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Evolvability
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Abstract. Living organisms function in accordance with complex mechanisms that operate in different
ways depending on conditions. Darwin’s theory of evolution suggests that such mechanisms evolved
through variation guided by natural selection. However, there has existed no theory that would explain
quantitatively which mechanisms can so evolve in realistic population sizes within realistic time
periods, and which are too complex. In this article, we suggest such a theory. We treat Darwinian
evolution as a form of computational learning from examples in which the course of learning is
influenced only by the aggregate fitness of the hypotheses on the examples, and not otherwise by
specific examples. We formulate a notion of evolvability that distinguishes function classes that are
evolvable with polynomially bounded resources from those that are not. We show that in a single
stage of evolution monotone Boolean conjunctions and disjunctions are evolvable over the uniform
distribution, while Boolean parity functions are not. We suggest that the mechanism that underlies
biological evolution overall is “evolvable target pursuit”, which consists of a series of evolutionary
stages, each one inexorably pursuing an evolvable target in the technical sense suggested above, each
such target being rendered evolvable by the serendipitous combination of the environment and the
outcomes of previous evolutionary stages.
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3:2 LESLIE G. VALIANT

1. Introduction

We address the problem of quantifying how complex mechanisms, such as those
found in living cells, can evolve into existence without any need for unlikely events
to occur. If evolution merely performed a random search, it would require exponen-
tial time, much too long to explain the complexity of existing biological structures.
Darwin suggested selection as the critical controlling principle beyond variation.
He also observed that the supposition that the eye could evolve would be “ · · ·
absurd in the highest possible degree” were it not for the fact that eyes “vary ever so
slightly” and might therefore evolve over time by selection [Darwin 1859]. In other
words, a necessary condition for evolution to a specific target is the existence of an
evolutionary path towards it consisting of small steps. But what are the conditions
that hold in biology that are sufficient for such paths to be taken as routinely and
efficiently as they apparently are?

This article describes a quantitative theory of the possibilities and limitations
of what selection can achieve in speeding up the process of acquiring complex
mechanisms beyond mere exhaustive search. In particular, we show that, in a defined
quantitative sense, selection for a given beneficial behavior can provably support
the evolution of certain specific classes of mechanisms, and provably not support
that of certain other classes.

We approach this problem by viewing mechanisms from the viewpoint of
the mathematical functions they realize. In particular the subject matter of the
field of computational learning theory [Valiant 1984; Pitt and Valiant 1988;
Blumer et al. 1989; Kearns and Valiant 1994; Kearns and Vazirani 1994] can
be viewed as that of delineating limits on the complexity of functions that can
be acquired with feasible resources without an explicit designer or program-
mer. A primary instance studied there is the acquisition of a recognition algo-
rithm for a function given just positive and negative examples of it. The quan-
titative study of computational learning over the last two decades has shown
that certain classes of recognition mechanisms can indeed be learned in a feasi-
ble amount of time, while others encounter apparently intractable computational
impediments.

Our goal here is to give a quantitative theory of the evolution of mechanisms.
What we formalize is concerned with four basic notions. First, since the biology
of cells consists of thousands of proteins and operates with circuits with complex
mechanisms, we seek mechanisms that can evaluate many-argument functions. This
permits the behavior of circuits to vary in complex ways depending on the particular
combination of values taken by a large number of input parameters. For example,
such a function may determine the expression level of a protein in terms of the
expression levels of all the other proteins. Second, any particular many-argument
function has a measure of performance that is determined by the values of the
function on inputs from a probability distribution over the conditions that arise.
By applying the function to a variety of conditions, each one corresponding to an
experience, the organism will enjoy a cumulative expected benefit that is determined
by this performance. Third, for any function only a limited number of variants can
be explored per generation, whether through mutations or recombination, since the
organisms that can exist at any time have a limited population. Fourth, there is the
requirement that mechanisms with significant improvements in performance evolve
in a limited number of generations.

Journal of the ACM, Vol. 56, No. 1, Article 3, Publication date: January 2009.



Evolvability 3:3

We show that our notion of evolvability is a restricted case of PAC learnability.
This offers a unifying framework for the fields of evolution and cognition. The
behavior of a biological organism is clearly affected both by the results of evolution
and those of learning by the individual. Distinguishing between the effects of nature
and nurture on behavior has proved problematic, and it will perhaps help to have a
unifying viewpoint on them.

While evolvability as we define it is a form of learnability, it is a constrained form.
In PAC learning [Valiant 1984], an update to a hypothesis may depend arbitrarily, as
permitted by polynomial time computation, on the particular examples presented, on
the values computed on them by the hypothesis, and on the values of the functions
to be learned on those examples. In the more restricted Statistical Query (SQ)
model of Kearns [1998] the updates can depend only on the result of statistical
queries on the distribution of examples. However, these queries can ask about the
percentage of examples that have certain syntactic properties beside being positive
or negative, such as the number of bits that are ones in their description, and hence
the course of learning may depend explicitly on these syntactic descriptions. In
evolution, we assume that the updates depend only on the aggregate performance
of the competing hypotheses on a distribution of examples or experiences, and in
no additional way on the syntactic descriptions of the examples. This restriction
reflects the idea that the relationship between the genotype and phenotype may
be extremely complicated, and the evolution algorithm does not understand it. We
shall observe that the function classes that are evolvable, in our sense, form a subset
of those that are SQ learnable.

As far as the evolvability of specific classes of functions, we have both positive
and negative results. On the positive side we show that the classes of monotone
Boolean conjunctions and disjunctions are evolvable over the uniform distribu-
tion of inputs for the most natural representation of these functions. On the neg-
ative side, we observe that the class of Boolean parity functions is not evolvable
over the uniform distribution, as it is not SQ learnable. Since the latter class is
known to be learnable, we can conclude that evolvability is more constrained than
learnability.

Our intention is to leave little doubt that functions in classes that are provably
evolvable in the defined sense, do correspond to mechanisms that can logically
evolve into existence over realistic time periods and within realistic populations,
without any need for combinatorially unlikely events to occur. Previous quantitative
theories of evolution had aims other than that of quantifying the complexity of the
mechanisms that evolved. The major classical thrust has been the analysis of the
dynamics of populations [Fisher 1930; Wright 1968; Roff 1997; Bürger 2000].
The immediate goal of these analyses has been the prediction of the outcome
of competition among different populations. Game theory has been one of the
approaches followed [Maynard-Smith 1982]. A more recent development is the
study of evolutionary algorithms [Bäck et al. 1997; Wegener 2001], a field in which
the goal is to develop good computer algorithms inspired by evolution, usually
for optimization, but not necessarily those that model biological evolution. For
example, these algorithms may choose mutations depending on the current inputs
or experiences, may act on exponentially small increases in performance, and may
be forced to start from a fixed configuration. We note also that the term evolvability
has been used in a further different sense, that of measuring the intrinsic capacity
of genomes to produce variants [Wagner and Altenberg 1996].
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3:4 LESLIE G. VALIANT

We observe that these and other previous discussions of evolution here em-
phasized competition and survival. Such discussions have not yielded quantitative
explanations of which mechanisms can evolve using only feasible resources, and
which cannot. Our purpose in introducing our target-oriented formulation is to
address this specific question.

