learning: The system learns completely by itself, without any
external teacher.
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– Supervised Learning: Synaptic changes are made “by hand”, by the external
teacher and not determined autonomously. Systems with supervised learning in
most cases have distinguished periods for training and performance (recall).

– Reinforcement Learning: Any cognitive system faces the fundamental dilemma
of action selection, namely that the final success or failure of a series of actions
may often be evaluated only at the end. When playing a board game one knows
only at the end whether one has won or lost.
Reinforcement learning denotes strategies that allow one to employ the positive
or negative reward signal obtained at the end of a series of actions to either rate
the actions taken or to reinforce the problem solution strategy.

– Learning from Mistakes: Random action selection will normally result in mis-
takes and not in success. In normal life learning from mistakes is therefore by far
more important than learning from positive feedback.

– Hebbian Learning: Hebbian learning denotes a specific instance of a linear synap-
tic modification procedure in neural networks.

– Spiking Neurons: For spiking neurons Hebbian learning results in a long-term
potentiation (LTP) of the synaptic strength when the presynaptic neuron spikes
shortly before the postsynaptic neuron (causality principle). The reversed spik-
ing timing results in long-term depression (LTD).

– Neurons with Continuous Activity: The synaptic strength is increased when
both postsynaptic and presynaptic neurons are active. Normally one assumes
the synaptic plasticity to be directly proportional to the product of postsynaptic
and presynaptic activity levels.

Learning Within an Autonomous Cognitive System Learning within an
autonomous cognitive system with self-induced dynamics is, strictly speaking,
unsupervised. Direct synaptic modifications by an external teacher are clearly not
admissible. But also reinforcement learning is, at its basis, unsupervised, as the sys-
tem has to select autonomously what it accepts as a reward signal.

The different forms of learning are, however, significant when taking the internal
subdivision of the cognitive system into various modules into account. In this case
a diffusive control unit can provide the reward signal for a cognitive information
processing module. Also internally supervised learning is conceivable.

Runaway Synaptic Growth Learning rules in a continuously active dynamical
system need careful considerations. A learning rule might foresee fixed boundaries,
viz limitations, for the variables involved in learning processes and for the parame-
ters modified during metalearning. In this case when the parameter involved reaches
the limit, learning might potentially lead to saturation, which is suboptimal for
information storage and processing. With no limits encoded the continuous learning
process might lead to unlimited synaptic weight growth.

Runaway Learning. When a specific learning rule acts over time continu-
ously with the same sign it might lead to an unlimited growth of the affected
variables.
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Any instance of runaway growth needs to be avoided, as it will inevitably lead the
system out of suitable parameter ranges. This is an example of the general problem
of working point optimization, see Sect. 8.2.3.

Optimization vs. Maximization Biological processes generally aim for optimiza-
tion and not for maximization. The naive formulation of Hebbian learning is an
instance of a maximization rule. It can be transformed into an optimization process
by demanding for the sum of active incoming synaptic strengths to adapt towards a
given value. This procedure leads to both LTP and LTD; an explicit rule for LTD is
then not necessary.

Biological Memories Higher mammalian brains are capable of storing informa-
tion in several distinct ways. Both experimental psychology and neuroscience are
investigating the different storage capabilities and suitable nomenclatures have been
developed. Four types of biophysical different storing mechanisms have been iden-
tified so far:

(i) Long-Term Memory: The brain is made up by a network of neurons that are
interconnected via synapses. All long-term information is therefore encoded,
directly or indirectly, in the respective synaptic strengths.

(ii) Short-Term Memory: The short-term memory corresponds to transient modifi-
cations of the synaptic strength. These modifications decay after a characteris-
tic time, which may be of the order of minutes.

(iii) Working Memory: The working memory corresponds to firing states of indi-
vidual neurons or neuron ensembles that are kept active for a certain period, up
to several minutes, even after the initial stimulus has subsided.

(iv) Episodic Memory: The episodic memory is mediated by the hippocampus, a
subcortical neural structure. The core of the hippocampus, called CA3, con-
tains only about 3 · 105 neurons (for humans). All daily episodic experiences,
from the visit to the movie theater to the daily quarrel with the spouse, are kept
active by the hippocampus. A popular theory of sleep assumes that fixation of
the episodic memory in the cortex occurs during dream phases when sleeping.

In Sect. 8.4 we will treat a generalized neural network layout illustrating the home-
ostatic self-regulation of long-term synaptic plasticities and the encoding of memo-
ries in terms of local active clusters.

Learning and Memory Representations The representation of the environment,
via suitable filtering of prominent patterns from the sensory input data stream, is a
basic need for any cognitive system. We discuss a few important considerations.

– Storage Capacity: Large quantities of new information needs to be stored without
erasing essential memories.

Sparse/Distributed Coding. A network of local computational units in
which only a few units are active at any given time is said to use “sparse
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coding”. If on the average half of the neurons are active, one speaks of
“distributed coding”.

Neural networks with sparse coding have a substantially higher storage capacity
than neural networks with an average activity of about 1/2. The latter have a
storage capacity scaling only linearly with the number of nodes. A typical value
for the storage capacity is in this case 14%, with respect to the system size.7

In the brain only a few percent of all neurons are active at any given time.
Whether this occurs in order to minimize energy consumption or to maximize
the storage capacity is not known.

– Forgetting: No system can acquire and store new information forever. There are
very different approaches to how to treat old information and memories.

– Catastrophic Forgetting: One speaks of “catastrophic forgetting” if all previ-
ously stored memories are erased completely whenever the system surpasses
its storages capacity.

– Fading Memory: The counterpoint is called “fading memory”; old and sel-
domly reactivated memories are overwritten gradualy with fresh impressions.

Recurrent neural networks8 with distributed coding forget catastrophically. Cog-
nitive systems can only work with a fading memory, when old information is
overwritten gradualy.9

– The Embedding Problem: There is no isolated information. Any new information
is only helpful if the system can embed it into the web of existing memories. This
embedding, at its basic level, needs to be an automatic process, since any search
algorithm would blast away any available computing power.
In Sect. 8.4 we will present a cognitive module for environmental data represen-
tation, which allows for a crude but automatic embedding.

– Generalization Capability: The encoding used for memories must allow the sys-
tem to work with noisy and incomplete sensory data. This is a key requirement
that one can regard as a special case of a broader generalization capability neces-
sary for universal cognitive systems.

An efficient data storage format would allow the system to automatically find,
without extensive computations, common characteristics of distinct input patterns.
If all patterns corresponding to “car” contain elements corresponding to “tires” and
“windows” the data representation should allow for an automatic prototyping of the
kind “car = tires + windows”.

7 This is a standard result for so-called Hopfield neural networks, see e.g. Ballard (2000).
8 A neural network is denoted “recurrent” when loops dominate the network topology.
9 For a mathematically precise definition, a memory is termed fading when forgetting is scale-
invariant, viz having a power law functional time dependence.
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Generalization capabilities and noise tolerance are intrinsically related. Many
different neural network setups have this property, due to distributed and overlap-
ping memory storage.

8.3 Motivation, Benchmarks and Diffusive Emotional Control

Key issues to be considered for the general layout of a working cognitive system
are:

– Cognitive Information Processing: Cognitive information processing involves the
dynamics of the primary variables, compare Sect. 8.2.3. We will discuss a possi-
ble modular layout in Sect. 8.3.1.

– Diffusive Control: Diffusive control is at the heart of homeostatic self-regulation
for any cognitive system. The layout of the diffusive control depends to a certain
extent on the specific implementation of the cognitive modules. We will therefore
restrict ourselves here to general working principles.

– Decision Processes: Decision making in a cognitive system depends strongly
on the specifics of its layout. A few general guidelines may be formulated for
biologically inspired cognitive systems; we will discuss these in Sect. 8.3.2

8.3.1 Cognitive Tasks

Basic Cognitive Tasks A rudimentary cognitive system needs at least three types
of cognitive modules. The individual modules comprise cognitive units for

(a) environmental data representation via unsupervised learning (compare
Sect. 8.2.4),

(b) modules for model building of the environment via internal supervised learning,
and

(c) action selection modules via learning by reinforcement or learning by error.

We mention here in passing that the assignment of these functionalities to specific
brain areas is an open issue, one possibility being a delegation to the cortex, the
cerebellum and to the basal ganglia, respectively.

Data Representation and Model Building In Sect. 8.4 we will treat in depth the
problem of environmental data representation and automatic embedding. Let us note
here that the problem of model building is not an all-in-one-step operation. Environ-
mental data representation and basic generalization capabilities normally go hand in
hand, but this feature falls far short of higher abstract concept generation.

An example of a basic generalization process is, to be a little more concrete, the
generation of the notion of a “tree” derived by suitable averaging procedures out of
many instances of individual trees occurring in the visual input data stream.
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Time Series Analysis and Model Building The analysis of the time sequence of
the incoming sensory data has a high biological survival value and is, in addition,
at the basis of many cognitive capabilities. It allows for quite sophisticated model
building and for the generation of abstract concepts. In Sect.8.5 we will treat a
neural network setup allowing for universal abstract concept generation, resulting
from the task to predict the next incoming sensory data; a task that is independent
of the nature of the sensory data and in this sense universal. When applied to a
linguistic incoming data stream, the network generates, with zero prior grammatical
knowledge, concepts like “verb”, “noun” and so on.

8.3.2 Internal Benchmarks

Action selection occurs in an autonomous cognitive system via internal reinforce-
ment signals. The reward signal can be either genetically predetermined or internally
generated. To give a high-level example: We might find it positive to win a chess
game if playing against an opponent but we may also enjoy losing when playing
with our son or daughter. Our internal state is involved when selecting the reward
signal.

We will discuss the problem of action selection by a cognitive system first on a
phenomenological level and then relate these concepts to the general layout in terms
of variables and diffusive control units.

Action Selection Two prerequisites are fundamental to any action taken by a cog-
nitive system:

(α) Objective: No decision can be taken without an objective of what to do. A
goal can be very general or quite specific. “I am bored, I want to do something
interesting” would result in a general explorative strategy, whereas “I am thirsty
and I have a cup of water in my hand” will result in a very concrete action,
namely drinking.

(β) Situation Evaluation: In order to decide between many possible actions the sys-
tem needs to evaluate them. We define by “situation” the combined attributes
characterizing the current internal status and the environmental conditions.

Situation = (internal status) + (environmental conditions)
Situation → value

The situation “(thirsty) + (cup with water in my hands)” will normally be eval-
uated positively, the situation “(sleepy) + (cup with water in my hand)” on the
other hand not.
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Evaluation and Diffusive Control The evaluation of a situation goes hand in hand
with feelings and emotions. Not only for most human does the evaluation belong to
the domain of diffusive control. The reason being that the diffusive control units, see
Sect. 8.2.2, are responsible for keeping an eye on the overall status of the cognitive
system; they need to evaluate the internal status constantly in relation to what is
happening in the outside world, viz in the sensory input.

Primary Benchmarks Any evaluation needs a benchmark: What is good and what
is bad for oneself? For a rudimentary cognitive system the benchmarks and moti-
vations are given by the fundamental need to survive: If certain parameter values,
like hunger and pain signals arriving from the body, or more specific signals about
protein support levels or body temperature, are in the “green zone”, a situation, or a
series of events leading to the present situation, is deemed good. Appropriate corre-
sponding “survival variables” need to be defined for an artificial cognitive system.

Survival Parameters. We denote the parameters regulating the condition of
survival for a living dynamical system as survival parameters.

The survival parameters are part of the sensory input, compare Fig. 8.1, as they con-
vene information about the status of the body, viz the physical support complex for
the cognitive system. The survival parameters affect the status of selected diffusive
control units; generally they do not interact directly with the cognitive information
processing.

Rudimentary Cognitive Systems A cognitive system will only survive if its
benchmarking favors actions that keep the survival parameters in the green zone.

Fundamental Genetic Preferences. The necessity for biological or artifi-
cial cognitive systems to keep the survival parameters in a given range cor-
responds to primary goals, which are denoted “fundamental genetic prefer-
ences”.

The fundamental genetic preferences are not “instincts” in the classical sense, as
they do not lead deterministically and directly to observable behavior. The cog-
nitive system needs to learn which of its actions satisfy the genetic preferences,
as it acquires information about the world it is born into only by direct personal
experiences.

Rudimentary Cognitive Systems. A rudimentary cognitive system is deter-
mined fully by its fundamental genetic preferences.

A rudimentary cognitive system is very limited with respect to the complexity level
that its actions can achieve, since they are all directly related to primary survival.
The next step in benchmarking involves the diffusive control units.

Secondary Benchmarks and Emotional Control Diffusive control units are
responsible for keeping an eye on the overall status of the dynamical system. We
can divide the diffusive control units into two classes:
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– Neutral Units: These diffusive control units have no preferred activity level.
– Emotional Units: These diffusive control units have a (genetically determined)

preferred activity level.

Secondary benchmarks involve the emotional diffusive control units. The system
tries to keep the activity level of those units in a certain green zone.

Emotions. By emotions we denote for a cognitive system the goals resulting
from the desire to keep emotional diffusive control units at a preprogrammed
level.

We note that the term “emotion” is to a certain extent controversial here. The rela-
tion of real emotions experienced by biological cognitive systems, e.g. us humans, to
the above definition from cognitive system theory is not fully understood at present.
It is however known, that there are no emotions without the concomitant release of
appropriate neuromodulators, viz without the activation of diffusive control mecha-
nisms.

Diffusive Emotional Control and Lifetime Fitness Emotional control is very
powerful. An emotional diffusive control signal like “playing is good when you
are not hungry or thirsty”, to give an example, can lead a cognitive system to slowly
develop complex behavioral patterns. Higher-order explorative strategies, like play-
ing, can be activated when the fundamental genetic preferences are momentarily
satisfied. From the evolutionary perspective emotional control serves to optimize
lifetime fitness, with the primary genetic preferences being responsible for the day-
to-day survival.

Tertiary Benchmarks and Acquired Tastes The vast majority of our daily actions
is not directly dictated by our fundamental genetic preferences. A wish to visit a
movie theater instead of a baseball match cannot be tracked back in any meaningful
way to the need to survive, to eat and to sleep.

Many of our daily actions are also difficult to directly relate to emotional control.
The decision to eat an egg instead of a toast for breakfast involves partly what one
calls acquired tastes or preferences.

Acquired Preferences. A learned connection, or association, between envi-
ronmental sensory input signals and the status of emotional control units is
denoted as an acquired taste or preference.

The term “acquired taste” is used here in a very general context, it could contain both
positive or negative connotations, involve the taste of food or the artistic impression
of a painting.

Humans are able to go even one step further. We can establish positive/negative
feedback relations between essentially every internal dynamical state of the cogni-
tive system and emotional diffuse control, viz we can set ourselves virtually any
goal and task. This capability is called “freedom of will” in everyday language.
This kind of freedom of will is an emergent feature of certain complex but deter-
ministic dynamical systems and we sidestep here the philosophically rather heavy
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culturally and intellectually acquired motivations

secondary objectives and benchmarks

fundamental genetic 
preferences

Fig. 8.4 The inverse pyramid for the internal benchmarking of complex and universal cognitive
systems. The secondary benchmarks correspond to the emotional diffusive control and the cul-
turally acquired motivations to the tertiary benchmarks, the acquired preferences. A rudimentary
cognitive system contains only the basic genetic preferences, viz the preferred values for the sur-
vival variables, for action selection

question of whether the thus defined freedom of will corresponds to the true freedom
of will.10

The Inverse Pyramid An evolved cognitive system will develop complex behav-
ioral patterns and survival strategies. The delicate balance of internal benchmarks
needed to stabilize complex actions goes beyond the capabilities of the primary
genetic preferences. The necessary fine tuning of emotional control and acquired
preferences is the domain of the diffusive control system.

Climbing up the ladder of complexity, the cognitive system effectively acquires
a de facto freedom of action. The price for this freedom is the necessity to bench-
mark internally any possible action against hundreds and thousands of secondary
and tertiary desires and objectives, which is a delicate balancing problem.

The layers of internal benchmarking can be viewed as an inverse benchmarking
pyramid, see Fig. 8.4 for an illustration. The multitude of experiences and tertiary
preferences plays an essential role in the development of the inverse pyramid; an
evolved cognitive system is more than the sum of its genetic or computer codes.

8.4 Competitive Dynamics and Winning Coalitions

Most of the discussions presented in this chapter so far were concerned with general
principles and concepts. We will now discuss a functional basic cognitive mod-
ule implementing illustratively the concepts treated in the preceding sections. This
network is useful for environmental data representation and storage and shows
a continuous and self-regulated transient state dynamics in terms of associative
thought processes. For some of the more technical details we refer to the literature.

