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Particle swarm adaptation is an optimization para- 
digm that simulates the ability of human societies to 
process knowledge. The algorithm models the explo- 
ration of a problem space by a population of individu- 
als; individuals' successes influence their searches and 
those of their peers. The algorithm is relevant to cog- 
nition, in particular the representation of schematic 
knowledge in neural networks. Particle swarm optimi- 
zation successfully optimizes network weights, simu- 
lating the adaptive sharing of representations among 
social collaborators. This paper introduces the algo- 
rithm, begins to develop a social-science context for it, 
and explores some aspects of its functioning. 

Interpersonal in formation processing 
Information processing of verbal symbols has fre- 

quently been described as a process which occurs inside 
peoples' heads. But note that it is impossible to dissoci- 
ate the symbol-processing function of language from its 
communication function. Further, concept learning is 
rarely an independent activity, but more frequently oc- 
curs interpersonally, whether through literature, ped- 
antry, informal conversation, or some other means 
(Markus & Zajonc, 1985). Finally, we observe that 
individuals are able to communicate with one another 
about their thinking; importantly, humans have many 
tools for expressing the methods they use to process 
information, and are capable of adopting the informa- 
tion-processing techniques used by their peers. The 
particle swarm paradigm is associated with those theo- 
ries which describe psychological reality as a social 
construction. Further, this paper asserts that the method 
by which societies construct reality and operate upon it 
comprises an excellent optimization technique when 
applied to artificial systems; the particle swarm algo- 
rithm is useful as a mathematical tool as well as a social 
theory. 

Multivariate trajectories 
The algorithm assumes a multidimensional psy- 

chological space, however that is specified (i.e., a neu- 
ral network or symbolic model); it is further assumed 
that some measure of goodness is possible. The nature 

of the dimensionality and of the goodness measure de- 
pend again upon a theory, and the particle swarm 
model is metatheoretical with respect to cognition, 
though a connectionist example will be used here to 
demonstrate the paradigm. Thus, in the current exam- 
ple the psychological space is a hyperspace of connec- 
tions among nodes, and an individual's psychological 
position at any moment is described as a particle whose 
coordinates are connection weights. The vectors of 
weights for each individual i on dimension d will be 
called Xjd. 

Individuals conduct repeated experiments, modeled 
as an iterative loop in a simulation, each passing data 
through a network of weights Xjd which are initially 
random. The outcome of each experiment is a measure 
of error, or the distance between calculated outputs and 
desired outputs as it is usually calculated in feedfor- 
ward networks. At each iteration the individual's posi- 
tion in hyperspace is changed by adding a &Yid vector, 
called yid, to the vector of coordinates. Thus, itera- 
tively, 

Unaltered, the hxid vector would move individuals in 
straight lines toward infinity. The particle swarm algo- 
rithm optimizes by adjusting the amount of change. 

The individual best 
Each individual enters the coordinates of its current 

position into the formulas for the neural network and 
measures the error of the estimate of target values, then 
moves to a new position and repeats. As individuals 
move through the multivariate space, they compare 
their current error value to the best they have attained at 
any point up to that iteration. The best, that is lowest, 
error term encountered thus far is called pbestj, and the 
position where that evaluation was attained is repre- 
sented as the vector Pjd. A feature of this paradigm 
which distinguishes it from other evolutionary compu- 
tation paradigms is its reliance on the individual's 
memory of pbesti and Pjd. 
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If the present position is better than any previously 
encountered, then Pid is updated with the current 
weight coordinates. The difference P id  - Xid indicates 
the distance between the individual's previous best and 
current positions. Each individual i then is associated 
with a "nostalgia" vector (Kennedy and Eberhart, 1995) 
Of Pid - Xid differences. 

Each element in the vector of differences is 
weighted by a positive random number cp, whose upper 
limit is a parameter of the system. This new vector is 
added to the change vector, so that 

Adding this new vector to the current coordinates 
Xid introduces a stochastic tendency to return toward 
the individual's previous best position. 