2. Many-Argument Functions

The structures or circuits that are the constituents of living cells have to respond
appropriately to wide variations in the internal and external conditions. We shall
represent the conditions as the values of a number of variables x1, . . . , xn , each
of which may correspond, for example, to the output of some previously existing
circuit. The responses that are desirable for an organism under the various com-
binations of values of the variables x1, . . . , xn we view as the values of an ideal
function f (x1, . . . , xn). This f will have a low value in circumstances when such
a low value is the most beneficial, and a high value in those other circumstances
when a high value is the most beneficial. It will be beneficial to evolve a circuit
that behaves as closely as possible to this f . For simplicity, we shall consider the
variables xi and the functions f to take just two possible values, a low value of −1,
and a high value of +1. One can, for example, think of xi having value +1 or −1
according to whether the ith protein is being expressed or not, and f having value
+1 or −1 according to whether a further protein is being expressed. Then, f is an
ideal function if for each combination of the conditions represented by the xi the
value of f is the best one for the organism.

We shall consider in this article two particular function classes. The first, the
parity functions, will be shown in this article not to be evolvable. The second,
conjunctions, will be shown to be evolvable in the monotone case over the uniform
distribution.

A parity function is odd or even. An odd (even) parity function f over x1, . . . , xn
has value +1 if and only if an odd (even) number of the variables in a subset S of the
variables have value +1. For example, an odd parity function over {x1, x2, x3, x4}
with S = {x1, x3, x4} has value +1 if x1 = x2 = x3 = x4 = +1, and value −1 if
x1 = x2 = x3 = +1 and x4 = −1.

We shall show that for evolving arbitrary parity functions over n variables, that is
for an arbitrary unknown subset S, either the number of generations or the population
size of the generations would need to be exponentially large in terms of n.

In contrast, we shall also show that there are classes with similarly substantial
structure that are evolvable in a strong sense. An example of such a class is that
of monotone conjunctions, defined as conjunctions of a subset S of the literals
{x1, x2, . . . , xn}. An example of a conjunction is the function that is true if and only
if x1 = +1, and x4 = +1. We abbreviate this function as x1x4.

We denote by Xn the set of all 2n combinations of values that the variables
x1, . . . , xn can take. For both of the above defined function classes, the set S is
unknown to the evolution algorithm and the challenge for it is to approximate it
from among the more than polynomially many possibilities. We define Dn to be a
probability distribution over Xn that describes the relative frequency with which the
various combinations of variable values for x1, . . . , xn occur in the context of the
organism. Evolution algorithms that work for all distributions would be particularly
compelling.

Journal of the ACM, Vol. 56, No. 1, Article 3, Publication date: January 2009.



Evolvability 3:5

Definition 2.1. The performance of function r : Xn → {−1, 1} with respect to
ideal function f : Xn → {−1, 1} for probability distribution Dn over Xn is

Perf f (r, Dn) =
∑

x∈Xn

f (x)r (x)Dn(x).

The performance is simply a measure of the correlation between the ideal function
f and a hypothesis r we have at hand. The value will always be a real number in
the range [−1, 1]. It will have value 1 if f is identical to r on points with nonzero
probability in Dn . It will have value −1 if there is perfect anti-correlation on these
points.

The interpretation is that every time the organism has an experience in the form
of a set of values x ∈ Xn it will undergo a benefit amounting to +1 if its circuit r
agrees with the ideal f on that x , or a penalty −1 if r disagrees. Over a sequence
of life experiences (i.e., different points in Xn) the total of all the benefits and
penalties will be accumulated. Organisms or groups for which this total is high
will be selected preferentially to survive over organisms or groups with lower such
totals.

The performance Perff (r, Dn) may be viewed as a fitness landscape over the
genomes r . Our analysis discusses the viability of this landscape for evolution in
terms of the nature of the ideal function f and the distribution Dn of inputs for f .
Instead of speculating on the nature of fitness landscapes that may be encountered
in the world, we instead discuss which ideal functions give rise to landscapes that
allow them to evolve.

An organism or group will be able to test the performance of a function r by
sampling a limited set Y ⊆ Xn of size s(n) of inputs or experiences from Dn , where,
for simplicity, we assume that the Y are chosen independently for the various r .
These experiences may be thought of as corresponding to one or more per organism,
so that s(n) certainly upper bounds the population size.

Definition 2.2. For a positive integer s, ideal function f : Xn → {−1, 1} and
probability distribution Dn over Xn the empirical performance Perff (r, Dn, s) of
function r : Xn → {−1, 1} is a random variable that makes s selections indepen-
dently with replacement according to Dn and for the multiset Y so obtained takes
value

s−1
∑

x∈Y

f (x)r (x).

In our basic definition of evolvability, we insist that evolution be able to proceed
from any starting point. Otherwise, if some reinitialization process were permitted,
then proceeding to the reinitialized state from another state might incur an arbitrarily
large decrease in performance.

The evolution algorithm for monotone conjunctions that we describe in detail in
Section 5 behaves as follows. The learning of a target function x1x4 will be achieved
by an algorithm that maintains a conjunction of a number of literals. Clearly, the
aim is to evolve the function x1x4, which has performance +1 since it is identical
with the target, and is the only conjunction with that performance. The mutations
will consist of adding or deleting a single literal for the current conjunction, or
swapping one literal for another. Since there are then about n2 possible mutations
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3:6 LESLIE G. VALIANT

at each step it is feasible to explore the space of all mutations with a population of
(polynomial) size, namely n2.

3. Definition of Evolvability

Given the existence of an ideal function f the question we ask is whether it is
possible to evolve a circuit for a function r that closely approximates f . Roughly,
we want to say that a class C of ideal functions f is evolvable if any f in the
class C satisfies two conditions. (i) From any starting function r0 the sequence
of functions r0 ⇒ r1 ⇒ r2 ⇒ r3 ⇒ · · · will be such that ri will follow
from ri−1 as a result of a single step of mutation and selection in a moderate
size population, and (ii) after a moderate number i of steps ri will have a per-
formance value significantly higher than the performance of r0, so that it is de-
tectable after a moderate number of experiences. The conditions will be sufficient
for evolution to start from any function and progress towards f , predictably and
inexorably.