10 From the point of view of dynamical systems theory effective freedom of action is conceivable
in connection to a true dynamical phase transition, like the ones discussed in the Chap. 4 possibly
occurring in a high-level cognitive system. Whether dynamical phase transitions are of relevance
for the brain of mammals, e.g. in relation to the phenomenon of consciousness, is a central and yet
unresolved issue.
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Fig. 8.5 Extract of the human associative database. Test subjects were asked to name the first con-
cept coming to their mind when presented with a cue randomly drawn from a dictionary database.
In this graphical representation, starting from “cool”, links have been drawn whenever the corre-
sponding association was named repeatedly in several trials (generated from Nelson et al., 1998)

8.4.1 General Considerations

The Human Associative Database The internal representation of the outside
world is a primary task of any cognitive system with universal cognitive capabili-
ties, i.e. capabilities that are suitable for a certain range of environments that are not
explicitly encoded in genes or in software. Associations between distinct representa-
tions of the environment play an important role in human thought processes and may
rank evolutionary among the first cognitive capabilities not directly determined by
gene expression. Humans dispose of a huge commonsense knowledge base, orga-
nized dominantly via associations, compare Fig. 8.5. These considerations imply
that associative information processing in the form of associative thought processes
plays a basic role in human thinking.

Associative Thought Processes. An associative thought process is the spon-
taneous generation of a time series of transient memory states with a high
associative overlap.

Associative thought processes are natural candidates for transient state dynamics
(see Sect. 8.2.1). The above considerations indicate that associative thought pro-
cesses are, at least in part, generated directly in the cognitive modules responsible
for the environmental data representation. Below we will define the notion of “asso-
ciative” overlaps, see Eqs. (8.4) and (8.5).

The Winners-Take-All Network Networks in which the attractors are given by
finite clusters of active sites, the “winners”, are suitable candidates for data storage
because (i) they have a very high storage capacity and (ii) the competitive dynamics
is directly controllable when clique encoding is used.
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Fig. 8.6 Illustration of winners-take-all networks with clique encoding. Shown are the excitatory
links. Sites not connected by a line are inhibitorily connected. Left: This 7-site network contains
the cliques (0,1,2), (1,2,3), (1,3,4), (4,5,6) and (2,6). Middle: This 20-site network contains 19,
10 and 1 cliques with 2, 3 and 4 sites. The only 4-site clique (2,3,5,6) is highlighted. Right: This
48-site network contains 2, 166, 66 and 2 cliques (a total of 236 memories) with 2, 3, 4 and 5 sites,
respectively. Note the very high density of links

Cliques. A fully connected subgraph of a network is called a clique, compare
Sect. 1.1.2.

Cliques are natural candidates for winning coalitions of mutually supporting local
computing units. Examples for cliques in the human associative database, see
Fig. 8.5, are (heat,hot,warm) and (drink,thirst,water).

Data Embedding Data is meaningless when not embedded into the context of
other, existing data. When properly embedded, data transmutes to information, see
the discussion in Sect. 8.2.4.

Sparse networks with clique encoding allow for a crude but automatic embed-
ding, viz embedding with zero computational effort. Any memory state added to an
existing network in the form of a clique, compare Fig. 8.6, will normally share nodes
with other existing cliques, viz with other stored memories. It thus automatically
acquires an “associative context”. The notion of associative context or associative
overlap will be defined precisely below, see Eqs. (8.4) and (8.5).

Inhibitory Background Winners-take-all networks function on the basis of a
strong inhibitory background. In Fig. 8.6 a few examples of networks with clique
encoding are presented. Fully connected clusters, the cliques, mutually excite them-
selves. The winning coalition suppresses the activities of all other sites, since there
is at least one inhibitory link between one of the sites belonging to the winning
coalition and any other site. All cliques therefore form stable attractors.

The storage capacity is very large, due to the sparse coding. The 48-site network
illustrated in Fig. 8.6 has 236 stable memory states (cliques). We note for compar-
ison that maximally 6 ≈ 1.4 ∗ N memories could be stored for a N = 48 network
with distributed coding.

Discontinuous Synaptic Strengths The clique encoding works when the exci-
tatory links are weak compared to the inhibitory background. This implies that
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Fig. 8.7 Synaptic strengths might be discontinuous when using effective neurons. Left: A case
network of biological neurons consisting of two neurons with exhibitory couplings (1) and (2) and
an inhibitory interneuron. The effective synaptic strength (1)→(2) might be weakly positive or
strongly negative depending on the activity status of the interneuron. The vertical lines symbolize
the dendritic tree, the thin lines the axons ending with respective synapses. Right: The resulting
effective synaptic strength. Weak inhibitory synaptic strengths do not occur. For the significance of
the small negative allowed range for wi j compare the learning rule Eq. (8.11) (from Gros, 2007b)

any given link cannot be weakly inhibitory; the synaptic strength is discontinuous,
see Fig. 8.7.

Discontinuous synaptic strengths also arise generically when generating effec-
tive neural networks out of biological neural nets. Biological neurons come in two
types, excitatory neurons and inhibitory interneurons. A biological neuron has either
exclusively excitatory or inhibitory outgoing synapses, never both types. Most effec-
tive neurons used for technical neural networks have, on the other hand, synaptic
strengths of both signs. Thus, when mapping a biological network to a network of
effective neurons one has to eliminate one degree of freedom, e.g. the inhibitory
interneurons.

Integrating out Degrees of Freedom. A transformation of a model (A) to a
model (B) by eliminating certain degrees of freedom occurring in (A), but
not in (B) is called “integrating out a given degree of freedom”, a notion of
widespread use in theoretical physics.

This transformation depends strongly on the properties of the initial model. Consider
the small biological network depicted in Fig. 8.7, for the case of strong inhibitory
synaptic strength. When the interneuron is active/inactive the effective (total) influ-
ence of neuron (1) on neuron (2) will be strongly negative/weakly positive.11

11 We note that general n-point interactions could be generated additionally when eliminating the
interneurons. “n-point interactions” are terms entering the time evolution of dynamical systems
depending on (n − 1) variables. Normal synaptic interactions are 2-point interactions, as they
involve two neurons, the presynaptic and the postsynaptic neuron. When integrating out a degree
of freedom, like the activity of the interneurons, n-point interactions are generated generally. The
postsynaptic neuron is then influenced only when (n −1) presynaptic neurons are active simultane-
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Transient Attractors The network described so far has many stable attractors, i.e.
the cliques. These patterns are memories representing environmental data found as
typical patterns in the incoming sensory data stream.

It clearly does not make sense for a cognitive system to remain stuck for eternity
in stable attractors. Every attractor of a cognitive system needs to be a transient
attractor,12 i.e. to be part of the transient state dynamics.

There are many ways in dynamical systems theory by which attractors can
become unstable. The purpose of any cognitive system is cognitive information
processing and associative thought processes constitute the most fundamental form
of cognitive information processing. We therefore discuss here how memories can
take part, in the form of transient attractors, in associative thought processes.

Associative Overlaps Let us denote by xi ∈ [0, 1] the activities of the network
(i = 1, . . . , N ) and by

x (α)
i , α = 1, . . . , N (m)

the activation patterns of the N (m) memories, the stable attractors. In winners-take-
all networks x (α)

i → 0, 1.
For the seven-site network illustrated in Fig. 8.6 the number of cliques is

N (m) = 5 and for the clique α = (0, 1, 2) the activities approach x (0,1,2)
i → 1

(i=0,1,2) for members of the winning coalition and x (0,1,2)
j → 0 ( j = 3, 4, 5, 6) for

the out-of-clique units.

Associative Overlap of Order Zero. We define the associative overlap of zero
order

A0[α, β] =
N∑

i=0

x (α)
i x (β)

i (8.4)

for two memory states α and β and for a network using clique encoding.

The associative overlap of order zero just counts the number of common constituting
elements.

For the seven-site network shown in Fig. 8.6 we have A0[(0, 1, 2), (2, 6)] = 1
and A0[(0, 1, 2), (1, 2, 3)] = 2.

Associative Overlap of Order 1. We define by

A1[α, β] =
∑

γ �=α,β

(∑
i

x (α)
i (1 − x (β)

i )x (γ )

i

)⎛
⎝∑

j

x (γ )

j (1 − x (α)
j )x (β)

j

⎞
⎠ (8.5)

ously. n-point interactions are normally not considered in neural networks theory. They complicate
the analysis of the network dynamics considerably.
12 Here we use the term “transient attractor” as synonymous with “attractor ruin”, an alternative
terminology from dynamical system theory.
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the associative overlap of first order for two memory states α and β and a
network using clique encoding.

The associative overlap of order 1 is the sum of multiplicative associative overlap
of zero order that the disjunct parts of two memory states α and β have with all
third memory states γ . It counts the number of associative links connecting two
memories.

For the seven-site network shown in Fig. 8.6 we have A1[(0, 1, 2), (4, 5, 6)] = 2
and A1[(0, 1, 2), (1, 3, 4)] = 1.

Associative Thought Processes Associative thought processes convenes maximal
cognitive information processing when they correspond to a time series of memories
characterized by high associative overlaps of order zero or one.

In Fig. 8.9 the orbits resulting from a transient state dynamics, which we will
introduce in Sect. 8.4.2 are illustrated. Therein two consecutive winning coalitions
have either an associative overlap of order zero, such as the transition (0, 1) →
(1, 2, 4, 5) or of order 1, as the transition (1, 2, 4, 5) → (3, 6).

8.4.2 Associative Thought Processes

We now present a functioning implementation, in terms of a set of appropriate
coupled differential equations, of the notion of associative thought processes as a
time series of transient attractors representing memories in the environmental data
representation module.

Reservoir Variables A standard procedure, in dynamical system theory, to control
the long-term dynamics of a given variable of interest is to couple it to a second
variable with much longer time scales. This is the principle of time scale separation.
To be concrete we denote, as hitherto, by xi ∈ [0, 1] the activities of the local
computational units constituting the network and by

ϕi ∈ [0, 1]

a second variable, which we denote reservoir. The differential equations

ẋi = (1 − xi )Θ(ri ) ri + xi Θ(−ri ) ri , (8.6)

ri =
N∑

j=1

[
fw(ϕi )Θ(wi j )wi, j + zi, j fz(ϕ j )

]
x j , (8.7)

ϕ̇i = Γ +
ϕ (1 − ϕi )(1 − xi/xc)Θ(xc − xi ) − Γ −

ϕ ϕi Θ(xi − xc) , (8.8)

zi j = −|z|Θ(−wi j ) (8.9)
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Fig. 8.8 The reservoir functions fw(ϕ) (solid line) and fz(ϕ) (dashed line), see Eq. (8.7), of sig-
moidal form with respective turning points ϕ( f/z)

c and width Γϕ = 0.05

generate associative thought processes. We now discuss some properties of
Eqs. (8.6), (8.7), (8.8) and (8.9). The general form of these differential equations
is termed the “Lotka–Volterra” type.

– Normalization: Equations (8.6), (8.7) and (8.8) respect the normalization xi , ϕi ∈
[0, 1], due to the prefactors xi ,(1 − xi ), ϕi and (1 − ϕi ) in Eqs. (8.6) and (8.8),
for the respective growth and depletion processes, and Θ(r) is the Heaviside step
function.

– Synaptic Strength: The synaptic strength is split into excitatory and inhibitory
contributions, ∝ wi, j and ∝ zi, j , respectively, with wi, j being the primary vari-
able: The inhibition zi, j is present only when the link is not excitatory, Eq. (8.9).
With z ≡ −1 one sets the inverse unit of time.

– The Winners-Take-All Network: Equations (8.6) and (8.7) describe, in the
absence of a coupling to the reservoir via fz/w(ϕ), a competitive winners-take-
all neural network with clique encoding. The system relaxes towards the next
attractor made up of a clique of Z sites (p1, . . . , pZ ) connected excitatory via
wpi ,p j > 0 (i, j = 1, . . . , Z ).

– Reservoir Functions: The reservoir functions fz/w(ϕ) ∈ [0, 1] govern the inter-
action between the activity levels xi and the reservoir levels ϕi . They may be
chosen as washed out step functions of sigmoidal form13 with a suitable width
Γϕ and inflection points ϕ(w/z)

c , see Fig. 8.8.
– Reservoir Dynamics: The reservoir levels of the winning clique deplete slowly,

see Eq. (8.8), and recovers only once the activity level xi of a given site has
dropped below xc. The factor (1 − xi/xc) occurring in the reservoir growth

13 A possible mathematical implementation for the reservoir functions, with α = w, z, is fα(ϕ) =
f (min)
α +

(
1 − f (min)

α

)
atan[(ϕ−ϕ

(α)
c )/Γϕ ]−atan[(0−ϕ

(α)
c )/Γϕ ]

atan[(1−ϕ
(α)
c )/Γϕ ]−atan[(0−ϕ

(α)
c )/Γϕ ] . Suitable values are ϕ

(z)
c = 0.15, ϕ(w)

c =
0.7 Γϕ = 0.05, f (min)

w = 0.1 and f (min)
z = 0.
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Fig. 8.9 Left: A seven-site network; shown are links with wi, j > 0, containing six cliques, (0,1),
(0,6), (3,6), (1,2,3), (4,5,6) and (1,2,4,5). Right: The activities xi (t) (solid lines) and the respective
reservoirs ϕi (t) (dashed lines) for the transient state dynamics (0, 1) → (1, 2, 4, 5) → (3, 6) →
(1, 2, 4, 5)

process, see the right-hand side of Eq. (8.8), serves as a stabilization of the tran-
sition between subsequent memory states.

– Separation of Time Scales: A separation of time scales is obtained when Γ ±
ϕ are

much smaller than the average strength of an excitatory link, w̄, leading to tran-
sient state dynamics. Once the reservoir of a winning clique is depleted, it loses,
via fz(ϕ), its ability to suppress other sites. The mutual intraclique excitation is
suppressed via fw(ϕ).

Fast and Slow Thought Processes Figure 8.9 illustrates the transient state dynam-
ics resulting from Eqs. (8.6), (8.7), (8.8) and (8.9), in the absence of any sensory
signal. When the growth/depletion rates Γ ±

ϕ → 0 are very small, the individual
cliques turn into stable attractors.

The possibility to regulate the “speed” of the associative thought process arbitrar-
ily by setting Γ ±

ϕ is important for applications. For a working cognitive system it is
enough if the transient states are just stable for a certain minimal period, anything
longer just would be a “waste of time”.

Cycles The system in Fig. 8.9 is very small and the associative thought process
soon settles into a cycle, since there are no incoming sensory signals in the simula-
tion of Fig. 8.9.

For networks containing a somewhat larger number of sites, see Fig. 8.10, the
number of attractors can be very large. The network will then generate associative
thought processes that will go on for very long time spans before entering a cycle.
Cyclic “thinking” will normally not occur for real-world cognitive systems inter-
acting continuously with the environment. Incoming sensory signals will routinely
interfere with the ongoing associative dynamics, preempting cyclic activation of
memories.
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Fig. 8.10 Example of an associative thought process in a network containing 100 artificial neurons
and 713 stored memories. The times runs horizontally, the site index vertically (i = 1, . . . , 100).
The neural activities xi (t) are color coded

Dual Functionalities for Memories The network discussed here is a dense and
homogeneous associative network (dHAN). It is homogeneous since memories have
dual functionalities:

– Memories are the transient states of the associative thought process.
– Memories define the associative overlaps, see Eq. (8.5), between two subsequent

transient states.

The alternative would be to use networks with two kinds of constituent elements, as
in semantic networks. The semantic relation

car is blue

can be thought to be part of a (semantic) network containing the nodes “car” and
“blue” linked by the relation “is”. Such a network would contain two kinds of dif-
ferent constituting elements, the nodes and the links. The memories of the dHAN,
on the other hand, are made up of cliques of nodes and it is therefore homogeneous.

A rudimentary cognitive system knows of no predefined concepts and cannot,
when starting from scratch, initially classify data into “links” and “nodes”. A homo-
geneous network is consequently the network of choice for rudimentary cognitive
systems.

Dissipative Dynamics Interestingly, the phase space contracts at all times in the
absence of external inputs. With respect to the reservoir variables, we have



270 8 Elements of Cognitive Systems Theory

∑
i

∂ϕ̇i

∂ϕi
= −

∑
i

[
Γ +
ϕ (1 − xi/xc)Θ(xc − xi ) + Γ −

ϕ Θ(xi − xc)
] ≤ 0 ,

∀xi ∈ [0, 1], where we have used Eq. (8.8). We note that the diagonal contributions
to the link matrices vanish, zii = 0 = wi i , and therefore ∂ri/∂xi = 0. The phase
space consequently contracts also with respect to the activities,

∑
i

∂ ẋi

∂xi
=
∑

i

[
Θ(−ri ) − Θ(ri )

]
ri ≤ 0 ,

where we have used Eq. (8.6). The system is therefore strictly dissipative, compare
Chap. 2 in the absence of external stimuli.

