
Intelligent Systems Reference Library 160

Erik Cuevas
Fernando Fausto
Adrián González

New Advancements
in Swarm Algorithms:
Operators and
Applications

Intelligent Systems Reference Library

Volume 160

Series Editors

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland

Lakhmi C. Jain, Faculty of Engineering and Information Technology, Centre for
Artificial Intelligence, University of Technology, Sydney, NSW, Australia;
Faculty of Science, Technology and Mathematics, University of Canberra,
Canberra, ACT, Australia;
KES International, Shoreham-by-Sea, UK;
Liverpool Hope University, Liverpool, UK

The aim of this series is to publish a Reference Library, including novel advances
and developments in all aspects of Intelligent Systems in an easily accessible and
well structured form. The series includes reference works, handbooks, compendia,
textbooks, well-structured monographs, dictionaries, and encyclopedias. It contains
well integrated knowledge and current information in the field of Intelligent
Systems. The series covers the theory, applications, and design methods of
Intelligent Systems. Virtually all disciplines such as engineering, computer science,
avionics, business, e-commerce, environment, healthcare, physics and life science
are included. The list of topics spans all the areas of modern intelligent systems
such as: Ambient intelligence, Computational intelligence, Social intelligence,
Computational neuroscience, Artificial life, Virtual society, Cognitive systems,
DNA and immunity-based systems, e-Learning and teaching, Human-centred
computing and Machine ethics, Intelligent control, Intelligent data analysis,
Knowledge-based paradigms, Knowledge management, Intelligent agents,
Intelligent decision making, Intelligent network security, Interactive entertainment,
Learning paradigms, Recommender systems, Robotics and Mechatronics including
human-machine teaming, Self-organizing and adaptive systems, Soft computing
including Neural systems, Fuzzy systems, Evolutionary computing and the Fusion
of these paradigms, Perception and Vision, Web intelligence and Multimedia.

** Indexing: The books of this series are submitted to ISI Web of Science,
SCOPUS, DBLP and Springerlink.

More information about this series at http://www.springer.com/series/8578

http://www.springer.com/series/8578

Erik Cuevas • Fernando Fausto •

Adrián González

New Advancements
in Swarm Algorithms:
Operators and Applications

123

Erik Cuevas
CUCEI, Universidad de Guadalajara
Guadalajara, Mexico

Fernando Fausto
CUCEI, Universidad de Guadalajara
Guadalajara, Mexico

Adrián González
CUCEI, Universidad de Guadalajara
Guadalajara, Mexico

ISSN 1868-4394 ISSN 1868-4408 (electronic)
Intelligent Systems Reference Library
ISBN 978-3-030-16338-9 ISBN 978-3-030-16339-6 (eBook)
https://doi.org/10.1007/978-3-030-16339-6

Library of Congress Control Number: 2019935485

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-16339-6

Preface

The most common term for methods that employ stochastic schemes to produce
search strategies is metaheuristics. In general, there not exist strict classifications
of these methods. However, several kinds of algorithms have been coined
depending on several criteria such as the source of inspiration, cooperation among
the agents or type of operators.

From the metaheuristic methods, it is considered a special set of approaches
which are designed in terms of the interaction among the search agents of a
group. Members inside the group cooperate to solve a global objective by using
local accessible knowledge that is propagated through the set of members. With this
mechanism, complex problems can be solved more efficiently than considering the
strategy of single individual. In general terms, this group is referred to as a swarm,
where social agents interact with each other in a direct or indirect manner by using
local information from the environment. This cooperation among agents produces
an effective distributive strategy to solve problems. Swarm intelligence (SI)
represents a problem-solving methodology that results from the cooperation among
a set of agents with similar characteristics. During this cooperation, local behaviors
of simple elements produce the existence of complex collective patterns.

The study of biological entities such as animals and insects which manifest a
social behavior has produced several computational models of swarm intelligence.
Some examples include ants, bees, locust swarms, spiders and bird flocks. In the
swarm, each agent maintains a simple strategy. However, due to its social behavior,
the final collective strategy produced by all agents is usually very complex. The
complex operation of a swarm is a consequence of the cooperative behavior among
the agents generated during their interaction.

The complex operation of the swarm cannot be reduced to the aggregation of
behaviors of each agent in the group. The association of all simple agent behaviors
is so complex that usually is not easy to predict or deduce the global behavior of the
whole swarm. This concept is known as emergence. It refers to the process of
produce complex behavioral patterns from the iteration of simple and unsophisti-
cated strategies. Something remarkable is that these behavioral patterns appear
without the existence of a coordinated control system but emerge from the

v

exchange of local information among agents. Therefore, there subsists a close
relationship between individual and collective behavior. In general, the collective
behavior of agents determines the behavior of the swarm. On the other hand, swarm
behavior is also strongly influenced by the conditions under which each agent
executes its operations.

The operations of each agent can modify its own behavior and the behavior of
other neighbor agents, which also alters the global swarm performance. Under such
conditions, the most significant element of swarm intelligence is the model of
interaction or cooperation among the agents. Cooperation in biological entities that
operate as swarm systems happens in different mechanisms from which social
interaction represents the most important. This social interaction can be conducted
through physical contact, visual information, audio messages, or chemical per-
ceptual inputs. Examples of cooperation models in nature are numerous, and some
examples include the dynamical task assignation performed in an ant colony,
without any central control or task coordination. The adoption of optimal spatial
patterns builds by the self-organization in bird flocks and fish in schools. The
hunting strategies developed by predators. The purpose of computational swarm
intelligence schemes is to model the simple behaviors of agents and its local
interactions with other neighboring agents to perform an effective search strategy
for solving optimization problems.

One example is the particle swarm optimization (PSO) which models two simple
actions. Each agent (1) moves toward the best agent of the swarm and (2) moves
toward the position where the agent has reached its best location. As a consequence,
the collective behavior of the swarm produces that all agents are attracted to the best
positions experimented by the swarm. Another example is the ant colony opti-
mization (ACO) which models the biological pheromone trail following behavior of
ants. Under this mechanism, each ant senses pheromone concentrations in its local
position. Then, it probabilistically selects the path with the highest pheromone
concentration. Considering this model, the collective effect in the swarm is to find
the best option (shortest path) from a group of alternatives available in a
decision-making problem.

There exist several features that clearly appear in most of the metaheuristic and
swarm approaches, such as the use of diversification to force the exploration of
regions of the search space, rarely visited until now, and the use of intensification or
exploitation, to investigate thoroughly some promising regions. Another interesting
feature is the use of memory to store the best solutions encountered. For these
reasons, metaheuristics and swarm methods quickly became popular amongst
researchers to solve from simple to complex optimization problems in different
areas.

Most of the problems in science, engineering, economics, and life can be
translated as an optimization or a search problem. According to their characteristics,
some problems can be simple that can be solved by traditional optimization
methods based on mathematical analysis. However, most of the problems of
practical importance such as system identification, parameter estimation, energy
systems, represent conflicting scenarios so that they are very hard to be solved by

vi Preface

using traditional approaches. Under such circumstances, metaheuristic and swarm
algorithms have emerged as the best alternative to solve this kind of complex
formulations. Therefore, swarm techniques have consolidated as a very active
research subject in the last ten years. During this time, various new swarm
approaches have been introduced. They have been experimentally examined on a
set of artificial benchmark problems and in a large number of practical applications.
Although metaheuristic and swarm methods represent one of the most exploited
research paradigms in computational intelligence, there are a large number of open
challenges in the area of swarm intelligence. They range from premature conver-
gence, inability to maintain population diversity and the combination of swarm
paradigms with other algorithmic schemes, toward extending the available tech-
niques to tackle ever more difficult problems.

Numerous books have been published tacking in account any of the most widely
known swarm methods, namely ant colony algorithms and particle swarm opti-
mization but attempts to consider the discussion of new alternative approaches are
always scarce. Initial swarm schemes maintain in their design several limitations
such as premature convergence and inability to maintain population diversity.
Recent swarm methods have addressed these difficulties providing in general better
results. Many of these novel swarm approaches have also been lately introduced. In
general, they propose new models and innovative cooperation models for producing
an adequate exploration and exploitation of large search spaces considering a
significant number of dimensions. Most of the new metaheuristic swarm present
promising results. Nevertheless, they are still in their initial stage. To grow and
attain their complete potential, new swarm methods must be applied in a great
variety of problems and contexts, so that they do not only perform well in their
reported sets of optimization problems, but also in new complex formulations. The
only way to accomplish this is by making possible the transmission and presen-
tation of these methods in different technical areas as optimization tools. In general,
once a scientific, engineering, or practitioner recognizes a problem as a particular
instance of a more generic class, he/she can select one of the different swarm
algorithms that guarantee an expected optimization performance. Unfortunately, the
set of options are concentrated in algorithms whose popularity and high prolifer-
ation are better than the new developments.

The excessive publication of developments based on the simple modification of
popular swarm methods presents an important disadvantage: They avoid the
opportunity to discover new techniques and procedures which can be useful to
solve problems formulated by the academic and industrial communities. In the last
years, several promising swarm schemes that consider very interesting concepts and
operators have been introduced. However, they seem to have been completely
overlooked in the literature, in favor of the idea of modifying, hybridizing, or
restructuring popular swarm approaches.

The goal of this book is to present advances that discuss new alternative swarm
developments which have proved to be effective in their application to several
complex problems. The book considers different new metaheuristic methods and
their practical applications. This structure is important to us, because we recognize

Preface vii

this methodology as the best way to assist researchers, lecturers, engineers, and
practitioners in the solution of their own optimization problems.

This book has been structured so that each chapter can be read independently
from the others. Chapter 1 describes the main characteristics and properties of
metaheuristic and swarm methods. This chapter analyses the most important con-
cepts of metaheuristic and swarm schemes.

Chapter 2 discusses the performance and main applications of each metaheuristic
and swarm method in the literature. The idea is to establish the strength and
weaknesses of each traditional scheme from practical perspective.

The first part of the book that involves Chaps. 3, 4, 5, and 6 present recent
swarm algorithms their operators and characteristics. In Chap. 3, an interesting
swarm optimization algorithm called the Selfish Herd Optimizer (SHO) is presented
for solving global optimization problems. SHO is based on the simulation of the
widely observed selfish herd behavior manifested by individuals within a herd of
animals subjected to some form of predation risk. In SHO, individuals emulate the
predatory interactions between groups of prey and predators by two types of search
agents: the members of a selfish herd (the prey) and a pack of hungry predators.
Depending on their classification as either a prey or a predator, each individual is
conducted by a set of unique evolutionary operators inspired by such prey–predator
relationship. These unique traits allow SHO to improve the balance between
exploration and exploitation without altering the population size. The experimental
results show the remarkable performance of our proposed approach against those
of the other compared methods, and as such SHO is proven to be an excellent
alternative to solve global optimization problems.

Chapter 4 considers a recent swarm algorithm called the Social Spider
Optimization (SSO) for solving optimization tasks. The SSO algorithm is based on
the simulation of cooperative behavior of social spiders. In the proposed algorithm,
individuals emulate a group of spiders which interact with each other based on the
biological laws of the cooperative colony. The algorithm considers two different
search agents (spiders): males and females. Depending on gender, each individual is
conducted by a set of different evolutionary operators which mimic different
cooperative behaviors that are typically found in the colony. In order to illustrate the
proficiency and robustness of the proposed approach, it is compared to other
well-known evolutionary methods. The comparison examines several standard
benchmark functions that are commonly considered within the literature of evo-
lutionary algorithms. The outcome shows a high performance of the proposed
method for searching a global optimum with several benchmark functions.

In Chap. 5, a swarm algorithm called Locust Search (LS) is presented for solving
optimization tasks. The LS algorithm is based on the simulation of the behavior
presented in swarms of locusts. In the proposed algorithm, individuals emulate a
group of locusts which interact with each other based on the biological laws of the
cooperative swarm. The algorithm considers two different behaviors: solitary and
social. Depending on the behavior, each individual is conducted by a set of evo-
lutionary operators which mimic the different cooperative behaviors that are typi-
cally found in the swarm. In order to illustrate the proficiency and robustness of the

viii Preface

proposed approach, it is compared to other well-known evolutionary methods. The
comparison examines several standard benchmark functions that are commonly
considered within the literature of evolutionary algorithms. The outcome shows a
high performance of the proposed method for searching a global optimum with
several benchmark functions.

Chapter 6 presents an algorithm for global optimization called the collective
animal behavior (CAB). Animal groups, such as schools of fish, flocks of birds,
swarms of locusts, and herds of wildebeest, exhibit a variety of behaviors including
swarming about a food source, milling around a central location, or migrating over
large distances in aligned groups. These collective behaviors are often advanta-
geous to groups, allowing them to increase their harvesting efficiency, to follow
better migration routes, to improve their aerodynamic, and to avoid predation. In the
presented swarm algorithm, the searcher agents emulate a group of animals which
interact with each other based on the biological laws of collective motion. The
method has been compared to other well-known optimization algorithms. The
results show good performance of the proposed method when searching for a global
optimum of several benchmark functions.

The second part of the book which involves Chaps. 7, 8, and 9 presents the use
of recent swarm algorithms in different domains. The idea is to show the potential
of new swarm alternatives algorithms from a practical perspective.

In Chap. 7, an algorithm for the optimal parameter calibration of fractional fuzzy
controllers (FCs) is presented. Fuzzy controllers (FCs) based on integer schemes
have demonstrated their performance in an extensive variety of applications.
However, several dynamic systems can be more accurately controlled by fractional
controllers. Under such conditions, there is currently an increasing interest in
generalizing the design of FCs with fractional operators. In the design stage of
fractional FCs, the parameter calibration process is transformed into a multidi-
mensional optimization problem where fractional orders as well as controller
parameters of the fuzzy system are considered as decision variables. To determine
the parameters, the proposed method uses the swarm method called Social Spider
Optimization (SSO) which is inspired by the emulation of the collaborative
behavior of social spiders. In SSO, solutions imitate a set of spiders which coop-
erate to each other based on the natural laws of the cooperative colony. Different to
the most of existent evolutionary algorithms, it explicitly avoids the concentration
of individuals in the best positions, avoiding critical flaws such as the premature
convergence to suboptimal solutions and the limited exploration–exploitation bal-
ance. Numerical simulations have been conducted on several plants to show the
effectiveness of the proposed scheme.

Chapter 8 presents an algorithm for the automatic selection of pixel classes for
image segmentation. The presented method combines a swarm method with the
definition of a new objective function that appropriately evaluates the segmentation
quality with respect to the number of classes. The employed swarm algorithm is the
Locust Search (LS) which is based on the behavior of swarms of locusts. Different
to the most of existent evolutionary algorithms, it explicitly avoids the concentra-
tion of individuals in the best positions, avoiding critical flaws such as the

Preface ix

premature convergence to suboptimal solutions and the limited exploration–
exploitation balance. Experimental tests over several benchmark functions and
images validate the efficiency of the proposed technique with regard to accuracy
and robustness.

Chapter 9 presents an algorithm for the automatic detection of circular shapes
embedded into cluttered and noisy images without considering conventional Hough
transform techniques. The approach is based on a swarm technique known as the
collective animal behavior (CAB). In CAB, searcher agents emulate a group of
animals which interact with each other based on simple biological laws that are
modeled as swarm operators. The approach uses the encoding of three non-collinear
points embedded into an edge-only image as candidate circles. Guided by the
values of the objective function, the set of encoded candidate circles (charged
particles) are evolved using the CAB algorithm so that they can fit into actual
circular shapes over the edge-only map of the image. Experimental evidence from
several tests on synthetic and natural images which provide a varying range of
complexity validates the efficiency of our approach regarding accuracy, speed, and
robustness.

Finally, In Chap. 10, the swarm optimization algorithm of Locust Search (LS) is
applied to a template-matching scheme. In the approach, the LS method is con-
sidered as a search strategy in order to find the pattern that better matches in the
original image. According to a series of experiments, LS achieves the best results
between estimation accuracy and computational load.

As authors, we wish to thank many people who were somehow involved in the
writing process of this book. We express our gratitude to Prof. Lakhmi C. Jain, who
so warmly sustained this project. Acknowledgments also go to Dr. Thomas
Ditzinger and Varsha Prabakaran, who so kindly agreed to its appearance.

Guadalajara, Mexico Erik Cuevas
Fernando Fausto
Adrián González

x Preface

Contents

1 An Introduction to Nature-Inspired Metaheuristics
and Swarm Methods . 1
1.1 Optimization Techniques: A Brief Summary 1
1.2 The Rise of Nature-Inspired Metaheuristics 3
1.3 General Framework of a Nature-Inspired Metaheuristic 4
1.4 Classification of Nature-Inspired Metaheuristics 5

1.4.1 Evolution-Based Methods . 6
1.4.2 Swarm-Based Methods . 10
1.4.3 Physics-Based Methods . 26
1.4.4 Human-Based Methods . 32

1.5 Nature-Inspired Metaheuristics on the Literature 36
1.6 Conclusions . 36
References . 39

2 Metaheuristics and Swarm Methods: A Discussion
on Their Performance and Applications . 43
2.1 On the Performance of Nature-Inspired Metaheuristics 43

2.1.1 Computational Complexity . 44
2.1.2 Memory Efficiency . 46
2.1.3 Exploration Versus Exploitation 46
2.1.4 Implementation . 48

2.2 Nature-Inspired Metaheuristics and Their Applications 50
2.2.1 Engineering Design . 50
2.2.2 Digital Image Processing and Computer Vision 51
2.2.3 Networks and Communications 51
2.2.4 Power and Energy Management 52
2.2.5 Data Analysis and Machine Learning 53
2.2.6 Robotics . 55
2.2.7 Medical Diagnosis . 56

xi

2.3 Nature-Inspired Metaheuristics: Research Gaps
and Future Directions . 57

2.4 Concluding Remarks . 61
References . 61

3 The Selfish Herd Optimizer . 69
3.1 Introduction . 69
3.2 The Selfish Herd Theory . 71
3.3 The Selfish Herd Optimizer Algorithm 72

3.3.1 Initializing the Population . 72
3.3.2 Survival Value Assignation . 73
3.3.3 Structure of a Selfish Herd . 74
3.3.4 Herd Movement Operators . 79
3.3.5 Predators Movement Operators 85
3.3.6 Predation Phase . 87
3.3.7 Restoration Phase . 89

3.4 Summary of the SHO Algorithm . 93
3.5 Discussion About the SHO Algorithm 96
3.6 Comparative Experiments and Results 97
3.7 Conclusions . 108
References . 108

4 The Swarm Method of the Social-Spider . 111
4.1 Introduction . 111
4.2 Biological Concepts . 113
4.3 The SSO Algorithm . 115

4.3.1 Fitness Assignation . 116
4.3.2 Modeling of the Vibrations Through

the Communal Web . 116
4.3.3 Initializing the Population . 117
4.3.4 Cooperative Operators . 118
4.3.5 Mating Operator . 120
4.3.6 Computational Procedure . 123
4.3.7 Discussion About the SSO Algorithm 124

4.4 Experimental Results . 125
4.4.1 Performance Comparison to Other Metaheuristic

Algorithms . 126
4.5 Conclusions . 129
Appendix: List of Benchmark Functions . 131
References . 136

5 The Locust Swarm Optimization Algorithm 139
5.1 Introduction . 139
5.2 Biological Fundamentals and Mathematical Models 141

xii Contents

5.2.1 Solitary Phase . 142
5.2.2 Social Phase . 143

5.3 The Locust Search (LS) Algorithm . 144
5.3.1 Solitary Operation (A) . 145
5.3.2 Social Operation (B) . 147
5.3.3 Complete LS Algorithm . 149
5.3.4 Discussion About the LS Algorithm 150

5.4 Experimental Results . 151
5.4.1 Performance Comparison . 151

5.5 Conclusions . 154
Appendix: List of Benchmark Functions . 155
References . 158

6 A Swarm Algorithm Inspired by the Collective
Animal Behavior . 161
6.1 Introduction . 161
6.2 Biological Fundamentals . 163
6.3 Collective Animal Behavior Algorithm (CAB) 164

6.3.1 Description of the CAB Algorithm 164
6.4 Experimental Results . 168

6.4.1 Effect of the CAB Parameters 168
6.4.2 Performance Comparison . 169

6.5 Summary . 185
References . 185

7 Auto-calibration of Fractional Fuzzy Controllers
by Using the Swarm Social-Spider Method 189
7.1 Introduction . 189
7.2 Fractional-Order Models . 191

7.2.1 Fractional Calculus . 191
7.2.2 Approximation of Fractional Operators 192

7.3 Fuzzy Controller . 193
7.4 Social Spider Optimization (SSO) . 195
7.5 Problem Formulation . 198
7.6 Numerical Simulations . 199

7.6.1 Results Over High-Order Plants G1ðsÞð Þ 200
7.6.2 Results Over Non-minimum Systems G2ðsÞð Þ 201
7.6.3 Results Over Fractional Systems G3ðsÞð Þ 203

7.7 Conclusions . 206
References . 207

Contents xiii

8 Locust Search Algorithm Applied to Multi-threshold
Segmentation . 211
8.1 Introduction . 211
8.2 Gaussian Mixture Modelling . 214
8.3 The Locust Search (LS) Algorithm . 215

8.3.1 LS Solitary Phase . 215
8.3.2 LS Social Phase . 218

8.4 Segmentation Algorithm Based on LS 218
8.4.1 New Objective Function Jnew 220
8.4.2 Complete Segmentation Algorithm 222

8.5 Segmentation Results . 224
8.5.1 Performance of LS Algorithm in Image

Segmentation . 224
8.5.2 Histogram Approximation Comparisons 227
8.5.3 Performance Evaluation of the Segmentation

Results . 233
8.6 Conclusions . 237
References . 238

9 Multimodal Swarm Algorithm Based on the Collective Animal
Behavior (CAB) for Circle Detection . 241
9.1 Introduction . 241
9.2 Biological Fundaments . 244
9.3 Collective Animal Behavior Algorithm (CAB) 245

9.3.1 Description of the CAB Algorithm 245
9.4 Results on Multi-modal Benchmark Functions 253

9.4.1 Experiment Methodology . 254
9.4.2 Comparing CAB Performance for Smooth

Landscapes Functions . 256
9.4.3 Comparing CAB Performance in Rough

Landscapes Functions . 259
9.5 Application of CAB in Multi-circle Detection 261

9.5.1 Individual Representation . 261
9.5.2 Objective Function . 265
9.5.3 The Multiple Circle Detection Procedure 265
9.5.4 Implementation of CAB Strategy for Circle

Detection . 267
9.6 Results on Multi-circle Detection . 269
9.7 Conclusions . 275
References . 276

xiv Contents

10 Locust Search Algorithm Applied for Template Matching 279
10.1 Introduction . 279
10.2 Template Matching Process . 281
10.3 The Locust Search (LS) Algorithm . 283

10.3.1 LS Solitary Phase . 284
10.3.2 LS Social Phase . 287

10.4 Template Matching (TM) Algorithm Based on the Locust
Search (LS) Method . 287

10.5 Experimental Setup and Results . 289
10.6 Conclusions . 294
Appendix . 294
References . 295

Contents xv

Chapter 1
An Introduction to Nature-Inspired
Metaheuristics and Swarm Methods

Abstract Mathematical Optimization is an current problem in many different areas
of science and technology; due to this, in the last few years, the interest on the devel-
opment of methods for solving such kind of problems has increased an unprece-
dented way. As a result of the intensification in research aimed to the develop-
ment of more powerful and flexible optimization tools, many different and unique
approaches have been proposed and successfully applied to solve a wide array of
real-world problems, but none has become as popular as the family of optimiza-
tion methods known as nature-inspired metaheuristics. This compelling family of
problem-solving approaches have become well-known among researchers around
the world not only for to their many interesting characteristics, but also due to their
ability to handle complex optimization problems, were other traditional techniques
are known to fail on delivering competent solutions. Nature-inspired algorithms have
become a world-wide phenomenon. Only in the last decade, literature related to this
compelling family of techniques and their applications have experienced and aston-
ishing increase in numbers, with hundreds of papers being published every single
year. In this chapter, we present a broad review about nature-inspired optimization
algorithms, highlighting some of the most popular methods currently reported on the
literature as and their impact on the current research.