While the ideal function may be viewed as an abstract mathematical function,
the hypothesis r needs to be represented concretely in the organism and should be
viewed as a representation of a function. We generally consider C to be a class
of ideal functions and R a class of representations of functions from which the
organism will choose an r to approximate the f from C . We assume that the
representation R is polynomial evaluatable in the sense that there is a polynomial
u(n) such that given the description of an r in R and an input x from Xn , the
value of r (x) can be computed in u(|r |) steps. This reflects the assumption that the
processes of biology can be simulated in polynomial time on a computer. (We note,
however, that, in this article, this assumption does not arise anywhere except when
relating the evolvable class to learnable classes for which corresponding conditions
are imposed.) For brevity, and where it introduces no confusion, we shall denote by
r both the representation as well as the function that that representation computes.
We denote by Cn, Rn , and Dn , the restrictions of C, R, and D to n variables, but
sometimes omit these distinctions where the meaning is clear. Also, we shall denote
by ε the error parameter of the evolution, which describes how close to optimality
the performance of the evolved representation has to be. We shall be prepared to
expend resources that are polynomial in n, the number of arguments of the ideal
function, and also in 1/ε. Hence, our resource bounds will be polynomial functions,
such as p(n, 1/ε) in the definition below. (To be more precise, n here should be
interpreted as the maximum of the number of arguments and the size of the smallest
representation of an ideal target function, but we will, for simplicity assume here
that the representations needed are of size polynomial in the number of variables,
which removes the need for this distinction. However, we will imply in all our
polynomial bounds in this article where n occurs this more precise meaning that
also applies when the number of variables grows more slowly.)

Definition 3.1. For a polynomial p(· , ·) and a representation class R a p-
neighborhood N on R is a pair M1, M2 of randomized polynomial time Turing
machines such that on input the numbers n (in unary) and �1/ε� and a representation
r ∈ Rn act as follows: M1 outputs all the members of a set NeighN (r, ε) ⊆ Rn ,
that contains r and may depend on random coin tosses of M1, and has size at most
p(n, 1/ε). If M2 is then run on this output of M1, it in turn outputs one member
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Evolvability 3:7

of NeighN (r, ε), with member r1 being output with a probability PrN (r, r1) ≥
1/p(n, 1/ε).

The interpretation here is that for each genome the number of variants, determined
by M1, that can be searched effectively is not unlimited, because the population
at any time is not unlimited, but is polynomial bounded. But a significant num-
ber of experiences with each variant, generated by M2, must be available so that
differences in performance can be detected reliably. One possible implementation,
clearly, is to regard R as the set of possible genomes, restrict mutations to a fixed
constant number of base pairs, and regard the genome length as a polynomial in
the relevant n. We consider exponentially many such variants to be impractical,
while modest polynomial bounds such as n or n2 are feasible. As in other areas
of algorithmic analysis natural polynomially bounded processes usually have rea-
sonably modest polynomial bounds, and hence such results are meaningful [Garey
and Johnson 1979; Papadimitriou 1994]. The theory, as presented here, aims to
distinguish between polynomial and exponential resources, insisting as it does that
population sizes, numbers of generations, and numbers of computational steps all
have to be upper bounded by a polynomial in the number of variables on which a
circuit depends, and in the inverse of the error. Clearly, using more careful analysis
finer distinctions can also be made. We note that estimates of actual mutation rates
in various organisms are available [Drake et al. 1998; Kimura 1968; Kumar and
Subramanian 2002].

Definition 3.2. For error parameter ε, positive integers n and s, an ideal
function f ∈ Cn , a representation class R with p(n, 1/ε)-neighborhood N on
R, a distribution D, a representation r ∈ Rn and a real number t, the muta-
tor Mu( f, p(n, 1/ε), R, N , D, s, r, t) is a random variable that on input r ∈ Rn
takes a value r1 ∈ Rn determined as follows: For each r1 ∈ NeighN (r, ε) it
first computes an empirical value of v(r1) = Perff (r1, Dn, s). Let Bene be the
set {r1 | v(r1) ≥ v(r ) + t} and Neut be the set difference {r1 | v(r1) ≥ v(r ) − t} −
Bene. Then

(i) if Bene 
= φ then output r1 ∈ Bene with probability

PrN (r, r1)/
∑

r1∈Bene

PrN (r, r1)

(ii) if Bene = φ then output an r1 ∈ Neut, the probability of a specific r1 being

PrN (r, r1)/
∑

r1∈Neut

PrN (r, r1).

In this definition, a distinction is made between beneficial and neutral mutations
as revealed by a set of s experiences. In the former, the empirical performance after
the mutation exceeds that of the current representation r by an additive tolerance
of at least t , a quantity which will, in general, be large enough, in particular some
inverse polynomial, that it can be reliably distinguished from a zero increase in per-
formance. In neutral mutations, no significant increase in performance is expected,
but it is expected that the performance is not worse than that of the current r by
more than t . If some beneficial mutations are available, one is chosen in accordance
with the relative probabilities of their generation by N as allowed by machine M2

in Definition 3.1. If none is available, then one of the neutral mutations is taken
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3:8 LESLIE G. VALIANT

in accordance with the relative probabilities of their generation by N . Since in
Definition 3.1, we insist that r ∈ NeighN (r, ε), r will always be empirically neu-
tral, by definition, and hence Neut will be nonempty.

Definition 3.3. For a mutator Mu( f, p(n, 1/ε), R, N , D, s, r, t) a t-evolution
step on input r1 ∈ Rn is the random variable r2 = Mu( f, p(n, 1/ε), R, N , D, s, r1,
t). We then say r1 → r2 or r2 ← Evolve( f, p(n, 1/ε), R, N , Dn, s, r1, t).

We say that polynomials tl(x, y) and tu(x, y) are polynomially related if for some
η > 1 for all x, y (0 < x, y < 1) (tu(x, y))η ≤ tl(x, y) ≤ tu(x, y). We now define
an evolution sequence as a sequence of t-evolution steps where the t at each step
is bounded between two polynomially related quantities t�(1/n, ε), tu(1/n, ε) and
computable in polynomial time by a Turing machine T that takes r ∈ R, n and ε
as inputs.

Definition 3.4. For a mutator Mu( f, p(n, 1/ε), R, N, D, s, r, t) a (t�, tu)-
evolution sequence for r1 ∈ Rn is a random variable that takes as values sequences
r1, r2, r3, . . . such that for all i ri ← Evolve( f, p(n, 1/ε), R, N , D, s, ri−1, ti ),
where t�(1/n, ε) ≤ ti ≤ tu(1/n, ε), tl and tu are polynomially related polynomi-
als, and ti is the output of a TM T on input ri−1, n and ε.

We shall find that if we want to evolve to performance very close to one, say
1 − ε, we shall need numbers of experiences s or numbers of generations g that
grow inversely with ε, and tolerances t that diminish with ε. We therefore regard
these as functions of n and ε, and denote them by s(n, 1/ε), g(n, 1/ε), tl(1/n, ε)
and tu(1/n, ε).

Definition 3.5. For polynomials p(n, 1/ε), s(n, 1/ε), t�(1/n, ε) and tu(1/n, ε),
a representation class R and p(n, 1/ε)-neighborhood N on R, the class C is
(t�, tu)-evolvable by (p(n, 1/ε), R, N, s(n, 1/ε)) over distribution D if there
is a polynomial g(n, 1/ε) and a Turing machine T , which computes a tol-
erance bounded between tl and tu, such that for every positive integer n,
every f ∈ Cn , every ε > 0, and every r0 ∈ Rn it is the case that
with probability greater than 1 − ε, a (tl, tu)-evolution sequence r0, r1, r2, . . . ,
where ri ← Evolve( f, p(n, 1/ε), R, N , Dn, s(n, 1/ε), ri−1, T (ri−1, n, ε)), will
have Perf f (rg(n,1/ε), Dn) > 1 − ε.