Recognition Any sensory stimulus arriving in the dHAN needs to compete with
the ongoing intrinsic dynamics to make an impact. If the sensory signal is not strong
enough, it cannot deviate the autonomous thought process. This feature results in an
intrinsic recognition property of the dHAN: A background of noise will not influ-
ence the transient state dynamics.

8.4.3 Autonomous Online Learning

It is characteristic to the theory of cognitive systems, as pointed out in the intro-
duction (Sect. 8.1), that the exact equations used to model a phenomena of interest
are not of importance. There is a multitude of possible formulations and a range of
suitable modeling approaches may lead to similar overall behavior – the principles
are more important than the details of their actual implementation. In the preced-
ing section we have discussed a formulation of transient state dynamics based on
competitive clique encoding. Within this framework we will now illustrate the basic
functioning of homeostatic regulation.

Local Working Point Optimization Dynamical systems normally retain their
functionalities only when they keep their dynamical properties within certain
regimes. They need to regulate their own working point, as discussed in Sect. 8.2.3,
via homeostatic regulation. The working point optimization might be achieved
either through diffusive control signals or via local optimization rules. Here we
discuss an example of a local rule.

Synaptic Plasticities The inhibitory and the excitatory synaptic strength have dif-
ferent functional roles in the dHan formulation of transient state dynamics. The
average strengths |z| and w̄ of the inhibitory and excitatory links differ substantially,

|z| 	 w̄ ,

compare Fig. 8.7. Homeostatic regulation is a slow process involving incremen-
tal changes. It is then clear that these gradual changes in the synaptic strengths
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will affect dominantly the excitatory links, as they are much smaller, since small
changes of large parameters (like the inhibitory links) do not influence substantially,
quite in general, the properties of a dynamical system. We may therefore consider
the inhibitory background as given and fixed and restrict the effect of homeostatic
regulation to the excitatory wi j .

Effective Incoming Synaptic Strength The average magnitude of the growth rates
ri , see Eq. (8.7), determines the time scales of the autonomous dynamics and thus
the working point. The ri (t) are, however, quite strongly time dependent. The effec-
tive incoming synaptic signal

r̃i =
∑

j

[
wi, j x j + zi, j x j fz(ϕ j )

]
,

which is independent of the postsynaptic reservoir, ϕi , is a more convenient control
parameter for a local homeostatic regulation, since r̃i tends to the sum of active
incoming links,

r̃i →
∑
j∈α

wi, j ,

for a transiently stable clique α = (p1, . . . , pZ ).

Optimal Growth Rates The working point of the dHan is optimal when the effec-
tive incoming signal is, on the average, of comparable magnitude r (opt) for all sites,

r̃i → r (opt) . (8.10)

r (opt) is an unmutable parameter, compare Fig. 8.3. There is no need to fulfill this
rule exactly for every site i . The dHan network will retain functionality whenever
Eq. (8.10) is approached slowly and on the average by suitable synaptic plasticities.

Long-Term Homeostatic Plasticities The working point optimization Eq. (8.10)
can be achieved through a suitable local rule:

ẇi j (t) = Γ
(opt)
L Δr̃i

[ (
wi j − W (min)

L

)
Θ(−Δr̃i ) + Θ(Δr̃i )

]
(8.11)

·Θ(xi − xc)Θ(x j − xc),

− Γ −
L d(wi j )Θ(xi − xc)Θ(xc − x j ) , (8.12)

with

Δr̃i = r (opt) − r̃i .

Some comments:
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– Hebbian learning: The learning rule Eq. (8.11) is local and of Hebbian type.
Learning occurs only when the presynaptic and the postsynaptic neurons are
active. Weak forgetting, i.e. the decay of rarely used links, Eq. (8.12) is local
too.

– Synaptic Competition: When the incoming signal is weak/strong, relative to the
optimal value r (opt), the active links are reinforced/weakened, with W (min)

L being

the minimal value for the wi j . The baseline W (min)
L may be chosen to be slightly

negative, compare Fig. 8.7.
The Hebbian-type learning then takes place in the form of a competition between
incoming synapses – frequently active incoming links will gain strength, on the
average, on the expense of rarely used links.

– Asymmetric Decay of Inactive Links: The decay term ∝ Γ −
L > 0 in Eq. (8.12)

is taken to be asymmetric, viz when the presynaptic neuron is inactive with
the postsynaptic neuron being active. The strength of the decay is a suitable
non-linear function d(wi j ) of the synaptic strength wi j . Note that the oppo-
site asymmetric decay, for which wi j is weakened whenever the presynap-
tic/postsynaptic neurons are active/inactive, may potentially lead to the dynami-
cal isolation of the currently active clique by suppressing excitatory out-of-clique
synapses.

– Suppression of Runaway Synaptic Growth: The link dynamics, Eq. (8.11) sup-
presses synaptic runaway growth, a general problem common to adaptive and
continuously active neural networks. It has been shown that similar rules for
discrete neural networks optimize the overall storage capacity.

– Long-Term Dynamical Stability: In Fig. 8.10 an example for an associative
thought process is shown for a 100-site network containing 713 memories. When
running the simulation for very long times one finds that the values of excitatory
links wi j tend to a steady-state distribution, as the result of the continuous online
learning. The system is self-adapting.

Conclusions In this section we presented and discussed the concrete implementa-
tion of a module for competitive transient state dynamics within the dHan (dense
and homogeneous associative network) approach. Here we have discussed only the
isolated module, one can couple this module to a sensory input stream and the com-
petitive neural dynamics will then lead to semantic learning. The winning coalitions
of the dHan module, the cliques, will then acquire a semantic context, correspond-
ing via their respective receptive fields to prominent and independent patterns and
objects present in the sensory stimuli.

The key point is however that this implementation fulfills all requirements neces-
sary for an autonomous cognitive system, such as locality of information processing,
unsupervised online learning, huge storage capacity, intrinsic generalization capac-
ity and self-sustained transient state dynamics in terms of self-generated associative
thought processes.
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8.5 Environmental Model Building

The representation of environmental data, as discussed in Sect. 8.4, allows for sim-
ple associational reasoning. For anything more sophisticated, the cognitive system
needs to learn about the structure of the environment itself, i.e. it has to build models
of the environment.

The key question is then: Are there universal principles that allow for environ-
mental model building without any a priori information about the environment?
Principles that work independently of whether the cognitive system lives near a
lakeside in a tropical rain forest or in an artificial cybernetical world.

Here we will discuss how universal prediction tasks allow for such univer-
sal environmental model building and for the spontaneous generation of abstract
concepts.

8.5.1 The Elman Simple Recurrent Network

Innate Grammar Is the human brain completely empty at birth and can babies
learn with the same ease any language, natural or artificial, with arbitrary grammat-
ical organization? Or do we have certain gene determined predispositions toward
certain innate grammatical structures? This issue has been discussed by linguists
for decades.

In this context in 1990 Elman performed a seminal case study, examining the
representation of time-dependent tasks by a simple recurrent network. This network
is universal in the sense that no information about the content or structure of the
input data stream is used in its layout.

Elman discovered that lexical classes are spontaneously generated when the net-
work is given the task to predict the next word in an incoming data stream made up
of natural sentences constructed from a reduced vocabulary.

The Simple Recurrent Network When the task of a neural network extends into
the time domain it needs a memory, otherwise comparison of current and past states
is impossible. For the simple recurrent network, see Fig. 8.11, this memory is con-
stituted by a separate layer of neurons denoted context units.

The simple recurrent network used by Elman employs discrete time updating. At
every time step the following computations are performed:

1. The activities of the hidden units are determined by the activities of the input
units and by the activities of the context units and the respective link matrices.

2. The activities of the output units are determined by the activities of the hidden
units and the respective link matrix.

3. The activities of the hidden units are copied one-by-one to the context unit.
4. The next input signal is copied to the input units.
5. The activities of the output units are compared to the current input and the dif-

ference yields the error signal. The weight of the link matrices (input→hidden),
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INPUT UNITS

OUTPUT UNITS

feature extraction

Fig. 8.11 The Elman simple recurrent network (inside the dashed box). The connections (D:
input→hidden), (A: context→hidden) and (hidden→output) are trained via the backpropagation
algorithm. At every time step the content of the hidden units is copied into the context units on
a one-to-one basis. The difference between the output signal and the new input signal constitutes
the error for the training. The hidden units generate abstract concepts that can be used for further
processing by the cognitive system via standard feature extraction

(context→hidden) and (hidden→output) are adapted such to reduce the error
signal. This procedure is called the back-propagation algorithm.

The Elman net does not conform in this form to the requirements needed for mod-
ules of a full-fledged cognitive system, see Sect. 8.2.1. It employs discrete time
synchronous updating and non-local learning rules based on a global optimization
condition, the so-called back-propagation algorithm. This drawback is, however,
not essential at this point, since we are interested here in the overall and generic
properties of the simple recurrent network.

The Lexical Prediction Task The simple recurrent network works on a time series
x(t) of inputs

x(1), x(2), x(3), . . .

which are presented to the network one after the other.
The network has the task to predict the next input. For the case studied by Elman

the inputs x(t) represented randomly encoded words out of a reduced vocabulary
of 29 lexical items. The series of inputs corresponded to natural language sentences
obeying English grammar rules. The network then had the task to predict the next
word in a sentence.

The Impossible Lexical Prediction Task The task to predict the next word of a
natural language sentence is impossible to fulfill. Language is non-deterministic,
communication would otherwise convene no information.

The grammatical structure of human languages places constraints on the possible
sequence of words, a verb is more likely to follow a noun than another verb, to give
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smell

move
thinksee
exist

sleep
break

smash

like
chase

eat

mouse
cat

monster
lion
dragon

woman
girl

man
boy

car
book
rock

sandwich
cookie
bread

plate
glass

VERBS

NOUNS

ANIMATES

INANIMATES

humans

animals

food

breakables

transitive (sometimes)

intransitive (always)

transitive (always)

dog

Fig. 8.12 Hierarchical cluster diagram of the hidden units activation pattern. Shown are the rela-
tions and similarities of the hidden unit activity patterns according to a hierarchical cluster analysis
(from Elman, 2004)

an example. The expected frequency of possible successors, implicit in the set of
training sentences, is, however, deterministic and is reproduced well by the simple
recurrent network.

Spontaneous Generation of Lexical Types Let us recapitulate the situation:

i. The lexical prediction task given to the network is impossible to fulfill.
ii. The data input stream has a hidden grammatical structure.

iii. The frequency of successors is not random.

As a consequence, the network generates in its hidden layer representations of the
29 used lexical items, see Fig. 8.12. These representations, and this is the central
result of Elman’s 1990 study, have a characteristic hierarchical structure. Represen-
tations of different nouns, e.g. “mouse” and “cat”, are more alike than the represen-
tations of a noun and a verb, e.g. “mouse” and “sleep”. The network has generated
spontaneously abstract lexical types like verb, nouns of animated objects and nouns
of inanimate objects.

Tokens and Types The network actually generated representations of the lexical
items dependent on the context, the tokens. There is not a unique representation of
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Fig. 8.13 The temporal XOR. Left: The prediction task. Right: The performance (y(t + 1) −
x(t + 1))2 (y(t) ∈ [0, 1] is the activity of the single output neuron of a simple recurrent network,
see Fig. 8.11, with two neurons in the hidden layer after 600 sweeps through a 3000-bit training
sequence

the item boy, but several, viz boy1, boy2, . . ., which are very similar to each other,
but with fine variations in their respective activation patterns. These depend on the
context, as in the following training sentences:

man_smell_BOY, man_chase_BOY, . . .

The simple recurrent network is thus able to generate both abstract lexical types
and concrete lexical tokens.

Temporal XOR The XOR problem, see Fig. 8.13, is a standard prediction task in
neural network theory. In its temporal version the two binary inputs are presented
one after the other to the same input neuron as x(t − 1) and x(t), with the task to
predict the correct x(t + 1).

The XOR problem is not linearly decomposable, i.e. there are no constants a, b, c
such that

x(t + 1) = a x(t) + b x(t − 1) + c ,

and this is why the XOR problem serves as a benchmark for neural prediction tasks.
Input sequences like

. . . 0 0 0︸︷︷︸ 1 0 1︸︷︷︸ 1 1 0︸︷︷︸ . . .

are presented to the network with the caveat that the network does not know when an
XOR-triple starts. A typical result is shown in Fig. 8.13. Two out of three prediction
results are random, as expected but every third prediction is quite good.
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The Time Horizon Temporal prediction tasks may vary in complexity depending
on the time scale τ characterizing the duration of the temporal dependencies in the
input data x(t). A well known example is the Markov process.

The Markov Assumption. The distribution of possible x(t) depends only on
the value of the input at the previous time step, x(t − 1).

For Markovian-type inputs the time correlation length of the input data is 1; τ = 1.
For the temporal XOR problem τ = 2. In principle, the simple recurrent network is
able to handle time correlations of arbitrary length. It has been tested with respect
to the temporal XOR and to a letter-in-a-word prediction task. The performance of
the network in terms of the accuracy of the prediction results, however, is expected
to deteriorate with increasing τ .

8.5.2 Universal Prediction Tasks

Time Series Analysis The Elman simple recurrent network is an example of a
neural network layout that is suitable for time series analysis. Given a series of vec-
tors

x(t), t = 0, 1, 2, . . .

one might be interested in forecasting x(t + 1) when x(t), x(t − 1), . . . are known.
Time series analysis is very important for a wide range of applications and a plethora
of specialized algorithms have been developed.

State Space Models Time series generated from physical processes can be
described by “state space models”. The daily temperature in Frankfurt is a complex
function of the weather dynamics, which contains a huge state space of (mostly)
unobservable variables. The task to predict the local temperature from only the
knowledge of the history of previous temperature readings constitutes a time series
analysis task.

Quite generally, there are certain deterministic or stochastic processes generating
a series

s(t), t = 0, 1, 2, . . .

of vectors in a state space, which is mostly unobservable. The readings x(t) are then
some linear or non-linear functions

x(t) = F[s(t)] + η(t) (8.13)

of the underlying state space, possibly in addition to some noise η(t). Equation
(8.13) is denoted a state space model.
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The Hidden Markov Process There are many possible assumptions for the state
space dynamics underlying a given history of observables x(t). For a hidden Markov
process, to give an example, one assumes that

(a) s(t + 1) depends only on s(t) (and not on any previous state space vector, the
Markov assumption) and that

(b) the mapping s(t) → s(t + 1) is stochastic.

The process is dubbed “hidden”, because the state space dynamics is not directly
observable.

The Elman State Space Model The dynamics of the Elman simple recurrent net-
work is given by

s(t) = σ
[
As(t − 1) + Dx(t)

]
, σ [y] = 1

1 + e−y
, (8.14)

were x(t) and s(t) correspond to the activation patterns of input and hidden
units, respectively. The A and D are the link matrices (context→hidden) and
(input→hidden), compare Fig. 8.11, and σ(y) is called the sigmoid function. The
link matrix (hidden →output) corresponds to the prediction task s(t) → x(t + 1)
given to the Elman network.

The Elman simple recurrent network extends the classical state space model.
For a normal state space model the readings x(t) depend only on the current state
s(t) of the underlying dynamical system, compare Eq. (8.13). Extracting x(t) from
Eq. (8.14), one obtains

x(t) = F[s(t), s(t − 1)] , (8.15)

which is a straightforward generalization of Eq. (8.13). The simple recurrent net has
a memory since x(t) in Eq. (8.15) depends both on s(t) and on s(t − 1).

Neural Networks for Time Series Analysis The simple recurrent network can be
generalized in several ways, e.g. additional hidden layers result in a non-linear state
space dynamics. More complex layouts lead to more powerful prediction capabil-
ities, but there is a trade-off. Complex neural networks with lots of hidden layers
and recurrent connections need very big training data. There is also the danger of
overfitting the data, when the model has more free parameters than the input.

Time Series Analysis for Cognitive Systems For most technical applications one
is interested exclusively in the time prediction capability of the algorithm employed
and an eventual spontaneous generation of abstract concepts is not of interest. Pure
time series prediction is, however, of limited use for a cognitive system. An algo-
rithm allowing the prediction of future events that at the same time generates models
of the environment is, however, extremely useful for a cognitive system.

This is the case for state space models, as they generate explicit proposals for the
underlying environmental states describing the input data. For the simple recurrent
network these proposals are generated in the hidden units. The activation state of the
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hidden units can be used by the network for further cognitive information processing
via a simple feature extraction procedure, see Fig. 8.11, e.g. by a Kohonen layer.14

Possible and Impossible Prediction Tasks A cognitive system is generally con-
fronted with two distinct types of prediction tasks.