1.1 Optimization Techniques: A Brief Summary

Mathematical optimization is a branch of appliedmathematics and computer sciences
which deals with the selection of the optimal solution for a particular mathematical
function (or problem) with the purpose of either minimizing or maximizing the out-
put of such function. In more simple terms, optimization could be described as the
process of selecting of the best element(s) from among a set of available alternatives
to get the best possible results when solving a particular problem [1, 2]. Optimization
is a recurring problem for many different areas of application such as robotics, com-
puter networks, security, engineering design, data mining, finances, economics, and
many others [2]. Independently of the area of application, optimization problems are

© Springer Nature Switzerland AG 2020
E. Cuevas et al., New Advancements in Swarm Algorithms: Operators
and Applications, Intelligent Systems Reference Library 160,
https://doi.org/10.1007/978-3-030-16339-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16339-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-16339-6_1

2 1 An Introduction to Nature-Inspired Metaheuristics …

wide-ranging and numerous, so much that the development of methods for solving
such problems has remained a hot topic for many years.

Traditionally, optimization techniques can be roughly classified as either deter-
ministic or stochastic [3].Deterministic optimization approaches,which design heav-
ily relies on mathematical formulation and its properties, are known to have some
remarkable advantages, such as fast convergence and implementation simplicity [4].
On the other hand, stochastic approaches, which resort to the integration of random-
ness into the optimization process, stand as promising alternatives to deterministic
methods for being far less dependent on problem formulation and due to their ability
to thoroughly explore a problems design space, which in turn allow them to overcome
local optima more efficiently [5]. While both deterministic and stochastic methods
have been successfully applied to solve a wide variety of optimization problems,
these classical approaches are known to be subject to some significant limitations;
first of all, deterministic methods are often conditioned by problem properties (such
as differentiability in the case of gradient-based optimization approaches) [6]. Fur-
thermore, due to their nature, deterministic methods are highly susceptible to get
trapped into local optima, which is something undesirable for most (if not all) appli-
cations. As for stochastic techniques, while these are far easier to adapt to most
black-box formulations or ill-behaved optimization problems, these methods tend to
have a notably slower convergence speed in comparison to their deterministic coun-
terparts, which naturally pose as an important limitation for applications where time
is critical.

The many shortcomings of classical methods, along with the inherent challenges
of real-life optimization problems, eventually lead researchers to the development of
heuristics as an alternative to tackle such complex problems [1]. Generally speak-
ing, a heuristic could be described as a technique specifically tailored for solving
specific problems, often considered too difficult to handle with classic techniques.
In this sense, heuristics trade essential qualities such as optimality, accuracy, pre-
cision or completeness to, either solve a problem in reasonably less time or to find
an approximate solution in situations in which traditional methods fail to deliver an
exact solution. However, while heuristic methods have demonstrated to be excellent
to handle otherwise hard to solve problems, there are still subject to some issues. Like
most traditional approaches, heuristics are usually developed by considering at least
some specifications about the target problem, and as such, it is hard to apply them to
different problems without changing some or most of their original framework [7].

Recently, the idea of developing methodologies that could potentially solve a
wide variety of problems in a generic fashion has caught the attention of many
researchers, leading to the development of a new breed of “intelligent” optimization
techniques formally known asmetaheuristics [8]. Ametaheuristic is a particular kind
of heuristic-based methodology, devised with the idea of being able to solve many
different problems without the need of changing the algorithms basic framework.
For this purpose, metaheuristic techniques employ a series of generic procedures
and abstractions aimed to improve a set of candidate solution iteratively. With that
being said, metaheuristics are often praised due to their ability to find adequate
solutions for most problems independently of their structure and properties.

1.2 The Rise of Nature-Inspired Metaheuristics 3

1.2 The Rise of Nature-Inspired Metaheuristics

Theword “nature” refers tomany phenomena observed in the physical world. It com-
prises virtually everything perceptible to our senses and even some things that are
not as easy to perceive. Nature is the perfect example of adaptive problem solving;
it has shown countless times how it can solve many different problems by applying
an optimal strategy, suited to each particular natural phenomenon. Many researchers
around the world have become captivated by how nature can adapt to such an exten-
sive array of situations, and for many years they have tried to emulate these intriguing
problem-solving schemes to develop tools with real-world applications. In fact, for
the last two decades, nature has served as the most important source of inspiration
in the development of metaheuristics. As a result of this, a whole new class of opti-
mization techniques was given birth in the form of the so-called Nature-inspired
optimization algorithms. These methods (often referred as bio-inspired algorithms)
are a particular kind ofmetaheuristics, developed with a single idea inmind: mimick-
ing a biological or a physical phenomenon to solve optimization problems. With that
being said, depending on their source of inspiration, nature-inspired metaheuristics
can be classified in four main categories: evolution-based, swarm-based, physics-
based and human-based methods [9, 10]. Evolution-based methods are developed by
drawing inspiration in the laws of natural evolution. From these methods, the most
popular is without a doubt the Genetic Algorithms approach, which simulates Dar-
winian evolution [11]. Other popular methods grouped within this category include
Evolution Strategy [12], Differential Evolution [13] and Genetic Programming [14].
On the other hand, swarm-based techniques are devised to simulate the social and
collective behavior manifested by groups of animals (such as birds, insects, fishes,
and others). The Particle Swarm Optimization [15] algorithm, which is inspired in
the social behavior of bird flocking, stands as the most representative and successful
example within this category, although other relevant methods include Ant Colony
Optimization [16], Artificial Bee Colony [17], Firefly Algorithm [18], Social Spi-
der Optimization [19], among others. Also, there are the physics-based algorithms,
which are developed with the idea of emulating the laws of physics observed within
our universe. Some of the most popular methods grouped within this category are
Simulated Annealing [20], Gravitational Search Algorithm [21], Electromagnetism-
like Mechanism [22], States of Matter Search [23], to name a few. Finally, we can
mention human-based algorithms. These kind of nature-inspired methods are unique
due to the fact that they draw inspiration from several phenomena commonly associ-
ated with humans’ behaviors, lifestyle or perception. Some of the most well-known
methods found in the literature include Harmony Search [24], Firework Algorithm
[25], Imperialist Competitive Algorithm [26], and many more.

Most nature-inspired methods are modeled as population-based algorithms, in
which a group of randomly generated search agents (often referred as individuals)
explore different candidate solutions by applying a particular set of rules derived from
some specific natural phenomenon. This kind of frameworks offer important advan-
tages in both, the interaction among individuals, which promotes a wider knowledge

4 1 An Introduction to Nature-Inspired Metaheuristics …

about different solutions, and the diversity of the population, which is an important
aspect on ensuring that the algorithm has the power to efficiently explore the design
space while also being able to overcome local optima [8]. Due to this and many other
distinctive qualities, nature-inspired methods have become a popular choice among
researchers. As a result, literature related to nature-inspired optimization algorithms
and its applications for solving otherwise challenging optimization problems has
become extremely vast, with hundreds of new papers being published every year.

In this chapter, we analyze some of the most popular nature-inspired optimization
methods currently reported on the literature, while also discussing their impact on
the current literature. The rest of this chapter is organized as follows: in Sect. 1.2,
we analyze the general framework applied by most nature-inspired metaheuristics
in terms of design. In Sect. 1.3, we present nature-inspired methods according to
their classification while also reviewing some of the most popular algorithms for
each case. Finally, in Sect. 1.4, we present a brief study concerning the growth in the
number of publications related to nature-inspired methods.

1.3 General Framework of a Nature-Inspired
Metaheuristic

With some exceptions, most of the nature-inspired metaheuristics currently reported
on the literature are modeled as population-based algorithms, which implies that the
general framework employed by most of these methods remains almost identical,
independently of the natural phenomenon from which the algorithm is inspired [2].

Usually, the first step of a nature-inspired algorithm involves the definition of a
set of N randomly initialized solutionsX = {x1, x2, . . . , xN } (commonly referred as
population), and such that:

xi = [
xi,1, xi,2, . . . , xi,d

]
(1.1)

where the elements xi,n represent the decision variables (parameters) related to a
given optimization problem, while d denotes the dimensionality (number of decision
variables) of the target solution space.

From an optimization point of view, each set of parameters xi ∈ X (also known
as an individual) is considered as a candidate solution for the specified optimization
task; as such, each of these solutions is also assigned with a corresponding quality
value (or fitness) related to the objective function f (·) that describes the optimization
task, such that:

fi = f (xi) (1.2)

Nature-inspired methods usually follow an iterative search scheme, in which new
candidate solutions are generated bymodifying currently available individuals; this is

1.3 General Framework of a Nature-Inspired Metaheuristic 5

achieved by applying some previously specified criteria (usually devised by drawing
inspiration from an observed natural phenomenon). For most cases, this process may
be illustrated by the following expression:

x′
i = xi + �xi (1.3)

where x′
i denotes the candidate solution generated by adding up a specified update

vector �xi to xi . It is worth noting that the value(s) adopted by the update vector
�xi depend on the specific operators employed by each individual algorithm.

Finally, most nature-inspired algorithms include some kind of selection process,
in which the newly generated solutions are compared against those in the current
population Xk (with k denoting the current iteration) in terms of solution quality,
typically with the purpose of choosing the best individual(s) among them. As a result
of this process, a new set of solutionsXk+1 = {

xk+1
1 , xk+1

2 , . . . , xk+1
n

}
, corresponding

to the following iteration (or generation) ‘k + 1’, is generated.
This whole process is iteratively repeated until a particular stop criterion is met

(i.e., if a maximum number of iterations is reached). Once this happens, the best
solution found by the algorithm is reported as the best approximation for the global
optimum [2].

1.4 Classification of Nature-Inspired Metaheuristics

Nature-Inspired optimization algorithms have become so numerous and so varied that
illustrating every single method in existence has become an undoubtedly challenging
task. However, several algorithms have become widely popular among researchers,
either for their fascinating characteristics or their ease of implementation. In this
section,we present some of themost popular nature-inspired optimization techniques
currently reported on the literature. The algorithms presented in this section were
chosen by considering a balance between both classical and modern approaches.
Also, in order to give the reader the facility to understand, analyze and compare each
of the described methods in the same terms, we have taken some liberties regarding
nomenclature and formulation presented on each case so that it is consistent with
the general framework of nature-inspired methods presented in Sect. 1.3. While
the introduced formulations may look slightly different to those reported on their
sources, we have made a special effort to keep the essence and particular traits
that distinguish each method unaltered; with that being said, the reader is always
invited to refer to the original paper(s) in order to get a deeper understanding of these
techniques. All approaches described in this section are presented according to the
typical classification of to nature-inspired metaheuristics (see Fig. 1.1).

6 1 An Introduction to Nature-Inspired Metaheuristics …

Fig. 1.1 Classification of nature-inspired metaheuristics

1.4.1 Evolution-Based Methods

Evolution-Based methods comprise a series of optimization algorithms developed
by drawing inspiration in the laws of natural evolution. In this kind of techniques,
solutions are typically represented by a set of individuals, which compete and com-
bine in ways that allow only the most suitable individuals to prevail. The process for
modifying existent solutions in evolution-based techniques often involve the imple-
mentation of a series of operators inspired in several processes commonly observed
in natural evolution, such as crossover, mutation, and selection.

1.4.1.1 Differential Evolution

The Differential Evolution (DE) approach is an evolutionary algorithm introduced
by Rainer Storn and Kenneth Price in 1996 [13] and, along with Genetic Algorithms
(GA), is one of the most popular optimization approaches inspired in the evolution
phenomena.

At each generation ‘k’, DE applies a series of mutation, crossover and selec-
tion operators in order to allow a population of solutions X = {x1, x2, . . . xN } to
“evolve” toward an optimal solution. For DE’s mutation operation, new candidate
(mutant) solutions mk

i = [
mk

i,1,m
k
i,2, . . . ,m

k
i,d

]
are generated for each individual xi

as illustrated as follows:

mk
i = xkr3 + F

(
xkr1 − xkr2

)
(1.4)

where r1, r2, r3 ∈ {1, 2, . . . , N } (andwith r1 �= r2 �= r3 �= i) each denote a randomly
chosen solution index, while the parameter F ∈ [0, 2] is called differential weight,
and is used to control the magnitude of the differential variation

(
xkr1 − xkr2

)
.

1.4 Classification of Nature-Inspired Metaheuristics 7

Furthermore, for the crossover operation,DEgenerates a trial solution vectoruk
i =[

uki,1, u
k
i,2, . . . , u

k
i,d

]
corresponding to each population member ‘i’. The components

uki,n in such a trial vector are given by combining both the candidate solution xki and
its respective mutant solution mk

i as follows:

uki,n =
{
mk

i,n if (rand ≤ CR) or n = n∗

xki,n if(rand > CR) otherwise
for n = 1, 2, . . . , d (1.5)

where n∗ ∈ {1, 2, . . . , d} denotes a randomly chosen dimension index, while rand
stand for a randomnumber fromwithin the interval [0, 1]. Furthermore, the parameter
CR ∈ [0, 1] represents theDE’s crossover ratewhich is used to control the probability
of an element uki,n being given by either a component from the candidate solution xki(
xki,n
)
or a component from the mutant solutionmk

i

(
mk

i,n

)
.

Finally, for DE’s selection process, each trail solution uk
i is compared against its

respective candidate solution xki in terms of solution quality (fitness) by applying a
greedy criterion. This means that, if the trial solution uk

i yields to a better fitness
value than xki , then the value of the candidate solution for the next generation ‘k +1’
takes the value of uk

i , otherwise, it remains unchanged. This is:

xk+1
i =

{
uk
i if

(
f
(
uk
i

)
> if f

(
xki
))

xki otherwise
(1.6)

As one of the most popular Evolution-based algorithms currently reported on
the literature, DE has been extensively studied and applied by researchers in many
different areas of science [27–32].

1.4.1.2 Evolution Strategies

Evolution Strategies (ES) are a series of optimization techniques which draw inspi-
ration from natural evolution [12]. The first ES approach was introduced by Ingo
Rechenberg in the early 1960s and further developed during the 1970s. The most
straightforward ES approach is the so-called (1 + 1)-ES (or two-membered ES).
This approach considers the existence of only a single parent x = [x1, x2, . . . , xd],
which is assumed to be able to produce a new candidate solution (offspring)
x′ = [

x ′
1, x

′
2, . . . , x

′
d

]
by means of mutation as follows:

x′ = x + N(0, σ) (1.7)

where N(0, σ) denotes a d-dimensional random vector whose values are drawn
from a Gaussian distribution of mean 0 and fixed standart deviation σ (although later
approaches consider a dynamic value based on the number of successful mutations)
[12].

8 1 An Introduction to Nature-Inspired Metaheuristics …

Furthermore, the (1+ 1)-ES implements a selection operatorwhich allows exclud-
ing the individual with the least performance between the parent x and its respective
offspring x′, so that only the best of these solution is considered as the parent for the
next generation (iteration).

In later approaches, Rechemberg introduced the concept of population to ES
by proposing the first multimembered ES in the form of the so-called (μ + 1)-
ES. In such an approach, a population P = {

I1, . . . , Iμ
}
consisting on μ > 1

parents Ii = {xi ,σi } (with xi = [
xi,1, xi,2, · · · xi,d

]
and σi = [

σi,1, σi,2, . . . , σi,d
]
)

is considered. Furthermore, a discrete recombination mechanism which considers
information drawn from a pair of randomly chosen parent is implemented to generate
a new offspring I′ = {

x′,σ′} as follows:

x ′
j =

{
xr1,n if (rand > 1/2)
xr2,n otherwise

for n = 1, 2, . . . , d (1.8)

σ ′
j =

{
σr1,n if (rand > 1/2)
σr2,n otherwise

for n = 1, 2, . . . , d (1.9)

where r1, r2 ∈ {1, . . . , μ} denote two randomly chosen solution indexes correspond-
ing to the parents population, while rand stand for a random number from within the
interval [0,1].

Similarly to (1 + 1)-ES, (μ + 1)-ES also implements a mutation operator which
generate a new offspring solution by perturbing a currently existing parent. Fur-
thermore, a selection operator which allows to choose the best μ solutions from
among the population of parents and offspring (generated through recombination
and mutation) is also implemented to define a new parents’ population for the next
generation.

Later approaches, such as the (μ + λ)-ES and the (μ, λ)-ESwere further proposed
to consider the generation of multiple offspring rather than a single one [12]. Fur-
thermore, several variations to the recombination and mutation processes employed
on classical ES have also been proposed, giving birth to some interesting variants
such as (μ, λ)-MSC-ES and CMA-ES, the latter of which is considered by many
authors as the state-of-the-art in ES [33–36].

1.4.1.3 Genetic Algorithms

GeneticAlgorithms (GA) is one of the earliestmetaheuristics inspired in the concepts
of natural selection and evolution and is among the most successful Evolutionary
Algorithms (EA) due to its conceptual simplicity and easy implementation [37]. GA
was initially developed by John Henry Holland in 1960 (and further extended in
1975) with the goal to understand the phenomenon of natural adaptation, and how
this mechanism could be implemented into computers systems to solve complex
problems.

1.4 Classification of Nature-Inspired Metaheuristics 9

In GA, a population of N solutions xi = [
xi,1, xi,2, . . . , xi,d

]
is first initialized;

each of such solutions (called chromosomes) comprises a bitstring (this is, xi,n ∈
{0, 1}), which further represents a possible solution for a particular binary problem.
At each iteration (also called generation) of GA’s evolution process, the chromosome
population is modified by applying a set of three evolutionary operators, namely:
selection, crossover and mutation. For the selection operation, GA randomly selects
a pair of chromosomes xp1 and xp2 (with p1, p2 ∈ {1, 2, . . . , N } and p1 �= p2)
from within the entire chromosome population, based on their individual selection
probabilities. The probability Pi for a given chromosome ‘i’ (xi) to be selected
depends on its quality (fitness value), as given as follows:

Pi = f (xi)
∑N

j=1 f
(
x j
) (1.10)

Then, for the crossover operation, the bitstring information of the selected chro-
mosomes (now called parents) is recombined to produce two new chromosomes, xs1
and xs2 (referred as offspring) as follows:

xs1,n =
{
xp1,n if (n < l)
xp2,n otherwise

xs2,n =
{
xp2,n if(n < l)
xp1,n otherwise

for n = 1, 2, . . . , d. (1.11)

where l ∈ {1, 2, . . . , d} is a randomly selected pivot index (usually referred as locus).
Finally, for the mutation operation, some elements (bits) of the newly generated

offspring are flipped (changed from 1 to 0 or vice versa). Mutation can occur over
each bit position in the string with a particular probability Pm (typically as low as
0.001), as given as follows:

xsr ,n =
{
x̄sr ,n if (rand < Pm)

xsr ,n otherwise
for n = 1, 2, . . . , d (1.12)

where xsr ,n (with r ∈ {1, 2}) stand for the j th element (bit) of the sr th offspring,
while rand stand for a randomumber form within the interval of 0 and 1.

This process of selection, crossover, and mutation of individuals takes place until
a population of N new chromosomes (mutated offspring) has been produced, and
then, the N best chromosomes among the original and new populations are taken for
the next generation, while the remainder individuals are discarded [38–41].

1.4.1.4 Genetic Programming

Genetic Programming (GP) is a unique optimization technique proposed by John
R. Koza in 1992 [14]. The development of GP is closely related to popularization
gained by evolutionary algorithms between the 1960s and 1970s. In essence, GP can
be considered an extension of evolutionary methods such as Rechenberg’s Evolution

10 1 An Introduction to Nature-Inspired Metaheuristics …

Strategies (ES) or Holland’s Genetic Algorithms (GA). Different to said traditional
methods, however, is the fact that in GP solutions are represented by a set of opera-
tions or computer programs; this is that, instead of finding a set of decision variables
that optimize a given objective function, the outputs of GP are computer programs
specifically tailored (evolved) to perform optimally on predefined tasks. Tradition-
ally, solutions in GP are represented as tree structures which group a set of functions
and operands, although other representations are also common. Furthermore, GP is
also distinctive due to its variable-length representation of output solutions, which
drastically differs to the fixed-length representations adopted by most traditional
techniques [42–46].

Typically, most GP approaches are comprised of the following four fundamental
steps:

1. Generating an initial population of computer programs, composed by the avail-
able functions and terminals (operands).

2. Execute each program in the population and assign it a fitness value according
to how well it solves a given problem.

3. Generate a new population of programs by:

a. Copying the current best computer programs (reproduction).
b. Creating new offspring programs by randomly changing some parts of a

program (mutation).
c. Creating new offspring programs by recombining parts from two existent

programs (crossover).

4. If a specified stop criterion ismet, return the single best program in the population
as the solution for the pre-specified problem. Otherwise, return to step 2.

1.4.2 Swarm-Based Methods

Swarm-based optimization algorithms comprise a series of techniques which draw
inspiration from the collective behavior manifested by a wide range of living organ-
isms, such as birds, insects, fishes, and others. In this kind of techniques, search
agents are modeled by a population of individuals (usually from the same species)
which are capable of interacting with each other and the environment that surrounds
them. While the movement of search agents in swarm algorithms is often based on
simplified behavioral rules abstracted from those observed in nature, the collective
manifestation of these individual conducts allows the entire population to exhibit
global and complex behavioral patterns, thus allowing them to explore an extensive
amount of candidate solutions.