The polynomial g(n, 1/ε), the generation polynomial, upper bounds the number
of generations needed for the evolution process.

Definition 3.6. A class C is evolvable by (p(n, 1/ε), R, N , s(n, 1/ε)) over D
iff for some pair of polynomially related polynomials t�, tu, C is (tl, tu)-evolvable
by (p(n, 1/ε), R, N , s(n, 1/ε)) over D.

Definition 3.7. A class C is evolvable by R over D iff for some polynomials
p(n, 1/ε) and s(n, 1/ε), and some p(n, 1/ε)-neighborhood N on R, C is evolvable
by (p(n, 1/ε), R, N , s(n, 1/ε)) over D.

Definition 3.8. A class C is evolvable over D if for some R it is evolvable by
R over D.

Definition 3.9. A class C is evolvable if it is evolvable over all D.
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Evolvability 3:9

Our definition of evolvability is closely related to that of learnability [Valiant
1984; Kearns and Vazirani 1994], but includes the extra ingredients that each step
of learning (i) chooses from a polynomial size set of hypotheses, (ii) tolerates
at most a small decrease in performance, and further (iii) the choice of the next
hypothesis from among the candidate hypotheses is made on the basis of their
aggregate performance on inputs, and not differentially according to the values of
the various inputs.

PROPOSITION 3.10. If C is evolvable by R over D, then C is learnable by R over
D. In particular, if C is evolvable by R then C is learnable by R.

PROOF. If C is evolvable over D, then, by definition, for some polyno-
mials p(n, 1/ε), s(n, 1/ε), g(n, 1/ε), t�(1/n, ε) and tu(1/n, ε), some represen-
tation R and some p(n, 1/ε)-neighborhood N on R, C is (t�, tu)-evolvable
by (p(n, 1/ε), R, N , s(n, 1/ε)) over distribution D with generation polynomial
g(n, 1/ε). The main observation here is that we can replicate this evolution algo-
rithm exactly in terms of the PAC learning framework. At each stage, the evolution
algorithm takes fixed size samples of s(n, 1/ε) labeled examples from the distribu-
tion, computes for its current hypothesis the empirical performance, and from that
generates the next hypothesis in a polynomially bounded fashion. But computing
this performance is equivalent to computing the fraction of examples on which the
hypothesis predicts correctly. Hence, the access required to examples is that of ran-
dom labeled examples from D, and every step is a polynomial-time computational
process. All this is permitted within the PAC model. Also the final hypothesis of the
evolution model satisfies the requirements of the learning model since it ensures
that the performance is at least 1 − ε, and hence accurate on at least 1 − ε/2 of
D.

We can strengthen the above statement by observing that evolvability implies
learnability in the more restricted sense of statistical queries defined by Kearns
[1998]. In that model oracles provide not individual examples but estimates, to
within arbitrary inverse polynomial additive error, of the fraction of examples that
satisfy polynomially evaluatable properties. For simulating an evolution algorithm
we need to be able to simulate the evaluation of Bene, or in other words for pairs
r, r1 the probability that the empirical performances for samples of a certain size s
give v(r1) ≥ v(r ) + t . This can be done by asking the SQ oracle to estimate the
probabilities of the four events that: (r = r1 = f ), (r = f, r, 
= f ), (r 
= f, r1 =
f ) and (r 
= f, r1 
= f ). These need to be simulated only to sufficiently small
inverse polynomial accuracy

PROPOSITION 3.11. If C is evolvable by R over D, then it is efficiently learnable
from statistical queries using R over D.

Evolvability for all D is a very strong and desirable notion. As mentioned previ-
ously, it guarantees evolution independent of any assumptions about the distribution.
It also means that evolution can continue even if the D changes. Of course, a change
in D can cause a reduction in the value of Perf for any one r , and hence may set
back the progress of evolution. However, the process of finding improvements with
respect to whatever the current D is will continue. It remains an open problem
as to whether such distribution-free evolution is possible for a significant class of
functions.
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Note also that the representation class R may represent a class of functions that
differs from C . For example, an R richer than C may be helpful. Alternatively, a
weaker class may still produce good enough approximations and may have better
properties for evolution. In general, if we wish to identify or emphasize the class
R that supports an evolution algorithm, we say that C is evolvable by R for D, or C
is evolvable by R.

The purpose of the main definition above of evolvability is to capture the notion
of evolution towards a target under stable conditions. In biological evolution, other
phenomena are involved also, and, we believe, many of these can be discussed in the
language of our formalism by appropriate variants. One restriction is evolvability
with initialization. In that case, in Definition 3.5, instead of requiring convergence
from any starting point r0 ∈ Rn , we require only that there is convergence from one
fixed starting point r0 for all targets f ∈ Cn . The more general definition given is
more robust, allowing for successive phases of evolution, each one with a different
target ideal function, for example. The evolved representation for one phase can then
serve as the starting representation for the next, without a decrease in performance
at any step. In evolution with initialization, the steps of going from the end of one
phase to a reinitialized new state may suffer an arbitrary performance decrease. In
our definition of evolvability, we seek to avoid allowing any mechanism that would
provide for such initialization by a back door. We therefore insist that the tolerance
be bounded between two polynomially related functions. Allowing the tolerance
to be arbitrarily large would allow initialization in one step via an arbitrarily large
drop in performance.

Another variation is variable population evolution. In this, the sample size s
may vary. In particular, if it is made small then random variations in the empirical
performance may make a low performance mutation appear as neutral or even ben-
eficial, and be adopted. This permits reinitializations, for example, for a subsequent
phase of evolution with initialization. In biology evolution in small populations is
believed to play a special role.

A further variant is evolvability with optimization. Here, we insist that, in
Definition 3.2, the representation r1 selected is any one with empirical performance
within tolerance t of the best empirical performance in NeighN (r ). However, it is
easy to see that this variant is no more powerful than the main definition. One can
simulate the search for the best representation, as required in one step of the opti-
mized evolution, in no more than 6/t basic steps of looking for a representation with
an empirical additive improvement of at least t/2, each step using a new sample.
(Note that the actual performance can increase cumulatively by at most 2. Using the
Hoeffding Bound (Fact 2) one can show that the cumulative empirical performance
increase on the different samples can be limited to 3 with overwhelming probabil-
ity.) For this simulation, we change the representation to i · r M · r P , where i ≤ 6/t
is an integer denoting which basic step we are in, r M ∈ R is the representation that
generates the mutations (using the M1 of Definition 3.1) for each of the up to 6/t
basic steps, and r P ∈ R is the one with best performance found so far. (In other
words, r P is the function this representation is computing, but the representation
also has a memory of r M from which it can generate new mutations in R, that may
not be generatable from r P alone.) After i = 6/t basic steps, the final r P is adopted
as the starting r M and r P of the next step of the optimized evolution. Note that
the constructed representation in this reduction is a redundant representation in the
sense that there are many representations that correspond to the same function r P .
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It illustrates the power of storing history, namely RM , in addition to the active part,
R P .

PROPOSITION 3.12. If C is evolvable with optimization over D, then C is evolv-
able over D. If C is evolvable with initialization and optimization over D, then C is
evolvable with initialization over D.