– Possible Prediction Tasks: Examples are the prediction of the limb dynamics as
a function of muscle activation or the prediction of physical processes like the
motion of a ball in a soccer game.

– Impossible Prediction Tasks: When a series of events is unpredictable it is, how-
ever, important to be able to predict the class of the next events. When we drive
with a car behind another vehicle we automatically generate in our mind a set
of likely maneuvers that we we expect the vehicle in front of us to perform next.
When we listen to a person speaking we generate expectancies of what the person
is likely to utter next.

Universal Prediction Tasks and Abstract Concepts Impossible prediction tasks,
like the lexical prediction task discussed in Sect. 8.5.1, lead to the generation of
abstract concepts in the hidden layer, like the notion of “noun” and “verb”. This is
not a coincidence, but a necessary consequence of the task given to the network.
Only classes of future events can be predicted in an impossible prediction task and
not concrete instances. We may then formulate the key result of this section in the
form of a lemma.

Universal Prediction Task Lemma. The task to predict future events leads to
universal environmental model building for neural networks with state space
layouts. When the prediction task is impossible to carry out, the network will
automatically generate abstract concepts that can be used for further process-
ing by the cognitive system.

Conclusions Only a small number of genes, typically a few thousands, are respon-
sible for the growth and the functioning of mammalian brains. This number is by
far smaller than the information content which would be required for an explicity
encoding of the myriad of cognitive capabilities of mammalian brains. All these
cognitive skills, apart from a few biologically central tasks, must result from a lim-
ited number of universal principles, the impossible time prediction task being one
of them.

Exercises

TRANSIENT STATE DYNAMICS

Consider a system containing two variables, x, ϕ ∈ [0, 1]. Invent a system of
coupled differential equations for which x(t) has two transient states, x ≈ 1 and

14 A Kohonen network is an example of a neural classifier via one-winner-takes-all architecture,
see e.g. Ballard (2000).
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x ≈ 0. One possibility is to consider ϕ as a reservoir and to let x(t) autoex-
cite/autodeplete itself when the reservoir is high/low.
The transient state dynamics should be rigorous. Write a code implementing the
differential equations.

THE DIFFUSIVE CONTROL UNIT

Given are two signals y1(t) ∈ [0,∞] and y2(t) ∈ [0,∞]. Invent a system of
differential equations for variables x1(t) ∈ [0, 1] and x2(t) ∈ [0, 1] driven by the
y1,2(t) such that x1 → 1 and x2 → 0 when y1 > y2 and vice versa. Note that
the y1,2 are not necessarily normalized.

LEAKY INTEGRATOR NEURONS

Consider a two-site network of neurons, having membrane potentials xi and
activities yi ∈ [−1, 1], the so-called “leaky integrator” model for neurons,

ẋ1 = −Γ x1 − wy2, ẋ2 = −Γ x2 + wy1, yi = 2

e−xi + 1
− 1 ,

with Γ > 0 being the decay rate. The coupling w > 0 links neuron one (two)
excitatorily (inhibitorily) to neuron two (one). Which are the fixpoints and for
which parameters can one observe weakly damped oscillations?

ASSOCIATIVE OVERLAPS AND THOUGHT PROCESSES

Consider the seven-site network of Fig. 8.6. Evaluate all pairwise associative
overlaps of order zero and of order one between the five cliques, using Eqs. (8.4)
and (8.5). Generate an associative thought process of cliques α1, α2, . . ., where
a new clique αt+1 is selected using the following simplified dynamics:

(1) αt+1 has an associative overlap of order zero with αt and is distinct from αt−1.
(2) If more than one clique satisfies criterium (1), then the clique with the highest

associative overlap of order zero with αt is selected.
(3) If more than one clique satisfies criteria (1)–(2), then one of them is drawn

randomly.

Discuss the relation to the dHAN model treated in Sect. 8.4.2.

Further Reading

For a general introduction to the field of artificial intelligence (AI), see
Russell and Norvig (1995). For a handbook on experimental and theoretical neu-
roscience, see Arbib (2002). For exemplary textbooks on neuroscience, see Dayan
and Abbott (2001) and for an introduction to neural networks, see Ballard (2000).

Somewhat more specialized books for further reading regarding the modeling of
cognitive processes by small neural networks is that by McLeod et al. (1998) and
on computational neuroscience that by O’Reilly and Munakata (2000).
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For some relevant review articles on dynamical modeling in neuroscience the
following are recommended: Rabinovich et al. (2006); on reinforcement learning
Kaelbling et al. (1996), and on learning and memory storage in neural nets
Carpenter (2001).

We also recommend to the interested reader to go back to some selected origi-
nal literature dealing with “simple recurrent networks” in the context of grammar
acquisition (Elman, 1990, 2004), with neural networks for time series prediction
tasks (Dorffner, 1996), with “learning by error” (Chialvo and Bak, 1999), with
the assignment of the cognitive tasks discussed in Sect. 8.3.1 to specific mammal
brain areas (Doya, 1999), with the effect on memory storage capacity of various
Hebbian-type learning rules (Chechik et al., 2001), with the concept of “associa-
tive thought processes” (Gros, 2007, 2009a) and with “diffusive emotional control”
(Gros, 2009b).

It is very illuminating to take a look at the freely available databases storing
human associative knowledge (Nelson et al., 1998; Liu and Singh, 2004).
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Chapter 9
Solutions

The nature of the exercises given at the end of the respective chapters varies strongly.
Some exercises are concerned with the extension of formulas and material, others
deal with the investigation of models through computer simulations. For all exer-
cises having analytic solutions these are given in this chapter in an hopefully easy to
follow step-by-step presentation. Computer codes for exercises needing a program-
ming effort are given only for selected cases. For tasks needing Internet searches
typical results are discussed.
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Solutions to the Exercises of Chapter 1

BIPARTITE NETWORKS

The respective networks are shown in Fig. 9.1. The network diameter D is 2 (3)
for the network of companies (managers), the average degree 18/6=3 (36/9=4)
and the clustering coefficient 5/12 ≈ 0.42 (163/270 ≈ 0.6). For comparison,
the clustering would have been Crand = z/(N − 1), see Eq. (1.3), for random
graphs, viz 3/5=0.6 (4/8=0.5). The network of managers contains the respective
board compositions as cliques, which explains the large value of C .

C. Gros, Complex and Adaptive Dynamical Systems, 2nd ed.,
DOI 10.1007/978-3-642-04706-0_9, C© Springer-Verlag Berlin Heidelberg 2011
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Fig. 9.1 The network of companies (left) and managers (right)

DEGREE DISTRIBUTION

We list below a few freely available network databases. The main task of this
exercise is to format a database of your choice in such a way that your program
can read it.

ENSEMBLE FLUCTUATIONS

The probability that a given vertex has degree k is provided by pk (see Eq. (1.4)).
Therefore, the probability that R vertices have degree k, viz Xk = R, is given by

P(Xk = R) =
(

N

R

)
pR

k (1 − pk)
N−R . (9.1)

Considering the large-N limit and N 	 R we find

P(Xk = R) = e−λk
(λk)

R

R! , λk = N pk = 〈Xk〉 , (9.2)

as the binomial distribution, Eq. (9.1) reduces for pk � 1 to the Poisson distri-
bution, Eq. (9.2) in the thermodynamic limit N → ∞.

SELF-RETRACING PATH APPROXIMATION

This exercise needs a background in Green’s functions. One needs to find the
one-particle Green’s function G(ω) of single particle hopping with amplitude
t = 1 (the entries of the adjacency matrix) on a random lattice. We denote by

Title Address

Human Protein Reference Database http://www.hprd.org/download
Database of Interacting Proteins http://dip.doe-mbi.ucla.edu
EMBL Nucleotide Sequence
Database

http://www.ebi.ac.uk/embl

Database of Drosophila Genes &
Genomes

http://flybase.bio.indiana.edu

DMBL-Bank http://www.ebi.ac.uk
Protein Information Resource http://pir.georgetown.edu
Center for Complex Network
Research

http://www.nd.edu/~networks

http://www.hprd.org/download
http://dip.doe-mbi.ucla.edu
http://www.ebi.ac.uk/embl
http://flybase.bio.indiana.edu
http://www.ebi.ac.uk
http://pir.georgetown.edu
http://www.nd.edu/~networks


9 Solutions 285

G0(ω) = 1

ω
, G(ω) = 1

ω − Σ(ω)
,

the single-site Green’s function G0(ω), viz the Green’s function on an isolated
vertex and with Σ(ω) the respective one-particle self-energy.

We may now expand the self-energy in terms of hopping processes, with the
lowest-order process being to hop to the next site and back. Once the next site
has been reached the process can be iterated. We then have

Σ(ω) = zG(ω), G(ω) = 1

ω − zG(ω)
,

which is just the starting point for the semi-circle law Eq. (1.12).

PROBABILITY GENERATING FUNCTIONS

We start by evaluating the variance σ 2
K of the distribution pk generated by

G0(x) = ∑
k pk xk considering

G ′
0(x) =

∑
k

k pk xk−1, G ′′
0(x) =

∑
k

k(k − 1) pk xk−2

with

G ′
0(1) = 〈k〉, G ′′

0(1) = 〈k2〉 − 〈k〉 .

Hence

σ 2
K = 〈k2〉 − 〈k〉2 = G ′′

0(1) + 〈k〉 − 〈k〉2 . (9.3)

For a cummulative process generated by GC (x) = G N (G0(x)) we have

d

dx
GC (x) = G ′

N (G0(x)) G ′
0(x), μC = 〈n〉〈k〉 ,

where we have denoted with μC the mean of the cummulative process. For the
variance σ 2

C we find with

d2

dx2
GC (x) = G ′′

N (G0(x))
(
G ′

0(x)
)2 + G ′

N (G0(x)) G ′′
0(x)

and Eq. (9.3)

σ 2
C = G ′′

C (1) + μC − μ2
C

=
(
σ 2

N − 〈n〉 + 〈n〉2
)

〈k〉2 + 〈n〉
(
σ 2

K − 〈k〉 + 〈k〉2
)

+ 〈n〉〈k〉 − 〈n〉2〈k〉2

= 〈k〉2σ 2
N + 〈n〉 σ 2

K .
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If pn is determinstic, e.g. if we throw the dice always exactly N times, then
σ 2

N = 0 and σ 2
C = Nσ 2

K , in agreement with the law of large numbers,
Eq. (3.12).

CLUSTERING COEFFICIENT

One Dimension: We prove Eq. (1.61) for the clustering coefficient

C = 3(z − 2)

4(z − 1)
(9.4)

for a one-dimensional lattice with coordination number z.
The clustering coefficient C is defined by the average fraction of pairs of neigh-

bors of a vertex, which are also neighbors of each other. Therefore, we first cal-
culate the total number of pairs of neighbors of a given vertex,

z−1∑
k=1

k = 1

2
z(z − 1) . (9.5)

Next we evaluate the connected pairs of neighbors for a given node. Starting on
the left side where we find

z/2−1∑
k=1

k = z

4

( z

2
− 1

)
(9.6)

for the number of connected neighbors with no interconnecting links cross-
ing the given vertex. Now the links crossing the given vertex remain to be
counted. Starting with the node that lies z/2 steps left from the first node to
the right of the vertex, we find this one connected to vertex 1 on the oppo-
site site, the next with vertex 2 and so on. Thus the number of crossing
connections is

z

4

( z

2
− 1

)
, (9.7)

leading to the result for C:

C
1

2
z(z − 1) = 3

z

4

( z

2
− 1

)
, C = 3(z − 2)

4(z − 1)
.

General Dimensions: The arguments above can be generalized for lattices in
arbitrary dimension d by some relatively simple arguments. Consider that we
are now dealing with d coordinate or lattice lines traversing a certain node. Thus,
in order to calculate the cluster coefficient for this case, we confine ourselves to
a one-dimensional subspace and simply have to substitute z by z/d, the connec-
tivity on the line, yielding
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Cd = 3(z/d − 2)

4(z/d − 1)
= 3(z − 2d)

4(z − d)
. (9.8)

SCALEFREE GRAPHS

As an example of a possible solution a JAVA program is given below.

import java.util.Arrays;
import java.util.Random;

public class scaleFreeGraphsExcercise {

public scaleFreeGraphsExcercise() {
super();

}

public static void main(String[ ] args) {
int totalNodes = 500;
int graph_matrix[ ][ ] = new int[totalNodes][totalNodes];
Random rnd = new Random();
for (int i = 1; i < totalNodes; i++) {

int nodeB = calcNode(i – 1, rnd.nextDouble(), graph_matrix);
graph_matrix[nodeB][i] = graph_matrix[i][nodeB] = 1;

}
double dd[ ] = degreeDistribution(graph_matrix, totalNodes);
Arrays.sort(dd);
for (int i = totalNodes 1; i !=0; i ) {

if (dd[i] > 0)
System.out.println(totalNodes i+"\t \t"+dd[i]);

}
}

private static double[ ] degreeDistribution(int[ ][ ] graph, int max) {
double degreeDistribution[ ] = new double[max];
for (int i = 0; i < max; i++) {

degreeDistribution[degree(i, graph, max)]++;
}
return degreeDistribution;

}

public static int degree(int node, int graph[ ][ ], int totalNodes) {
int degree = 0;
for (int i = 0; i < totalNodes; i++) {

degree += graph[node][i];
}
return degree;

}
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public static int calcNode(int max, double random, int graph[ ][ ]) {
double degrees[ ] = new double[max];
double cumulativePk = 0;
int i = 0;
int sumdegree = 0;
for (i = 0; i < max; i++) {

degrees[i] = (double) degree(i, graph, max);
sumdegree += degrees[i];

}
for (i = 0; i < max; i++) {

degrees[i] = (double) degrees[i] / sumdegree;
}
for (i = 0; i < max; i++) {

cumulativePk += degrees[i];
if (random <= cumulativePk)

return i;
}
return i;

}
}

EPIDEMIC SPREADING IN SCALE-FREE NETWORKS

This task has the form of a literature study. One defines with ρk(t) the probability
that an individual having k social connections (i.e. k is the degree) is ill, viz
infected. It changes via

ρ̇k(t) = −ρk(t) + λk [1 − ρk]Θ(λ) . (9.9)

The first term on the right-hand-side describes the recovering process, the second
term the infection via the infection rate λ. The infection process is proportional
to the number of social contacts k, to the probability [1 − ρk] of having been
healthy previously, and to the probability

Θ(λ) =
∑

k

kρk(t)pk∑
j j p j

(9.10)

that a given social contact is with an infected individual, where pk is the degree
distribution. The arguments leading to above functional form for Θ(λ) are very
similar to those for the excess degree distribution qk discussed in Sect. 1.2.1.
Note, that all edges leading to the social contact enter Θ(λ), whereas only the
outgoing edges contributed to qk .
One can the solve Eqs. (9.9) and (9.10) self-consistently for the stationary state
ρ̇k = 0 and a given scale-invariant degree distribution pk , as explained in the
reference given. The central question the regards the existence of a threshold:
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Does the infection rate λ need to be above a finite threshold for an outbreak to
occur or does an infinitesimal small λ suffice?

EPIDEMIC OUTBREAK IN THE CONFIGURATIONAL MODEL

This task has the form of a literature study. The probability generating functions
formalism, treated in Sect. (1.2.2), is to be applied to an important problem: the
spreading of an infectious disease within a social network. Presentation of the
results in the form of a short seminar is a recommendable option.

Solutions to the Exercises of Chapter 2

THE LORENZ MODEL

By linearizing the differential equations (2.21) around the fixpoint (x∗, y∗, z∗)
we find

˙̃x = −σ x̃ + σ ỹ ,

˙̃y = (−z∗ + r) x̃ − ỹ − x∗ z̃ ,

˙̃z = y∗ x̃ + x∗ ỹ − b z̃ ,

where x̃ = x − x∗, ỹ = y − y∗, z̃ = z − z∗ are small perturbations around the
fixpoint and σ = 10 and β = 8/3. By the ansatz x̃ ∼ ỹ ∼ z̃ ∼ eλt we can
determine the eigenvalues λi in the above equation.
For the fixpoint (x∗, y∗, z∗) = (0, 0, 0) we find the eigenvalues

(λ1, λ2, λ3) =
(

−8

3
,
−11 − √

81 + 40 r

2
,
−11 + √

81 + 40 r

2

)
.

For r < 1 all three eigenvalues are negative and the fixpoint is stable. For r = 1
the last eigenvalue λ3 = (−11 + 11)/2 = 0 is marginal. For r > 1 the fixpoint
becomes unstable.
The stability of the non-trivial fixpoints, Eq. (2.22), for 1 < r < rc can be proven
in a similar way, leading to a cubic equation. You can either find the explicit
analytical solutions via Cardano’s method or solve them numerically, e.g. via
Mathematica, Maple or Mathlab, and determine the critical rc, for which at least
one eigenvalue turns positive.