1.4 Classification of Nature-Inspired Metaheuristics 11

1.4.2.1 Ant Colony Optimization

TheAntColonyOptimization (ACO) algorithm is oneof themostwell-knownnature-
inspired metaheuristics. The ACO approach was first proposed by Marco Dorigo in
1992 under the name of Ant Systems (AS) and draws inspiration in the natural
behavior of ants [47]. In nature, ants move randomly while foraging for food, and
when an appropriate source is found, they return to their colony while leaving a
pheromone trail behind. Ants are able to guide themselves toward previously found
food source by following the path traced by pheromones left by them or other ants.
However, as time passes, pheromones start to evaporate; intuitively, the more time an
ant takes to travel down a given path back and forth, the more time the pheromones
have to dissipate; on the other hand, shorter paths are traversed more frequently,
promoting that pheromone density becomes higher in comparison to that on longer
routes. In this sense, if an ant finds a good (short) path from the colony to a food source,
others members are more likely to follow the route traced by said ant. The positive
feedback provided by the increase in pheromone density through paths traversed by
an increasing number of ants eventually lead all members of the colony to follow a
single optimal route [16].

The first ACO approach was conceived as an iterative process devised to handle
the task of finding optimal paths in a graph [47]. For this purpose, ACO considers a
population of N ants which move through the nodes and arcs of a graph G(N ,P)

(withN and P denoting its respective sets of nodes and arcs, respectively). Depend-
ing on their current state (node), each ant is able to choose from among a set of
adjacent paths (arc) to traverse based on the pheromone density and length associ-
ated to each of them. With that being said, at each iteration ‘k’, the probability for
a given ant ‘i’ to follow a specific path ‘xy’ (which connects states ‘x’ and ‘y’) is
given by the following expression:

pki(xy) =
(
α · τ k

(xy)

)(
β · ηk

(xy)

)

∑
z∈Yx

(
α · τ k

(xz)

)(
β · ηk

(xz)

) (1.13)

where, τ k
(xy) denotes the pheromone density over the given path ‘xy’, while ηk

(xy)
stand for the preference for traversing said path, which is relative to its distance
(cost). Furthermore, Yx represent the set of all adjacent states for the given current
state ‘x’. Finally, α and β are constant parameters used to control the influence of
τ k
(xy) and ηk

(xy), respectively.
By applying this mechanism, each ant moves through several paths within the

graph until a specific criterion is met (i.e., that a particular destination node has been
reached). Once this happens, each ant backtracks its traversed route while releasing
some pheromones on each the paths they used. In ACO, the amount of pheromones
released by an ant ‘i’ over any given path ‘xy’ is given by:

12 1 An Introduction to Nature-Inspired Metaheuristics …

�τ k
i(xy) =

{
Q/Li if ′′the ant used the path xy in its tour′′

0 otherwise
(1.14)

where, Li denotes the length (cost) associated to the route taken by the ant ‘i’, while
Q stand for a constant value.

Finally, ACO includes a procedure used to update the pheromone density over all
paths in the graph for the following iteration (k + 1). For this purpose, it considers
both, the amount of pheromones released by each ant while backtracking its traced
route and the natural dissipation of pheromones which takes place as time passes.
This is applied by considering the following expression:

τ k+1
(xy) = (1 − ρ) · τ k

(xy) +
N∑

i=1

�τ k
i(xy) (1.15)

where ρ is a constant value known as pheromone evaporation coefficient, while
�τ k

i(xy)
stand for the amount of pheromones released by an ant ‘i’ over a specific path

‘xy’ (as given by Eq. 1.14).

1.4.2.2 Artificial Bee Colony

Bees are among the most well-known example of insects which manifest a col-
lective behavior, either for food foraging or mating. Based on this premise, many
researchers have proposed several different swarm intelligence approaches inspired
by the behavior of bees. In particular, the Artificial Bee Colony (ABC) approach
proposed by Dervis Karaboga and Bahriye Basturk in 2007 is known to be among
the most popular of these bee-inspired methods [48].

In the ABC approach, search agents are represented as a colony of artificial honey
bees which explore a d-dimentional search space while looking for optimal food
(nectar) sources. The locations of these food sources each represent a possible solu-
tions for a given optimization problem and their amount of nectar (quality) is related
to the fitness value associated to each of such solutions. Furthermore, the members of
the bee colony are divided in three groups: employed bees, onlooker bees and scout
bees. Each of these groups of bees has distinctive functions inspired in the mechanics
employed by bees while foraging for food. For example, the employed bees com-
prises the members of the colony which function is to explore the surroundings of
individually-known food sources in the hopes of finding places with greater amounts
of nectar. In addition, employed bees are able to share the information of currently
known food sources with the rest of the members of the colony, so that they can also
exploit them. With that being said, at each iteration ‘k’ of ABC’s search process,
each employed bee generates a new candidate solution vi around a currently known
food source xi as follows:

vki = xki + φ
(
xki − xkr

)
(1.16)

1.4 Classification of Nature-Inspired Metaheuristics 13

where xki denotes the location of the food source remembered by a particular
employed bee ‘i’ while xkr (with r �= i) stands for the location of any other ran-
domly chosen food source. Furthermore, φ is a random number drawn from within
the interval [−1, 1].

On the other hand, onlooker bees can randomly visit any food source known by
the employed bees. For this purpose, each available food source is assigned with a
certain probability of being visited by an onlooker bee as follows:

Pk
i = f

(
xki
)

∑N
j=1 f

(
xkj
) (1.17)

Similarly to the employed bees, once an onlooker bee has decided to visit a
particular food source, a new candidate solution vki is generated around the chosen
location xki by applying Eq. (1.16). Furthermore, any candidate solution vki generated
by either an employed or an onlooker bee is compared against its originating location
xki in terms of solution quality, and then, the best among them is chosen as the new
food source location for the following iteration; this is:

xk+1
i =

{
vki if

(
f
(
xki
)

< f
(
vki
))

xki otherwise
(1.18)

Finally, scout bees are the members of the colony whose function is to explore
the whole terrain for new food sources randomly. Scout bees are deployed to look
for new solutions only if a currently known food source is chosen to be “abandoned”
(a thus forgotten by all members of the colony). In ABC, a solution is considered
to be abandoned only if it cannot be improved by either the employed or onlooker
bees after a determined number of iterations, indicated by the algorithm’s parameter
“limit”. This mechanism is important for the ABC approach since it allows it to
keep the diversity of solutions during the search process.

In general, ABC’s local search performancemay be attributed to the neighborhood
exploration and greedy selection mechanisms applied by the employed and onlooker
bees, while the global search performance is mainly related to the diversification
attributes of scout bees.

1.4.2.3 Bat Algorithm

The Bat Algorithm (BA) is a bio-inspired metaheuristic proposed by Xin-SheYang
in 2010. The BA approach draws inspiration on the behavior manifested by certain
species of bats (particularly, microbats) [49]. In nature, most bats are equipped with
a type of biologic sonar known as echolocation. In simple terms, the echolocation
consists of two steps: the emission of loud frequency-modulated sound pulses and
the reception (listening) of the echoing sounds that bounce back from surround-
ing objects, which essentially allows building a three-dimensional scenario of the

14 1 An Introduction to Nature-Inspired Metaheuristics …

immediate environment. Typically, bats use this specialized sonar system to assist
themselves in several tasks, such as prey detection, obstacle evasion or even locating
their roosting places.

In the BA approach, search agents are modeled as a swarm of bats whose position
within the d-dimensional search space represent a possible solution for a given opti-
mization problem. Furthermore, each bat is assumed to use echolocation to assist its
movement toward a particular prey (modeled as the global best solution). For this
purpose, the BA algorithm considers three sets of parameters whose values are con-
stantly adjusted as the search process goes on: frequencies, loudness and pulse emis-
sion rates. In the case of the frequencies, these are modeled by a set of d-dimensional
vectors, each associated to a given bat ‘i’ and whose values are randomly adjusted
at each iteration ‘k’, such that:

F k
i = Fmin + β · (Fmax − Fmin

)
(1.19)

where the parametersFmin andFmax denote the minimum and maximum frequen-
cies, respectively. Finally, β is a vector of random numbers each from within the
interval [0, 1].

On the other hand, the loudness and pulse emission rates Ai and ri , respectively,
comprise a set of parameters whose initial values A0

i and r0i are defined during the
algorithms initialization.As the searchprocess evolves, the values of these parameters
are modified according to the following expression:

Ak+1
i = αAk

i , rk+1
i = r0i (1 − exp(−γ k)) (1.20)

where α < 1 and γ < 1 are constant parameters.
With regard to the position update operators, the BA algorithm applies the fol-

lowing movement rule to update the location of each bat ‘i’ for the current iteration
‘k’:

xki = xk−1
i + vki (1.21)

where xk−1
i represents the position of the i th bat at the previous iterations (k − 1),

while vki stands for the velocity of said bat, as given by the following expression:

vki = vk−1
i + fi · (xki − xbest

)
(1.22)

where xbest denotes for the current global best solution found during the search
process, while F k

i represents frequency vector associated to bat ‘i’, as given by
Eq. (1.19):

Furthermore, BA also includes a local search scheme in which, at each iteration,
a randomly chosen individual among the current best solutions is further refined by
performing a random walk as follows:

1.4 Classification of Nature-Inspired Metaheuristics 15

xk∗ =
{
xki + εAk

i if
(
rand > rki

)

xki otherwise
(1.23)

where the parameters Ak
i and r

k
i denote the loudness and pulse emission rates asso-

ciated to the randomly chosen bat ‘i’, while rand stand for a random number drawn
from within the uniformly distributed interval [0, 1]. Finally, it is worth noting that
the newly generated solution xk∗ is accepted as the new position for bat ‘i’

(
xki
)
only

if certain conditions are met; particularly:

xki =
{
xk∗ if

(
rand < Ak

i and f
(
xki
)

< f
(
xk∗
))

xki otherwise
(1.24)

1.4.2.4 Crow Search Algorithm

The Crow Search Algorithm (CSA), as proposed by Alireza Askarzadeh in 2016,
is a nature-inspired optimization method which draws inspiration in the behavior of
flocking crows [50]. Crows are considered by many as the most intelligent of birds;
they are mainly known for hiding their excess food in specific locations around their
environment, and when needed they can accurately remember the location of their
hidden food sources. Crows are also known for its tendency to commit thievery. To
do so, they observe and follow other crows to find their hiding places, and then, they
steal their resources once its owner leaves. Also, from their experience as thieves,
crows are able to develop different tactics to prevent their hiding places from being
pilfered by other crows, such as moving their hiding places to other locations or even
tricking other birds to follow them to a different place.

In CSA, search agents are modeled as a flock comprised by N crows, each with
a particular positions xi = [

xi,1, xi,2, . . . , xi,d
]
within a feasible d-dimentional solu-

tion space. Each of these crows is also assumed to have amemory, which allows them
to remember the location of their respective food hiding places. For this purpose,
CSA assigns each crow ‘i’ with a memory solution mi = [

mi,1,mi,2, . . . ,mi,d
]
,

which represents the best solution found so far by said crow ‘i’. The movement
operators employed by CSA to update the position of each crow considers two dif-
ferent possibilities: (1) the case where a crow ‘i’ follows some randomly chosen
crow ‘ j’ to their hiding place, and (2) the situation in which said crow ‘i’ is deceived
by crow ‘ j’ into moving to a different location. With that being said, at each iteration
‘k’, CSA updates the position of each crow as follows:

xk+1
i =

⎧
⎨

⎩

xki + ri · f lki ·
(
mk

j − xki
)
if
(
rand ≥ APk

j

)

ri if
(
rand < APk

j

) (1.25)

where APk
j denotes awareness probability of crow ‘ j’ at iteration ‘k’, whereas rand

stand for a random number drawn from a uniform distribution within the interval

16 1 An Introduction to Nature-Inspired Metaheuristics …

[0, 1]. The position update operator applied when rand(0, 1) ≥ APk
j denotes the

situation in which a crow ‘ j’ is not aware that a crow ‘i’ is following it and, as a

result, crow ‘i’ approaches toward the hiding place of sais crow ‘ j’
(
mk

j

)
. In this

sense, the parameter f lki denotes the maximum flight length (step size) of crow ‘i’,
while ri ∈ [0, 1] stand for a random step factor. On the other hand, if rand < APk

j ,
it is assumed that crow ‘ j’ is aware that it is being followed by the crow ‘i’, and in
response, it will fool said pilferer into moving to a different location. With that being
said, the position of crow ‘i’ is updated to ri , which stand for a randomly generated
solution within the feasible decision space.

1.4.2.5 Cuckoo Search

Cuckoo birds are well-known due to they’re aggressive, yet fascinating reproduction
strategies. In particular, a good number of cuckoo species are known to resort to
brood parasitism as part of their life-cycle. Essentially, cuckoos secretly lay their
eggs in the nest of other birds (typically of a different species) in the hopes of
deceiving the host into thinking that such eggs are their own. Should these alien eggs
succeed to be undetected by the host bird, they are almost guaranteed to hatch into
new cuckoo chicks; otherwise, the host bird may opt to remove such aliens eggs
of their nest or even abandon the nest to build a new one somewhere else. Inspired
by this intriguing behavior, in 2009, Xin-She Yang and Suash Deb proposed the
nature-inspired algorithm known as Cuckoo Search (CS) [51].

In the CS approach, solutions are modeled as a set of N host nests. To simulate
the situation in which a cuckoo bird chooses a host nest to lay their own eggs, at each
iteration ‘k’, new candidate solutions are generated around randomly selected host
nests ‘i’ by applying a random walk as follows:

xknew = xki + α · Lévy(λ) (1.26)

where Lévy(λ) denotes a random walk via Leví flights [8], while α > 0 stand for a
vector of step sizes related to the scale of the objective solution space.

Once a new candidate solution has been generated, its quality (fitness) is compared
to that of the solution represented by the randomly selected host nest. If the quality
of a candidate solution xknew is better than xki related to the host nest ‘i’, then xknew
replaces xki for the next iteration. This is:

xk+1
i = xknew (1.27)

Furthermore, after new solutions have been generated and evaluated for each
randomly selected host nest, a fraction pa of the worst remaining solutions are elim-
inated, and then, replaced by an equal amount of randomly generated solutions. This
mechanism is intended to simulate the nest abandonment behavior manifested by

1.4 Classification of Nature-Inspired Metaheuristics 17

host birds once they discover the presence of cuckoo eggs within their nest, which
further promotes them to build a new nest on a different place.

An important trait about the CS approach is that the definition of host nest can
further be modified so that each of them represents a set of solutions (multiple eggs
within each nest) instead of a single one which could effectively allow CS to be
extended into a type meta-population algorithm, and thus, be applied to solve even
more complex optimization problems.

1.4.2.6 Firefly Algorithm

The Firefly Algorithm (FA), as proposed by Xin-SheYang in 2010, is a swarm intel-
ligence approach inspired by the light-emitting behavior observed in fireflies [49].
In the FA approach, search agents, modeled as a swarm of fireflies, are assumed to
be able to interact with each other through its characteristic bioluminescent glowing.
In particular, such interactions are modeled as attractions toward other conspecific
individuals within the target solution space. The attractiveness of each firefly is
considered to be proportional to its light intensity, which in turn is also said to be
equivalent to their quality (fitness). Furthermore, it is also assumed that fireflies are
only attracted toward brighter individuals; this is, that for any two flashing fireflies,
the less bright one will be attracted toward the brighter one (regardless of their gen-
der). Also, it is also assumed that the attractiveness “perceived” by a particular firefly
‘i’ toward any other individual source ‘ j’ decreases as the distance that separates
them increases. Such phenomenon is simplified by the following expression:

βi j =
{

β0 j · e−γ r2i j if f
(
x j
)

> f (xi)
0 otherwise

(1.28)

where ri j = ∥∥x j − xi
∥∥ stand for the Euclidian distance computed with regard to

the pair of fireflies ‘i’ and ‘ j’, while β0 j denotes the attractiveness of individual
‘ j’. Furthermore, the parameter γ stand for the so-called light absorption coefficient
which is used to further vary the overall attractiveness toward the individual ‘ j’.

Finally, the attraction movement performed by a firefly ‘i’ toward any given
individual ‘ j’ may be given by the following expression:

�xi j = xi + βi j · (x j − xi
)+ α · εi (1.29)

where εi denotes a d-dimensional vector denoting a random movement, while α

stands for a randomization parameter, which values are typically within the interval
[0, 1].

As noted by its author, the attraction behaviors represented in FA enables search
agents to explore the solution space of a given optimization problemmore effectively.
Another interesting property of FA is that it can effectively locate both global and
local optima, which could be an important advantage on certain implementations.

18 1 An Introduction to Nature-Inspired Metaheuristics …

1.4.2.7 Flower Pollination Algorithm

The Flower Pollination Algorithm (FPA) is another popular optimization method in
Yang’s showcase of nature-inspired metaheuristics. First proposed in 2012, the FPA
approach is well-known for drawing inspiration in the intriguing pollination process
observed in most species of flowers [52].

In the FPA approach, solutions are modeled as individual flowers (or pollen
gametes). Furthermore, FPA considers two natural pollination methods in order to
establish a set of valid movement rules: cross-pollination, which refers to the flower
reproduction process in which pollen is carried over long distances by pollinators
(such as insects, birds, or other animals) as a way to ensure the reproduction of
fittest plants, and self-pollination, which emphasize the fertilization process that
occurs among flowers in the absence of viable pollinators. In the context of swarm
intelligence, FPA considers cross-pollination as a global search process, while self-
pollination is seen as a local search approach. Furthermore, it also assumes that at
each iteration ‘k’ each particular flower is only able to produce a single pollen gamete
per iteration. By considering these idealized characteristics, the FPA’s position update
operators may be illustrated as follows:

xk+1
i =

{
xki + L

(
x∗ − xki

)
if (rand > P)

xki + ε
(
xkj − xkq

)
if (rand ≤ P)

(1.30)

where rand denotes a random number from within the interval [0, 1].
The position update rule applied when rand > P (with P denoting a probability

threshold) stand for a global pollination movement rule. In this case x∗ denotes
the current global best solution, while L represents a scaling parameter known as
pollination strength, which value is given from a Levy distribution, as given by:

L ∼ λΓ (λ) · sin(πλ/2)

π
(
s1+λ

) , (s 	 s0 > 0) (1.31)

where Γ (λ) stand for the standard gamma function (with regard to the constant
parameter λ), while s stand for a user-defined step size.

On the other hand, the movement operator corresponding to the case
when rand ≤ p represents a local pollination movement rule, which can be essen-
tially considered as a random walk. In such a case, xkj and x

k
q (with j �= q) represent

the positions of two randomly chosen flowers (different to xki), while ε is a random
value drawn from within the interval [0, 1].

1.4.2.8 Grey Wolf Optimizer

The Grey Wolf Optimizer (GWO) is a nature-inspired metaheuristic proposed by
Mirjalili et al. in 2014. As its name may imply, GWO’s design is inspired by the

1.4 Classification of Nature-Inspired Metaheuristics 19

distinctive hunting behaviors and social hierarchy observed in packs of grey wolves
[53].Greywolves are known to be organized in a very strict social dominant hierarchy
composed of alpha, beta delta, and omega wolves. The alpha wolves (typically com-
prised by amale and a femalemember) are the leaders of the pack and are responsible
for all decisions related to hunting, resting andmoving. The beta wolves, which com-
prise the second level on the pack’s hierarchy, are subordinate to the alpha wolves but
can give commands to lower-level wolves. Similarly, delta wolves are subordinate to
both alpha and beta members, yet they dominate over the all other wolves. Finally,
the omega wolves, which are the lowest-ranked members, play as subordinates to
the dominant wolves (alpha, beta, and delta), and as such follow their instructions
(especially while hunting). Another important trait observed in grey wolves is related
to their cooperative hunting tactics in which wolves start to chase an identified prey
until it is encircled, and then they proceeded to attack the prey until it is finally killed.
These distinctive traits are mathematically modeled in GWO for the task of solving
global optimization problems [53].

Analogous to the social hierarchy observed in real grey wolves, GWO identifies
each search agent as either alpha, beta, delta or omega wolf depending on their
current fitness; in particular, the individual xi which represent the fittest solution
is considered as the alpha wolf (α). Similarly, the second and third best solutions
are designated as beta (β) and delta (δ) respectively, while all remaining wolves
are labeled as omega members (ω). Also, WOA considers a hierarchy-based search
scheme in which lower-ranked wolves move based on information shared by higher-
ranked individuals. As such, at each iteration ‘k’, each wolf updates their position
for the following iteration ‘k + 1’ as follows:

xk+1
i = αk

i + βki + δki

3
(1.32)

where αk
i , βki and δki each denote the position update applied to wolf ‘i’

(
xki
)
with

regard to the positions occupied by the α, β and δ wolves, respectively, and are given
by:

αk
i = xkα − Ak · ∣∣Ck · xkα − xki

∣∣ (1.33)

βki = xkβ − Ak · ∣∣Ck · xkβ − xki
∣∣ (1.34)

δki = xkδ − Ak · ∣∣Ck · xkδ − xki
∣∣ (1.35)

where xkα , x
k
β and x

k
δ denote the current positions of theα,β and δwolves, respectively,

and where:

Ak = 2 · ak · rk1 − ak (1.36)

Ck = 2 · rk2 (1.37)

20 1 An Introduction to Nature-Inspired Metaheuristics …

where ak denotes a coefficient vector whose values linearly decreases from 2 to 0
over the course of iterations, while rk1 and r

k
2 represent random vector whose values

are given by the uniformly distributed interval [0, 1].

1.4.2.9 Krill Herd Algorithm

The optimization techniques known as Krill Herd Algorithm (KHA) was devised by
Amir Hossein Gandomi and Alavi in 2012. As its name implies, the KHA method is
inspired by the natural herding behavior commonly observed on small crustaceans
known as krill [54].

In KHA, solutions aremodeled as a group of krill individuals whichmove through
a feasible solution space while herding and foraging for food. Furthermore, KHA
considers three distinctive kinds of herding movements: (1) The motion induced by
other krill individuals, which represents a tendency tomove toward other members of
the aggregation aimed to keep a high density of individuals; (2)A foragingmovement,
which purpose is to guide krill toward the estimated location of a given food source;
and (3) A physical diffusion movement, which represents a random process mainly
used to keep the diversity of solutions. With that being said, at each time-step ‘t’,
the position of each individual krill is updated as follows:

xt+1
i = xti + �t

dxti
dt

(1.38)

where dxti
dt denote a speed vector corresponding to the i th krill individual. In the KHA

approach, such a speed vector is represented by the following Lagrangian model:

dxti
dt

= Ni + Fi + Di (1.39)

with Ni , Fi and Di denoting each of the three distinctive krill herding movement,
namely: (1) The motion induced by other krill individuals (Ni), (2) Foraging move-
ment (Fi), and (3) Physical diffusion movement (Di) [54]. Furthermore, the value
�t stand for a speed scale factor, as given by the following expression:

�t = Ct
d∑

n=1

(ubn − lbn) (1.40)

where lbn and ubn each denote the lower and upper bounds of the nth variable
(dimension), respectively, whereasCt ∈ [0, 2] is a constant parameter used to control
the intensity of the search process.