A simpler variant is that of fixed-tolerance evolvability, obtained if the bounds
tl, tu on the tolerance are the same.

We note that the aspect of evolution that is outside the control of the evolution
algorithm itself is the population size. Thus, evolvability guarantees inexorable
convergence only if the population is appropriate. Our algorithms require only that
the population, as represented by s, be large enough. The variable population variant
defined earlier permits schedules of varying population sizes.

4. Limits to Evolvability

The obvious question arises as to whether the converse of Proposition 3.1 holds: does
learnability imply evolvability? Our next observation answers this in the negative,
saying as it does that for a certain function class there is a distribution that defeats
all combinations of representations and neighborhoods.

We define Linn to be the set of odd parity functions f (x1, . . . , xn) over {−1, 1}n .
Each such f corresponds to some subset of the variables xi[1], . . . , xi[k] ∈
{x1, . . . , xn}. The function f has value 1 if and only if an odd number of the
variables {xi[1], . . . , xi[k]} have value 1. Clearly, there are 2n functions in Linn . We
define U to be the uniform distribution over {−1, 1}n . We note that the functions
in Lin are easy to compute, and further the class is known to be learnable not only
for U but for all distributions [Fischer and Simon 1992; Helmbold et al. 1992].

PROPOSITION 4.1. Lin is not evolvable for U by any representation R.

PROOF. Kearns [1998] shows that Lin is not efficiently learnable from statistical
queries over U using any representation. The result then follows from Proposition
3.2 above.

The class Lin may appear to be biologically unnatural. That is exactly the predic-
tion of our theory, which asserts that evolution cannot be based on the evolvability
of such a class.

An important class of functions that is known to be learnable is that of linear
halfspaces {a.x ≤ b | a ∈ Rn, b ∈ R} in n-dimensional space Rn . This class is
learnable for all distributions by the natural representation of linear halfspaces if
the coefficients a, b are represented as rational numbers with n digits of accuracy,
by virtue of the existence of polynomial time algorithms for linear programming
[Blumer et al. 1989]. However, if both the class and its representation is restricted
to {0,1} coefficients, then we have the following.

PROPOSITION 4.2. If C is the class of Boolean Threshold Functions {a.x ≤
b | a ∈ {0, 1}n, b ∈ R} in Rn and R is the given representation of it, then C is not
evolvable by R, unless NP = RP.

PROOF. In Pitt and Valiant [1988], it is shown that this class is not learn-
able by its natural representation unless NP = RP. (The proof there shows that an
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NP-complete problem, integer programming, can be mapped to instances of learn-
ing Boolean threshold functions for a certain distribution to accuracy better than
1/n.) The result follows from Proposition 3.1 above.

There appear to be at least four impediments that can be identified to evolv-
ability in our sense, the first three of which derive from general impediments to
learnability, while the last is particular to evolvability: (i) A purely information
theoretic impediment [Ehrenfeucht et al. 1989]: the complexity of the mecha-
nism that is to evolve exceeds the number of experiences, (ii) A representational
limit such as Proposition 4.2 above, where learnability by a fixed representa-
tion would imply solving a computational problem that is believed to be hard,
(iii) An intrinsic complexity limitation [Kearns and Valiant 1994]: the function
class is so extensive that learning it by any representation would imply an effi-
cient algorithm for a problem believed to be hard to compute, (iv) Limits such as
Proposition 4.1 above, that show that for information theoretic reasons evolvability
cannot proceed because no empirical test of a polynomial number of hypothe-
ses in a neighborhood can guarantee sufficient convergence in performance. Note
that impediments (i) and (iv) are absolute, requiring no unproven computational
assumptions.

5. Some Provably Evolvable Structures

We now describe some basic classes of Boolean functions and distributions that are
provably evolvable. Here, disjunction or Boolean “or” is denoted by +, conjunction
or Boolean “and” by the multiplication sign, and Boolean negation of a variable
xi by x ′

i . In general, we shall have n variables x1, . . . , xn . A q-disjunction is a
disjunction of k ≤ q of the n variables or their negations, while a q-conjunction is
a conjunction of k ≤ q of the n variables or their negations. Thus a q-disjunction is
yi[1] +· · ·+ yi[k] where 1 ≤ i[1], . . . , i[k] ≤ n and yi[ j] ∈ {x1, . . . , xn, x ′

1, . . . , x ′
n},

and a q-conjunction is yi[1]. . . yi[k]. The uniform distribution over {−1, +1} will
be denoted again by U . A conjunction or disjunction is monotone if it contains no
negated literals. We note that Ros (Section B2.8 in Bäck et al. [1997], Ros [1993])
has analyzed evolutionary algorithms for learning conjunctions and disjunctions.
However, a step of his algorithm is allowed to depend not just on the value of
his current hypothesis on an input, but on more detailed information such as the
number of bits on which the hypothesis and input differ. Such dependence on the
input condition we consider unrealistic for evolution, and is outside our model. With
regard to the literature on evolutionary algorithms [Wegener 2001], we also note
that the functions being evolved there are often real rather than Boolean valued,
and that provides more feedback to the process.

Fact 1. Over the uniform distribution U for any conjunction PrU (yi[1] · · · yi[k] =
1) = 2−k and for any disjunction PrU (yi[1] + · · · + yi[k] = 1) = 1 − 2−k .

For our probabilistic arguments below, it will be sufficient to appeal to the fol-
lowing:

Fact 2 [Hoeffding 1963]. The probability that the mean of s independent ran-
dom variables each taking values in the range [a, b] is greater than or less than the
mean of their expectations by more than δ is at most exp(−2sδ2/(b − a)2), where
exp(x) denotes ex .
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Fact 3 (Coupon Collector’s Problem). Suppose that there is a bucket of n balls
and M is a subset of m of them. Then after j = CC(n, m, η) = n(loge m+loge(1/η))
samples with replacement the probability that some member of the chosen set M
has been missed is less than η.

PROOF. This probability is upper bounded by m(1−1/n) j < m(1−1/n) jn/n =
me− j/n < η.

We note that an evolution algorithm for a representation R needs to have defined
at each step (i) the neighborhood N , (ii) the tolerance t and (iii) the sample sizes,
so that the mutator random variable can be evaluated at that step.

THEOREM 5.1. Monotone conjunctions and disjunctions are evolvable over the
uniform distribution for their natural representations.

PROOF. We first note that for our definition of evolvability it is sometimes
advantageous for a local search procedure to introduce literals that do not appear
in the ideal function f . For example, suppose f = x1x2x3 and we start with a
hypothesis 1, the conjunction of zero literals. Then, the hypothesis will disagree
with f on 7/8 of the distribution, and the introduction of the literal x4 will be an
improvement, reducing this probability from 7/8 to 1/2.

If we are evolving to accuracy ε and have n variables, we let q = �log2(dn/ε)�
for some constant d. We choose the effective representation class R to be monotone
q-conjunctions.