THE POINCARÉ MAP

In order to solve this problem you have first to inform yourself as to how to solve
a differential equation in a numerically stable fashion. There is good literature
available, also on the Internet.
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THE HAUSDORFF DIMENSION

Dimension of a Line: To cover a line of length l we need one circle of diameter l.
If we reduce the diameter of the circle to l/2 we require two circles to cover the
line. Generally we require a factor of two more circles if we reduce the diameter
to a half. From the definition of the Hausdorff dimension we obtain

DH = − log[N (l)/N (l ′)]
log[l/ l ′] = − log[1/2]

log[2] = 1 , (9.11)

where we used N (l) = 1 and N (l ′ = l/2) = 2. Therefore, the line is one-
dimensional.
The Dimension of the Cantor Set: If we reduce the diameter of the circles form l
to l/3, we require a factor of two more circles to cover the Cantor set. Therefore
we obtain the Hausdorff dimension

DH = − log[N (l)/N (l ′)]
log[l/ l ′] = − log[1/2]

log[3] ≈ 0.6309 , (9.12)

where we used N (l) = 1 and N (l ′ = l/3) = 2.

DRIVEN HARMONIC OSCILLATORS

In the long time limit the system oscillates with the frequency of the driving
force. Hence, we can use the ansatz

x(t) = x0 cos(ωt + φ) , (9.13)

where we have to determine the amplitude x0 and the phase shift φ. Using this
ansatz for the damped harmonic oscillator we find

(ω2
0 − ω2) x0 cos(ωt + φ) − γ x0 ω sin(ωt + φ) = ε cos(ωt) . (9.14)

The amplitude x0 and the phase shift φ can now be found by splitting above
equation into sin(ωt)-terms and cos(ωt)-terms and comparing the prefactors. For
the case w = w0 we obtain φ = −π/2 and x0 = ε/(γω). Note that x0 → ∞ for
γ → 0.

CONTINUOUS-TIME LOGISTIC EQUATION

(A) The continuous-time logistic equation is

ẏ(t) = αy(t)
[
1 − y(t)

]
,

ẏ

y
+ ẏ

1 − y
= α ,

with the solution

log(y) − log(1 − y) = αt + c, y(t) = 1

e−αt−c + 1
,
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Fig. 9.2 Information flow in networks: The standard deviation, Eq. (9.15), of the mean information
density decreases exponentially with the mean coordination number of the graph

where c is an appropriate constant of integration. Clearly limt→∞ y(t) = 1.
(B) For comparison with the logistic map, Eq. (2.8), we discretize time via

y(t + Δt) − y(t)

Δt
= αy(t)

[
1 − y(t)

]
,

y(t + Δt) = (αΔt + 1)y(t)

[
1 − αΔt

αΔt + 1
y(t)

]
,

x(t + Δt) = r x(t)
[
1 − x(t)

]
,

when renormalizing x(t) = αΔt y(t)/(αΔt + 1). Then x → 0 for y → 1 in the
limit Δt → 0 and the continuous time logistic differential equation corresponds
to r = (αΔt + 1) → r1 = 1, compare Eq. (2.9).

INFORMATION FLOW IN NETWORKS

Several aspects can be studied here: For example, for the information flow as a
function of a vertex’ degree, you will find a proportional correlation. Furthermore
you can consider the standard deviation

√√√√ 1

N

N∑
i=1

(
ρi − 〈ρ〉)2 (9.15)

of the mean information density when varying the mean coordination number of
the random lattice, see Fig. 9.2.
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STOCHASTIC RESONANCE

The exercise is kind of a numerical étude. Integrating the differential equation
via Euler’s method should work well. Try to change the parameters by hand in
order to study the effects this has on the trajectories.

DELAYED DIFFERENTIAL EQUATIONS

We have

ẏ(t) = −ay(t) − by(t − T ), −iω = −a − beiωT , y(t) = e−iωt .

Taking the real and the imaginary part we obtain

− a

b
= cos(ωT ),

ω

b
= sin(ωT ), a2 + ω2 = b2 , (9.16)

where we have used cos2 + sin2 = 1. For a = 0 we obtain

ωT = π

2
+ πn, n = 0, ±1, ±2, . . .

and b = ±ω for even/odd values of n.

CAR-FOLLOWING MODEL

We consider ẋ = v + Δẋ in Eq. (2.74) and obtain

d

dt
Δẋ(t + T ) = −αΔẋ(t), −λT e−λT = −α, Δẋ(t) = e−λt .

The steady-state solution is stable for λ > 0, which is the case for α, T > 0. It is
great fun to simulate the model numerically for non-constant v(t).

Solutions to the Exercises of Chapter 3

THE LAW OF LARGE NUMBERS

For the generating function G(x) of a cumulative of stochastically independent
variables we have

G(x) =
∏

i

Gi (x), Gi (x) =
∑

k

p(i)
k xk, σ 2

i = G ′′
i (1) + G ′

i (1) − (
G ′

i (1)
)2

and μi = G ′
i (1), see Eqs. (3.7) and (3.9). Then
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μ = G ′(1) =
∑

j

⎛
⎝∏

i �= j

Gi (1)

⎞
⎠ G ′

j (1) =
∑

j

μ j .

The mean of the cumulative process is just the sum of the means of the individual
processes. For the evaluation of the variance we need

G′′(1) =
∑

l, j �=l

⎛
⎝ ∏

i �= j,l

Gi (1)

⎞
⎠ G′

j (1)G
′
l (1) +

∑
j

⎛
⎝∏

i �= j

Gi (1)

⎞
⎠ G′′

j (1)

=
∑

l, j �=l

μ jμl +
∑

j

G′′
j (1) =

⎛
⎝∑

j

μ j

⎞
⎠

2

−
∑

j

μ2
j +

∑
j

(
σ 2

i − μi + μ2
i

)

=
⎛
⎝∑

j

μ j

⎞
⎠

2

+
∑

j

(
σ 2

i − μi

)
= μ2 +

∑
j

σ 2
i − μ ,

where we have used σ 2
i = G ′′

i (1) + μi − μ2
i . Then

σ 2 = G ′′(1) + μ − μ2 =
∑

j

σ 2
j ,

which is the law of large numbers: the variance is additive.

SYMBOLIZATION OF FINANCIAL DATA

For the Dow Jones index in the 20th century, from 1900-1999, the joint probabil-
ities are

p+++ = 0.15, p+−+ = 0.11, p−++ = 0.13, p−−+ = 0.12
p++− = 0.13, p+−− = 0.12, p−+− = 0.10, p−−− = 0.11

,

as extracted from historical daily data. Of interest are the ratios

p++−/p+++ = 0.87, p+−−/p+−+ = 1.09
p−+−/p−++ = 0.77, p−−−/p−−+ = 0.92

.

The conditional probabilities p(+| − +) and p(−| − +) of a third-day
increase/decrease, given that the Dow Jones index had decreased previously on
the first day and increased on the second day, are evaluated via

p(+| − +) + p(−| − +) = 1,
p(+| − +)

p(−| − +)
= p−++

p−+−
= 1

0.77
,
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yielding p(+|−+) = 0.57 and p(−|−+) = 0.43. There had been consequently,
in the 20th century, a somehow substantially larger chance of a third day increase
in the Dow Jones index, when the index had decreased previously on the first day
and increased on the second day. This kind of information could be used, at least
as a matter of principle, for a money-making scheme. But there are many caveats:
There is no information about the size of the prospective third-day increase in
this analysis, the standard deviation of the p±±± may be large, and there may
be prolonged periods of untypical statistics. We do recommend not to invest real
world money using home made money-making schemes on the basis of this or
related statistical analysis.

THE OR TIME SERIES WITH NOISE

Recall that OR(0, 0) = 0, OR(0, 1) = OR(1, 0) = OR(1, 1) = 1. For the initial
condition σ1 = 0, σ0 = 0 the time series is ..0000000.., for all other initial
conditions the time series is ..1111111..,

p(1) =
{

1 typical
3/4 average

.

The time series always returns to the typical sequence,

. . . 1111101111111110111111111111110000000000000 . . .

for finite but low levels of noise, where we have underlined the noise-induced
transitions (time runs from right to left). We have therefore p(1) → 1 when
noise is present at low levels. For larger amounts of noise the dynamics becomes,
on the other hand, completely random and p(1) → 1/2.

MAXIMAL ENTROPY DISTRIBUTION FUNCTION

The two conditions (3.32) can be enforced by two Lagrange parameters λ1 and
λ2 respectively, via

f (p) = −p log(p) − λ1xp − λ2(x − μ)2 p .

The stationary condition (3.28), f ′(p) = 0, leads to

− log(p) − 1 − λ1x − λ2(x −μ)2 = 0, log(p) = log(const.)−λ2(x −μ̃)2 ,

where μ̃ = μ − λ1/(2λ2). Therefore

p(x) ∝ 2−λ2(x−μ̃)2 ∼ e
(x−μ̃)2

2σ2 ,
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with σ 2 = 1/(2λ2 loge(2)), which determines the Lagrange parameter λ2. The
first condition in (3.32), demands the mean to equal μ, viz μ̃ ≡ μ and conse-
quently λ1 = 0.

TWO-CHANNEL MARKOV PROCESS

We remind ourselves that OR(0, 1) = OR(1, 1) = OR(1, 1) = 1, OR(0, 0) = 0
and that AND(0, 1) = AND(1, 0) = AND(0, 0) = 0, AND(1, 1) = 1. We
consider first α = 0 and all four initial conditions (underlined),

. . . σt+1σt : . . . 0 0 0 0 0 0
. . . τt+1τt : . . . 0 0 0 0 0 0

. . . 1 1 1 1 1 1

. . . 1 1 1 1 1 1
,

and

. . . σt+1σt : . . . 0 0 0 0 0 0
. . . τt+1τt : . . . 1 1 1 1 1 1

. . . 0 0 0 0 0 1

. . . 1 1 1 1 1 0
,

we have three stationary states. The master equations for the joint probabilities
are

pt+1(0, 0) = (1 − α)pt (0, 0) + α
[

pt (1, 0) + pt (0, 1)
]

(9.17)

pt+1(1, 1) = (1 − α)pt (1, 1) (9.18)

and

pt+1(1, 0) = αpt (1, 1) (9.19)

pt+1(0, 1) = (1 − α)
[

pt (1, 0) + pt (0, 1)
]+ αpt (0, 0) (9.20)

The stationary condition is pt+1 = pt ≡ p. From Eqs. (9.18) and (9.19) it then
follows for 0 < α < 1

p(1, 1) = 0, p(1, 0) = 0 . (9.21)

Using this result we obtain from Eqs. (9.17) and (9.20)

p(0, 0) = p(0, 1) ≡ 1

2
, (9.22)

where we have normalized the result in the last step. The result is independent of
the noise level α, for any α �= 0, 1. The marginal distribution functions are

pσ (0) = 1
pσ (1) = 0

,
pτ (0) = 1/2
pτ (1) = 1/2

.

The respective entropies are

H [p] = 1, H [pσ ] = 0, H [pτ ] = 1 .
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The mutual information I (σ, τ ) = H [pσ ] + H [pτ ] − H [p] vanishes since the
σ -channel becomes deterministic for any finite noise level α.

KULLBACK-LEIBLER DIVERGENCE

The Kullback-Leibler divergence for the two normalized PDFs

p(x) = e−(x−1), q(x) = γ − 1

xγ
, x, γ > 1

is

K [p; q] =
∫ ∞

1
p(x) log2

(
p(x)

q(x)

)
dx = −H [p] −

∫ ∞
1

e−(x−1) log2
(
(γ − 1)x−γ

)

= −H [p] − log2(γ − 1) + γ

∫ ∞
1

e−(x−1) log2(x) ,

which is stationary for

∂K [p; q]
∂γ

= 0
1

γ − 1
= ln(2)

∫ ∞
1

e−(x−1) log2(x) =
∫ ∞

1
e−(x−1) ln(x) ,

where we have used

log2(x) = ln(x)/ ln(2),
d

dx
log2(x) = 1

ln(2)

d

dx
ln(x) = 1

ln(2)

1

x
.

Numerically we find

∫ ∞

1
e−(x−1) ln(x) ≈ 0.596, γ = 1

0.596
+ 1 ≈ 2.678 .

The graphs intersect twice, q(x) > p(x) both for x = 1 and x → ∞.

CHI-SQUARED TEST

We rewrite the Kullback Leibler divergence, see Eq. (3.45), as

K [p; q] =
∑

i

pi log

(
pi

qi

)
= −

∑
i

pi log

(
qi

pi

)
= −

∑
i

pi log

(
qi − pi + pi

pi

)

= −
∑

i

pi log

(
1 + qi − pi

pi

)
≈ −

∑
i

(qi − pi ) +
∑

i

(qi − pi )
2

2pi

=
∑

i

(pi − qi )
2

2pi
≡ χ2[p; q]/2 ,

having used the Taylor expansion log(1 + x) ≈ x − x2/2 and the normalization
conditions

∑
i pi = 1 = ∑

i qi .
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EXCESS ENTROPY

We show that En ,

En ≈ H [pn] − n
(
H [pn+1] − H [pn]

)
is monotonically increasing with n as long as H [pn] is concave,

En − En−1 = H [pn] − n
(
H [pn+1] − H [pn])

− H [pn−1] + (n − 1)
(
H [pn] − H [pn−1]

)
= n

(
2H [pn] − H [pn+1] − H [pn−1]

)

= 2n

(
H [pn] − 1

2

(
H [pn+1] − H [pn−1]

))
,

where the last term in the brackets is positive as long as H [pn] is concave as a
function of n, compare Fig. 3.3.

TSALLIS ENTROPY

For small 1 − q we may develop the Tsallis entropy Hq [p] as

Hq [p] = 1

1 − q

∑
k

pk

[(
pk
)q−1 − 1

]
= 1

1 − q

∑
k

pk

[
e(q−1) ln(pk ) − 1

]

≈ −
∑

k

pk ln(pk) ≡ H [p] .

With pk ∈ [0, 1], q ∈]0, 1] and q − 1 ≤ 0 we have

(
pk
)q−1 ≥ 1, Hq [p] = 1

1 − q

∑
k

pk

[(
pk
)q−1 − 1

]
≥ 0 .

The joint distribution function for two statistically independent systems p is just
the product of the individual distributions, p = pX pY and

∑
xi ,y j

[
pX (xi )pY (y j )

]q =
∑

xi

pq(xi )
∑
y j

pq(y j )

= [
(1 − q)H [pX ] + 1

][
(1 − q)H [pY ] + 1

]

and hence

Hq [p] = 1

1 − q

(∑
k

(
pk
)q − 1

)
= H [pX ]+ H [pY ]+(1−q)H [pX ]H [pY ] .

The Tsallis entropy is extensive only in the limit q → 1. The Tsallis entropy
is maximal for an equiprobability distribution, which follows directly from the
general formulas (3.27) and (3.29)
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0 0 0

0 1 1

0 1 1

0 1 00 0 1

1 0 1

1 1 1

1 0 0

1 0 1

1 0 1

1 1 0

1 1 0

1 0 0

1 0 0

0 0 1

0 0 1

0 1 0

0 1 0

0 0 0

0 0 0

1 1 1

0 1 1

1 1 0

1 1 1

(i)

(ii)

(iii)

Fig. 9.3 Solution of K = 1, N = 3 Kauffman nets with a cyclic linkage tree σ1 = f1(σ2),
σ2 = f2(σ3), σ3 = f3(σ1) for: (i) f1 = f2 = f3 = identity, (ii) f1 = f2 = f3 = negation and (iii)
f1 = f2 = negation, f 3 = identity

0000
0001

1000

0010

1101

0011

0101

0100

1010

01100111

1111

1001
1100

1011

1110

Fig. 9.4 Solution for the N = 4 Kauffman nets shown in Fig. 4.1, σ1 = f (σ2, σ3, σ4), σ2 =
f (σ1, σ3), σ3 = f (σ2), σ4 = f (σ3), with all coupling functions f (. . .) being the generalized
XOR functions, which count the parity of the controlling elements

Solutions to the Exercises of Chapter 4

THE K = 1 KAUFFMAN NET

The solutions are illustrated in Fig. 9.3.

THE N = 4 KAUFFMAN NET

The solution is illustrated in Fig. 9.4.
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0 0 0
1 0 1

0 0 1

0 1 1 1 1 1

0 1 0

1 1 0

1 0 0

Fig. 9.5 Solution of the N = 3, Z = 2 network defined in Fig. 4.3, when using sequential
asynchronous updating. The cycles completely change in comparison to the case of synchronous
updating shown in Fig. 4.3

011 000100

010 101 111 110 001

Fig. 9.6 Solution for the 3-site network shown in Fig. 4.3 with the AND function substituted by
an XOR

SYNCHRONOUS VS. ASYNCHRONOUS UPDATING

The solution is illustrated in Fig. 9.5.