Psychologically it is a tendency to remember and 
return to regions in the psychological space which have 
demonstrated promise, that is, to combinations of be- 
liefs that have seemed good or reinforcing. 

The neighborhood best 
In order to add a social component, a neighborhood 

is defined for each individual. Though there can be 
endless ways to specify it, the present simulations de- 
fine the neighborhood as comprising the target individ- 
ual and the two individuals immediately adjacent in the 
array. Thus for each individual i the neighborhood is 
composed of individuals i-1, i, and i+l. This is 
equivalent to the "circle" communication pattern, as 
described in Leavitt (195 1). 

All individuals search the problem space simultane- 
ously; each has its own pbesti and Pid. For the social 
term of the algorithm, individual i determines which 
member of the neighborhood has achieved the best 
pbesti so far. The index of the neighbor who has found 
the best position, that is, the one with the lowest error 
value, is assigned to the variable g, and that individual's 
best position is referred to as P 

Thus the vector (Pid - Xg$ represents the distance 
from individual z's current position to the best position 
that has been found by any member of the neighbor- 
hood. The particle swarm algorithm weights every 
element of this vector, as before, with a random number 
cp defined by an upper limit, and adds this vector of 
social influence to the change vector yid.  

In sum, the particle swarm algorithm iterates 
through the following formula: 

value Vma. This limit serves three purposes: it keeps 
the computer from overflowing, it realistically simu- 
lates the incremental changes of human learning and 
attitude change, and it determines the granularity of 
search of the problem space. The limit is implemented 
simply, if not elegantly, by specifying that if Vid > 
V m a ,  then Vid = v", or if Vid < - V m a  then Vid = - 

Comparison to backpropagation of error 
The theoretical view of learning as backpropagation 

of error differs from the particle swarm view in two 
important ways (see Rumelhart, Hinton, and Williams, 
1986). First, backpropagation implies that the individ- 
ual is a kind of sealed container with information proc- 
essing going on inside it. The particle swarm shifts the 
locus of information processing, and of mind itself, out 
into interpersonal space, with individuals discovering 
collaboratively how to process information. In other 
words, a society is viewed as a parallel distributed 
processing system comprising individual cognitive 
networks which adapt collaboratively. Secondly, while 
backpropagation of error is a deterministic hill- 
climbing algorithm, the particle swarm exploits the 
impartiality of randomness in the search of the problem 
space; individuals in the population are pulled toward 
optimal positions, but do not climb hills in or between 
optimal regions. 

Importantly, the dynamical nature of the algorithm 
represents a departure from rational models of cogni- 
tion. Whereas backpropagation of error depicts an in- 
dividual reasonably changing his or her beliefs in order 
to make them more consistent with the facts as they are 
perceived, the particle swarm simulates individuals 
changing their beliefs in order to be more like their 
neighbors. Thus it is a social-psychological model of 
knowledge management. 

Results of simulations 
The XOR problem requires a network to map inputs 

of (1, 0) or (0 ,  1) to an output value of 1, and to map 
inputs of (0,  0) or (1, 1) to an output of 0. As the logis- 
tic function used in the network approaches limits of 
1.0 and 0.0, it is common to replace target outputs with 
the attainable values of 0.9 and 0.1. The network's 
learning objective .then is discover a set of weights 
which will accurately produce 0.9 when given two in- 
puts which differ from one another, and 0.1 when the 
two inputs are identical. 

A network was defined with 2 hidden nodes (the 
minimum required for this mapping, unless direct links 
from inputs to outputs are included in the model), and 
was trained until some member of the simulated popu- 
lation achieved an average squared error per node value 
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less than 0.02. Thus each particle in the population 
moved in 9-dimensional space, in other words each 
individual needed to optimize a combination of nine 
floating-point numbers. 