We first assume that both the ideal function f and the initial representation r0

have at most q literals. We denote by r+ and r− the sets of conjunctions consisting
of the literals of r with one literal added, and with one taken away, respectively. In
the case that r has the maximum number q of literals then r+ is empty. In the case
that |r | = 0, r− is empty. Also we define r+− to be the conjunctions consisting
of the literals in r with one further literal added and then one literal taken away.
Clearly, r ∈ r+−. We then choose the neighborhood structure N to be such that

NeighN (r, ε) = r+ ∪ r− ∪ r+−.

Finally, r and the members of r+ and r− will each have equal probabilities, so
that their total is 1/2, while the remaining members of r+− will also have equal
probabilities, again totaling 1/2. Clearly, N is a p(n, 1/ε)-neighborhood structure
where p(n, 1/ε) = O(n2).

The construction will ensure that every mutation in N either causes an improve-
ment in performance of at least 2−2q or causes no improvement (and a possible
degradation.) We choose the tolerance t(1/n, ε) = 2−2q−1 and the number of sam-
ples s(n, 1/ε) = t−3. It will then follow that the empirical test will, except with
exponentially small probability, correctly identify an available mutation that has
true improvement 2t , distinguishing it from one that gives no improvement in per-
formance. This can be seen by substituting a = −1, b = 1, δ = t and s = δ−3

in the Hoeffding Bound above to obtain that the probability of s trials each with
expected improvement 2δ will produce a mean improvement of less than t = δ is at
most exp(−2sδ2/(b −a)2) = exp(−(dn/ε)2). A similar argument also shows that
the same test will not mistakenly classify a mutation with no performance increase
with one with an increase of 2t . In the same way, the same tolerance will distinguish
a mutation with a nonnegative performance increase from one whose performance
decreases by at least 2t .
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In a run of the evolution algorithm, there will be g(n, 1/ε) stages, and in
each stage up to p(n, 1/ε) mutations will be tested, where g and p are poly-
nomials. We will want that in all p(n, 1/ε)g(n, 1/ε) empirical tests the prob-
ability of even one failure to make such a distinction be less than ε/2. But
p(n, 1/ε)g(n, 1/ε)exp(−(dn/ε)2) < ε/2 for all n, ε for a suitable constant d.

Suppose that W is the true set of m literals in the ideal conjunction, and that the
current hypothesis r is the conjunction of a set V of k literals. We claim that:

CLAIM 1. For (a) − (g) suppose that k ≤ q. Then

(a) If k < q, then adding to r any literal z in W − V will increase the performance
of r by at least 21−q .

(b) Removing from r any literal z in V ∩ W will decrease the performance of r by
at least 21−q .

(c) Adding to r a literal in W − V and removing from r a literal in V − W will
increase the performance by at least 2−q−m.

(d) Adding to r some literal not in W, and removing from r a literal in V ∩ W will
decrease the performance of r by at least 2−q−m.

(e) Adding to r a literal in W − V and removing from r a literal in V ∩ W will leave
the performance unchanged, as will also adding to r a literal not in W , and
removing one in V − W.

( f ) If r contains all the literals in W, then removing a z in V − W will increase the
performance of r by at least 21−q .

(g) If r contains all the literals in W, then adding a z in V − W will decrease the
performance of r by at least 2−q .

(h) If m > q, then adding a z to an r of length at most q − 2 will increase
performance by at least 21−q , and removing a z from an r of length at most
q − 1 will decrease performance by at least 21−q .

To verify the above eight claims, suppose that r is yi[1] · · · yi[k].
(a) Consider a z in W − V . Then, conjoining z to yi[1] · · · yi[k] will change the

hypothesis from +1 to the value of −1 on the points satisfying z′yi[1] · · · yi[k].
Clearly, the ideal function f takes value −1 at all these points since z = −1. These
points will, by Fact 1, have probability 2−(k+1) ≥ 2−q . Hence, the performance
will improve by at least twice this quantity, namely 21−q .

(b) Suppose that z = yi[1]. Removing it from r will change the hypothesis from
−1 to the value of +1 on the points satisfying z′yi[2] · · · yi[k]. Clearly, the ideal
function takes value −1 at all these points. These points will, by Fact 1, have
probability 2−k ≥ 2−q and hence the performance will degrade by at least twice
this quantity.

(c) Suppose the added literal is z and the removed literal is yi[1]. Then, the
hypothesis changes (i) from 1 to −1 on the points where z′yi[1] · · · yi[k] = 1, and
(ii) from −1 to +1 on the points such that zy′

i[1] yi[2] · · · yi[k] = 1. Now (i) changes

from incorrect to correct at all such points, and applies with probability 2−(k+1).
Also (ii) applies to a set of points with the same total probability 2−(k+1), but the
change on some of the points may be from correct to incorrect. To show that the net
change caused by (i) and (ii) in combination is beneficial as claimed it is sufficient
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to observe that (ii) is nondetrimental on a sufficient subdomain. To see this, we
consider the literals Z in W that are missing from r but other than z, and suppose
that there are u of these. Then, on the domain of points zy′

i[1] yi[2]. . . yi[k] = 1 that

specify (ii) we note that on the fraction 2−u of these the correct value of the ideal
function is indeed 1. Hence, the improvement due to (i) is not completely negated
by the degradation due to (ii). The improvement in performance is therefore at least
2−u−k ≥ 2−m−q .

(d) Suppose the added literal is z and the removed literal is yi[1]. Then, the
hypothesis changes (i) from 1 to −1 on the points where z′yi[1] · · · yi[k] = 1, and
(ii) from −1 to +1 on the points such that zy′

i[1] yi[2] · · · yi[k] = 1. Now (ii) is

an incorrect change at every point and applies with probability 2−(k+1). Also (i)
applies to a set of points with the same total probability 2−(k+1). To show that
the net change caused by (i) and (ii) in combination is detrimental to the claimed
extent, it is sufficient to observe that (i) is detrimental on a sufficient subdomain.
To see this, we consider the literals Z in W that are missing from r , and suppose
that there are u of these. Then, on the domain of points z′yi[1] yi[2] · · · yi[k] = 1
that specify (i) we note that on the fraction 2−u of these the correct value of the
ideal function is indeed 1. Hence, (i) suffers a degradation of performance on a
fraction 2−u of its domain, and hence the rest cannot fully compensate for the
degradation caused in (ii). The combined decrease in performance is therefore at
least 2−u−k ≥ 2−m−q .

(e) Suppose the added literal is z and the removed literal is yi[1]. Then, the
hypothesis changes (i) from 1 to −1 on the points where z′yi[1] · · · yi[k] = 1, and
(ii) from −1 to +1 on the points such that zy′

i[1] yi[2] · · · yi[k] = 1. Now, (ii) is an
incorrect change at every point and applies with probability 2−(k+1), and (i) applies
to a set of points with the same total probability 2−(k+1) but is a correct change
at every point. The second part of the claim follows similarly. Again each of the
two conditions holds with probability 2−k−1. But now, if there are u literals in W
missing from r , then over each of the two conditions stated in (i) and (ii) function
f is true on a fraction z−u . Hence, the effect of the two changes is again to cancel
and keep the performance unchanged.