Another important trait regarding the implementation of the KHA approach is the
incorporation of genetic operators (such as crossover andmutation) which, according
to the authors, aids to further improve the algorithms overall performance [54].

1.4 Classification of Nature-Inspired Metaheuristics 21

1.4.2.10 Moth-Flame Optimization Algorithm

The Moth-flame Optimization Algorithm (MFO) is novel nature-inspired meta-
heuristic proposed by Seyedali Mirjalili in 2015. The MFO approach is inspired
by the night-navigation mechanism employed by moths in nature [55]. Such a mech-
anism, known as transversal orientation, consist of moths flying by maintaining a
fixed angle to a particular light source. While for distant light sources (such as the
moon) this method allow moths to fly in a straight line for very long distances effec-
tively, nearby artificial lights (such as light bulbs or even the flame of a candle) are
easily able to hamper such navigation method, causing moths to fly in a spiraling
pattern toward such light sources. Such distinctive behaviors are mathematically
modeled in MFO to perform global optimization tasks.

In MFO, search agents are represented by a population of NM moths, each with
a particular positions Mi = [

mi,1,mi,2, . . . ,mi,d
]
within a given solution space.

Furthermore, the MFO approach also considers a set of NF flames (or artificial
lights) randomly distributed around such solution space, so that each of them also has
a particular position F j = [

f j,1, f j,2, . . . , f j,d
]
. Akin to how moths are “attracted”

toward nearby light sources, each moth ‘i’ is assumed to fly in a spiraling pattern
toward a given flame ‘ j’. In this sense, while the positions of both moths and flames
represent solutions, only the moths are actual search agents while the flames stand
for the best NF solutions found so far by MFO search process. By considering this,
at each iteration ‘k’, each moth is first assigned to a particular flame, and then, a
movement operator modeled after a logarithmic spiral is applied in order to update
the position of each search agent as follows:

Mk+1
i = Dk

i j · ebl · cos(2πl) + Fk
j (1.41)

where Dk
i j =

∣∣
∣Fk

j − Mk
i

∣∣
∣. Furthermore, b denotes a constant parameter, while l stand

for a random number drawn from within the interval [r, 1] (with r being linearly
decreased from −1 to −2 over the course of iterations).

Also, MFO employs a mechanism in which the number of available flames NF

within the search space is reduced as the iterative process goes on. With that being
said, at each iteration ‘k’, the number of available flames is updated by considering
the following expression.

Nk+1
F = round

(
N 0

F − k · N
0
F − 1

K

)
(1.42)

where N 0
F denotes the initial (maximum) number of flames, while K stand for the

maximum number of iterations which comprise the whole search process.
Initially, since moths move around by considering the positions of NF best solu-

tions (flames), exploration over the search space is highly promoted, while exploita-
tion is minimal. However, as the number of available flames is reduced, exploration

22 1 An Introduction to Nature-Inspired Metaheuristics …

intensity is slowly decreased, while exploitation is gradually favored, thus, balancing
the exploration and exploitation of solutions.

1.4.2.11 Particle Swarm Optimization

Devised by James Kennedy and Russell C. Eberhart in 1995, the Particle Swarm
Optimization (PSO) method draws inspiration in the behavior of flocking birds,
collectively foraging for adequate food sources [56]. In PSO, search agents (also
referred as particles) are each composed by a set of three d-dimensional vectors:
the particle’s current position, its previous best position and its velocity. Also, each
member within the swarm of particles is assumed to have knowledge of the global
best position reached by its immediate neighborhood during the search process.With
that being said, in the traditional PSO, the position update for each particle ‘i’ is given
by the following expressions:

xk+1
i = xki + vk+1

i (1.43)

where k denotes the current iteration. Furthermore, vk+1
i stand for the velocity of

particle ‘i’ at iteration ‘k + 1’, and is given as follows:

vk+1
i = vki + c1 · (rk1 · (pki − xki

))+ c2 · (rk2 · (gki − xki
))

(1.44)

where pki denotes the previous best position of particle ‘i’ (also called the personal
best of ‘i’), while gki stand for the current global best position within an specific
neighborhood of particles, fromwhich individual ‘i’ belongs; here, the word “neigh-
borhood” makes reference to a specific subset (topology) of particles (although, in its
most simple form, it may refer to the whole swarm of particles) [15]. Furthermore,
rk1 and r

k
2 each denote a d-dimensional vector composed by random numbers drawn

from the interval of [0, 1], while the values c1 and c2 are known as cognitive and
social parameters, respectively.

Due to its simplicity and easy implementation, thePSOmethod (aswell as itsmany
variations) has been extensively studied and applied into awide variety of engineering
areas and, as a result, has becomeone themost popular swarm intelligence approaches
currently available for solving complex optimization problems.

1.4.2.12 Social Spider Optimization

The Social Spider Optimization (SSO) is a swarm intelligence approach proposed
by Cuevas et al. in 2013. The SSO approach draws inspiration into several col-
lective behaviors observed within a colony of social spiders [19]. A social spider
colony is mainly composed by two components: its members, which may be further
distinguished by their gender (either male or female) and a communal web which

1.4 Classification of Nature-Inspired Metaheuristics 23

serves as a medium for both interaction and communication among such members
of the colony. One important characteristic of most social spider colonies is the pre-
dominance of female spiders within its population. Furthermore, in a social spider
colony, each member, depending on their gender, is assigned to cooperate in several
different activities, such as building and maintaining the communal web, capturing
prey, mating, etc. Another important trait about social spiders lies in their capacity to
perceive vibrations transmitted through the communal web. Social spiders employ
these vibrations to gain specific information, such as the size of trapped preys or the
characteristics of neighboring members.

In the SSO approach, candidate solutions are modeled as a group of N spiders
(each with a corresponding position si = [s1, s2, . . . , sd]), interacting within a d-
dimensional solution space (properly referred as the communal web). Furthermore,
spiders are assumed to be able to communicate through a series of vibrations, emitted
by each member and transmitted though the threads which conform the communal
web. In this sense, the stimulus perceived by a particular spider ‘i’ as a result of the
vibrations transmitted by some other spider ‘ j’ are modeled as follows:

Vibi, j = ws j · e−r2i j (1.45)

where ri j = si − s j denotes for the Euclidian distance between the spiders ‘i’ and
‘ j’. Furthermore, ws j represents the weight corresponding to the j th spider as given
by:

ws j = f
(
s j
)− fworst

fbest − fworst
(1.46)

where fbest and fworst each denote the current best and worst fitness values from
among all spiders within the communal web.

Also, each spider within the communal web is designated with a specific gender
(either male or female). Depending on their gender, spiders are able to manifest
several different behaviors. In the case of female spiders, for example, an attraction
or dislike toward other members of the colony is displayed (irrespective of their
gender), which depend on several factors such as reproduction cycle, curiosity and
other random phenomena. In SSO, such behavior is modeled as either an attraction or
repulsion movement toward other prominent individuals within the communal web.
With that being said, at each iteration ‘k’, the position of a given female spider fki
(with fki = skj , j ∈ [1, 2, . . . , N]) is updated by applying the following movement
rules:

fk+1
i =

{
fki + α · Vibci

(
skci − fki

)+ β · Vibbi
(
skb − fki

)+ δ · (γ − 1
2

)
if P > Pf

fki − α · Vibci
(
skci − fki

)− β · Vibbi
(
skb − fki

)+ δ · (γ − 1
2

)
if P ≤ Pf

(1.47)

24 1 An Introduction to Nature-Inspired Metaheuristics …

where skci denotes the position of the nearest best (nearest heavier) member to the
spider ‘i’, while skb stand for the position of the best (heaviest) spider within the
communal web. Furthermore, Vibci and Vibbi denote the vibrations perceived by the
spider ‘i’ with regard to skci and skb, respectively (see Eq. 1.45), while α, β, δ, γ and
P each denote a random number within the interval [0, 1]. Finally, Pf stands for
a probability threshold used to define the kind of movement the female spider will
perform (either an attraction or a repulsion).

On the other hand, male spiders, which are said to manifest an exclusive attraction
toward female members, are further classified as either dominant or non-dominant
male spiders. Typically, dominant male spiders have better qualities (i.e., a greater
size or weight) in comparison to non-dominant male spiders. Furthermore, while
dominant male spiders are usually attracted toward their closest female spider within
the communal web, non-dominant male spiders tend to concentrate toward the center
of the male population as a strategy to take advantage of resources that are wasted
by dominant males. In SSO, these male-characteristic behaviors are modeled by first
considering themedian weight of all male spiders. At each iteration ‘k’, the weight of
each male spider is compared to such median value in order to classify them as either
dominant (weight above the median) or non-dominant (weight equal or lower to the
median) male spiders, an then, an appropriate movement rule is applied to update
the position mk

i (with mk
i = skj , j ∈ [1, 2, . . . , N]) of each of such male spiders, as

illustrated as follows:

mk+1
i =

⎧
⎪⎨

⎪⎩

mk
i + α · Vib fi

(
skfi − mk

i

)
+ δ · (γ − 1

2

)
if wk

mi
> M(wm)

mk
i + α ·

(∑Nm
h=1 m

k
h ·wk

mh∑Nm
h=1 wk

mh

− mk
i

)
if wk

mi
≤ M(wm)

(1.48)

where wk
mi

denotes the weight of the male spider ‘i’, whereas M(wm) denotes the
median value with regard to the weights of all male spiders. Furthermore, skfi stand
for the position of the nearest female spider tomk

i , while Vib fi stand for the stimulus
perceived by the male spider ‘i’ as a result of the vibrations emitted by its nearest
female member (see Eq. 1.45). Also, the values α, δ, and γ each denote a random
number within the interval [0, 1].

Finally, the SSO approach employs a mating mechanism in which female spiders
and dominant male spiders are used to construct new candidate solutions. For such
a procedure, a dominant male spider is first selected, and then, a set female spiders
within a particular “range ofmating” (which depends on the size of the target solution
space) are further selected to perform a mating operation, in which a new individual
is formed by combining the position information of each involved member. In this
case, individuals possessing heavier weights (or higher fitness values) aremore likely
to influence the newly produced solution while those with lower weights tend to be
of less relevance [19].

1.4 Classification of Nature-Inspired Metaheuristics 25

1.4.2.13 Whale Optimization Algorithm

In 2016, Seyedali Mirjalili and Andrew Lewis proposed a novel bio-inspired meta-
heuristic called Whale Optimization Algorithm (WOA). The WOA approach draws
inspiration on the predatory behavior observed in humpback whales which, different
to other species of whales, distinguish themselves for employing a unique coopera-
tive hunting maneuver known as bubble-net feeding [10]. In such a hunting method,
a group of whales (typically formed by two or three individuals) coordinate their
efforts to encircle a group of small prey (such as schools of krill or small fishes)
by swimming in a spiraling fashion around their quarry. While moving beneath the
surface in such a distinctive pattern, each whale starts to exhale a burst of bubbles
from their blowhole to form encircling bubble barrier (also referred as bubble-net),
which prevents prey from escaping. As prey gets corralled into a tighter circle, one
whale sounds a feeding call to the other whales, at which point all individuals simul-
taneously swim to the surface with their mouths open to feed on the trapped prey.

InWOA, such unique bubble-net feeding behavior ismathematicallymodeled and
applied to solve global optimization problems by first considering a group of search
agents, represented by N whales. Moreover, WOA’s search process is divided in two
phases: exploration and exploitation phase. For the exploration phases, whales are
assumed to be randomly searching for prey. This process is modeled as movements
toward a randomly chosen member. With that being said, at each iteration ‘k’, the
position of each whale is updated by applying the following equation:

xk+1
i = xkrand − Ak · Dk (1.49)

where xkrand denotes the position of a randomly chosen whale and where:

Ak = 2 · ak · rk1 − ak (1.50)

Dk = ∣∣(2 · rk2 · xkrand
)− xki

∣∣ (1.51)

where ak is a coefficient vector whose values linearly decreases from 2 to 0 over the
course of iterations, while rk1 and r

k
2 denote random vectors whose values are drawn

from within the uniformly distributed interval [0, 1].
On the other hand, the exploitation phase emphasizes the situation in which

the group of whales has already identified their prey. To represent such behavior,
the WOA approach considers two distinctive movement rules: prey encircling and
bubble-net attacking method. For the prey encircling behavior, whales are assumed
tomove to positions around the target prey, while for the bubble-net attackingmethod
step each whale moves in a spiraling fashion around such targeted prey to corral it.
These two behaviors are represented by the following position update operators:

xk+1
i =

{
xk∗ − Ak · Dk if p < 0.5
Dk∗ · (eb·l · cos(2πl))+ xk∗ if p ≥ 0.5

(1.52)

26 1 An Introduction to Nature-Inspired Metaheuristics …

where xk∗ denotes the position of the current best solution from among all search
agents (which further represent the targeted prey), whereasDk∗ = ∣∣xk∗ − xki

∣∣. Furthre-
more p stands for a random number drawn from within the interval [0, 1], while
the value ‘0.5’ stands for a probability threshold. The operator applied for p < 0.5
correspond to the prey encircling movement rule, while the operator applied when
p ≥ 0.5 represent the bubble-net attacking method operator, fittingly represented by
themodel of a logarithmic spiralwhose shape is controlled by the constant parameters
b and a random value l ∈ [−1, 1].

1.4.3 Physics-Based Methods

The nature-inspired techniques known physics-based methods comprise a series of
optimization algorithms which design is inspired by the laws of physics that gov-
ern our universe. In this sense, the movement that search agents can manifest in
this kind of algorithmic structures are usually based on some observable physical
phenomenon, such as the movement caused by gravitational forces, the interaction
between electrically charged particles, thermodynamical processes, light refraction,
among others.

1.4.3.1 Electromagnetism-like Mechanism

In 2003, Ş. Ilker Birbil and Shu Chering Fang proposed a population-based meta-
heuristic known as Electromagnetism-like Mechanism (EM) to solve global opti-
mization problems. The EM approach was designed based on the laws of physics
which govern the movement of charged particles within a given space (notably, the
Coulomb’s laws) [22].

In EM, search agents are represented as electrically charged particles, interacting
within a feasible solution space. Each of these particles is assigned with an individual
charge value, associated to the quality (fitness) of the solution they represent. With
that being said, for a given iteration ‘k’ the charge value associated to a specific
particle ‘i’ is given by the following expression:

qk
i = exp

⎛

⎝−d
f
(
xki
)− f

(
xkbest

)

∑N
j=1

(
f
(
xkj
)

− f
(
xkbest

))

⎞

⎠ (1.53)

where xkbest denotes the current best solution found so far by the algorithm’s search
process, while d stand for the dimensionality of the target solution space.

Furthermore, as illustrated by the Coulomb’s law, each of these particles is
assumed to be subjected to a series of electrostatic forces, which depend on the
magnitude of their individual charges and the distance between them. Furthermore,

1.4 Classification of Nature-Inspired Metaheuristics 27

these electrostatic forces may be either of attraction or repulsive, depending on the
sign of each charge. In the EM approach, the total electrostatic force experimented
by a given particle ‘i’ with regard to all other particles is modeled as:

Fk
i =

N∑

j �=i

⎧
⎨

⎩

(
xkj − xki

)
qk
i q

k
j

r ki j
if f

(
xkj
)

< f
(
xki
)

(
xki − xkj

)
qk
i q

k
j

r ki j
if f

(
xkj
)

≥ f
(
xki
)

⎫
⎬

⎭
(1.54)

where rki j =
∥∥∥xkj − xki

∥∥∥ denotes the Euclidian distance between the particles ‘i’ and

‘ j .
Intuitively, as a result of such attraction/repulsion forces, each particle is forced

to change their position at each time instant. In EM, the position update rule applied
to each of such particles is given by the following equation:

xk+1
i = xki + λ · F̂k

i · mk
i (1.55)

where λ denotes a d-dimensional vector of random numbers drawn from within
the interval [0, 1], while F

∧k

i = Fk
i /
∥
∥Fk

i

∥
∥ stand for the normalized electrostatic

force of to the i th particle’s at iteration ‘k’. Finally, mk
i denotes a movement

vector whose components
(
mk

i = [
mk

i,1,m
k
i,2, . . . ,m

k
i,d

])
depend on those of F̂k

i(
F̂k
i =

[
F̂k
i,1, F̂

k
i,2, . . . , F̂

k
i,d

])
, as illustrated as follows:

mk
i,n =

{
ubn − xki,n i f F̂ k

i,n > 0
xki,n − lbn i f F̂k

i,n ≤ 0
(1.56)

with xki,n denoting the nth component of the particle’s position xki , while lbn and
ubn stand for the lower and upper fitness function bounds at the nth dimension,
respectively.

1.4.3.2 Gravitational Search Algorithm

The Gravitational Search Algorithm (GSA) is a population-based metaheuristic pro-
posed by Rashedi et al. in 2009. The GSA design is mainly inspired by the laws
of gravity, which establishes the inherent interaction between different objects (or
masses) as a result of the gravitational forces experienced by them [21].

In GSA, search agents are modeled as N individual masses, subjected to constant
interaction within d-dimensional solution space (also referred as a system). At each
iteration ‘t’ (also referred as time), each individual mass ‘i’ is assigned with a par-
ticular mass Mi , which value depends on its current solution quality (fitness), such
that:

28 1 An Introduction to Nature-Inspired Metaheuristics …

Mt
i = mt

i∑N
j=1 m

t
j

(1.57)

where mt
i denotes the normalized fitness value corresponding to the i th mass, as

given by the following expression:

mt
i = f

(
xti
)− f tworst

f tbest − f tworst
(1.58)

where f tbest and f tbest each denote the current best and worst fitness values at time ‘t’,
respectively.

Furthermore, akin to the law of gravity, each of these masses is assumed to be in
constant interaction with each other as a result of the gravitational forces exerted by
each of them. In GSA, the total gravitational force experienced by a particular mass
‘i’ with regard to all other masses is given by the following equation:

Ft
i =

N∑

j �=i

(

G(t)
Mt

i · Mt
j

r ti j + ε

(
xtj − xti

) · rand
)

(1.59)

where r ti j =
∥∥
∥xtj − xti

∥∥
∥ stand for the Euclidian distance between masses ‘i’ and ‘ j’,

while ε is a small value used to prevent singularities. Furthermore, rand denote
a d-dimensional vector of random numbers drawn from within the interval [0, 1].
Finally, G(t) represents the so-called gravitational constant, whose value depends
on the current time ‘t’ as follows:

G(t) = G0e(
−α t

T) (1.60)

with G0 denoting the initial gravitational constant value, α standing for a constant
parameter and T representing the total iteration number which comprises the whole
GSA search process.

Finally, as a result of such gravitational interactions, masses are also assumed
to be able to experience a movement. With that being said, in GSA, the following
position update rule is applied:

xt+1
i = xti + vt+1

i (1.61)

where vt+1
i denotes the velocity of the i th mass at the time ‘t + 1’, as expressed by

the following equation:

vt+1
i = rand · vti + ati (1.62)

1.4 Classification of Nature-Inspired Metaheuristics 29

where ati = 1
Mt

i
Ft
i stand for the acceleration experienced by the mass ‘i’ at such time

‘t’.

1.4.3.3 Simulated Annealing

Simulated Annealing (SA) comprises one of the earliest and most successful local
search methods specially devised to tackle complex discrete (and to a lesser extend
continuous) optimization problems. As first introduced by Kirkpatrick et al. in 1982,
the SA approach is mainly inspired in the physical process of annealing (a process
typically aimed to achieve an alteration on the physical properties of crystalline
solids through heat treatment). In particular, a solid is first heated until it reaches a
certain temperature, and then it is allowed to cool down slowly; if properly done,
this process enables said material’s microstructure to achieve a better crystal lattice
configuration, and as such, superior structural integrity [57].

SA is essentially an iterative local search process, in which a given candidate
solution is iteratively modified by implementing a computational procedure inspired
by the temperature transition scheme modeled on a typical annealing process. As
such, SA starts by first defining an initial solution (state) s and cooling schedule
T = {t0, t1, . . . , tn}, where the elements tk each represent a finite transition temper-
ature in the annealing process and such that:

ti > 0 and lim
k→+∞ ti = 0 (1.63)

Each temperature ti in the cooling schedule is applied for a finite number of
iterations of the SA’s search process.With that being said, SA also defines a repetition
schedule M = {M0, M1, . . . , Mn}, where the elements Mi dictate the number of
iterations a given temperature ti will be applied.

Once the SA algorithm completes its initialization step, it starts an iterative search
process in which, at each iteration ‘k’, a neighboring solution s′ around the current
best solution sk is generated, either randomly or by following a particular criterion.
After that, both solutions are compared in terms of fitness value and, depending on the
outcome of such a comparison, there is a certain probability to accept said neighbor
solution as the current best solution; for a minimization problem, for example, this
probability is given by:

Pk =
{
exp

(
− (f (s′)− f (sk))

t k

)
if f

(
s′
)− f

(
sk
)

> 0

1 if f
(
s′
)− f

(
sk
) ≤ 0

(1.64)

where t k ∈ T denotes the transition temperature that is applied at given iteration ‘k’.
As one of the earliest metaheuristics, the SA algorithm has been a subject of

constant study and improvements. Some of the most well-known variants of SA

30 1 An Introduction to Nature-Inspired Metaheuristics …

involve changes to either the cooling schedule model, the neighborhood selection
method, and even its learning mechanism [58].

1.4.3.4 Sine Cosine Algorithm

The Sine Cosine Algorithm (SCA) is a population-based metaheuristic developed
by Seyedali Mirjalili in 2016, which design is based on the properties of sinusoidal
functions [59].