Particle swarm trials, varying VmnX and q 
The simulation of the full particle swarm model was 

run, varying values for the two parameters V,, and cp, 
and observing how these values affected the efficiency 
of the algorithm, measured in terms of the number of 
iterations required for some member of the population 
to reach a criterion of average squared error per node < 
0.02. Iterations are displayed as medians of 20 trials 
per cell, in a model with a population of 20 individuals. 

Local optima The system was defined as trapped in a 
local optimum when it iterated more than 3,000 times 
without reaching the criterion. Local optimum results 
were tabulated but are only summarized here, in the 
interest of brevity. Some parameter combinations were 
rather vulnerable to local optima, and others were not. 
In general, when Vmax was low, particles had more 
difficulty escaping from locally optimal regions. V,, 
determines how large steps through the data space each 
particle is allowed to take; when these steps are con- 
strained to be small, individuals may be unable to step 
out of poor regions. As seen in Table 1, the particle 
swarm found appropriate weights in a relatively few 
interations. 

Table 1. Median numbers of iterations required for a 
member of the population to attain an error criterion of 
e < 0.02, usine the ful l  model. 

V,", Psi 

1505 121 5 1395 1305 110 124 145 
157 9 5 5  88 91 8 4 5  1065 1025 
134 1275 9 9 5  71 8 4 5  8 4 5  84.5 
1435 101 1375 8 2 5  62 79 90 
131 5 117 1075 103 8 6 5  73 9 8 5  

The "cognition-only " model 
The current paper alIeges that cognitive science has 

tended to treat individuals as if they were isolates, and 
as if cognition occurred inside the head, privately. It is 
noted that one of the terms of the particle swarm veloc- 
ity equation, 'pjd (Pjd - ,Yid), represents private think- 
ing. Thus it was possibIe to test the cognitive part of 
the particle swarm algorithm by optimizing a neural net 
using the following velocity foimula: 

As seen in Table 2, this version of the adaptive algo- 
rithm was only slightly more vulnerable to failure than 
was the full model, It appeared that most of the time 
this version failed to converge within 3,000 iterations, 
the problem was more one of failure to find an optimal 
region than of being captured by local attractors. Indi- 
viduals in this version tended to search the areas in 
which they had been initialized, and, at least when 
V,, and cp were both small, they failed to move into 
optimal regions. In median comparisons, the cognition- 
only model required more iterations than the full model 
in 47 of the 49 conditions tested. 

Table 2. Median numbers of iterations rewired for a 
member of the uopulation to attain an error criterion of 
e < 0.02, using the cognition-only model. Lemniscates 
indicate that more than half the trials exceeded 3.000 
iterations. 
VW"Y Psi 

O0 O0 835 209 172 198.5 1565 
1261 8785 319 1705 141 1225 1155 
490.5 354 225.5 134 120 I l l  5 1275 
231 257 185 1365 137 1045 1025 
2185 1655 169 141 1325 9 9 5  99 
192.5 166 145 133 1155 113 102 
146 1295 132 1445 132 121 9 0 5  

In sum, the cognition-only model performed rather 
well. As an adaptive method, individual approximation 
to the optimum seems to function satisfactorily, though 
not nearly as well as the full model. This version was 
susceptible to failure only when both parameters were 
set very low, but required more iterations to satisfy the 
criterion. 

The "social-only " model 
Seeing that the "cognition-only" model worked rather 
weII, one wonders how a "social-only" version of the 
algorithm would perform. Thus a model comprising 
the following formula was implemented: 

This model implies a social-psychological process 
with no special tendency for individuals to return to 
beliefs that had proven successful for themselves in the 
past. Rather, individuals compare the effectiveness of 
beliefs of neighborhood members and change toward 
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those that are relatively successful. Note that a mini- 
mum of one individual in the population and a maxi- 
mum of half of them can be the best performers in their 
own neighborhoods, and exert influence on themselves. 

As seen in Table 3, the social-only algorithm con- 
verged faster than the full model in 47 of the 49 cells, 
and faster than the cognition-only version in all 49 
cells. 