(f) Suppose that z = yi[1]. Removing z from yi[1] · · · yi[k] will change the value
of the hypothesis from −1 to +1 on the points satisfying z′yi[2] · · · yi[k]. But all
such points have true value +1 if r contains all the literals in W . Hence, this gives
an increase in performance by an amount 21−k ≥ 21−q .

(g) Consider a z in V − W . Then, conjoining z to yi[1] · · · yi[k] will change the
hypothesis from +1 to −1 on the points satisfying z′yi[1] · · · yi[k] . But all such
points have true value +1 if r contains all the literals in W . Hence, conjoining z
will cause a decrease in performance by an amount 2−k ≥ 2−q .

(h) If m > q, then the hypothesis equals −1 on a large fraction of at least 1−2−2−q

of the points. A conjunction of length k ≤ q−2 will equal −1 on 1−2−k ≤ 1−22−q

points, and a conjunction of length k ≤ q − 1 on 1 − 2−k ≤ 1 − 21−q of the points.
Hence, the fraction of points on which the −1 prediction will be made increases
by (1 − 2−k−1) − (1 − 2−k) = 2−k−1 ≥ 21−q if k ≤ q − 2 and a literal is added,
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and decreases by (1 − 2−k) − (1 − 2−k+1) = 2−k ≥ 21−q with the removal of one,
if k ≤ q − 1. If m > q, then the corresponding increase/decrease in the fraction of
points on which predictions are correct is at least 2−q , since the fraction of predicted
−1 points changes by twice this quantity, and the true +1 points amount to at most
a half this quantity.

To prove the proposition, we are first supposing that the number m of literals in the
ideal function is no more than q. Then, the intended evolution sequences will have
two phases. First, from any starting point of length at most q the representation
will increase the number of its literals that are in W by a sequence of steps as
specified in Claims (a) and (c). Interspersed with these steps, there may be other
steps that cause similar inverse polynomial improvements, but add or remove non-
ideal literals. Once the conjunction contains all the literals of the ideal conjunction,
it enters into a second phase in which it contracts removing all the non-ideal literals
via the steps of Claim (f).

The assertions of the above paragraph can be verified as follows. Claims (a) and
(c) ensure that as long as some ideal literal is missing from r, beneficial mutations,
here defined as those that increase performance by at least 2−2q will be always
available and will add a missing ideal literal. Further, Claims (b), (d) and (e) ensure
that mutations that remove or exchange ideal literals will be deleterious, reducing
the performance by at least 2−2q , or neutral, and hence will not be executed. Some
beneficial mutations that add or remove nonideal literals may however occur. How-
ever, since each literal not already in the conjunction, will be generated by N with
equal probability as a target for addition or swapping in, the Coupon Collector’s
model (Fact 3) can be applied. If the ideal conjunction contains m literals, then after
CC(n, m, ε/2) = O((n log n + n log(1/ε)) generations all m will have been added
or swapped in, except with probability ε/2.

Once r contains all the ideal literals, then the only beneficial mutations are those
that remove nonideal literals (Claim (f)). Adding nonideal literals (Claim (g)),
replacing an ideal literal by a nonideal literal (Claims (d)), or replacing a nonideal
literal by a nonideal literal (Claim (e)) are all deleterious or neutral. Hence, in this
second phase after O(n) steps, the ideal conjunction with perfect performance will
be reached.

We conclude that, in the case that the number of literals in both r0 and the ideal
conjunction is at most q, then the evolution will reach the correct hypothesis in
the claimed number of stages, except with probability ε, which accounts for both
the empirical tests being unrepresentative, as well as the evolution steps failing for
other reasons.

In case the initial conjunction is of length greater then q, we allow for a pro-
logue phase of evolution of the following form. We define the neighborhood of
each such long conjunction to be all the conjunctions obtained by removing one
or none of its literals, each one being generated with equal probability. Clearly,
the removal of a literal from a hypothesis having k > q literals will change its
value on at most 2−k < 2−q = 2ε/(dn) of the distribution and hence the per-
formance, if it decreases, will decrease by no more than 2ε/(dn). Hence, if we
set the tolerance to t = 4ε/(dn) then a mutation that decreases the number of
literals will be available, and will be detected as a neutral mutation as long as
its empirical performance is not less than its true performance by more than δ =
2ε/(dn). The probability of this happening is small, as can be seen by substituting
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a = −1, b = 1, δ = t/2, and s = δ3 in the Hoeffding bound (Fact 2), yielding
exp(−dn/4ε). After this process runs its course, which will take O(n) stages except
with exponentially small probability, a short conjunction of length at most q will be
reached.

Finally, we consider the alternative case that the number m of literals in the
ideal conjunction is more than q. If r0 has at most q literals, then in the evolution
beneficial steps (h) that add literals will be always available until the hypothesis
becomes of length q − 1. Further, steps (h) that remove literals will be never
taken since these are deleterious. Once length q − 1 is achieved the length can
change only between length q − 1 and q, and the performance will be at least
1 − 2(21−q + 2−m) = 1 − 5.2−q = 1 − 5ε/(dn). In the alternative case that r0 has
more than q literals, the prologue phase will be involved as before until length at
most q will be reached, and the previous condition joined.

The result for conjunctions therefore follows with g(n, 1/ε) = O(n log(n/ε)).
We note that s = �((n/ε)6) is sufficient for both phases.

The claimed result for disjunctions follows by Boolean duality: Given an expres-
sion representing a Boolean function, by interchanging “and” and “or” operators
and negating the inputs will yield the negation of the original function.

The algorithm as described above may be applied to conjunctions with negated
variables, but will then fail sometimes. For example, if the starting configuration
contains many literals that are negations of literals in the ideal function, then it
may have high performance because it predicts −1 everywhere. However, it would
appear difficult in that case to find an improved hypothesis by local search.

If initialization is allowed, then the above results can be obtained much more
easily, and then also allow negations.

PROPOSITION 5.2. Conjunctions and disjunctions are evolvable with initializa-
tion over the uniform distribution.

The reader can verify this by considering conjunctions with initial representation
1. If the hypothesis is of length k and consists only of literals that occur in the true
conjunction of length m > k, then adding a literal from the true conjunction will
increase performance by 2−k , while adding one not in the true conjunction will
increase performance by 2−k − 21−h . If m = k, then adding a literal will decrease
performance by at least 2−k . Then, if we let q = log2(d/ε) for an appropriate
constant d, choose tolerance 2−q−1, have a neighborhood that either adds a literal
or does nothing, and stop adding new literals if the conjunction reaches length
q , then evolution with optimization will proceed through conjunctions of literals
exclusively from W until performance at least 1 − ε is reached. It follows that
this evolution algorithm will work with optimization and initialization, and hence,
by Proposition 3.3, it is evolvable with initialization alone, but for a redundant
representation.