SCA consider a set of N search agents each with a corresponding position
xi = [

xi,1, xi,2, . . . , xi,d
]
within a given d-dimensional solution space. In SCA, each

available search agent updates their positions by applying one of two different move-
ment operators, each modeled after some particular sinusoidal function (namely, the
sine and cosine functions). With that being said, at each iteration ‘k’, the position
update operator applied to each individual xki is given by:

xk+1
i =

{
xki + r1 · sin(r2) · ∣∣r3 · pti − xki

∣∣ if r4 < 0.5
xki + r1 · cos(r2) · ∣∣r3 · pti − xki

∣∣ if r4 ≥ 0.5
(1.65)

where r1 = a−k(a/T) (with a being a constant value and K denoting the maximum
number of iterations for the whole search process), while r2, r3 and r4 are random
numbers drawn from within the uniformly distributed intervals [0, 2π], [0, 2] and
[0, 1], respectively. Furthermore, pti stand for the current destination point, which is
given by the position of best solution found so far by SCA’s search process.

1.4.3.5 States of Matter Search

In 2014, Cuevas et al. proposed a novel metaheuristic approach coined States of
Matter Search (SMS). TheSMSapproach draws inspiration on the physical principles
of thermal-energymotion,manifested by themolecules of a substance as it transitions
from one state of matter to another [23].

In SMS, search agents are represented by individualmolecules, in constantmotion
within the target d-dimentional solution space. A unique trait of SMS is that the
whole evolutionary process is divided into three different stages, inspired by the three
classic states of matter: (1) a gas state in which molecules are assumed to experiment
constant movement and collision with other molecules; (2) a liquid state in which a
significant reduction of molecular movement occurs as a result of a descent on the
available thermal-energy; and (3) a solid state in which the bonding force among the
molecules becomes so strong that their movement is almost completely inhibited.
Each of such stages occurs in sequence as the SMS iteration process goes on, with
each of them taking place for a finite number iterations. Under this considerations,
each molecule moves with a particular “intensity”, which depends on the current

1.4 Classification of Nature-Inspired Metaheuristics 31

transitory state (gas, solid or liquid). In general, at each iteration ‘k’, each molecule
updates its position by applying the following movement rule:

xk+1
i = xki + vki · rand · (ub − lb) ∗ ρ (1.66)

where lb = [lb1, lb2, . . . , lbd] and ub = [ub1, ub2, . . . , ubd] each denote the lower
and upper bound vectors of the target solution space, respectively, while rand stand
for a random vector whose values are drawn from the interval [0, 1]. Furthermore,
ρ ∈ [0, 1] denotes a scalar factor which value depend on the current SMS stage [23].
Finally, vti denotes the velocity of the i th molecule at iteration ‘k’, as given by the
following expressions:

vki = vini t ∗ dk
i (1.67)

where vini t denotes the magnitude of the initial velocity, as given as follows:

vini t = β ∗
∑d

n=1(ubn − lbn)

d
(1.68)

where lbn and ubn each denote the lower and upper objective function bounds at the
nth dimension, respectively, while β ∈ [0, 1] denotes a scalar factor which, which
similarly to ρ in Eq. (1.66), depends on the current SMS stage [23]. On the other
hand, dk

i stand for a direction vector corresponding to the i th, and is given by the
following equation:

dk
i = dk−1

i ∗ 0.5

(
1 − k

K

)
+ aki (1.69)

with K denoting themaximumnumber of iterationswhich compose thewhole SMS’s
search process. Also, aki denotes a unit vector oriented toward the current global best
solution

(
xkbest

)
, as given by the following expression:

aki =
(
xkbest − xki

)
∥
∥xkbest − xki

∥
∥ (1.70)

Another important trait present of SMS’s is the inclusion of a collisionmechanism,
which causesmolecules to exchange their directions. Essentially, a collision is said to
occur among a pair of molecules ‘i’ and ‘ j’ (with i �= j) if their Euclidian distance∥∥xi − x j

∥∥ is shorter than a given distance threshold. Once a collision occurs, the
directions di and d j corresponding to such molecules ‘i’ and ‘ j’ are exchanged,
such that:

if
(∥∥xki − xki

∥∥ < r
) → dk

i = dk
j

dk
j = dk

j

(1.71)

32 1 An Introduction to Nature-Inspired Metaheuristics …

where the distance threshold r (also known as collision radius), and is given by the
following expression:

r = α ·
∑d

n=1(ubn − lbn)

d
(1.72)

where α ∈ [0, 1] is a scalar factor which, similarly to β and ρ in Eqs. (1.66) and
(1.68), depends on the current SMS stage [23].

1.4.4 Human-Based Methods

Human-based optimization algorithms are a special class of methodologies which
design draws inspiration from several phenomena related to the behavior and the
lifestyle of human beings. With that being said, this kind of techniques may be
designed based on, either some cognitive process applied by humans to solve prob-
lems, or even on certain activities commonly related to the way in which human
beings live.

1.4.4.1 Fireworks Algorithm

In 2010, Ying Tan and Yuanchun Zhu proposed a novel optimization framework
known as the Fireworks Algorithm (here referred as FWA). Interestingly, the inspira-
tion for the FWAapproach comes from the observation of several properties observed
in theflashy explosions created byfireworks [25]. In general, once afirework is set off,
the resulting explosion creates a shower of sparkswhich spreads around a local radius
around the denotation’s location. In the context of swarm intelligence approaches,
the way in which such sparks spread around the firework’s explosion radius is seen
as a specific case of a local search process around the location in which the firework
was set off, and thus, is presented as a useful mechanism to perform optimization.

In the FWA approach, at each iteration ‘k’, a set of N locations within the feasible
d-dimensional search space are chosen to set off individual fireworks. In the context of
the fireworks explosion metaphor, explosions can be distinctively identified as either
good or bad explosions. In this sense, good explosions create numerous centralized
sparks and are assumed to be the result of well manufactured fireworks. On the other
hand, bad explosions, which result from badly manufactured fireworks, generate
fewer sparks and these scatter around a much larger local space. With that being
said, after a firework is set off, several sparks are assumed to be spread within a fixed
local area around the explosion’s location. Each generated spark is treated as a local
search agent and evaluated with regard to the target objective function. Furthermore,
for the given iteration ‘k’, the number of generated sparks ski and the amplitude of
explosion Ak

i for each deployed firework ‘i’ are said to depend on the quality of its

1.4 Classification of Nature-Inspired Metaheuristics 33

manufacture, which is further represented by the quality (fitness) at its respective
explosion location xi , as given by the following expressions:

ski = m · f kworst − f
(
xki
)+ ξ

∑N
i=1

(
f kworst − f

(
xki
))+ ξ

(1.73)

Ak
i = Â.

f
(
xki
)− f kbest + ξ

∑N
i=1

(
f
(
xki
)− f kbest

)+ ξ
(1.74)

wherem and Â each denote the fireworks’maximumnumber of sparks and amplitude
of explosion, respectively. Furthermore f kbest and f kworst each denote the fitness values
corresponding to the current best and worst solutions among the N fireworks, respec-
tively, while ξ stand for a small value used to prevent singularities while computing
either ski or Ak

i . Furthermore, in order to avoid the overwhelming effects of “splen-
did” fireworks, bounds are defined for ski with regard to a set of constant parameters
a and b as follows:

ŝki =
⎧
⎨

⎩

round(a · m) if si < a · m
round(b · m) if si > b · m, a < b < 1
round

(
ski
)

otherwise
(1.75)

Finally, for each firework ‘i’, each of the ŝki generated sparks are randomly dis-
tributed around the local area defined by the amplitude of explosion Ak

i . In FWA,
this is achieved by randomly selecting a number of affected directions (dimensions)
for each individual spark, and then, a displacement magnitude is calculated within
the explosion amplitude Ak

i . This could be effectively seen as a type of randomwalk,
and as such, other similar methods could may be applied to define the locations of
the generated sparks.

1.4.4.2 Harmony Search

The Harmony Search (HS) method, as proposed by Geem et al. in 2001, is a meta-
heuristic approach inspired on the principles behind the process of harmony impro-
visation, in which musicians are said to compose a harmony by combining different
music pitches stored in their memory, this with the purpose of finding the perfect
harmony [24]. In HS, the process of finding the perfect harmony is seen as an analogy
to finding the optimal solution in an optimization problem.

HS is initialized by considering a set of N randomly generated solutions, collec-
tively referred as the HS Memory. At each iteration ‘k’ of the HS search process, a
new candidate solution xc = [

xc,1, xc,2, . . . , xc,d
]
is generated (improvised) and then

evaluated against currently existing solutions; in particular, if the quality (fitness) of
the proposed candidate solution xc is better than that of the current worst solution
in the HS Memory, then such worst solution is replaced by xc. Each component xc,n

34 1 An Introduction to Nature-Inspired Metaheuristics …

of the improvised solution xc is generated depending on the value of the Harmony
Memory Considering Rate (HMCR), as illustrated as follows:

xc,n =
{
xr,n + rand(−1, 1) · bw if rand(0, 1) < HMCR
rand(lbn, ubn) if rand(0, 1) ≥ HMCR

(1.76)

where xr,n denotes the nth component corresponding to a randomly chosen solution
xr within the HSMemory, whereas the parameter bw represent the so called distance
bandwidth (essentially a step size value). Furthermore, rand(a, b) stand for a ran-
dom number from within the interval [a, b] (i.e., rand(0, 1) correspond to a random
number between 0 and 1), while lbn and ubn are the objective function’s lower and
upper bounds at the nth dimension, respectively.

1.4.4.3 Imperialist Competitive Algorithm

In 2007, Esmail Atashpaz-Gargari and Caro Lucas proposed a novel population-
based metaheuristic known as Imperialist Competitive Algorithm (ICA). Said opti-
mization technique is inspired by imperialism (or neocolonialism); that is the actions
taken by individual countries to extend their power (typically through the acquisition
of other territories) [26].

At the initialization step, ICA starts by randomly generating a set of N search
agents (called countries), each with an individual solution xi = {

xi,1, xi,2, . . . , xi,d
}

representing as a set of socio-political characteristics (such as culture, language, econ-
omy, religion, etc.). After generating such set of solutions, these are then classified as
either imperialists or colonies. For this purpose, the best Nimp countries (according
to fitness quality) are designated as imperialists countries

(
i1, i2, . . . , iNimp

)
, while

the remaining Ncol = N − Nimp countries are labeled as colonies
(
c1, c2, . . . , cNcol

)
.

Afterwards, each of the available Ncol colonies are proportionally distributed among
the Nimp imperialists in order to form the empires. The number of colonies assigned
to each imperialist is proportional to their respective imperialist power, as given by
the following expression:

poweri =
∣∣∣∣∣

costi
∑Nimp

j=1 costi

∣∣∣∣∣
(1.77)

where ci denotes the normalized imperialist cost of the i th imperialist, as given by:

costi = max
j

{
f
(
i j
)}− f (ii) (1.78)

By considering the previous, the total number of colonies that are assigned to each
imperialist is given by:

1.4 Classification of Nature-Inspired Metaheuristics 35

NCi = round(poweri · Ncol) (1.79)

Once ICA’s initialization process has been performed, the algorithm starts an
iterative search process comprised of four main steps (1) Assimilation, (2) Rev-
olution, (3) Intra-imperialistic competition and (4) Inter-imperialistic competition.
For the assimilation process, each colony belonging to an empire is assumed to be
influenced by the socio-political elements (culture, economy, religion, etc.) of its
respective imperialist country. Said influence is represented as a movement from
said colony ci j toward is respective imperialist i j , as given as follows:

c∗
i j = ci j + rand(0, β) · (i j − ci j

)
(1.80)

where the value β is typically set to be between 1 and 2.
Then, in the revolution step, some randomly chosen colonies are assumed to

experience some changes in their socio-political characteristics. Akin to themutation
operator in methods such as Genetic Algorithms (GA), the purpose of the revolution
step is to apply sudden changes to some of the colonies in order to favor diversity
of solutions, and thus preventing premature convergence or being trapped into local
optima.

Furthermore, at the intra-imperialist, colonies that have performed a movement
(either by assimilation or revolution) compete for the position of imperialist. Essen-
tially, if any country ci j within an empire has a better quality than that of their
respective imperialist i j , then ci j is labeled as the new imperialist, while i j is con-
sidered as a colony. Finally, for the inter-imperialist step, one of weaker the colonies
within the weakest empire is given to another empire based on competition. For
this purpose, a probability for possessing said weak colony is first assigned to each
empire as follows:

Pj =
∣∣∣
∣∣

NTC j
∑Nimp

i=1 NTCi

∣∣∣
∣∣

(1.81)

where NTC j denotes the normalized total cost of the j th empire as given by:

NTC j = max
i

{TCi } − TC j , TC j = f
(
i j
)+ ζ · mean

{
f
(
ci j
)}

(1.82)

where the value ζ ∈ [0, 1] represents the influence that themean power of the colonies
has when determining the empire’s total power.

After a possessing probability Pj has been assigned to each empire, an appropriate
selection method, (such as the roulette selection approach) is applied to decide which
empirewill take charge of the disputed colony.This process is applied at each iteration
of ICA’s search process. As a result of the inter-imperialistic competition, weaker
empires suffer a gradually decrease in power as they lose their colonies over time,
while stronger empires increase their power as they take possession of said colonies.

36 1 An Introduction to Nature-Inspired Metaheuristics …

This eventually leadweaker empires to collapse over time until only a single strongest
empire remains.

1.5 Nature-Inspired Metaheuristics on the Literature

In the last few years, works related to applications ormodifications of nature-inspired
metaheuristics for solving a wide range of optimization problems have become so
numerous thatmentioning every single paper in existence has become an overwhelm-
ing task. In Fig. 1.2, the number annual publications (as reported by IEEE and Else-
vier) related to nature-inspired metaheuristics for the last 36 years is shown. As
evidenced by the data shown in said figure, the number of publications related to this
kind of techniques started to increase at a considerable rate around the 1990s. Nature-
inspired optimization methods have become so successful and so well-known on the
literature and, as a result, the number of publications per-year related to these tech-
niques has reached astonishing levels, with essentially more than 1000 new papers
being published annually since 2010. While nature-inspired techniques have been
well received in the literature, some particular methods stand as popular choices
among researchers around the world. In Fig. 1.3, the annual publication statistics (as
given by IEEE and Elsevier publishers) related to the ten most cited nature-inspired
optimization methods is shown. In particular, some of the earliest nature-inspired
methods such as GA, SA, PSO, DE, and ACO stand as the most representative
examples among these techniques, while latest methods such as ABC, HS, CS, FA,
andGSAhave recently experienced an increase on popularity. Furthermore, Table 1.1
shows specific data regarding each of thesemethods, including its year of publication
and its total number of citations up to the year 2016.

1.6 Conclusions

Nature is often praised by researchers as the perfect example of adaptive problem
solving, and as such, it is not surprising to see why metaheuristics optimization
algorithms inspired in natural phenomena have become so popular. These kinds of
methods are designed with the idea of mimicking some biological or physical phe-
nomenon observed in nature with the purpose of developing powerful tools that could
be applied to solve optimization problems. The main advantage of nature-inspired
metaheuristics over traditional optimization methods, however, lies on their ability
to handle a wide variety of problems independently of their structure and properties.
Due to this distinctive trait, these methods have become popular choices for solving
otherwise complex problems. As a result, these techniques have found application
in virtually every single area of science, including robotics, computer networks,
security, engineering design, data mining, finances, economics, and many others. In
the last few years, literature related to nature-inspired algorithms and its applications

1.6 Conclusions 37

1980 1985 1990 1995 2000 2005 2010 2015
Year

0

0.5

1

1.5

2
N

um
be

r o
f C

ita
tio

ns
10 4 Literature Citations Related to Nature-Inspired Metaheuristics

Fig. 1.2 Annual number of publications in IEEEandElsevier related nature-inspiredmetaheuristics

1980 1985 1990 1995 2000 2005 2010 2015
Year

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

N
um

be
r o

f C
ita

tio
ns

Statistics for the 10 Most Cited Nature-Inspired Methods on the Literature

Genetic Algorithms (GA)

Simulated Annealing (SA)

Particle Swarm Optimization (PSO)

Differential Evolution (DE)

Ant Colony Optimization (ACO)

Artificial Bee Colony (ABC)

Harmony Serach (HS)

Cuckoo Search (CS)

Firefly Algorithm (FA)

Gravitation Search Algorithm (GSA)

Fig. 1.3 Annual number of publications in IEEE and Elsevier related to the ten most cited nature-
inspired metaheuristics: GA, SA, PSO, DE, ACO, ABC, HS, CS, FA, and GSA

38 1 An Introduction to Nature-Inspired Metaheuristics …

Table 1.1 Total number of citations (up to the year 2016) for some of the most popular nature-
inspired metaheuristics

Algorithm Author(s) Year of publication Total number of
citations

Genetic Algorithms
(GA)

J. H. Holland 1960 102,190

Simulated Annealing
(SA)

S. Kirkpatrick, C. D.
Gelatt and M. P.
Vecchi

1982 44,711

Particle Swarm
Optimization (PSO)

J. Kennedy and R.
Eberhart

1995 38,634

Differential Evolution
(DE)

R. Storn and K. Price 1996 38,632

Ant Colony
Optimization (ACO)

M. Dorigo 1992 14,472

Artificial Bee Colony
(ABC)

D. Karaboga 2005 4174

Harmony Search (HS) Z. W. Geem, J. H.
Kim and G. V.
Loganathan

2001 3466

Cuckoo Search (CS) X.-S. Yang and S. Deb 2009 1843

Firefly Algorithm
(FA)

X.-S. Yang 2008 1807

Gravitational Search
Algorithm (GSA)

E. Rashedi, H.
Nezamabadi-pour and
S. Saryazdi

2009 1639

for solving optimization problems has experienced an almost exponential increase,
with tons of new papers being published every year. As suggested by statistical data
collected from publishers such as IEEE and Elsevier, methods such as GA, SA, PSO,
DE, andACO are among themost successful andmost cited optimization approaches
currently reported on the literature. The popularity gained by these optimization tech-
niques is related not only to their interesting individual characteristics, but also due to
their easiness of implementation and capabilities to be applied for solving numerous
real-world problems. In any case, there is no doubt that nature-inspired metaheuris-
tics have rightfully earned their place as powerful tools for optimization, and as such,
this line of investigation is expected to keep growing in the near future.

References 39

References

1. Galinier, P., Hamiez, J.P., Hao, J.K., Porumbel, D.: Handbook of Optimization, vol. 38 (2013)
2. Cuevas, E., Díaz Cortés, M.A., Oliva Navarro, D.A.: Advances of Evolutionary Computation:

Methods and Operators, 1st edn. Springer International Publishing (2016)
3. Cavazzuti, M.: Optimization Methods: From Theory to Design (2013)
4. Lin, M., Tsai, J., Yu, C.: A review of deterministic optimization methods in engineering and

management. Math. Probl. Eng. 2012, 1–15 (2012)
5. Schneider, J.J., Kirkpatrick, S.: Stochastic optimization (2006)
6. Cuevas, E., Osuna, V., Oliva, D.: Evolutionary Computation Techniques: A Comparative Per-

spective, vol. 686 (2017)
7. Díaz-Cortés,M.-A., Cuevas, E., Rojas, R.: EngineeringApplications of Soft Computing (2017)
8. Yang, X.: Nature-Inspired Metaheuristic Algorithms, 2nd edn. Luniver Press, Beckington, UK

(2008)
9. Binitha, S., Sathya, S.S.:ASurveyofBio inspiredOptimizationAlgorithms. Int. J. SoftComput.

Eng. 2(2), 137–151 (2012)
10. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)
11. Mitchell, M.: Genetic algorithms: an overview. Complexity 1(1), 31–39 (1995)
12. Bäck, T., Hoffmeister, F., Schwefel, H.-P.: A survey of evolution strategies. In: Proceedings of

the Fourth International Conference on Genetic Algorithms, 1991, vol. 9, no. 3, p. 8.
13. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global opti-

mization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)
14. Sette, S., Boullart, L.: Genetic programming: principles and applications. Eng. Appl. Artif.

Intell. 14(6), 727–736 (2001)
15. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57

(2007)
16. Dorigo, M., Stützle, T.: Ant Colony Optimization (2004)
17. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function opti-

mization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007)
18. Yang, X.: Firefly algorithm, Lévy flights and global optimization (2010)
19. Cuevas, E., Cienfuegos, M., Zaldívar, D., Pérez-cisneros, M.: A swarm optimization algorithm

inspired in the behavior of the social-spider. Expert Syst. Appl. 40(16), 6374–6384 (2013)
20. Rutenbar, R.A.: Simulated annealing algorithms: an overview. IEEE Circuits Devices Mag.

5(1), 19–26 (1989)
21. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf.

Sci. (Ny) 179(13), 2232–2248 (2009)
22. Birbil, Ş.I., Fang, S.C.: An electromagnetism-like mechanism for global optimization. J. Glob.