Table 3. Median numbers of iterations required for a 
member of the population to attain an error criterion of 
e < 0:02, using the social-only model. 

PSI  

a 9 5  72 66.5 6 5 5  7 0 5  72 69 
a3 6 2 5  5 7 5  6 4 5  52 5 5 3 5  53 

a 6 5  61 5 7 2 5  4a 6 0 5  5 4 5  57 

110 a 7 5  75 76.5 61 76 34 
6 7 5  9 5 5  7 6 5  9 0 5  77 71 74.5 

Thus, the social algorithm is seen to be a more effi- 
cient optimizer for the present problem than both the 
cognition-only and the full versions of the particle 
swarm algorithm. Despite a slight susceptibility to be 
captured by local optima, the social version appears to 
be the best of the three models tested thus far, at least 
for this particular neural network problem. 

The "selfless" model 
As was noted above, in the social-only version indi- 

viduals could be attracted to their own best positions 
when theirs was the best in the neighborhood. That is, 
as they compared performances of the three members 
of their neighborhoods, they included themselves. 
Thus, in some cases, where i = g, there is a confound- 
ing between self-influence and other-influence. 

In order to eliminate the confounding effect, a 
"selfless" model was tested. This version was identical 
to the social-only version, with the exception that the 
neighborhood did not contain the individual's own pre- 
vious best performance, that is, i#g. Thus none were 
attracted to their own successes, but rather only fol- 
lowed one another through the hyperspace. 

As seen in Table 4, the selfless version met the cri- 
terion faster than the social-only version 20.5 times (a 
tie is rated as 0.5) out of 49. Thus, it seems to be 
slightly less efficient than the social-only model. 

Table 4. Median numbers of iterations required for a 
member of the population to attain an error criterion of 
e < 0.02, using the "selfless" model. 
V,,, Psi 

79 67.5 116 53 62.5 50 59 
io9 64.5 51.5 61 4a 47.5 59 
79 71 73 5a 77 82.5 5a 
85.5 65.5 90 a2 7a 77 6a 
a8 124 53 a4 82.5 72 64.5 

With 49 cells per version, matching cells from the 
four versions were paired to determine whether one 
model reached criterion in a significantly smaller num- 
ber of iterations than the other. The normal approxi- 
mation of the binomial sign test was used to assess the 
significance of differences. The null hypothesis is that, 
if two models are equivalent, about the same number of 
cells will require more and less iterations to converge; 
the sign test estimates the probability that the degree of 
inequality observed in the data would have been pro- 
duced by chance. The full model converged faster than 
the cognition-only version, z = 6.429, p < 0,001, slower 
than the social-only model, z = 6.429, and slower than 
the selfless model, z = 5.857, p < 0.001. The social- 
only model converged faster than the cognition-only 
model in every cell, z = 6.999, p < 0.001, and faster 
than the selfless version, z = 1.286, not significantly. 
Finally, the selfless model was more efficient than the 
cognition-only model in all 49 cells, z = 6.999, p < 
0.001. 

Cellwise comparison may not be the ideal test of 
performance of these algorithms, especially if the opti- 
mal parameter combinations differ between models. 
The lowest median iterations in any cell for the various 
models were as follows: 

Full model 62 
Cognition-only 90.5 
Social-only 34 
Selfless 47.5 

Thus this measure of performance parallels the previ- 
ous one. 
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Discussion 
First of all, note emphatically that these results rep- 

resent performance of versions of the algorithm on one 
particular-- and very simple-- problem. Versions of the 
particle swarm algorithm will almost certainly perform 
differently on problems featuring higher dimensional- 
ity, greater nonlinearity, more local optima, etc. 

The particle swarm paradigm is metatheoretical 
with respect to cognition. The present paper applies the 
optimization paradigm to the simulation of a feedfor- 
ward neural net, but other successful applications in- 
clude fuzzy cognitive maps (Kosko, 1992), parallel 
constraint satisfaction networks, and quantitative bal- 
ance networks (Kennedy, 1999,  besides various test- 
bed functions (Kennedy and Eberhart, 1995). 