RELEVANT NODES AND DYNAMIC CORE

The attractors of the network illustrated in Fig. 4.3 are (000), (111) and (010) ↔
(001). None of the elements σi , i = 1, 2, 3, has the same value in all three attrac-
tors, there are no constant nodes.
The dynamics obtained when substituting the AND by an XOR is shown in
Fig. 9.6. One obtains two fixpoints, (000) and (011). The first element, σ1 is
hence constant, with the dynamic core being made-up from σ2 and σ3.

RELEVANT NODES AND DYNAMIC CORE

The attractors are defined by the set of linkage loops. There are two loops given
which write out to C1

ABC → C AB̄ → B̄C Ā → Ā B̄C̄ → C̄ ĀB → BC̄ A → ABC ,

and C2

DE → Ē D̄ → DE .

In its general form the attractor cycle is

ABCDE → C AB̄ Ē D̄ → B̄C ĀDE → Ā B̄C̄ Ē D̄ → C̄ ĀBDE → BC̄ AĒ D̄ → ABCDE .

The loops C1 und C2 lead to two cycles each, depending on the initial state.
Cycles L1, L2 emerge from C1, L3 and L4 from C2,
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L1 : 000 → 001 → 101 → 111 → 110 → 010 → 000

L2 : 100 → 011 → 100

L3 : 00 → 11 → 00

L4 : 01 → 10 → 01

All possible combinations of
(
L1, L2

)
and

(
L3, L4

)
construct all possible attrac-

tor cycles. This leads to two attractor cycles of length 2 and two attractor cycles
of length 6,

L1L3 : 00000 → 00111 → 10100 → 11111 → 11000 → 01011 → 00000

L1L4 : 00001 → 00110 → 10101 → 11110 → 11001 → 01010 → 00001

L2L3 : 10000 → 01111 → 10000

L2L4 : 10001 → 01110 → 10001

THE HUEPE AND ALDANA NETWORK

As the exact solution can be found in the paper, we confine ourselves to some
hints. You should start with the fraction of elements φN (t) with +1 at time t ,
which reduces to the probability φ(t) for σi = +1 in the N → ∞ limit. You will
then find that

s(t) = 2φ(t) − 1 . (9.23)

Afterwards one has to consider the probability I(t) for the output function to be
positive, which gives us the recursion equation

φ(t + 1) = I (t)(1 − η) + (1 − I (t))η . (9.24)

The relation between I (t) and φ(t) is still unknown but can be calculated via

I (t) =
∫ ∞

0
Pξ(t)(x)dx (9.25)

with Pξ(t) being the probability density function of the sum ξ(t) = ∑K
j=1 σi j (t),

which can be represented as the K-fold of Pσ(t) or in Fourier space:

P̂ξ(t) =
[

P̂σ(t)

]K
. (9.26)

For the probability density of σ(t) the proper ansatz is:

Pσ(t) = φ(t)δ(x − 1) + [1 − φ(t)] δ(x + 1) . (9.27)
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After some calculus you should finally obtain the recursion relation for s(t) and
find both its fixed points and the critical value ηc.

BOND PERCOLATION

The critical value pc emerges to be 1/2.1 For an efficient algorithm
implementing the percolation problem in C you may have a look at
http://www.santafe.edu/~mark/percolation. This algorithm measures
the number of vertices in the largest connected component. Visual simulations
can be found on the Internet as well, e.g. http://www.univ-bechar.dz/
Boutiche/VRH/percolation.htm.

Solutions to the Exercises of Chapter 5

SOLUTIONS OF THE LANDAU–GINZBURG FUNCTIONAL

The values t = h = 0.1 lead for Eq. (5.9) to the cubic equation

P(φ) − h = φ3 − 0.9φ − 0.1 = 0 , (9.28)

which has one root φ3 = 1. The remaining quadratic equation can be solved
analytically. One finds φ1 ≈ −0.89 and φ2 ≈ −0.11. Inserting these solutions
into the derivative P ′(φ) one obtains P ′(φ2) < 0, which implies that φ2 is an
unstable fixpoint. φ1 and φ3 are, on the other hand, locally stable.

ENTROPY AND SPECIFIC HEAT WITHIN THE LANDAU MODEL

The free energy density is given by

f (T, φ, h) − f0(T, h) = t − 1

2
φ2 + 1

4
φ4 = − (t − 1)2

4
,

where we used φ2 = 1 − t . It follows that

∂F

∂t
= −V

t − 1

2
⇒ S = ∂F

∂T
= V

Tc

1 − t

2

for the entropy S and where t = T/Tc. The specific heat CV is then

CV = Tc
∂S

∂T
= − V

2Tc
, T < Tc .

For T > Tc the specific heat CV vanishes, there is a jump at T = Tc.

1 The reader interested in a rigorous mathematical proof may consult
KESTEN, H. 1980 The critical probability of bond percolation on the square lattice equals 1/2.
Communications in Mathematical Physics 74 41–59.

http://www.santafe.edu/~mark/percolation
http://www.univ-bechar.dz/
Boutiche/VRH/percolation.htm
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"cross"

Step 2Step 1 Step 3 Step 4

Step 5 Step 6 Step 7

Fig. 9.7 Evolution of the pattern “cross” in the game of life: after seven steps it gets stuck in a
fixed state with four blinkers

THE GAME OF LIFE

The solutions have already been given in Fig. 5.5, apart from the cross {(0,0),
(0,1),(1,0),(−1,0),(0,−1)}. For an illustration of its development see Fig. 9.7.

THE GAME OF LIFE ON A SMALL-WORLD NETWORK

The construction of a small-world net with conserving local connectivities ki ≡ 8
is shown and explained in Fig. 9.8. An appropriate dynamical order parameter
would be the density of life ρ(t) at time t representing the fraction of living
cells.2

THE FOREST FIRE MODEL

We define by xt , x f and xe the densities of cells with trees, fires and ashes
(empty), with xt + x f + xe = 1. A site burns if there is at least one fire on one
of the Z nearest-neighbor cells. The probability that none of Z cells is burning is
(1 − x f )

Z , the probability that at least one out of Z is burning is 1 − (1 − x f )
Z .

We have than the updating rules

x f (t + 1) =
[
1 − (1 − x f (t))

Z
]

xt (t), xe(t + 1) = x f (t)− pxe(t),

The stationary solutions xe(t + 1) = xe(t) ≡ x∗
e , etc., are

2 This problem has been surveyed in detail by
HUANG, S.-Y., ZOU, X.-W., TAN, Z.-J., JIN, Z.-Z. 2003 Network-induced non-equilibrium
phase transition in the “Game of Life”. Physical Review E 67, 026107.
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Fig. 9.8 Construction of a small-world network out of the game of life on a 2D-lattice: One starts
with a regular arrangement of vertices where each one is connected to its eight nearest neighbors.
Two arbitrarily chosen links (wiggled lines) are cut with probability p and the remaining stubs are
rewired randomly as indicated by the dashed arrows. The result is a structure showing clustering
as well as a fair amount of shortcuts between far away sites, as in the Watts and Strogatz model,
Fig. 1.9, but with conserved connectivities ki ≡ 8

(1+ p)x∗
e = x∗

f , 1 = x∗
f +x∗

t +x∗
f /(1+ p), x∗

t = 1− 2 + p

1 + p
x∗

f .

We then find a self-consistency condition for the stationary density x∗
f of fires,

x∗
f =

[
1 − (1 − x∗

f )
Z
](

1 − 2 + p

1 + p
x∗

f

)
, (9.29)

which in general needs to be solved numerically. For small densities of fires we
expand

1−(1−x∗
f )

Z ≈ 1−(1− Z x∗
f + Z(Z −1)/2(x∗

f )
2) = Z x∗

f − Z(Z −1)/2(x∗
f )

2

and find for Eq. (9.29)

1

Z
=
(

1 − (Z − 1)

2
x∗

f

)(
1 − 2 + p

1 + p
x∗

f

)
≈ 1 −

(
(Z − 1)

2
+ 2 + p

1 + p

)
x∗

f .

The minimal number of neighbors for fires to burn continuously is Z > 1 in
mean-field theory.

THE REALISTIC SANDPILE MODEL

The variable zi should denote the true local height of a sandpile; the toppling
starts when the slope becomes too big after adding grains of sand randomly, i.e.
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Fig. 9.9 Example of a simulation of a one-dimensional realistic sandpile model, see Eq. (9.30),
with 60 cells, after 500 (left) and 2000 (right) time step

when the difference zi − z j between two neighboring cells exceeds a certain
threshold K . Site i then topples in the following fashion:

(i) Look at the neighbor j of site i for which zi − z j is biggest and transfer one
grain of sand from i to j ,

zi → zi − 1, z j → z j + 1 . (9.30)

(ii) If more than one neighbor satisfies the criteria in (i), select one of them ran-
domly.

(iii) Repeat step (i) until all neighbors j of i satisfy the condition zi ≥ z j + 1.

The toppling process mimics a local instability. The avalanche can then proceed
in two directions: forwards and backwards. Note that the toppling rule is con-
serving, sand is lost only at the boundaries.
This model leads to true sandpiles in the sense that it is highest in the center and
lowest at the boundaries, compare Fig. 9.9. Note that there is no upper limit to
zi , only to the slope |zi − z j |.

THE RANDOM BRANCHING MODEL

For the probability Q̃n = ∑n
n′=0 Qn(0, p) for the avalanche to last 1 . . . n time

steps one can make the recursion ansatz:

Q̃n+1 = (1 − p) + p Q̃2
n , (9.31)
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in analogy to the recursion relation Eq. (5.24) for the functionals generating the
distribution of avalanche sizes. The case here, however, is simpler, as one can
work directly with probabilities: The probability Q̃n+1 to find an avalanche of
duration 1 . . . (n + 1) is the probability (1 − p) to find an a avalanche of length 1
plus the probability p Q̃2

n to branch one time step, generating two avalanches of
length 1 . . . n.
In the thermodynamic limit we can replace the difference Q̃n+1 − Qn by the

derivative dQ̃n
dn leading to the differential equation

dQ̃n

dn
= 1

2
+ 1

2
Q2

n − Q̃n, for p = pc = 1

2
, (9.32)

which can easily be solved by separation of variables. The derivative of the solu-
tion Q̃n with respect to n is the probability of an avalanche to have a duration of
exactly n steps.

Q̃n = n

n + 2
, (9.33)

D(t = n) = dQ̃n

dn
= 2

(n + 2)2
∼ n−2 .

Check that Eq. (9.33) really solves Eq. (9.32), with the initial condition Q̃0 = 0.

THE GALTON-WATSON PROCESS

The generating functions G0(x) are generically qualitatively similar to the ones
shown in Fig. 5.10, due to the normalization condition G(1) = 1.
The fixpoint condition G(q) = q, Eq. (5.32), has a solution for q < 1 whenever

G ′(x)
∣∣∣
x=1

> 1, W = G ′(1) > 1 ,

since G ′(1) is the expectation value of the distribution function, which is the
mean number of offsprings W .

THE BAK AND SNEPPEN MODEL

In the N → ∞ limit you will find the simulation results perfectly assorting with
the molecular field solution; you should be aware that by increasing the number
of species N you will also have to increase the number of iterations until the
equilibrium is reached.

Solutions to the Exercises of Chapter 6

THE ONE-DIMENSIONAL ISING MODEL

For the one-dimensional Ising system the energy is
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E = −J
∑

i

Si Si+1 − B
∑

i

Si ,

with Si = ±1. The partition function

ZN = ZN (T, B) =
∑

n

e−βEn =
∑
S1

. . .
∑
SN

TS1,S2TS2,S3 . . . TSN ,S1

can be evaluated with the help of the 2 × 2 transfer matrix T =(
eβ(J+B) e−β J

eβ J eβ(J−B)

)
. It has the eigenvalues

λ1,2 = eβ J coshβB ±
√

e2β J cosh2 βB − 2 sinh 2β J ,

leading to

ZN (T, B) =
∑

S1,S2

(
T N

)
S1,S2

= (λ1)
N + (λ2)

N � (λ1)
N ,

for large N and λ1 	 λ2. The free energy per particle is given by

F(T, B)

N
= −kT

N
lnZN (T, B) ,

and the magnetization per particle by

M(T, B)

N
= −∂F(T, B)

∂B
=
(

1 + e−4β J

sinh2 βB

)−1/2

.

ERROR CATASTROPHE

First Case u− = 0, u+ = u: The fixpoint conditions read

0 = (1 − σ)xi + uxi−1 − φxi , i > 1 ,

0 = x1 − φx1 ,

where the xi are the respective concentrations. Hence we can immediately write
down the N × N reproduction rate matrix W :

W =

⎛
⎜⎜⎜⎝

1 0 0 0 · · ·
u (1 − σ) 0 0 · · ·
0 u (1 − σ) 0 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎠ , (9.34)
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whose diagonal elements obviously represent the eigenvalues. The largest eigen-
value is 1 = W11, and the corresponding eigenvector

e1 = 1√
N

(
1,

u

σ
,
( u

σ

)2
, · · · ,

( u

σ

)N−1
)

. (9.35)

This eigenvector is normalizable only for u < σ , viz u = σ is the error threshold.
Second Case u− = u+ = u: The fixpoint conditions are

0 = (1 − σ)xi + uxi−1 + uxi+1 − φxi , i > 1 ,

0 = x1 + ux2 − φx1 .

The first equation is equivalent to

xi+1 = φ + σ − 1

u
xi − xi−1, i > 1 , (9.36)

which can be cast into the 2 × 2 recursion form

(
xi

xi+1

)
=
(

0 1
−1 φ+σ−1

u

)(
xi−1
xi

)
. (9.37)

The largest eigenvalues of the above recursion matrix determine the scaling of xi

for large i . For the determination of the error threshold you may solve for the xi

numerically, using Eq. (9.36) and the mass-normalization condition
∑

i xi = 1
for the self-consistent determination of the flux φ.

MODELS OF LIFE

This is very suitable for a small work study with a subsequent seminar.

COMPETITION FOR RESOURCES

Summing in Eq. (6.64) over the species i one obtains

Ċ = f
∑

i

ri xi − dC, ḟ = a − f
∑

i

ri xi , 0 = a − dC ,

for the steady-state case Ċ = 0 = ḟ , viz C = ∑
i xi = a/d; no life without

regenerating resources. The growth rates Wii = f ri − d need to vanish (or to be
negative) in the steady state and hence

lim
t→∞ f (t) → min

i

(
d

ri

)
.

Only a single species survives the competition for the common resource (the one
with the largest growth rate ri ), the ecosystem is unstable.
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HYPERCYCLES

The fixpoints (x∗
1 , x∗

2 ) are given by

0 = x∗
1 (α + κ x∗

2 − φ) ,

0 = x∗
2 (2α + κ x∗

1 − φ) ,

φ = αx∗
1 + 2αx∗

2 + 2κx∗
1 x∗

2 ,

with the condition x1+x2 = 1 for the total concentration and x∗
1 , x∗

2 ≥ 0. Solving
these equations we find x∗

1 = κ−α
2κ and x∗

2 = κ+α
2κ for κ > α. Otherwise, only the

trivial solutions (x∗
1 , x∗

2 ) = (0, 1) and (x∗
1 , x∗

2 ) = (1, 0) are fixpoints. Linearizing
the equations around the fixpoints leads us to the matrix

M =
(
(κ − α)x∗

2 − 4κx∗
1 x∗

2 (κ − α)x∗
1 − 2κ(x∗

1 )
2

κx∗
2 − 2κ(x∗

2 )
2 α + κx∗

1 − 2αx∗
2 − 4κx∗

1 x∗
2

)
. (9.38)

For (x∗
1 , x∗

2 ) = (1, 0) the biggest eigenvalue of M is κ + α, which is positive
for positive growth rates, so the fixpoint is unstable. For (0, 1) one finds the
condition κ < α that guarantees all eigenvalues being negative. The analysis for
( κ−α

2κ , κ+α
2κ ) can hardly be accomplished by hand; it should be left to a computer

algebra system like Maple, Mathematica or Mathlab.

THE PRISONER’S DILEMMA ON A LATTICE

We use first a general payoff matrix and then, specifically, {T ; R; P; S} =
{3.5; 3.0; 0.5; 0.0} as in Fig. 6.10. We consider the four cases separately:

– One Defector in the Background of Cooperators
The payoffs are

intruding defector: 4 × T = 4 × 3.5 = 14
cooperating neighbors: 3 × R + 1 × S = 3 × 3 + 0 = 9
Therefore, the neighboring cooperators will become defectors in the next step.