Optim. 25(3), 263–282 (2003)
23. Cuevas, E., Echavarría, A., Ramírez-Ortegón, M.A.: An optimization algorithm inspired by the

States of Matter that improves the balance between exploration and exploitation. Appl. Intell.
40(2), 256–272 (2013)

24. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony
search. Simulation 76(2), 60–68 (2001)

25. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: First International Conference, ICSI
2010—Proceedings, Part I, 2010, June, pp. 355–364

26. Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algorithm: an algorithm for optimiza-
tion inspired by imperialistic competition. In: 2007 IEEE Congress on Evolutionary Compu-
tation, CEC 2007, 2007, pp. 4661–4667

27. Opara, K.R., Arabas, J.: Differential evolution: a survey of theoretical analyses. Swarm Evol.
Comput. June 2017, pp. 1–13 (2018)

28. Padhye, N., Mittal, P., Deb, K.: Differential evolution: performances and analyses. 2013 IEEE
Congr. Evol. Comput. CEC 2013 (no. i), 1960–1967 (2013)

29. Mohamed, A.W., Sabry, H.Z., Khorshid, M.: An alternative differential evolution algorithm
for global optimization. J. Adv. Res. 3(2), 149–165 (2012)

40 1 An Introduction to Nature-Inspired Metaheuristics …

30. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans.
Evol. Comput. 15(1), 4–31 (2011)

31. Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution—an updated
survey. Swarm Evol. Comput. 27, 1–30 (2016)

32. Piotrowski, A.P.: Review of differential evolution population size. Swarm Evol. Comput. 32,
1–24 (2017)

33. Bäck, T., Foussette, C., Krause, P.: Contemporary evolution strategies, vol. 47 (2013)
34. Beyer, H.G., Sendhoff, B.: Covariance matrix adaptation revisited—the CMSA evolution strat-

egy. Lecture Notes on Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), vol. 5199 LNCS, pp. 123–132 (2008)

35. Auger, A., Schoenauer, M., Vanhaecke, N.: {LS-CMA-ES}: a second-order algorithm for
covariance matrix adaptation. Parallel Probl Solving from Nat. PPSN VIII 3242(1), 182–191
(2004)

36. Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as a scalable alter-
native to reinforcement learning. arXiv:1703.03864v2, pp. 1–13 (2017)

37. Mitchell, M.: An introduction to genetic algorithms. The MIT Press, Cambridge, MA (1996)
38. Sayed, G.I., Hassanien, A.E., Nassef, T.M.: Genetic and Evolutionary Computing, vol. 536,

no. Mci (2017)
39. McCall, J.: Genetic algorithms for modelling and optimisation. J. Comput. Appl. Math. 184(1),

205–222 (2005)
40. Yadav, P.K., Prajapati, N.L.: An Overview of Genetic Algorithm and Modeling, vol. 2, no. 9,

pp. 1–4 (2012)
41. Pham, D.T., Huynh, T.T.B., Bui, T.L.: A survey on hybridizing genetic algorithmwith dynamic

programming for solving the traveling salesman problem. In: 2013 International Conference
on Soft Computing and Pattern Recognition, SoCPaR 2013, pp. 66–71 (2013)

42. Khu, S.T., Liong, S.Y., Babovic, V., Madsen, H., Muttil, N.: Genetic programming and its
application in real-time runoff forecasting. J. Am.Water Resour. Assoc. 37(2), 439–451 (2001)

43. Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: Genetic programming an introductory
tutorial and a survey of techniques and applications. Tech Rep CES475, vol. 18, pp. 1–112
(Oct. 2007)

44. Harman, M., Langdon, W.B., Weimer, W.: Genetic Programming For Reverse Engineering. In:
20th Working Conference on Reverse Engineering WCRE 2013, pp. 1–10 (2013)

45. Gerules, G., Janikow, C.: A survey of modularity in genetic programming. 2016 IEEE Congr.
Evol. Comput. CEC 2016, pp. 5034–5043 (2016)

46. Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic programming.
Genet. Program Evolvable Mach. 15(2), 195–214 (2014)

47. Dorigo,M., Blum, C.: Ant colony optimization theory: a survey. Theor. Comput. Sci. 344(2–3),
243–278 (2005)

48. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl.
Soft Comput. J. 8(1), 687–697 (2008)

49. Yang, X.-S.: A new metaheuristic bat-inspired algorithm. Stud. Comput. Intell. 284, 65–74
(2010)

50. Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimiza-
tion problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)

51. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: 2009 World Congress on Nature and
Biologically Inspired Computing, NABIC 2009—Proceedings, pp. 210–214 (2009)

52. Yang, X.S.: Flower Pollination Algorithm for Global Optimization. Lecture Notes in Computer
Science, vol. 7445 LNCS, pp. 240–249, 2012

53. Mirjalili, S.,Mirjalili, S.M., Lewis, A.: Greywolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)
54. Gandomi, A.H., Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm. Commun.

Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012)
55. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm.

Knowl. Based Syst. 89, 228–249 (2015)

http://arxiv.org/abs/1703.03864v2

References 41

56. Kennedy, J., Eberhart, R.: Particle swarm optimization. IEEE Int. Conf. Neural Networks 4,
1942–1948 (1995)

57. Kirkpatrick, S., Gelatt, C.D., Vecch, M.P.: Optimization by simulated annealing. Science (80-.)
220(4598), 671–680 (2007)

58. Siddique, N., Adeli, H.: Simulated annealing, its variants and engineering applications. Int. J.
Artif. Intell. Tools 25(06), 1630001 (2016)

59. Mirjalili, S.: SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl. Based
Syst. 96, 120–133 (2016)

Chapter 2
Metaheuristics and Swarm Methods:
A Discussion on Their Performance
and Applications

Abstract Nature-inspired metaheuristics are easily the largest family of optimiza-
tion techniques currently on existence and they have become widely-known among
researchers from virtually every single area of scientific application. While the
rapid development of this area of science has originated a vast amount of novel
problem-solving schemes, it has also broughtmany interesting questions. Nowadays,
researchers are centering their attention on studying the properties on nature-inspired
methods that have a direct impact on their performance, and how these properties con-
tribute on better solving particular optimization problems. In this chapter, we present
a discussion centered on several observable characteristics in nature-inspired meth-
ods and their influence on its overall performance. Furthermore, we also present a
survey on some of the most important areas science and technology where nature-
inspired algorithms have found applications. Finally, we expose some of the current
research gaps regarding to the development and application of nature-inspired meta-
heuristics, as well as some of the potential directions that this area of science may
take in the future.

2.1 On the Performance of Nature-Inspired Metaheuristics

Nowadays, nature-inspired metaheuristics have become so numerous and varied in
terms of design and applications. From such an abundant variety of techniques, the
main question to be addressed is: Which metaheuristic technique performs the best
overall? This question, present since the formulation of the first of such algorithms,
has been surprisingly hard to answer, and up to this day, it remains as an open concern
in this area of science [1]. One widely accepted theory in this research field is that
metaheuristic algorithms perform best over a broad spectrum of problems when a
proper balance between exploration and exploitation is present in their mechanism.
In general terms, exploration refers to the ability of search agents to visit entirely
new regions of a search space, while exploitation emphasizes on the capabilities of
these agents refine currently known “good” solutions [2]. While the importance of
such a balance is recognized as essential in most new proposals, it is often loosely
implied given the lack of appropriate analysis tools that allow understanding how

© Springer Nature Switzerland AG 2020
E. Cuevas et al., New Advancements in Swarm Algorithms: Operators
and Applications, Intelligent Systems Reference Library 160,
https://doi.org/10.1007/978-3-030-16339-6_2

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16339-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-16339-6_2

44 2 Metaheuristics and Swarm Methods: A Discussion …

an algorithm search mechanisms affect it. Another factor that highly affects this
balance is the selection of parameters (tuning) designed to control the exploration and
exploitation pressure of each algorithm. However, this process is not straightforward,
and it highly depends on the algorithm and the problem to solve. Also, there is the
so-called ‘No-free-lunch (NFL) theorem’ proposed by Wolpert and Macready in
1997, which states that any algorithm will on average perform equally well as a
random search algorithm over all possible functions. For this reason, it is assumed
that statistical methods can be applied to find the dominance of one algorithm over
others on a specific problem; however, as of today, there is no objective way to point
out which algorithm is the overall best and the reasons of such superiority, if existent
[4]. In this section, we open a discussion about the several observable characteristics
of metaheuristic algorithms and how these characteristics impact the performance of
these methods (see Table 2.1).

2.1.1 Computational Complexity

An in-depth analysis of themechanisms implemented on nature-inspiredmetaheuris-
tics allows pointing on several characteristics which have a direct impact on the
expected computational complexity of these methods [3]. Depending on their search
strategy, for example, some algorithms may require to sort the available candidate
solutions with regard to their fitness value, either to find the best members from the
population (as in GA), select several good solutions to implement their search strat-
egy (as done in GWO), or even as a tool for efficient implementation (as in the case of
FA). Although population sorting can be implemented using several sort algorithms,
for most cases it is also important to consider their implied computational cost. In the
case of the default sort function employed byMatLab® (QuickSort), for example, the
computational complexity of the sorting operation is O(Plog(P)) in the average case
scenario. The additional complexity these operations add breaks the desired linear
complexity that is often sough when developing optimization algorithms, especially
when sorting is required on each iteration (although this becomes a real burden only
if the population size is too large). On the other hand, some algorithms may require
to calculate some kind of population-related measurement(s) as part of their search
mechanisms. A measurement commonly computed in several nature-inspired algo-
rithms is the Euclidian distance between individuals within the search space. As seen
in the case of GSA, for example, such distance measurements are used to compute
a sum of weighted attraction between solutions. On the other hand, in algorithms
such as SMS, the Euclidian distance between individuals is compared with some
sort of distance threshold in order to establish conditions for the movement of search
agents. While the Euclidian distance often proves to be useful for the purpose of
modeling complex search strategies, the added computational complexity that this
implies must always be considered. Under the supposition that Euclidian distances
are needed to be calculated with regard to every single pair of individuals in the
population (worst case scenario), this will require at least as it requires O

(
P∧2

)
root

2.1 On the Performance of Nature-Inspired Metaheuristics 45

Ta
bl
e
2.
1

O
bs
er
va
bl
e
pe
rf
or
m
an
ce
-i
nfl

ue
nc
in
g
ch
ar
ac
te
ri
st
ic
s
on

se
ve
ra
lp

op
ul
ar

na
tu
re
-i
ns
pi
re
d
m
et
ah
eu
ri
st
ic
s

A
lg
or
ith

m
s

E
xp

lo
ra
tio

n/
ex
pl
oi
ta
tio

n
C
om

pu
ta
tio

na
lc
om

pl
ex
ity

R
eq
ui
re
d

ad
di
tio

na
l

m
em

or
y

Pa
ra
m
et
er

tu
ni
ng

pr
oc
es
s

O
ve
ra
ll

im
pl
em

en
ta
tio

n
di
ffi
cu
lty

Se
le
ct
io
n

m
ec
ha
ni
sm

A
ttr
ac
tio

n
op

er
at
or
s

It
er
at
io
n

de
pe
nd
en
t

Po
pu
la
tio

n
so
rt
in
g

Po
pu

la
tio

n-
re
la
te
d

m
ea
su
re
m
en
ts

V
ar
ia
bl
e

FF
C

D
E

In
d.
gr
ee
dy

N
/A

N
o

N
o

N
o

N
o

N
o

E
as
y

L
ow

E
S

N
on
-g
re
ed
y

G
lo
ba
lb

es
t

N
o

N
o

N
o

N
o

N
o

H
ar
d

L
ow

G
A

G
re
dd
y

N
/A

N
o

Y
es

N
o

N
o

N
o

E
as
y

L
O
W

A
B
C

In
d.
gr
ee
dy

M
ul
tip

le
N
o

N
o

N
o

Y
es

Y
es

T
un
el
es
s

M
ed
iu
m

B
A

In
d.
gr
ee
dy

G
lo
ba
lb

es
t

N
o

N
o

N
o

N
o

Y
es

E
as
y

L
ow

C
SA

N
on
-g
re
ed
y

Pe
rs
on
al

N
o

N
o

N
o

N
o

Y
es

E
as
y

L
ow

C
S

In
d.
gr
ee
dy

G
lo
ba
lb

es
t

N
o

N
o

N
o

N
o

N
o

E
as
y

M
ed
iu
m

FA
N
on
-g
re
ed
y

M
ul
tip

le
N
o

N
o

Y
es

Y
es

Y
es

H
ar
d

M
ed
iu
m

FP
A

N
on
-g
re
ed
y

G
lo
ba
lb

es
t

N
o

N
o

N
o

N
o

N
o

E
as
y

L
ow

G
W
O

N
on
-g
re
ed
y

M
ul
tip

le
N
o

Y
es

N
o

N
o

N
o

T
un
el
es
s

L
ow

K
H

In
d.
gr
ee
dy

G
lo
ba
lb

es
t

N
o

N
o

Y
es

N
o

Y
es

H
ar
d

M
ed
iu
m

M
FO

G
re
ed
y

M
ul
tip

le
Y
es

Y
es

N
o

N
o

Y
es

T
un
el
es
s

M
ed
iu
m

PS
O

N
on
-g
re
ed
y

M
ul
tip

le
N
o

N
o

N
o

N
o

Y
es

E
as
y

L
ow

SS
O

In
d.
gr
ee
dy

M
ul
tip

le
N
o

N
o

Y
es

N
o

Y
es

H
ar
d

H
ig
h

W
O
A

N
on
-g
re
ed
y

G
lo
ba
lb

es
t

N
o

N
o

N
o

N
o

N
o

T
un
el
es
s

L
ow

E
M
O

N
on
-g
re
ed
y

M
ul
tip

le
N
o

N
o

Y
es

N
o

Y
es

T
un
el
es
s

M
ed
iu
m

G
SA

N
on
-g
re
ed
y

M
ul
tip

le
Y
es

N
o

Y
es

N
O

Y
es

E
as
y

M
ed
iu
m

SC
A

N
on
-g
re
ed
y

G
lo
ba
lb

es
t

Y
es

N
o

N
o

N
o

N
o

T
un
el
es
s

L
ow

SM
S

N
on
-g
re
ed
y

G
lo
ba
lb

es
t

Y
es

N
o

Y
es

N
o

N
o

H
ar
d

H
ig
h

FW
A

G
re
ed
y

M
ul
tip

le
N
o

Y
es

Y
es

Y
es

Y
es

H
ar
d

H
ig
h

H
S

In
d.
gr
ee
dy

N
/A

N
o

N
o

N
o

N
o

N
o

E
as
y

L
ow

IC
A

N
on
-g
re
ed
y

M
ul
tip

le
N
o

N
o

Y
es

Y
es

Y
es

H
ar
d

H
ig
h

46 2 Metaheuristics and Swarm Methods: A Discussion …

square calculations (although this can be reduced under certain conditions). Finally,
while it is common to find optimization algorithms that perform a fixed number of
fitness function computations (FFCs), there are several metaheuristic algorithms that
break this rule. In methods such as ABC, for example, scout bees are deployed to
explore new solutions within the search space once it is determined that any of the
currently known solutions cannot be improved, hence requiring an additional FFC
for each abandoned solution. Similarly, in the CS algorithm, a secondary mechanism
devised to generate new random solutions is implemented as a mean to increase
diversity, adding additional FFCs in the process.

2.1.2 Memory Efficiency

All the population-based metaheuristic required a minimum memory with size
O(N ∗ (D + 1)) (with N denoting the number of elements D their dimensional-
ity) to store each of the available solution vector solution plus their correspondently
fitness value, and (N ∗ (D + 1) + a ∗ (D + 1)) (with a ∈ {1, 2}) if memorizing the
best and/or worst solution(s) is required. Furthermore, some nature-inspired algo-
rithms are known to require extra memory space to store some kind of additional
data that is required as part of their search strategy. Some examples of algorithms
that required such extra information include SMS, KH and GSA, where measure-
ments such as the Euclidian distances are constantly computed. In these algorithms,
such distance measurements are store in memory in order to reduce the number root
squares calculations that are needed at each iteration, instead of performing the cal-
culation as they’re required [4]. Another algorithm with a more complex demand
of memory is the ICA that require the calculation of the distance between colonies
and empires, and their proposed costs on each iteration. While these computational
requirements may represent no issue for today standard computers, this can severally
limit their application on hardware with limited resources (such as those developed
with the idea of portability in mind).

2.1.3 Exploration Versus Exploitation

Although seemingly trivial, questions about how exploration and exploitation is
achieved are still an open subject, and it’s often a source of disagreement among
researchers [5, 6]; however, it is commonly accepted among the research community
that a good ratio between exploration and exploitation is essential to ensure good per-
formance in metaheuristic search algorithms. The question here is: how can we find
a proper balance between these two crucial characteristics? Answering this question
is not trivial given that metaheuristic optimization algorithms can be very different in
terms of search strategy, so it is necessary to understand firstwhat type ofmechanisms
are implemented in these methods. In the case of population-based metaheuristics,

2.1 On the Performance of Nature-Inspired Metaheuristics 47

for example, these usually include selection mechanisms that allow them to collect
prominent solutions from among the entire population, either to make them prevail
for the next iteration of the search process or to implement some solution update
strategy. Although selection operators do not modify or generate new solutions in
the population, they play an important role in balancing elitism and diversity [7]. In
the case of a greedy selection mechanism, for example, this ensures that the most
fitting individuals among candidate solutions remain intact for the next generation.
Thus, this type of selection is often used to improve fast convergence onmetaheuristic
algorithms toward promising solutions. Another type of elitism (individual greedy
selection) can be observed in algorithms like DE or HS, where a new solution is
accepted only if it directly improves the solution that originates them. This strategy
has the appeal of potentially improves the exploration-exploitation ratio by forcing a
highly diverse initial population to improve individually from its starting point, and
as such this kind of selection method is often preferred in metaheuristic optimization
methods, especially when these are meant to deal with multimodal problems [8].
Also, some algorithms do not implement any kind of selection strategy at all. In the
case of methods like PSO or GWO, these do not enforce the selection of promi-
nent individuals, accepting every new solution independently of its quality. In this
case, the lack of elitism is preferred to accent exploration over exploitation; however,
this methods also implement additional behaviors in order balance the exploration-
exploitation rate as is, for example, “attractions” toward the best know solution.
Speaking of attractions, it is not uncommon to find some kind of attraction strat-
egy implemented as a part of the search mechanisms of nature-inspired algorithms.
As previously implied, attractions are usually applied as an exploitation mechanism
that seeks to improve currently known solutions by moving other solutions toward
the location of seemingly “good” individuals. Choosing which solutions are to be
considered as attractors, and how other solutions will be attracted to these attractors
is entirely dependent on the design of the algorithm itself. In the case of PSO, for
example, particles are attracted toward the global best solution at the current itera-
tion of the search process; however, individuals modeled in PSO also implement a
series of attractions toward the best solutions recorded by each particle as the search
process evolves (personal best solution). This approach is usually considered as a
more balanced attraction mechanism regarding convergence and solutions diversity;
however, implementing this kind of strategy requires the allocation of additional
memory, which could be undesired depending on the intended application(s). Also,
some algorithms apply attraction mechanisms which consider the composite effect
of more than one attractor to discover new potential solutions. These attractors can
be comprised by a subset of members from the current population of solutions, or
even, by the whole set of available candidate solutions. As previously noted, in
PSO both the best-known solution of the population and the best personal record of
each solution are considered to modify the velocity of each particle; this could be
considered an example of such multiple-attractors phenomenon. On the other hand,
there are methods that implement more complex attraction schemes, which consider
very specific members of the entire population as well as other particular properties.
In FA, for example, the attractiveness between individuals is set to be inversely

48 2 Metaheuristics and Swarm Methods: A Discussion …

proportional to the distance that separates them, hence, the longer the distance, the
lower the attraction [6]. Similarly, GSA attractiveness is dictated by “gravitation
force” exerted among particles in the available search space, but the magnitude of
such attraction also depends on the fitness value of each particular solution. While
these mechanisms have proven to be effective for maintaining higher diversity on the
population, it is worth noting that modeling these behaviors requires to constantly
calculate of the distance between several pairs of solutions, increasing the computa-
tional complexity to these the algorithms. Also, it’s been observed that this kind of
mechanisms tend to slow-down the convergence of the algorithm, a fact that must
be considered is execution time is a priority [6]. Furthermore, some algorithms do
not contemplate any type of attraction as part of their search strategy; instead, these
methods generate new solutions bymeans pure randomwalks (as in the case ofHS) or
by considering other criterions (such as the distance between solutions, as in the case
of DE). In evolutionary algorithms like GA, for example, some solutions are gener-
ated by “mixing” the information of randomly chosen solution (crossover), whereas
others are generated by adding perturbations to currently existing solutions (muta-
tion). In this regard, it’s also worth mentioning that, while crossover and mutation
operators in evolutionary algorithms are often perceived as exploration and exploita-
tion operators, respectively, a deeper observation of crossover behaviors suggest that
at the beginning of the evolutionary process (where the population is still diverse),
crossover operators favor the exploration of solutions, whereas, toward the end of
the search process (where population has lost diversity), exploration capabilities are
dramatically reduced. Similarly, mutation operators that consider large amounts of
perturbations for modifying existing solution could very easily be considered as
exploration mechanisms, as solutions could be generated over much larger propor-
tions of the feasible solution space. Under this considerations, it is hard to roughly
classify crossover and mutation as either exploration or exploitation operators, as
they intended behavior could be altered by adjusting their crossover and mutation
rates, respectively. Finally, it worth noting that there are several algorithms which
consider the iterations stop criterion (maximum number of iterations), as well as the
iterations progress as part of their search strategy. Such mechanisms are mostly used
to adjust the exploration-exploitation rate as the search process evolves with the pur-
pose of avoiding premature convergence. However, this strategy often prevents the
algorithm to converge quickly toward currently known best solutions, which could
be undesired depending on the situation.

2.1.4 Implementation

As mention in Sect. 2.2, most metaheuristic algorithms share a general framework
independently of the inspiration. Therefore the main difference is present in their
mechanism to generating new solutions and selecting those that will remain to the
next iteration. Among the algorithms presented in this work, some have a high level
of simplicity that can be translated onto computational code with relative ease, while

2.1 On the Performance of Nature-Inspired Metaheuristics 49

others may be relatively complex to program given the kind of behaviors and rules
these intend tomodel. In other words, it could be said that the number of lines of code
required to program a given metaheuristic algorithm increases as more sophisticated
mechanisms are integrated to these methods. In this sense, algorithms such as SCA
can be considered among the most straightforward algorithms to code as all of the
population is directly attracted toward the best solution, without the need of sorting
the population or excessive memory assignation. HS may be as well considered ease
to code given how simple is for it to generate new candidate solutions (generating
random values, values from known solutions, or slight perturbations of currently
existing ones). However, the fact that HS resort to a greedy selection mechanism
demands it to perform population sorting, slightly increasing its coding difficulty,
and by extension its computational complexity. Leaving aside the performance that
a given algorithm could have when applied to solve problems, the degree of coding
complexity that relates to these computational approaches is plagued by two partic-
ular concerns [9]: 1. A higher risk for some of its elements to introduce structural
biases, making the algorithm more prone to explore several parts of the optimization
landscape more frequently than others without an actual justification [10]; and 2. The
discouragement this coding complexity could cause to its potential users. Besides,
most (if not all) metaheuristic algorithms are designed to work as black box models,
thus being problem independent. However, regarding implementation, users often
require to invest additional time to specify other essential characteristics, such as
the formulation of the fitness function that describes the problem, the codification
(representation) of the solutions and, if necessary, the parameters tuning for the algo-
rithm in question. Speaking of parameter tuning, it is important to remember that its
relevance lies on the fact that it allows to change the exploration-exploitation ratio of
the algorithm, potentially allowing it to perform better over certain tasks. The main
problem here though, is that there is no universal agreement on how metaheuristic
algorithms should be tuned to work optimally over specific optimization problems
(which is not surprising given that most algorithms are comparably different); in fact
scientists and practitioners are for the most part used to tune metaheuristics by hand,
guided only by their experience and by some rules of thumb, hence, tuning meta-
heuristics is often considered to be more of an art than a science. Although, there are
several efforts aimed to provide frameworks to mechanically and objectively select
these parameters finding the optimal tuning for these parameters is still an open prob-
lem [11, 12]. Another issue related to parameter tuning in metaheuristic algorithms
is the number tuning parameters itself. While some algorithms like GA or PSO have
only a reduced number of parameters (two in both cases), other methods such as ICA
or SMS requires the user to set several more parameters, needed by the algorithm in
order to control their behavior. However, as the number of parameters to set increases,
understanding how these values influence the performance of the algorithm becomes
more complex, thus, making the algorithm harder to analyze overall. Finally, it is
worth noting that there are algorithms that do not have any parameters to tune at
all. Methods such as WOA and SCA integrate mechanisms devised to automatically
adapt the exploration-exploitation rate as they progress over the available iterations,
but these do not need the user to set any parameters for it to work. Methods like these

50 2 Metaheuristics and Swarm Methods: A Discussion …

offer inexperienced users the ability to easily implement and understand the mech-
anisms behind metaheuristic algorithms, although these private more experimented
users from studying its behavior in a more complex perspective.