6. Discussion

We have introduced a framework for analyzing the quantitative possibilities of
and limitations on the evolution of mechanisms. It can be weakened in several
ways, separately and in combination, to yield notions that impose less onerous
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requirements. First, one can entertain the definition for just one specific distribu-
tion as we did for our positive results in Section 5. The question whether significant
classes are provably evolvable for all distributions is one of the more important
questions that our formulation raises. Second, the requirement of having the per-
formance be able to approach arbitrarily close to the best possible can be relaxed.
This permits processes where computations are feasible only for obtaining approx-
imations to the best possible. Third, the starting point need not be allowed to be
arbitrary. There may be a tradeoff between the robustness offered by allowing arbi-
trary starting points, and the complexity of the mechanisms that can evolve. Wider
classes may be evolvable in any of these less onerous senses than in the most robust
sense. We can equally study, in the opposite direction, the quantitative tradeoffs
obtained by constraining the model more, by disallowing, for example, neutral
mutations or redundant representations, or by insisting on a fixed tolerance. We
note that our algorithm for conjunctions as describe does exploit neutral mutations.
Also, it uses a fixed tolerance for the main phase, and a different tolerance in the
prologue.

Many important questions are left unresolved regarding the robustness of the
model and its variants. Which variants leave the class unchanged and which do
not? In a very recent work, Feldman [2008] makes significant progress on this
question.

Our result that some structures, namely monotone conjunctions and disjunc-
tions are evolvable over the uniform distribution, we interpret as evidence that the
evolution of significant algorithmic structure is a predictable and analyzable phe-
nomenon. This interpretation is further supported by the observation that the theory,
analogously to learning theory, analyzes only the granularity of the structure that
can evolve in a single phase with a single ideal function. If multiple phases are
allowed with different ideal functions in succession, then arbitrarily complex struc-
tures can evolve. For example, in response to various initial ideal functions some
set of conjunctions and disjunctions may evolve first. At the next phase the outputs
of these functions can be treated as additional basic variables, and a second layer of
functionality can evolve on top of these in response to other ideal functions. This
process can proceed for any number of phases, and build up circuits of arbitrary
complexity, as long as each layer is on its own beneficial. We call this evolvable
target pursuit.

In general, our study can be viewed as an attempt to capture the Darwinian notion
of random variation with selection in terms of a computationally compelling model.
It is an open question, of course, whether biological evolution has greater power
than this in some direction. We conjecture, however, that any such extra power, if
such exists, also lies within the realm of the PAC learnable.

We note that our model makes no assumptions about the nature of a mutation,
other than that it is polynomial time computable by a randomized Turing machine.
Thus, the biological phenomena found in DNA sequences of point mutations, copy-
ing of subsequences, and deletion of subsequences, are all easily accommodated in
the model.

The proof of Proposition 3.3 hints at one possible purpose of redundancy that
is also believed to occur widely in biology. In that construction, two near-identical
copies of a subsequence are maintained, one of which controls behavior, while
the other acts as a reservoir for recording history and thereby offers expanded
possibilities for future mutations.
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In our model, in each generation just one representation will survive. This is
sufficient for our goal of studying which function classes are evolvable. In prin-
ciple, more traditional issues concerning variability within populations are also
expressible in our model. In that case, the surviving representation in our model
should be viewed as the genome of the whole population. For example, the idea that
diversity in the gene pool of a population serves the purpose of protecting a species
against unpredictable changes in the environment can be expressed as follows: We
represent the hypotheses of all N members of a population by a hypothesis that
concatenates them all but has a distinguished first member. The total hypothesis
would still be of polynomial size if N is. The distinguished first member determines
the performance while the rest form a reservoir to facilitate future mutations. In a
mutation, the subhypotheses would be cyclicly shifted by an arbitrary amount so
that any one of them can come into first place, and only this first one would undergo
mutation. In this way, the diverse gene pool of a population can be represented.
In one phase of evolution, the hypotheses that have their first subhypotheses best
fitted to the then current environment would win, but they would retain diversity in
their reservoir. Of course, once we regard the genome of a population as a single
genome, then there may be useful operations on them beyond cyclic shifts, such
as operations that splice together parts of the individual subgenomes. The latter
operations correspond to recombination.

In our model, large populations are useful when small improvements in per-
formance need to be detected reliably. Small populations can also have a role in
permitting deleterious mutations to be adopted, ones which would not be adopted
in larger populations.

It is natural to ask what is the most useful view of the correspondence between our
view of circuits and what occurs in biology. What do the nodes, and the functions that
evolve, in our model correspond to in biology? It seems plausible to suppose that at
least some of the nodes correspond to the expression of particular proteins. Then, the
regulatory region associated with each protein coding region would correspond to
the function evaluated at that node. Possibly such regions may have to be subdivided
further into nodes and functions. The fact that there are highly conserved regions in
the genome that code for proteins, and some other regions that are not so conserved
[Bejerano et al. 2004; Dermitzakis et al. 2005], is consistent with this viewpoint.

In the case that a node corresponds to the expression of a fixed protein, the
interpretation of the ideal functions in our model is particularly simple. Suppose the
genome has an evolution algorithm for the class C of functions, such as disjunctions.
Then, the ideal function f simply expresses for each combination of other variables
the best choice of whether to, or whether not to (or how much to) express that protein.
Evolution will then be guaranteed to proceed towards f provided f lies within C .
Presumably biology has made a sophisticated selection in its choice of C . If C is
too restrictive, then the complex functions of biology may not be expressible. If C
is too extensive, then it would be infeasible for evolution to successfully navigate
among its members as changing environments may require.

Modularity, in biology or engineering, is the idea that systems are composed of
separate components that have identifiable separate roles. If evolvability is severely
constrained to limited classes of functions as our theory suggests, then systems that
evolve would be constrained to be modular, and to consist of many identifiable small
modules. Hence, modularity in biology would be a consequence of the limitations
of evolvability.
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A unified theory for learning and evolution is of potential significance to the
studies of cognition and of its emulation by machine. A major challenge in under-
standing cognition is that in biological systems the interplay between the knowledge
that is learned through experience by an individual and the knowledge inherent in
the genes, is complex, and it is difficult to distinguish between them. In attempts to
construct computer systems for cognitive functions (e.g., for vision) this challenge
is reflected in the difficulty of providing an effective split between the prepro-
grammed and the learning parts. The unified viewpoint on learning and evolution
that we have developed here, suggests that cognitive systems can be viewed as pure
learning systems. The knowledge and skills a biological organism possesses can be
viewed as the accumulation of what has been learned by its ancestors over billions
of years, and what it has learned from its individual experience since conception.
Robust logic [Valiant 2000] is a mathematical framework based on learning that
aims to encompass cognitive tasks beyond learning, particularly reasoning. The
pragmatic difficulty of finding training data for systems to be built along such prin-
ciples has been pointed out [Valiant 2006]. By acknowledging that the training data
may also need to cover knowledge learned through evolution one is acknowledging
what happens in existing cognitive systems, namely the biological ones. It is possi-
ble that learning is the only way of guaranteeing sufficient robustness in large-scale
cognitive systems. In that case, it would follow that the construction of cognitive
systems with human level performance should be conceptualized as a learning task
that encompasses knowledge acquired in biological systems through evolution as
well as experience.

We have shown that with regard to the acquisition of complex mechanisms
evolvability can be viewed as a restricted form of learnability. If it is technically
the more constrained, it should not be viewed as the more mysterious.
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