– Two Adjacent Defectors in the Background of Cooperators
The payoffs are:

intruding defectors: 3 × T + 1 × P = 3 × 3.5 + 0.5 = 11
cooperating neighbors: 3 × R + 1 × S = 3 × 3 + 0 = 9
Therefore, the neighboring cooperators will become defectors in the next step.

– One Cooperator in the Background of Defectors
The payoffs are:
intruding cooperator: 4 × S = 4 × 0 = 0
defecting neighbors: 3 × P + 1 × T = 3 × 0.5 + 3.5 = 5

The cooperating intruder will die and in the next step only defectors will be
present.

– Two Adjacent Cooperators in the Background of Defectors
The payoffs are:
intruding cooperators: 3 × S + 1 × R = 4 × 0 + 3 = 3

defecting neighbors: 3 × P + 1 × T = 3 × 0.5 + 3.5 = 5
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The cooperating intruders will die and in the next step only defectors will be
present.

One can go one step further and consider the case of three adjacent intruders.
Not all intruders will then survive for the case of defecting intruders and not all
intruders will die for the case of cooperating intruders.

NASH EQUILIBRIUM

The payoff matrix of this game is given by

A =
(

L L
0 H

)
, L < H ,

for the cautious/risky player, where L signifies the low payoff and H the high
payoff. Denoting the number of cautious players by Nc we can compute the
reward for participants playing cautiously or riskily, respectively and from this
the global reward G:

Rc = [L Nc + L(N − Nc)] /N = L , (9.39)

Rr = [0 · Nc + H(N − Nc)] /N = H(N − Nc)/N , (9.40)

G(Nc) = (N − Nc)
2

N
H + Nc L . (9.41)

The function G(Nc) has two local maxima at Nc = 0 and Nc = N representing
the Nash equilibria with the first case being the optimal one for each player and
the maximal global utility being N H .

Solutions to the Exercises of Chapter 7

DRIVEN HARMONIC OSCILLATORS

The all time solution can be obtained by combining the homogeneous solu-
tion (no external force) and one special solution (e.g. the long-time ansatz from
Eqs. (7.3) and (7.4). Since the homogeneous solution is given by

x(t) ∼ eλt , λ± = −γ

2
±
√

γ 2

4
− ω2

0 ,

with damping γ , this contribution vanishes in the limit t → 0 and only the special
solution survives.

SELF-SYNCHRONIZATION

We have the ansatz

θ̇ (t) = ω0 + K sin[θ(t − T ) − θ(t)], θ(t) = ω t + εeλt
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for the steady-state solution ∝ ωt , together with a small perturbation ∝ εeλt . The
steady-state solution is stable, whenever the real part of λ is negative, compare
Sect. 2.6. Expanding for ε � 1 we obtain

ω = ω0 − K sin(ωT ), λ = K cos(ωT )
[
e−λT − 1

]
, (9.42)

for the contributions O(ε0) and O(ε1) respectively, which specializes Eq. (7.24)
to the case of self-synchronization. There is always a solution λ = 0 to Eq. (9.42),
indicating marginal stability. A simple graphical analysis shows, that λ = 0
remains the only solution for K cos(ωT ) > 0, compare Eq. (7.25), and that
solution with λ < 0 appears for

−1 < K cos(ωT ) < 0 .

In the later case the steady state trajectory ∝ ωt becomes unstable.
Considering for the locking frequency ω graphically the limit K → ∞ in
Eq. (9.42) on finds that

ωT → n 2π, ω = n
2π

T
, n = 0, 1, 2, . . . .

The natural frequency ω0 becomes irrelevant and the system self locks with
respect to the delay time T .

SYNCHRONIZATION OF CHAOTIC MAPS

We are looking for solutions of type

x1(t) = x̄(t) + δct , x2(t) = x̄(t) − δct

for Eq. (7.46), with δ � 1, viz wir are looking for perturbations perpendicular to
the synchronized trajectory x1(t) = x2(t). We obtain

x̄(t+1) = f
(
(1−κ)x̄(t)+κ x̄(t−T )

)
, c = (1−κ)a−κac−T . (9.43)

The solution x1(t) = x2(t) = x̄(t) is stable for |c| < 1, viz for κ > κc. Setting
c = 1 in Eq. (9.43) we find

1 = a − 2κca, κc = a − 1

2a
,

which is actually independent of the time delay T . It is instructive to plot x1(t)
and x2(t), using a small script or program. Note however, that the synchronization
process may take more and more time with increasing delay T .
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The synchronization process is driven by an averaging procedure, which is most
evident for κ = 1/2 and T = 0. For this setting of parameters perfect synchro-
nization is achieved in one time step.

THE TERMAN–WANG OSCILLATOR

We linearize Eq. (7.38) around the fixpoint (x∗, y∗) and consider the limit
β → 0,

lim
β→∞ tanh(x/β) = Θ(x) =

{
0 (x < 0)

1 (x > 0)
.

We find, since x∗ < 0 (compare Fig. 7.6),

˙̃x = 3 (1 − x∗2
) x̃ − ỹ

˙̃y = − ε ỹ

where x̃ = x − x∗ and ỹ = y − y∗ are small perturbations around the fixpoint.
By the ansatz x̃ ∼ ỹ ∼ eλt we can determine the eigenvalues λ in the above
equation. We obtain λ1 = 3 (1 − x∗2) and λ2 = −ε. The fixpoint x∗ � 0 is
unstable, since λ1 � 3 > 0 for this case. The fixpoint at |x∗| > 1 is stable, since
λ1 < 0, λ2 < 0 and x̃ ∼ ỹ ∼ eλt decays in the long time limit.

THE SIRS MODEL – ANALYTICAL

The fixpoint equation reads

x∗ = ax∗ [1 − (τR + 1)x∗]

with the solutions

x∗ = 0 or x∗ = a − 1

a(τR + 1)

for general τR = 0, 1, 2, . . .. We examine the stability of x∗ against a small
perturbation x̃n by linearization using xn = x∗ + x̃n :

x̃n+1 = −ax∗
τR∑

k=0

x̃n−k + ax̃n
[
1 − (τR + 1)x∗] .

For the trivial fixed point x∗ = 0 this reduces to

x̃n+1 = ax̃n, leading to the stability condition a < 1 .

The analysis for the second fixed point with τR = 0 runs analogously to the
computation concerning the logistic map in Chap. 2. For τR = 1 the situation
becomes more complicated:
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x̃n+1 = 1

2
(3 − a)x̃n + 1

2
(1 − a)x̃n−1 .

With the common ansatz x̃n = λn for linear recurrence relations one finds the
conditions
∣∣∣∣−1

4
a + 3

4
+ 1

4

√
a2 − 14a + 17

∣∣∣∣ < 1, and a2 − 14a + 17 > 0

(9.44)
for small perturbations to remain small and not to grow exponentially, i.e.
|λ| < 1. So a has to fulfill

1 < a < 7 − 4
√

2 ≈ 1.34 .

THE SIRS MODEL – NUMERICAL

If you have some programming experience the implementation will not pose any
problem. It is recommended that you change the parameters over an adequate
range and study the effects.

Solutions to the Exercises of Chapter 8

TRANSIENT STATE DYNAMICS

Driven Transient State Dynamics: The most simple solution to this problem
would be to provide a signal φ(t), e.g. an oscillator and let x(t) react on its
behavior like

ẋ = (1 − x)θ(φ − xc)(φ − xc) + xθ(xc − φ)(φ − xc) ,

φ = (
cos(ωt) + 1

)
/2 ,

with a critical xc ∈ [0, 1], which determines the threshold for φ from which on
the signal x is to autoexcite. As usual the prefactors (1 − x) and x guarantee the
normalization of x and (φ − xc) represents the growth rate being assumed as a
linear function of φ.
Emerging Transient State Dynamics: In order to describe a situation with both
variables mutually influencing each other, one may introduce several thresholds
that make the reservoir φ deplete only if x is close to 1 and activity x to deplete
when φ is almost 0 and vice versa,

ẋ = (1 − x)θ(φ − 0.99)r + xθ(0.01 − φ)r ,

r = 2(φ − 0.5) ,

φ̇ = Γ +(1 − φ)θ(0.02 − x) + Γ −φθ(x − 0.98) .

Note that the parameters of the solution are very sensitive; most combinations
result in a fixpoint attractor and in the absence of continuous dynamics. We
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found Γ + = Γ − = 0.04 to work in this case and yield a permanent excitation–
depletion cycle.

THE DIFFUSIVE CONTROL UNIT

In analogy to the previous task the most simple ansatz for this problem would be
the differential equations

ẋ1 = (1 − x1)θ(y1 − y2)(y1 − y2) + x1θ(y2 − y1)(y1 − y2) , (9.45)

ẋ2 = (1 − x2)θ(y2 − y1)(y2 − y1) + x2θ(y1 − y2)(y2 − y1) , (9.46)

where the Heaviside function decides when the value of the first unit x1 is to
grow, namely if y1 > y2, and when to deplete (y2 > y1) and the other way round
for x2.

LEAKY INTEGRATOR NEURONS

The only fixpoint is (x1, x2) = (0, 0), due to the competing excitatory and
inhibitory couplings. The system is dissipative since

∂ ẋ1

∂x1
+ ∂ ẋ2

∂x2
= −2Γ < 0 ,

compare Sect. 2.3.1, and phase space contracting. Linearizing close to the fix-
point we have

ẋ1 ≈ −Γ x1 − wx2/2, ẋ2 ≈ −Γ x2 + wx1/2, J =
( −Γ −w/2

w/2 −Γ

)

and the eigenvalues of the Jacobian J are −Γ ± iw/2. The network performs,
for Γ � 1, weakly damped oscillations.

ASSOCIATIVE OVERLAPS

We start by calculating all associative overlaps of degree zero, compare Fig. 8.6,
for the six cliques (0,1,2), (1,2,3), (1,3,4), (4,5,6) and (2,6):

0 1 1 4
1 2 3 5 2
2 3 4 6 6

0 1 2 2 1 0 1
1 2 3 2 2 0 1
1 3 4 1 2 1 0
4 5 6 0 0 1 1

2 6 1 1 0 1
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Next we present two possible solutions, beginning with clique (012). The table
contains seven columns, the first being the time step t followed by the nodes 0 to
6. Every row in the table indicates a time step. An active node at a time step is
set to 1, inactive nodes are left empty.

t 0 1 2 3 4 5 6
0 1 1 1
1 1 1 1
2 1 1 1
3 1 1 1

t 0 1 2 3 4 5 6
0 1 1 1
1 1 1 1
2 1 1 1
3 1 1 1
4 1 1
5 1 1 1

The time evolutions coincide qualitatively with those illustrated in Fig. 8.9.
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Abstract concept, 279
Action selection, see Decision process
Active phase, 230
Adaptation

Fujiyama landscape, 190
game theory, 207, 208
time scale, 198

Adaptive climbing
vs. stochastic escape, 199

Adaptive regime, 194
Adaptive system, 55

life, 139
Adaptive walk, 196, 200
Adiabatic approximation, 250
Adjacency matrix, 10
Algorithm

genetic, 115
Algorithmic complexity, 104, 105
Alleles, 181
Ancestor

boolean dynamics, 128
Annealed

approximation, 125
fixpoint, 126

boolean network, 115
Artificial intelligence

vs. cognition, 244
logical reasoning, 252

Asexual reproduction, 179
Associations, see Associative
Associative

human database, 262
overlap, 265
thought process, 262, 266, 266

Asynchronous updating, 248
Attractor, 43, 116

basin, 43, 127
boolean network, 127

cyclic, 116, 127
strange, 54
transient, 265

Autocorrelation function, 152
Autonomous dynamical system, 41
Avalanche

coevolution, 174
critical, 164
distribution

length, 160
size, 160, 162

sandpile, 160
small, 163
subcritical, 164

Average, see Mean

B
Bak, Per

1/f noise, 154
sandpile model, 159

Bak–Sneppen model, 169
Basin of attraction, 43

cycle, 127
Bayes

theorem, 82
Bayesian

PDF, see Probability distribution
Beanbag genetics, 181, 189
Bernoulli shift map, 241
Bifurcation, 40

logistic map, 47
Binary, see Boolean
Boolean

coupling function, 109
network, see Boolean network
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Boolean dynamics
descendant, 128
ancestor, 128
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Boolean network, 109, 109
annealed model, 115
connectivity, 112
controlling elements, 112
coupling functions, see Coupling ensemble,

113
dynamic core, 129
dynamics, 115
evolution rule, 112
geometry, 113

lattice assignment, 113
uniform assignment, 113

linkage, 112
linkage module, 129
mean-field theory, 119
model realizations, 115
percolation of information, 118
quenched model, 115
relevant node, 129
response to changes, 117
scale-free, 125
state space, 111
time evolution, 129

Bose–Einstein condensation, 147
Bra-ket notation, 188
BTW model, see Sandpile model

C
Cantor set, 76
Catastrophic forgetting, 256
Cell

division, 136
yeast cycle, 136, 138

Cell differentiation, 110
N–K network, 135
dynamical, 135

Cellular automata, 155
updating rules

number, 155
totalistic, 155

Central limiting theorem, 84
Chaos

deterministic, 45
life at the edge of, 136
logistic map, 48
routes to chaos, 50

Chemical reactions, 201
Clique, 6

winners-take-all network, 263
Closed loops, 22
Clustering

coefficient, 5

loops, 11
random graph, 18

lattice models, 28
Coevolution, 169, 206

arms race, 206
avalanche, 174, 210
green world hypothesis, 207
red queen phenomenon, 206

Cognitive information processing, 257
Cognitive system, 243

abstract identity, 253
adaptive parameters, 250
basic principles, 251

a priori knowledge, 251, 252
locality, 251
working point, 252

benchmarking pyramid, 261
biologically inspired, 245
competing dynamics, 247
decision processes, 257
diffusive control, 251
environment, 253
global workspace, 247
memory, 253
rudimentary, 259
states-of-the-mind, 247
survival parameters, 259
time series analysis, 87
variables

primary and secondary, 249
winning coalition, 247

Coherence resonance, 72
Competing dynamics, 247
Complexity

algorithmic, 104, 105
and emergence, 105
behavior, 101
deterministic, 105
EMC, 103
excess entropy, 102
generative, 104
Grassberger, 103
intensive vs. extensive, 101
Kolmogorov, 105
measure, 100
vs. randomness, 100

Configurational model, 14
Connection probability, 4
Connectivity

preferential, 30
time-dependent, 32

Conserving system, 52
Constant of motion, 42



Index 317

Continuity equation, 67
Conway’s game of life, see Game of life, 156
Coordinates

normal, 51
polar, 39

Coordination number, 4
Correlation

length, 151
spatial, 151
temporal, 233

Correlation function
autocorrelation, 152
critical, 152
equal-time, 151
scale invariance, 152

Coupling ensemble, 114
additive functions, 114
classification, 114
forcing functions, 114
magnetization bias, 114
uniform distribution, 114

Coupling functions, 113
Critical

avalanche, 164
coevolutionary avalanches, 174
coupling, 222
driven harmonic oscillator, 215
phase, 119, 120
sensory processing, 140

Criticality
dynamical system, 150
scale invariance, 152
self-organized, see Self-organized

criticality
universality, 152

Current
escape, 68

Cycle, 116
attractor, 127
average length, 135
average number, 134
length distribution, 134
limiting, 39
thought process, 268
yeast, 136

D
Damping, see Friction
Decision process, 257

emotional control, 259
genetic preferences, 259
primary benchmarks, 259
survival parameters, 259

Degree
average, 14
sequence, 14

Degree distribution, 8
arbitrary, 14
Erdös-Rényi, 8
excess, 15
of neighbors, 15
scale-free, 34

Descendant
boolean dynamics, 128

Deterministic chaos, 45
Deterministic evolution, 185

vs. stochastic evolution, 195
DHAN model, 269
Differential equation

first-order, 41
Lotka-Volterra, 267

Diffuse control
emotional, 260
metalearning, 252
neutral, 260

Diffusion, 59
equation, 60
one dimensional, 60
ordinary, 62
stochastic process, 63
subdiffusion, 62
within networks, 61

Diffusive control, 251, 257
Dimension

Hausdorff, 54
Dissipation, 50
Dissipative system, 50

vs. conserving, 52
phase space contraction, 51

Distance
average, 5

below percolation, 18
Hamming, 117, 186
lattice model, 29

Distributed coding, 255
Distribution

component sizes, 21
cycle length, 134
degree, see Degree distribution
fitness barrier, 170

stationary, 171
thermodynamic limit, 172

Gaussian, 68
natural frequencies, 218
stationary frequencies, 220

Drift velocity, 66
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Dynamical system
adaptive, 55
autonomous, 41
basic concepts, 39
conserving, 52
criticality, 150
deterministic, 59
dissipative, 50, 52
ergodic, 43
integrable, 43
living, 244
mechanical, 43
noise-controlled, 66
phase transition, 120
stochastic, 59, 66
time delays, 73