2.2 Nature-Inspired Metaheuristics and Their Applications

In recent years, nature-inspiredmetaheuristics have become popular choices for solv-
ing a wide-range of optimization-related problems in many different areas of appli-
cation such as engineering design, digital image processing, and computer vision,
networks and communications, power, and energy management, data analysis and
machine learning, robotics, medical diagnosis, and many others [13]. In this section,
we will discuss several implementations of nature-inspired algorithms for solving
real-world problems in different areas of application.

2.2.1 Engineering Design

Applications of nature-inspired metaheuristics to engineering design are as varied as
themultidisciplinary areas of science currently on existence. For example, in the area
of networks and communications, a popular design problem is the design of antennas.
Notably, in Goudos (2017) the author presented a study where this design problem
is tackled by applying several discrete-coded metaheuristics, including GA, DE, and
PSO, demonstrating competence in all cases [14]. Another representative area of
applications is aeronautics, where the most common design problems are related
to aircrafts design. In Keshtegar et al. (2017), for example, the authors proposed
an optimization framework for the design of aircraft panels based on an adaptive
dynamic HS (ADHS). This design approach was compared in terms of performance
against those found in other variants of HS, ultimately demonstrating ADHS to
be the superior method [15]. Another common design application is the design of
truss structures. As examples, we can mention the works presented in Bekdaş et al.
(2015) and Khatibinia and Yazdani (2017), where algorithms such as FPA and GSA
were successfully applied to solve this design problem [16, 17]. Another interesting
application is reported in Shukla and Singh (2016), where the FA algorithm is imple-
mented to aid on the selection of parameters for advanced machining processes with
good results [18]. Other classical engineering design problemswhere nature-inspired
algorithms have been successfully applied include the design of tension/compression
springs, welded beams, pressure vessels, gear trains, to name a few [19–23].

2.2 Nature-Inspired Metaheuristics and Their Applications 51

2.2.2 Digital Image Processing and Computer Vision

Nature-inspired metaheuristics have also found interesting applications in the area of
digital image processing and computer vision.One typical application in this regard is
image segmentation by multilevel thresholding, in which the optimization algorithm
is applied to found a set of optimal gray-level threshold that maximizes some kind
of image measurement [24]. Prominent examples this kind of applications includes
those presented in Horng and Jiang (2010), Ouadfel and Taleb-Ahmed (2016), Aziz
et al. (2017), He and Huang (2017), Khairuzzaman and Chaudhury (2017), were
algorithms such as ABC, SSO/FPA, WOA/MFO, FA, GWO have been successfully
implemented [25–30]. Also, inCuevas et al. (2013), Oliva et al. (2014) andZhang and
Zhou (2017), the task of template matching based on nature-inspired metaheuristics
have been explored, where techniques such SMS, EMO, GWO have been imple-
mented to good results [25, 27–30]. Also, in Olague and Trujillo (2012), the authors
proposed to use aMulti-ObjectiveGP (MO-GP) approach for the task of synthesizing
operators for the detection of interest points in digital images, where the optimiza-
tion problem is represented regarding three properties (stability, point dispersion,
and information content). The experimental results presented by the authors suggest
that their proposed approach is able to construct interest point detection operators
adapted to different performance criteria, thus making it promising for a wide vari-
ety of computer vision applications [31]. Another interesting application is reported
in Kiranyaz et al. (2015), where PSO is applied to assist on the task of perceptual
dominant color extraction, presenting promising results when compared to some
traditional methods [32].

2.2.3 Networks and Communications

Applications of nature-inspired metaheuristics to this area include the Optimal Sen-
sorDeployment (OSD) forWireless SensorNetworks (WSNs), a task that consists on
finding an optimal distribution for a set of sensing devices designed to collect some
kind of physical data. One recent application for this is reported in Zou et al. (2017),
where the authors proposed an optimal sensor deployment scheme based on the SSO
algorithm. The reported experiments suggest that the performance of SSO, when
applied forOSD inWSNs, is superior to that ofmethods based onVirtual ForceAlgo-
rithm (VFA) [33], GA, and PSO [34]. Another similar application is reported in Deif
et al. (2017),whereACO is applied as the optimizationmethodof choice. In thiswork,
there is a special emphasis not only on maximizing the sensor networks’ coverage
area, but also other important requirements in WSNs, such as minimum level of reli-
ability and deployment cost [35]. In similar terms, in Alia and Al-Ajouri (2017), the
HS algorithm is applied for solving the problemofminimumcostOSD, comparing its
performance in this case with that of a random deployment scheme [36]. In Mann
and Singh (2017), the authors managed to improve the performance of the ABC

52 2 Metaheuristics and Swarm Methods: A Discussion …

algorithm by implementing the Student’s t-distribution as a sampling method and
applied it to perform energy-efficient clustering in Wireless Sensor Networks, yield-
ing to promising results [37]. Other similar applications of nature-inspired methods
for OSD inWSNs can be found in Goyal and Patterh (2015) and in Cao et al. (2012),
where the techniques such as BA and FA have been studied [38, 39]. Community
detection in complex networks is another application that has caught the interest of
researchers as a candidate to be solved by metaheuristic techniques. In Rahimi et al.
(2018), for example, a novel multi-objective community detection scheme based on
PSO is proposed. The authors presented experimental results that consider both syn-
thetic and real-world environments and compared their results against those of other
similar approaches, showing an outstanding performance [40]. Also, in Guerrero
et al. (2017), the problem of adaptive community detection is handled by applying a
modification of the GA algorithm coined Generational Genetic Algorithm (GGA+),
which involves efficient initialization methods and modularity-guided search oper-
ators, is applied and compared against other GA variants, demonstrating superior
performance [41]. Another interesting application of nature-inspired methods to this
area is documented in Bhardwaj et al. (2014), were the ABC algorithm is imple-
mented for the detection of malicious URLs [42]. Also, in Din et al. (2016), the
CS algorithm is applied to perform Left Feedback Shift Registers (LFSR) crypt-
analysis, a tool mainly employed in information security [43]. Finally, E-mail Spam
detection via nature-inspired methods has also been a subject study. In Idris et al.
(2015), for example, the authors proposed an e-mail spam detection system based on
a combination between Negative Selection Algorithm (NSA) [44] and PSO, where
the latter is applied to improve the random detector generation phase in the former.
The reported statistical data reported suggest a significant improvement in perfor-
mance when compared to a framework based exclusively in NSA, thus proving the
significance of the proposed modification [45].

2.2.4 Power and Energy Management

Applications of nature-inspired metaheuristics to the area of energy applications are
quite numerous. In Mesbahi et al. (2017), for example, the authors proposed an opti-
mal energymanagement strategy for hybrid energy storage systemsbasedonPSOand
the Nelder-Mead simplex method, which show to have a significant improvement in
both battery usage and lifetime when compared to other conventional methods [46].
In You et al. (2017), a home energy management system based on the SSO algorithm
was proposed, showing interesting results when applied for the task of appliances
loadmanagement [47]. In 2016,Guha et al. presented an approach based on theGWO
algorithm aimed to solve the problem of load frequency control in interconnected
power systems networks by tuning the parameters of a PI/PID controller, showing to
outperform schemes based on other similar metaheuristic techniques [48]. In Prasad
et al. (2017), a modification of the KHA, known as Chaotic Krill Herd Algorithm
(C-KHA) was implemented to solve the problem of Optimal Power Flow (OPF)

2.2 Nature-Inspired Metaheuristics and Their Applications 53

while also comparing its performance against other state-of-the-art metaheuristics,
yielding to favorable results [49]. Another interesting application was proposed in
Sickel et al. (2007), where the DE algorithm is used for the intelligent control of
power plants. In this work, DE is applied to both generate a set of optimal points
for the monitoring of a reference power governor and the parameter tuning of the
same power plant controller [50]. Also in Al-Betar et al. (2018), an approach aimed
to solve the problem of Economic Load Dispatch (ELD) was proposed, in which an
approach called β-Hill Climbing is applied to minimize the total fuel cost of opera-
tion and emission from a set of generating units. The proposed method was evaluated
by considering several real-world ELD systems and compared against other simi-
lar approaches (including some based in metaheuristics such as GA, ACO, HS and
PSO), demonstrating β-Hill Climbing to be superior for solving this particular prob-
lem [51]. Furthermore, in Babu et al. (2017), the authors proposed the use of PSO
for the reconfiguration of photovoltaic (PV) panels aimed to maximize power extrac-
tion, presenting promising results when compared to other similar approaches [52].
Related to the subject of PV-based power generation, another interesting application
represented by parameter identification in PV cells/modules. In Oliva et al. (2014),
for example, the Artificial Bee Colony (ABC) algorithm was implemented and com-
pared against other similar techniques in terms of performance, showing promising
results [53]. Other similar applications for PV cells parameter identification can be
found in Askarzadeh and Rezazadeh (2012), Ma et al. (2013), Han et al. (2014), and
Sarjila et al. (2016), where algorithms such as FA, CS, AFSA, GSA where success-
fully implemented [54–57]. In Valdivia-Gonzales et al. (2017), an intelligent power
allocation scheme for plug-in hybrid vehicles (PHEVs) based on SMSwas proposed,
in which the objective is to adjust the power distribution provided by PHEV’s charg-
ing infrastructures by taking into account customer characteristics and restrictions
[58]. In Prakash and Lakshminarayana (2016), the authors prosed to tackle the prob-
lem of optimal capacitor placement in Radial Distribution Networks by applying an
optimization scheme based in WOA, demonstrating to be much more effective than
most traditional techniques applied for this purpose [59]. Other applications include
those presented in Massan et al. (2015) and Tolabi and Ayob (2016), where nature
inspired metaheuristics such FA and a hybridization between SA and GA are applied
for the task of optimal wind turbines allocation [60] and solar radiation forecasting
[61], respectively, yielding to interesting results in both cases.

2.2.5 Data Analysis and Machine Learning

As for the area of data analysis and machine learning, some prominent application
related to these areas include feature selection. In Mafarja and Mirjalili (2016) pro-
posed a series of wrapper feature selection scheme based on hybridization between
the WOA and SA algorithms, where the former is used to promote exploration while
the latter is applied to enhance exploitation. The proposed approach was compared
in terms of performance against other similar methods based on metaheuristics, such

54 2 Metaheuristics and Swarm Methods: A Discussion …

as ALO, PSO, and GA, proving to have the best performance regarding accuracy
and average selection size [62]. In the same year, Hafez et al. presented a feature
selection approach based on the SCA algorithm, and compared it in terms of per-
formance against methods based in PSO and GA, leading to favorable results. Sim-
ilarly, in the authors published a feature selection methodology based on a binary
GWOwhich was also successful regarding performance against PSO and GA. Also,
in 2017, Moayedikia et al. proposed a feature selection algorithm called SYMON
which applies both symmetrical uncertainties alongwith theHS algorithm to develop
a strategy to rank features in high dimensional imbalanced class datasets, proving
to be superior when compared to other similar techniques [63]. Other interesting
feature selection applications can be found in [64, 65], Another application related
to data analysis is data clustering, where metaheuristics have also been applied for
good results. In 2018, for example, Alswaitti et al. proposed a clustering method
based in PSO which integrates a density estimation technique based on Gaussian
kernels developed to address premature convergence as well as a method to estimate
the best learning coefficients. The proposed approach was compared against other
techniques commonly used for data clustering and proved to be significantly better
in terms of accuracy [66]. Also, in Zhou et al. (2017) the SSO algorithm was mod-
ified to implement a Simplex method in order to improve data clustering on higher
dimensions, proving to be better than the original SSO in terms of performance, while
also showing its superiority over other similar methods. Furthermore, in Abualigah
et al. (2017, 2018) the authors proposed a clustering technique based on a hybrid
KHA that integrates the mechanisms of the HS algorithm as a way enhance both
exploration and exploitation of solutions. The algorithm was compared regarding
performance against traditional clustering methods and approaches based on meta-
heuristic optimization algorithms demonstrating a higher performance in general
[67]. Other similar works are reported in [68–71], where algorithms like the stan-
dard KH, GA, and PSO has been applied to improve text document clustering. Then,
in Han et al. (2017) proposed a clustering method based on a variant of GSA that
integrates an update mechanism devised to increase the diversity of solutions. This
variant, calledBird FlockingGSA (BFGSA)was compared against the standardGSA
as well as methods based onABC, PSO, and FA, proving to bemuchmore competent
for the aforementioned task [72]. Other approaches for data clustering include those
reported in Shukla and Nanda (2016) and Jadhav and Gomathi (2016), where meth-
ods such as SSO and a hybrid between GWO and WOA were implemented to good
results [73, 74]. Other interesting applications of nature-inspired metaheuristics in
this area involve their use as an alternative to trainArtificial Neural Networks (ANN).
In Sahlol et al. (2009), for example, the authors developed a feedforward ANN based
on the SCA algorithm to improve the prediction accuracy of liver enzymes on fishes
fed with certain compounds. In this approach the SCA algorithm is applied to find
the configuration of weights/biases that allows the proposed NN to achieve optimal
performance, yielding tomuch better results than those of previous predictionmodels
[75]. In Rere et al. (2015), for example, the authors proposed to use the SA algo-
rithm to train a Convolutional Neural Network (CNN) for the classification of hand-
written digits. Although the proposed method comes with a significant increase in

2.2 Nature-Inspired Metaheuristics and Their Applications 55

computation time, it also yields a substantial increase in performancewhen compared
to other methods commonly used to train CNNs [76]. Another interesting application
is reported in Pereira et al. (2016), where the SSO algorithm is used for both, feature
selection and parameter tuning for a Support Vector Machine (SVM) designed to aid
on energy theft detection. The authors compared the performance of their proposed
approach against those based on PSO and a variant of the HS algorithm known as
Novel Global Harmony Search (NGHS), highlighting their respective advantages
[77].

2.2.6 Robotics

Implementations of nature-inspired optimization algorithms to the area of robotics
usually include tasks such as path planning and trajectory optimization. Perhaps the
most popular application in this regard is the autonomous navigation of Unmanned
Aerial Vehicles (UAVs). Interesting work is reported in Li and Duan (2012), where
an improved GSA (IGSA) approach is applied to develop a path planning strategy
for Unmanned Aerial Vehicles (UAVs) devised for military applications. The pro-
posed I-GSA based path planning method was compared against those based on
the classic GSA and PSO, demonstrating much better performance [78]. Similarly,
in Oz et al. (2013), path planning strategies for 3D environments based on GA and
Hyper-Heuristics (HH) [79] that considers technical constraints andmission-specific
objectives are proposed. Both algorithms were evaluated by considering other classi-
cal studies developed for UAV navigation, yielding to favorable results [80]. Then, in
Behnck et al. (2015), the authors proposed a path planning strategy based on a mod-
ified SA algorithm. The reported results demonstrate that the proposed approach
can calculate minimum distance paths for a pair of UAVs while also being suffi-
ciently simple to be implemented in an embedded platform [81]. Also, in Xie and
Zheng (2016), the problem of path planning in UAVs is handled by applying a search
strategy based on a hybrid CS algorithm that integrates the mutation and crossover
operators of GA, called Improved CS (ICS). As illustrated by the results presented in
this work, the ICS notably outperform the standard CS algorithm, demonstrating its
competence for the task in question [82]. Outside of UAVs applications, metaheuris-
tic optimization approaches have also been successfully applied to solve the problem
of navigation in other kinds of robotic platforms. In Tsai et al. (2016), for example,
a path planning scheme based on a multi-objective GWO (MOGWO) approach is
applied to aid on robot navigation over environments consisting on fixed positions
and obstacles. The proposed path planning scheme was compared regarding per-
formance against that based on a multi-objective GA (MOGA), ultimately proving
MOGWO to be slightly superior [83]. Furthermore, in Contreras-Cruz et al. (2017),
a distributed path planned method for multi-robot systems based on ABC (DPABC)
was simulated and compared against a classic priority planner scheme and another
approach also based on ABC (PPABC). As suggested by their experimental results,
the proposed DPABC approach is favored as the better alternative for solving this

56 2 Metaheuristics and Swarm Methods: A Discussion …

problem due to it being able to solve the task in a lower time and with a better perfor-
mance than that of the other compared methods [84]. Another interesting application
documented in the literature is the development of controllers for robotic platforms.
In Silva et al. (2014), for example, GPwas applied as an automatic search method for
motion primitives in a bipedal robot based on the exploration and exploitation of its
particular characteristics. Experimental results demonstrated a significant improve-
ment in performance on the applied robot’s locomotion, especially when compared
to that of a hard-tuned system [85]. More recently, in Benkhoud and Bouallègue
(2017), the authors proposed a series of metaheuristic-based tuning strategies for a
Linear Quadratic Gaussian (LQG) controller, with application to a special class of
UAV. The algorithms studied in this work include the HS algorithm, Water Cycle
Algorithm (WCA) [86], and Fractional PSO-based Memetic Algorithm (FPSOMA).
Furthermore, comparisons which consider tuning methods based on the standard
PSO and ABC algorithms where also developed, yielding to interesting results [87].

2.2.7 Medical Diagnosis

Interestingly, nature-inspired metaheuristics have found a plethora of applications
aimed to develop tools to assist on medical diagnosis. Typical applications to this
area include diagnostic applications based on the digital image processing medical
images. In Ibrahim et al. (2012), for example, the authors proposed an approach to
automatically measure ventricular heart volumes on cardiovascular magnetic reso-
nance (CMR) images by applying an ACO-based approach that integrates iterative
salient isolated thresholding (ACOISIT) to segment blood-myocardium borders and
demonstrated promising results [88]. Furthermore, inOuaddah andBoughaci (2016),
the authors proposed a methodology to perform image reconstruction from projec-
tions based on the HS algorithm. In this approach, the HS algorithm is hybridized
with a local search method to enhance its performance and improve the quality
of images reconstructed from tomographic images tomographies. Both the original
and hybrid HS, as well as two other traditional techniques implemented for image
reconstruction, were compared regarding reconstruction quality, demonstrating, in
the end, the proficiency of the proposed techniques [89]. Later, in Chen (2017),
an image segmentation approach based on the ACO algorithm is proposed for the
detection of Lung Lesions in chest computed tomographies. To validate the proposed
systems the authors analyzed its accuracy by considering a specific database of lung
patients, obtaining favorable results [90]. Similarly, in Oliva et al. (2017), the authors
proposed an image segmentation method based on both cross entropy thresholding
and the CSA algorithm, with applications to the analysis of magnetic resonance
brain images. Said approach was compared against cross entropy segmentation tech-
niques based on DE and HS, ultimately demonstrating to be superior in terms of
performance [91]. Other applications of nature-inspired methods to medical diagno-
sis include the development of tools aimed to aid on the analysis of specific medical
data. As an example, we have the work reported in Wang et al. (2015), where an

2.2 Nature-Inspired Metaheuristics and Their Applications 57

Improved Electromagnetism-like Algorithm (IEA) is proposed to develop a feature
selection method for the prediction of diabetes mellitus. The proposed approach was
tested by considering an extensive number of pertinent datasets, and its performance
was compared with several other benchmark metaheuristic techniques reported in
the literature, yielding to interesting results [65]. Furthermore, in Kora and Kalva
(2015), the authors developed and improved BA approach to extract features from
Electrocardiogram (ECG) signals, with the purpose of feeding them to a neural net-
work classifier trained for the prediction of myocardial infarction on heart patients.
Both the improved and the standard BA algorithm were compared regarding per-
formance by also considering other possible classifiers, including NN, KNN, SVM,
and others [92]. Also, in Nagpal et al. (2017), a feature selection approach based on
GSA and k-nearest neighborhood classification is proposed for the task of efficient
feature selection. According to the experimental results presented by the authors,
the proposed method is able to reduce the number of significant features in the pro-
cessed data to an average of 66%, while also showing a better performance than
technique based on algorithms such as PSO and GA [93]. Then, in Sahoo and Chan-
dra (2017), a variant of the GWO algorithm known as Non-dominated Sorting GWO
(NSGWO) and the Multi-Objective GWO (MOGWO) are proposed to address the
problem of feature selection to aid on the classification/detection of cervix lesions.
The authors compared their proposed feature selection methods with those based
on several multi-objective implementations of GA and FA, demonstrating the GWO
variants to be superior in all cases [94]. Another interesting application is reported in
Alshamlan et al. (2015), were the ABC algorithm is applied to aid on the task of gene
selection for cancer classification using microarray datasets. The proposed approach
combines a filtering stage based on a Minimum Redundancy Maximum Relevancy
(mRMR) method and a wrapper method based in both BA and SVM, and it was
compared with two other similar approaches based in GA (mRMR-GA) and PSO
(mRMR-PSO), showing impressive results [95]. Similarly, in Alomari et al. (2017),
a gene selection methodology based in BA was presented and compared with other
popular gene selection methods, demonstrating to be more than competent for the
task mentioned above [96].