The term "social cognition" has been established to 
refer to the special qualities of thoughts about social 
objects, with the special characteristics that these have, 
relative to other objects. In the particle swarm para- 
digm, social cognition is taken to refer to a kind of 
cognition that is literally social, i.e., the cognitive proc- 
ess itself is social. 

In all versions of the present test it appeared that 
failure was associated with too-small values of Vmm. 
With high Vmm, individuals often speed past the target 
region, and discover even better positions than they set 
out for; further, they are able to take steps sufficiently 
large to escape from local optima. With Vmm low, 
however, improvement can only arise from exploration 
around familiar regions. In order for the adaptive algo- 
rithm to work, individuals must be capable of escaping 
from regions which are minimally satisfying, to 
"change their minds." 

The results from the cognition-only condition were 
surprisingly good. Whereas it had been anticipated that 
uncoordinated search would tend to result in failure (it 
does on other problems), this was the case in only two 
cells of the research matrix, though it should be noted 
that "success" here means only that one of the 20 indi- 
viduals in the trial was able to meet the error criterion. 
Because they did not interact, the population of 20 was 
identical to running 20 individual trials. 

The two social versions resulted in an even pleas- 
anter surprise, easily outperforming the full model and 
cognitive-only conditions on this particular problem. 
Individuals in the social conditions accomplished the 
learning task by evaluating who in their immediate 
neighborhood had found the best solution so far, and 
then emulating that individual. 

The so-called selfless version of the algorithm per- 
formed nearly as well as the social-only version, and 
better than the other two versions on this specific task. 
In the selfless model, individuals merely emulated one 
another, never being influenced by their own past 

findings. The selfless model is not theoretically justi- 
fied, though it is interesting to note how much better it 
performed than the individualistic, cognition-only 
model. 

In sum 
The "cognitive" term of the formula can be easily 

thought of as an interpretation of Thorndike's (191 1) 
"Law of Effect" (or Hull's, cf. 1930, "habit strength"), 
which stated simply that a random behavior which is 
followed by a reinforcement becomes more probable in 
the future. In the present case, the "behavior" is cogni- 
tive, which of course violates the positivistic ethos of 
behaviorism, but, more interestingly, this interpretation 
assumes that the attainment of correct or self-consistent 
knowledge is reinforcing. A model such as the present 
one presumes that the individual is motivated to reduce 
error. This is not distinguishable from Festinger's 
(1 957) theoretical statement that cognitive dissonance 
is an aversive state equivalent to a "drive" in behavior- 
ism. Dissonance was said to arise between two cogni- 
tive elements when the obverse of one followed from 
the other. The cognitive term of the particle swarm is 
shown to simulate venerable concepts from the classic 
era of the science of behavior. 

The "social" half of the formula recalls Bandura's 
(1965; 1986) concept of modeling or vicarious rein- 
forcement ("no-trial learning"). According to that theo- 
retical perspective, observation of a model being rein- 
forced for performing a behavior will increase the 
probability of the observer performing the behavior. 
Since we have already admitted that consistent or con- 
sonant thinking might be reinforcing, it follows that 
observation of a model who apparently is experiencing 
correct, valid, or internally consistent cognition should 
result in the observer's imitation of that cognition. 

The psychological assumptions of particle swarm 
theory are general and noncontroversial: in their search 
for consistent cognitions, individuals will tend to retain 
their own best beliefs, and will also consider the beliefs 
of their colleagues. Adaptive change results when in- 
dividuals perceive that others' beliefs are better than 
their own. The concepts are not new. What is new is 
the evidence from computer simulations that these sim- 
ple concepts, taken together, create an information- 
processing technique which may be powerful enough to 
manage the huge amount of information comprising 
human knowledge. 
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