Dynamics
adaptive climbing, 196
Bak–Sneppen model, 171
boolean network, 115

quenched, 127
competing, 247
conserving, 159
continuous time, 41
discrete time, 41, 109, 237, 248
evolution, 182
macromolecules, 201
opinion, 211
self-sustained, 246
spiking vs. non-spiking, 248
transient state, see Transient state dynamics
see also dynamical system, xiv

E
Eigen, Manfred

hypercycle, 203
quasispecies theory, 201

Elman network, 273
lexical prediction task, 274

Ensemble
average, 9, 64
coupling functions, see Coupling ensemble
encoding, 139
fluctuations, 9

Entropy, 87
vs. degrees of freedom, 90
conditional, 99
density, 102
differential, 92
excess, 102
information, 88
joint, 96
life, 88

marginal, 96
principle of minimal, 94
relative, 99
Shannon, 88
Tsallis, 107

Environment, 253
constant, 181
model building, 273

Epistasis, see Epistatic interactions
Epistatic interactions, 181, 191
Equation

chemical kinetic, 201
continuity, 67
deterministic evolution, 185
diffusion, 60
Fokker–Planck, 67
Langevin, 63
master, 95
Newton, 66

Erdös–Rényi random graph, 4
Error catastrophe, 191, 195

prebiotic evolution, 202
Error threshold, 195
Escape

current, 68
Kramer’s, 69

Evolution
adaptive regime, 194
barrier distribution, 170
fitness barrier, 169
fundamental theorem, 183
generation, 180
long-term, 168
microevolution, 179
mutation, 182
neutral regime, 195
prebiotic, 201
quasispecies, 194
random energy model, 196
selection, 182
speciation, 181
stochastic, 182
time scales, 169
wandering regime, 195
without epistasis, 189

Evolution equations, 185
linear, 187
point mutations, 186

Evolutionary game, see Game theory
Excess degree distribution, 15
Excess entropy, 102
Exponent

critical, 152
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dynamical, 153
Lyapunov, 49

global, 49
maximal, 49

F
Fading memory, 256
Fast threshold modulation, 231
Ferroelectricity, 147
Ferromagnetism, 146
Fitness

average, 197
barrier, 168
individual vs. species, 183
Malthusian, 183
maximum, 168
ratio, 183
Wrightian, 183

Fitness landscape, 168, 183
Fujiyama, 189
sharp peak, 191

Fixpoint, 39
flow of information, 121
logistic map, 46

period 2, 47
stability, 46

Lorenz model, 53
stability, 40
Terman–Wang oscillator, 229
two coupled oscillators, 217

Flow
of information, 62, 117

stability, 122
Fokker–Planck equation, 67

escape current, 68
harmonic potential, 68
particle current, 67

Forest fire model, 157
lightning, 158

Fractal, 54
Free energy, 146
Frequency locking, 215
Friction, 50

damping term, 64
large damping, 70

Fujiyama landscape, 189
adaptation, 190

G
Galton-Watson process, 167
Game

Hawks and Doves, 207
Prisoner’s dilemma, 209

Game of life, 156

blinker, 156
block, 156
glider, 157
universal computing, 157

Game theory, 206
lattice, 210
Nash equilibrium, 207
payoff matrix, 208
strategy, 207
utility, 207
zero-sum, 207

Gaussian distribution, 68
Gene expression network, 110
Generating function, see Probability generating

function
Genetic algorithm, 115
Genetic preferences, 259
Genetics

beanbag, 181
combinatorial, 181

Genome, 180
genotype, 181
mutation, 182
phenotype, 181
size, 180

Genotype, 181
Giant connected

cluster, 16
component, 17

Global workspace, 247
Graph

clique, 6
clustering, 6
community, 6
diameter, 5
Laplacian, 12

normalized, 12
random, see Random graph
scale-free, 9, 30

construction, 31
robustness, 26

spectrum, 10
moments, 11

tree, 7
see also network, xiv

Green’s function, 10
Growth rate

autocatalytic, 203

H
Hamilton operator, 151
Hamming distance, 117, 186
Harmonic oscillator
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damped, 151
driven, 215

Hausdorff dimension, 54
of Sierpinski carpet, 55

Hawks and Doves game, 207
Hebbian learning, 254, 272
Hidden Markov process, 278
Hippocampus, 255
Homeostasis, see Homeostatic principles
Homeostatic principles

cognitive system, 245
Hopf bifurcation, 40, 74
Huepe–Aldana Network, 141
Hydrogen atom, 150
Hypercycle, 202, 203

prebiotic evolution, 205

I
Information

loss, 118
mutual, 95, 97
retention, 118

Information theory
basic concepts, 79

Inhibition
global, 234

Ising model, 153
deterministic evolution, 188
transfer matrix, 189

Isocline
van der Pol, 58

J
Jensen inequality, 98

K
KAM

theorem, 44
torus, 44

Kauffman network, 111
chaotic phase, 123
frozen phase, 123
K=1, 130
K=2, 132
K=N, 132
rigidity, 123

Kohonen network, 279
Kolmogorov complexity, 105
Kramer’s escape, 69
Kullback-Leibler divergence, 99
Kuramoto model, 217

drifting component, 220–221
locked component, 220–221

rhythmic applause, 222
time delays, 223

L
Lévy flight, 61
Landau theory, 145
Landau–Ginsburg model, 146
Landscape, see Fitness landscape
Langevin equation, 63

diffusion, 65
solution, 64

Laplace operator, 151
Law

large numbers, 83
Ohm, 67
power, 152
second, of thermodynamics, 87
semi-circle, 11
Wigner’s, 11

Learning
embedding problem, 256, 263
from mistakes, 254
generalization capability, 256
Hebbian, 254
meta, 250
online, 249
reinforcement, 254
runaway effect, 254, 272
supervised, 254
unsupervised, 253

LEGION network, 233
working principles, 235

Length scale, 151
Liénard variables, 57
Life

edge of chaos, 136
game of, see Game of life
origin, 201, 205

Limiting cycle, 39, 216
Linkage

boolean network, 112
loop, 129

K=1 network, 130
Liouville’s theorem, 52
Liquid–gas transition, 147
Living dynamical system, 244
Local optima, 196
Logistic map, 45

bifurcation, 47
chaos, 48
SIRS model, 238

Loop
absence, 21
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closed, 22
linkage, 128
network, 11

Lorenz model, 53
Lotka–Volterra equations, 267
Lyapunov exponent, 49

M
Magnetism, 147
Malthusian fitness, 183
Map

logistic, 45
Poincaré, 42

Markov
chain, 95
process, 95
property, 95

Markov assumption, 277, 278
Mass conservation, 201
Master equation, 95
Mathematical pendulum, 51
Matrix

adjacency, 10
mutation, 185
payoff, 208
transfer, 63, 189

Mean
component size, 23
connectivity, 112
cycle length, 135
number of cycles, 134
velocity, 64

Mean-field approximation, see Mean-field
theory

Mean-field theory
Bak–Sneppen model, 170
boolean network, 119
Kuramoto model, 219
scale-free evolving nets, 32

Memory, 253
dual functionality, 269
episodic, 255
forgetting, 256
long-term, 255
short-term, 255
storage capacity, 255
working, 255

Metalearning, 250
Microevolution, 179
Model

Lorenz, 53
Bak–Sneppen, 169
BTW, see Sandpile model

configurational, 14
dHAN, 269
forest fire, 157
Ising, 153
Kuramoto, 217
leaky integrator, 280
Newman–Watts, 29
random energy, 196
random neighbors, 170
sandpile, see Sandpile model
SIRS, 237
small-world network, 28
state space, 277
Watts–Strogatz, 29

Module
boolean network, 129

Molecular field approximation, see Mean-field
theory

Mutation
adaptive climbing, 197
matrix, 185
point, 186
rate, 182
time scale, 198

Mutual information, 95, 97

N
Nash equilibrium, 207, 210
Natural frequencies, 218
Network, see also graph

actors, 2, 6
assortative mixing, 7
autocatalytic, 202
bipartite, 2, 8
boolean, 109
communication, 2
correlation effects, 7
diameter, 5
diffusion, 61
Elman, see Elman network
evolving, 30
gene expression, 110, 135

yeast, 137
internet, 2
Kauffman, see Kauffman network
LEGION, 233
N–K , see Kauffman network
protein interaction, 3
reaction, 203
semantic, 269
social, 1
WWW, 2
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Neural network
recurrent, 256
sparse vs. distributed coding, 255
stochastic resonance, 72
synchronization, 233
time series analysis, 277
winners-take-all, 262

Neutral regime, 195
Newman–Watts model, 29
Newton’s law, 66
Noise

colored, 64
stochastic system, 66
white, 64

1/f noise, 154
Normalized overlap, 117

dynamics, 121
self-consistency condition, 122

O
Ohm’s law, 67
Online learning, 249
Open boundary conditions, 159
Opinion dynamics, 211
Orbit, 41

closed, 44
self-retracting, 127

Order parameter, 146
Fujiyama landscape, 190
Kuramoto model, 218

Origin of life, 205
Oscillator

coupled, 216
harmonic, see Harmonic oscillator
mathematical, 51
relaxation, see Relaxation oscillator
Terman–Wang, 229
van der Pol, 56

P
Payoff matrix, 208
Percolation

information, 118
of cliques, 17
threshold, 17
transition, 17

lattice, 124
Periodic driving, 70
Perturbation theory

secular, 56
Phase

active, 230
chaotic, 118–119, 123
critical, 119–120

frozen, 118–123
scale-free model, 126

lattice vs. random boolean network, 123
silent, 230
transition, see Phase transition

Phase diagram
bifurcation, 121
N-K model, 123
scale-free model, 127

Phase space, 41
contraction, 51, 53

Phase transition
continuous, 148
dynamical system, 120
first-order, 149
Kuramoto model, 222
Landau theory, 145
second-order, 145
sharp peak landscape, 193

Phenotype, 181
Poincaré map, 42
Point mutation, 182, 186
Poisson distribution, 8
Population, 180

generation, 180
reproduction, 182

Potential
double-well, 69
harmonic, 68

Power spectrum, 154
Prebiotic evolution, 201

RNA world, 202
Prediction task

impossible, 274, 279
lexical, 274
universal, 277, 279

Preferential
attachment, 31
connectivity, 30

Prisoner’s dilemma, 209
Probability

rewiring, 29
stochastic escape, 69

Probability distribution, 79
average, 80
Bayesian, 79
Bell curve, 81
conditional, 82
cumulative, 83
expectation value, 80
exponential, 80
Gaussian, 81
generating function, 81
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joint, 82
marginal, 96
mean, 80
median, 80
normal, 81
PDF, 79
standard deviation, 80, 81
variance, 80

Probability generating function, 19, 162
degree distribution, 19

of neighbors, 19
embedding clusters, 23
examples, 20
graph components, 22
Poisson distribution, 20
properties, 19

Punctuated equilibrium, 174, 195, 207

Q
Quasispecies, 194, 201

prebiotic, 201
Quenched

boolean network, 115
dynamics, 127

R
Random

attachment, 34
neighbor model, 170
walk, 60

closed, 133
configuration space, 132

Random branching
binary, 162
decomposition, 163
sandpile, 161
theory, 161

Random graph, 4
Erdös–Rényi, 4
generalized, 14

clustering coefficient, 18
construction, 14

properties, 8
robustness, 24

Recognition, 270
Red queen phenomenon, 206
Regime

adaptive, 194
neutral, 195
relaxational, 230
wandering, 195, 200

Relaxation oscillator
synchronization, 231

Terman–Wang, 229
van der Pol, 58

Relaxation time, 153
distribution, 165
scale-invariant distribution, 154

Relaxational regime, 230
Reproduction

asexual, 179
Reservoir

dynamics, 267
function, 267
variable, 266

RFeedom of action, 261
Rhythmic applause, 222
RNA world, 202
Robustness

random networks, 24
scale-free graphs, 26

Rotating frame of reference, 220

S
Sand toppling, 159
Sandpile model, 159

boundary conditions, 159
local conservation of sand, 159
real-world sandpile, 160
self-organized criticality, 159
updating rule, 159

Scale invariance
power law, 152

Scale-free
boolean network, 125
degree distribution, 34
distribution, 125
graph, 30
model

phases, 126
Schrödinger equation, 150
Self-consistency condition

avalanche size distribution, 164
graph component sizes, 22
Kuramoto model, 221
mass conservation, 203
normalized overlap, 122
scale-free boolean net, 126
spectral density, 11

Self-consistency equation, see Self-consistency
condition

Self-organized criticality, 153
vs. tuned criticality, 166
branching theory, 161
conserving dynamics, 161
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Self-retracting
orbit, 127
path approximation, 11

Self-similar
correlation function, 152

Semantic network, 269
Semi-circle law, 11
Serial updating, 115
Shannon entropy, 88, 89

predictability, 88
Sharp peak landscape, 191

linear chain model, 192
stationary solution, 193

Sierpinski carpet, 55
Sigmoid function, 278
Silent phase, 230
Simple recurrent network, see Elman network
SIRS model, 237

coupled, 238
logistic map, 238
on a network, 36
recursion relation, 238

Small-world
effect, 2
graph, 28

Sparse coding, 255
Speciation, 181
Species

fitness, 183
quasispecies, 194

Spikes, 248
Spontaneous symmetry breaking, 147
Stability

trivial fixpoint, 126
State space

boolean network, 111
population, 180
undersampling, 132

State space model, 277
Stationary distribution

Bak–Sneppen model, 171
scale-free evolving graph, 34

Stationary solution
density distribution, 68
Hawks and Doves, 208
information flow, 63
Kuramoto model, 220
prebiotic evolution, 204
sharp peak landscape, 193

Steady-state solution, see Stationary solution
Stochastic

evolution, 182

system, 66
variable, 64

Stochastic escape, 66
vs. adaptive climbing, 199
evolution, 195
probability, 199
relevance for evolution, 200
typical fitness, 200

Stochastic resonance, 66, 69
ice ages, 71
neural network, 72
resonance condition, 71
switching times, 70

Stochastic variable, 79
continuous, 80
discrete, 80

Strange attractor, 54
Superconductivity, 147
Survival parameters, 259
Susceptibility, 149
Synapse, see Synaptic
Synaptic

competition, 272
plasticity, 270
strength, 250, 267

Synchronization
aggregate averaging, 225
applause, 222
causal signaling, 229
driven oscillator, 216
in phase vs. out of phase, 239
Kuramoto model, 220
object recognition, 233
relaxation oscillator, 231
time delays, 223

Synchronous updating, 115, 248

T
Temperature

Curie, 146
inverse of selection, 183, 186
transition, 146

Temporal correlation theory, 233
Temporal prediction task, see Prediction task
Temporal XOR, 276
Terman–Wang oscillator, 229

active phase, 230
silent phase, 230
spiking state, 231

Terman-Wang oscillator
excitable state, 231

Theorem
Bayes, 82
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central limiting, 84
fundamental of natural selection, 183
KAM, 44
source coding, 90

Thermodynamic limit, 5
Time

adaptive climbing, 198
encoding, 139
evolution, see Dynamics
horizon, 277
relaxation, 153
successful mutation, 198

Time delays
dynamical system, 73
Kuramoto model, 223
synchronization, 223

Time scale separation, 231, 266, 268
SIRS model, 239
van der Pol oscillator, 58

Time series, 84
self averaging, 86
symbolization, 85
XOR, 86

Time series analysis
Markov assumption, 277
neural network, 277
state space model, 277
see also prediction task, xiv

Trajectory, see Orbit
Transfer matrix

1D Ising model, 190
diffusion of information, 63

Transient state dynamics
cognitive system, 246
stochastic resonance, 70

Transport, 59
ballistic, 60
diffusive, 60

Trtheorem
Liouville, 52

Tsallis entropy, 107
Turing machine, 104

U
Universality

cognitive systems, 244
critical systems, 152
temporal prediction task, 277

Updating
asynchronous, 248
serial, 115
synchronous, 115, 248

V
Van der Pol oscillator, 56

Liénard variables, 57
secular perturbation theory, 56

Variable
aggregate, 225
boolean, 109, 111, 111
fast and slow, 250, 268
Liénard, 57
rotating frame, 220

Vertex
degree, 4
removal, 24

W
Walk

adaptive, 196, 200
random, 60

Wandering regime, 195, 200
Watts–Strogatz model, 29
Wigner’s law, 11
Winners-take-all network, 262, 267
Winning coalition, 247
Working point optimization, 252, 270
Wrightian fitness, 183

X
XOR, 276

Y
Yeast cell cycle, 136, 138
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