2.3 Nature-Inspired Metaheuristics: Research Gaps
and Future Directions

Undoubtedly, research on nature-inspiredmetaheuristic algorithms and their applica-
tions has grown at an accelerated rate. However, while there exists an overwhelming
amount of related works reported on the literature, this research area is yet to reach
the maturity level that other areas of science currently have. There are still several
research gaps and areas of opportunity that are still to be explored by researchers
on this rather young area of science. One of this areas of opportunity arise due to
the fact that, to this date, there is no single metaheuristic optimization algorithm

58 2 Metaheuristics and Swarm Methods: A Discussion …

with the ability to effectively handle all existing problems [97]; in fact, the litera-
ture suggest that there exist several techniques that perform significantly better than
other methods when applied to specific problems. In this regard, we can mention the
widely known 0–1 knapsack optimization problem [98], on which numerous opti-
mization techniques have been successfully applied with good results; in the case of
the work presented in Sapra et al. (2017), for example, a comparative study of several
metaheuristic algorithms applied to solve the knapsack problem is presented, where
methods such as Tabu Search [99], Scatter Search [100] and Local Search [101] are
the center of discussion. The experimental results presented in this work suggest that
Tabu Search has the least deviation from the best known solution, suggesting it to
be more reliable in this regard. However, this work also suggest that Scatter Search
presents the least time complexity, being the best option among the three testedmeth-
ods when execution time is crucial [102]. Another example is given by Feng et al.
(2017), where a novel Binary Monarch Butterfly Optimization (BMBO) algorithm
was proposed to solve this problem, and was further validated by comparing it with
binary-coded implementations of ABC, CS, DE, and GA, demonstrating BMBO to
have greater accuracy and convergence speed [103]. Other commonly studied opti-
mization problem is represented by the famous Traveling Salesman Problem (TSP)
[104]. An interesting study can be found in the work present by Saji and Riffi (2016),
where a comparison between a novel Discrete Bat Algorithm (DBA) and discrete
codedmodifications for PSO, CS, and GSA-ACS-PSOT (a hybrid approach based on
several metaheuristics) for solving the TSP is presented, demonstrating DBA to be
the overall best method to handle this problem [105]. Similarly, in Zhou et al. (2017),
the authors propose to solve several spherical TSP by applying a Discrete Greedy
Flower PollinationAlgorithm (DGFPA), and compared it with several variants of GA
and Tabu Search, finally concluding that DGFPA performs the best in most cases
[106]. Finally, we have the Vehicle Routing Problem (VRP) [107], a problem that
nowadays could be considered a benchmark real-problem for validating the perfor-
mance of optimization algorithms. While there are several variants to this particular
problem, nature-inspired metaheuristic methods have been extensively applied for
solving each of these [108–111]; in particular, it is common to see implementations to
this kind of problems based on enhanced/improved implementations of well-known
bio-inspired algorithms. One example of this is reported in Xu et al. (2018), where
Dynamic VRP is handled by applying an Enhanced ACO algorithm (E-ACO). The
proposed method was compared in terms of performance against the standard ACO
algorithm and another improved variant known as K-means ACO (K-ACO), con-
cluding E-ACO to be slightly superior [112]. Similarly, In Zhang and Lee (2015), an
Improved ABC algorithm is applied to solve Capacitated VRP and was compared
in terms of performance against the standard ABC approach, yielding to a supe-
rior performance [113]. Another example is presented in Xiang et al. (2015), where
an improved PSO algorithim (NPSO) which integrates Gauss Mutation is devel-
oped for solving the VRP and compared in terms of performance with the original
PSO, virtually outperforming it in both performance and efficiency [114]. Fromwhat
was previously discussed, it must be concluded that the different degrees of perfor-
mance on nature-inspired metaheuristics over certain problems is not only heavily

2.3 Nature-Inspired Metaheuristics: Research Gaps and Future … 59

influenced by the specific search mechanisms and “adaptations” applied by each
applied method, but also by the particular challenges offered by each of these prob-
lems, hence there is no way to establish a particular method as the absolute best, and
as such there is still a plenty of space for proposing newand innovativemethodologies
for solving these problems or to modify existing ones with the purpose of enhanc-
ing their performance and efficiency. In this sense, many researchers have proposed
interesting ideas aimed to improve the performance of nature-inspired metaheuris-
tics. Some researchers, for example, suggest that a hybridization of exact methods
andmetaheuristic-based techniques could lead to the development of algorithmswith
enhanced efficiency and convergence capabilities [115, 116]. While research in this
regard is still somewhat limited, there are several works on the literature which serve
as examples of successful applications of both kind of methods [117–121]. Other
interesting ideas can also be found on the work presented by Zelinka (2015), were
the author explore the possibility of improving that performance and diversity of
search operators by implementing specific control mechanisms (such as determinis-
tic chaos models) to alter the dynamics of swarm and evolutionary algorithms [122].
An example of a metaheuristic-based application that implement this kind of mech-
anism is presented in Valdivia-Gonzalez et al. (2017), where different chaos models
were combined with the search operators of the GSA algorithm in order to enhance
its performance [123]. Similarly, in Cuevas et al. (2017), deterministic chaos models
where integrated to the search operators of novel swarm-based algorithm known as
Locust Search (LS) [124–126], with the purpose enhancing its performance for the
identification of parameters in fractional-order systems [127]. Also, in Hinojosa et al.
(2017), a Multi-objective implementation of the CSA approach (MOCSA) was mod-
ified to integrate chaotic behaviors in order to enhance its solution diversity, demon-
strating a notable increase on performance [128]. In the last few years, techniques
aimed to improve the efficiency of metaheuristic optimization algorithms by imple-
menting surrogated models are gaining popularity among researchers from this area
of science. In Regis (2014), for example, the author proposed a surrogated-assisted
optimization framework based on PSO coined Optimization by particle swarmUsing
Surrogates (OPUS) with the purpose of efficiently solving high-dimensional black-
box optimization problems, and implemented it to solve several real world problems,
including groundwater bioremediation and watershed calibration [129]. Similarly, in
Liu et al. (2016), an optimization approach based on Differential Evolution which
implement Gaussian Process (GP) regressions in conjunction with Optimization by
Radial Basis functions Interpolation in Trust-regions (ORBIT) [130] was developed
to efficiently and reliably solve optimization problems. The performance of this
method, called Multi-fidelity Gaussian Process and radial basis Memetic Differen-
tial Evolution (MGPMDE),was validated by considering awide set of benchmark test
functions, as well as with its applications for data mining [131]. While all of the pre-
vious suggests that there are still plenty of areas of opportunity for the development
and application of nature-inspired metaheuristic optimization algorithms, perhaps
the greatest gap in this area of science is the absence of theoretical foundations that
allows to objectively analyze important characteristics of these techniques, such as
convergence rate and efficiency. While there is a general agreement in that the good

60 2 Metaheuristics and Swarm Methods: A Discussion …

performance of nature-inspired algorithms is attributed to a proper balance between
exploration and exploitation of solutions, the truth is that there is barely a clear def-
inition of what these two concepts truly represent. In fact, classifying the search
operators and strategies applied by nature-inspired methods is often an ambiguous
task, as many of these seems to contribute in some way to both the exploration and
exploitation of solutions, and even then, there is currently no clear way to objectively
measure the rate of exploration/exploitation provided by these operators [2]. In the
absence of mathematical analysis methods that could be applied to measure these
properties, the performance of nature-inspired metaheuristics is mostly evaluated by
applying ad hoc methodologies based on the quantitative analysis of certain vali-
dation metrics such as error, mean, median, standard deviation, and so on [132]. A
recent attempt to measure these factors over the most popular swarm metaheuristic
is presented in [5]. They proposed a modified equation from [133] that calculates
the diversity of the population using the distance between the solutions in the search
space. This diversity measurement calculates the averaged sum distance between all
the solution to the median of each dimension and solutions. Then, the exploration
percent of each iteration is calculated by dividing the diversity value between the
maximum diversity value encounter in the process, and its inverse is considered as
the exploitation rate. However, this idea is oversimplified, as it doesn’t provide any
information related to the optimization landscape itself, thus making it impossible
to get objective conclusions in this regard. Also, it is of common knowledge that the
performance of these methods is often evaluated over well-known benchmark test
functions, developed to represent in someway important characteristics of real-world
problems such as search space scale and imbalance. However, there is no theoretical
evidence to prove if these test problems truly reflect on this important characteris-
tics, and as such, these performance evaluation frameworks are often criticized as
well [134, 135]. Finally, while the absence of theoretical foundations for proving the
prowess of metaheuristic algorithms is a major issue, it is also worth noting that the
absence of standardized frameworks for the implementation and comparison of this
kind algorithms is virtually absent as well [132]; this means that most of the time,
researchers are forced to implement algorithms coded by other researchers or, in the
worst case scenario, code the algorithm themselves. Whichever the case, the main
problem here is the fact that algorithms coded by different people tend to be some-
what different in terms of implementation and by extension they also tend tomanifest
different degrees of performance and efficiency (even in those algorithms meant to
represent the same optimization technique); with that being said, for nature-inspired
algorithms to be implemented and compared in fair terms, software platforms devised
to allow the implementation and evaluation of this methods, all in the same terms,
are also necessary.

2.4 Concluding Remarks 61

2.4 Concluding Remarks

Nature-inspired metaheuristics have become widely popularized due to their capa-
bilities for solving an ever-increasing amount of complex real-world problems. Their
flexibility for application is mainly related to several observable characteristics that
are present on each of thesemethod, such as search strategy, populationmanagement,
fitness function computations, memory usage, and so on. These individual traits has
a strong impact on each algorithm’s individual performance, hence giving them dif-
ferent capabilities in terms of exploration and exploitation of solutions; as a result,
there are methods which are better suited for solving some specific problems than
others, a fact that people looking to implement this methods must always have in
consideration. Thanks to their unique qualities, nature-inspired metaheuristics have
been successfully implemented to solve a plethora of optimization problems within
several areas of application, including engineering design, digital image processing,
and computer vision, networks and communications, power, and energy manage-
ment, data analysis and machine learning, robotics, medical diagnosis, and many
others. While there are still several research gaps that remain to be explored for this
area of science to reach full maturity, there is no doubt that nature-inspired meta-
heuristics have earned a rightful place among many researchers as powerful tools
for optimization. In fact, all of these remaining questions does nothing but serve
as inspiration for the development of newer and better techniques. In either case,
this rather young but interesting area of science is expected to keep growing in the
following years not only on the number of proposed approaches, but also in terms of
complexity and quality.

References

1. Neumann, F., Witt, C.: Bioinspired computation in combinatorial optimization—algorithms
and their computational complexity

2. Črepiňsek, M., Liu, S.-H., Mernik, M.: Exploration and exploitation in evolutionary algo-
rithms: a survey. ACM Comput. Surv. Art. 45(33), 1–33 (2013)

3. Avigad, J., Donnelly, K.: Formalizing O notation in Isabelle/HOL. In: International Joint
Conference on Automated Reasoning, pp. 357–371 (2004)

4. Yang, X.S., He, X.: Firefly algorithm: recent advances and applications. Int. J. Swarm Intell.
1(1), 1–14 (2013)

5. Ghazali, R., Deris, M.M., Nawi, N.M., Abawajy, J.H. (eds.) Recent Advances on Soft Com-
puting and Data Mining, vol. 700, no. Scdm (2018)

6. Yang, X.S., Deb, S., Hanne T., He, X.: Attraction and diffusion in nature-inspired optimization
algorithms. Neural Comput. Appl. 19 (2015)

7. Du, H., Wang, Z., Zhan, W.E.I.: Elitism and distance strategy for selection of evolutionary
algorithms. IEEE Access 6, 44531–44541 (2018)

8. Huang, T., Jia, X., Yuan, H., Jiang, J.: Niching community based differential evolution for
multimodal optimization problems (2017)

9. Piotrowski, A.P., Napiorkowski, J.J.: Some metaheuristics should be simplified. Inf. Sci. (Ny)
427, 32–62 (2018)

62 2 Metaheuristics and Swarm Methods: A Discussion …

10. Piotrowski, A.P., Napiorkowski, J.J.: Searching for structural bias in particle swarm optimiza-
tion and differential evolution algorithms. Swarm Intell. 10(4), 307–353 (2016)

11. Yang, X.-S.: Swarm-basedmetaheuristic algorithms and no-free-lunch theorems. IntechOpen
2, 64 (2018)

12. Sipper, M., Fu, W., Ahuja, K., Moore, J.H.: Investigating the parameter space of evolutionary
algorithms. 1–14 (2018)

13. Osman, I.H., Laporte, G.: Metaheuristics: a bibliography. Ann. Oper. Res. 63(5), 511–623
(1996)

14. Goudos, S.K.: Antenna design using binary differential evolution. IEEE Antennas Propag.
Mag. February (2017)

15. Keshtegar, B., Hao, P., Wang, Y., Li, Y.: Optimum design of aircraft panels based on adaptive
dynamic harmony search. Thin-Walled Struct. 118(May), 37–45 (2017)

16. Bekdaş, G., Nigdeli, S.M., Yang, X.S.: Sizing optimization of truss structures using flower
pollination algorithm. Appl. Soft Comput. J. 37, 322–331 (2015)

17. Khatibinia, M., Yazdani, H.: Accelerated multi-gravitational search algorithm for size opti-
mization of truss structures. Swarm Evol. Comput. December 2016, 0–1 (2017)

18. Shukla, R., Singh, D.: Selection of parameters for advanced machining processes using firefly
algorithm. Eng. Sci. Technol. Int. J. 20(1), 1–10 (2016)

19. Kaveh, A., Khayatazad, M.: A new meta-heuristic method: ray optimization. Comput. Struct.
112–113, 283–294 (2012)

20. Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimiza-
tion problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)

21. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)
22. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61

(2014)
23. Camarena, O., Cuevas, E., Pérez-cisneros, M., Fausto, F., González, A., Valdivia, A.: Ls-II :

an improved locust search algorithm for solving constrained optimization problems (2018)
24. Mesejo, P., Ibáñez, Ó., Cordón, Ó., Cagnoni, S.: A survey on image segmentation using

metaheuristic-based deformable models: state of the art and critical analysis. Appl. Soft Com-
put. J. 44, 1–29 (2016)

25. Khairuzzaman, A.K.M., Chaudhury, S.: Multilevel thresholding using grey wolf optimizer
for image segmentation. Expert Syst. Appl. 86, 64–76 (2017)

26. Khairuzzaman, A.K.M., Chadhury, S.: Moth-flame optimization algorithm based multilevel
thresholding for image segmentation. Int. J. Appl. Metaheuristic Comput. 8(4), 58–83 (2017)

27. Horng, M.-H., Jiang, T.-W.: Multilevel image thresholding selection using the artificial bee
colony algorithm. Artif. Intell. Comput. Intell. 6320, 318–325 (2010)

28. Ouadfel, S., Taleb-Ahmed, A.: Social spiders optimization and flower pollination algorithm
formultilevel image thresholding: a performance study. Expert Syst.Appl.55, 566–584 (2016)

29. El Aziz, M.A., Ewees, A.A., Hassanien, A.E.: Whale optimization algorithm and moth-flame
optimization for multilevel thresholding image segmentation. Expert Syst. Appl. 83, 242–256
(2017)

30. He, L., Huang, S.: Modified firefly algorithm based multilevel thresholding for color image
segmentation. Neurocomputing 240, 152–174 (2017)

31. Olague, G., Trujillo, L.: Interest point detection through multiobjective genetic programming.
Appl. Soft Comput. J. 12(8), 2566–2582 (2012)

32. Kiranyaz, S., Uhlmann, S., Ince, T., Gabbouj, M..: Perceptual dominant color extraction by
multidimensional particle swarm optimization. EURASIP J. Adv. Signal Process 2009 (2015)

33. Zou, Y., Chakrabarty, K.: Sensor deployment and target localization based on virtual forces.
In: Twenty-second Annual Joint Conference of the IEEE Computer and Communications
Societies, vol. 2, no. C, pp. 1293–1303 (2003)

34. Zhou, Y., Zhao, R., Luo, Q., Wen, C.: Sensor deployment scheme based on social spider
optimization algorithm for wireless sensor networks. Neural Process. Lett. (2017)

35. Deif, D.S., Member, S., Gadallah, Y., Member, S.: An ant colony optimization approach for
the deployment of reliable wireless sensor networks. IEEE Access 5, 10744–10756 (2017)

References 63

36. Alia, O.M., Al-Ajouri, A.: Maximizing wireless sensor network coverage with minimum cost
using harmony search algorithm. IEEE Sens. J. 17(3), 882–896 (2017)

37. Mann, P.S., Singh, S.: Improved metaheuristic based energy-efficient clustering protocol for
wireless sensor networks. Eng. Appl. Artif. Intell. 57(November 2016), 142–152 (2017)

38. Goyal, S., Patterh, M.S.: Performance of BAT algorithm on localization of wireless sensor
network. Wireless Pers. Commun. 6(3), 351–358 (2015)

39. Cao, S., Wang, J., Gu, X.: A wireless sensor network location algorithm based on firefly
algorithm. In: Asia Simulation Conference 2012, pp. 18–26 (2012)

40. Rahimi, S., Abdollahpouri, A., Moradi, P.: A multi-objective particle swarm optimization
algorithm for community detection in complex networks. Swarm Evol. Comput. 39(February
2017), 297–309 (2018)

41. Guerrero, M., Montoya, F.G., Baños, R., Alcayde, A., Gil, C.: Adaptive community detection
in complex networks using genetic algorithms. Neurocomputing 266, 101–113 (2017)

42. Bhardwaj, T., Sharma, T.K., Pandit, M.R.: Social engineering prevention by detecting mali-
cious URLs using artificial bee colony algorithm. In: 3rd International Conference on Soft
Computing for Problem Solving, Advances in Intelligent Systems, pp. 355–363 (2014)

43. Din, M., Pal, S.K., Muttoo, S.K., Jain, A.: Applying Cuckoo search for analysis of LFSR
based cryptosystem. Perspect. Sci. 8, 435–439 (2016)

44. Johny,D.C., Assistant, A.J.S.: Negative selection algorithm: a survey. Int. J. Sci. Eng. Technol.
Res. 6(4), 711–715 (2017)

45. Idris, I., et al.: A combined negative selection algorithm-particle swarm optimization for an
email spam detection system. Eng. Appl. Artif. Intell. 39, 33–44 (2015)

46. Mesbahi, T., Rizoug, N., Bartholomeus, P., Sadoun, R., Khenfri, F., Lemoigne, P.: Optimal
energy management for a Li-ion battery/supercapacitor hybrid energy storage system based
on particle swarm optimization incorporating Nelder-Mead simplex approach. IEEE Trans.
Intell. Veh. 2(2), 1–1 (2017)

47. You, I., Yim,K., Barolli, L.: A social spider optimization based home energy management
system. In: International Conference on Network-Based Information Systems, pp. 771–778
(2017)

48. Guha, D., Roy, P.K., Banerjee, S.: Load frequency control of interconnected power system
using grey wolf optimization. Swarm Evol. Comput. 27, 97–115 (2016)

49. Prasad, D., Mukherjee, A., Mukherjee, V.: Application of chaotic krill herd algorithm for
optimal power flow with direct current link placement problem. Chaos, Solitons Fractals 103,
90–100 (2017)

50. Van Sickel, J.H., Lee, K.Y., Heo, J.S.: Differential evolution and its applications to power
plant control. In: 14th International Conference on Intelligent Systems Applications to Power
Systems, no. 2, pp. 560–565 (2007)

51. Al-Betar,M.A., Awadallah,M.A., AbuDoush, I., Alsukhni, E., ALkhraisat, H.: A non-convex
economic dispatch problem with valve loading effect using a new modified $$\beta $$β-Hill
climbing local search algorithm. Arab. J. Sci. Eng. (2018)

52. Babu, T.S., Ram, J.P., Dragicevic, T., Miyatake, M., Blaabjerg, F., Rajasekar, N.: Particle
swarm optimization based solar PV array reconfiguration of the maximum power extraction
under partial shading conditions. IEEE Trans. Sustain. Energy 3029(c) (2017)

53. Oliva, D., Cuevas, E., Pajares, G.: Parameter identification of solar cells using artificial bee
colony optimization. Energy 72, 93–102 (2014)

54. Han, W., Wang, H., Chen, L.: Parameters identification for photovoltaic module based on an
improved artificial fish swarm algorithm. 2014 (2014)

55. Askarzadeh, A., Rezazadeh, A.: Parameter identification for solar cell models using harmony
search-based algorithms. Sol. Energy 86(11), 3241–3249 (2012)

56. Sarjila, K., Ravi, K., Edward, J.B., Kumar, K.S., Prasad, A.: Parameter extraction of solar
photovoltaic modules using gravitational search algorithm. 2016 (2016)

57. Ma, J., Ting, T.O., Man, K.L., Zhang, N., Guan, S.U., Wong, P.W.H.: Parameter estimation
of photovoltaic models via cuckoo search. J. Appl. Math. 2013, 10–12 (2013)

64 2 Metaheuristics and Swarm Methods: A Discussion …

58. Valdivia-Gonzalez, A., Zaldívar, D., Fausto, F., Camarena, O., Cuevas, E., Perez-Cisneros,
M.: A states of matter search-based approach for solving the problem of intelligent power
allocation in plug-in hybrid electric vehicles. Energies 10(1) (2017)

59. Prakash, D.B., Lakshminarayana, C.: Optimal siting of capacitors in radial distribution net-
work using whale optimization algorithm. Alexandria Eng. J. (2016)

60. Massan, S.U.R., Wagan, A.I., Shaikh, M.M., Abro, R.: Wind turbine micrositing by using the
firefly algorithm. Appl. Soft Comput. J. 27, 450–456 (2015)

61. Tolabi, H.B., Ayob, S.M.: New technique for global solar radiation forecasting by simulated
annealing and genetic algorithms using. Appl. Sol. Energy 50(3), 202–206 (2014)

62. Mafarja, M.M., Mirjalili, S.: Hybrid whale optimization algorithm with simulated annealing
for feature selection. Neurocomputing 260, 302–312 (2016)

63. Moayedikia, A., Ong, K.-L., Boo, Y.L., Yeoh, W.G., Jensen, R. Feature selection for high
dimensional imbalanced class data using harmony search. Eng. Appl. Artif. Intell. 57(May
2016), 38–49 (2017)

64. Wu, J., Qiu, T., Wang, L., Huang, H.: An Approach to feature selection based on ant colony
optimization and rough set, pp. 466–471 (2011)

65. Wang, K.J., Adrian, A.M., Chen, K.H., Wang, K.M.: An improved electromagnetism-like
mechanism algorithm and its application to the prediction of diabetes mellitus. J. Biomed.
Inform. 54, 220–229 (2015)

66. Alswaitti, M., Albughdadi, M., Isa, N.A.M.: Density-based particle swarm optimization algo-
rithm for data clustering. Expert Syst. Appl. 91, 170–186 (2018)

67. Abualigah, L.M., Khader, A.T., Hanandeh, E.S., Gandomi, A.H.: A novel hybridization strat-
egy for krill herd algorithm applied to clustering techniques. Appl. Soft Comput. J. 60,
423–435 (2017)

68. Abualigah, L.M., Khader, A.T., Al-Betar, M.A., Awadallah, M.A.: A krill herd algorithm for
efficient text documents clustering. In: 2016 IEEE symposium on computer applications and
industrial electronics, pp. 67–72 (2016)

69. Mohammad, L., Abualigah, Q., Hanandeh, E.S.: Applying genetic algorithms to information
retrieval using vector space model. Int. J. Comput. Sci. Eng. Appl. 5(1), 19–28 (2015)

70. Abualigah, L.M., Khader, A.T., Al-Betar, M.A., Alomari, O.A.: Text feature selection with a
robust weight scheme and dynamic dimension reduction to text document clustering. Expert
Syst. Appl. 84, 24–36 (2017)

71. Abualigah, L.M., Khader, A.T.: Unsupervised text feature selection technique based on hybrid
particle swarm optimization algorithm with genetic operators for the text clustering. J. Super-
comput. 73(11), 4773–4795 (2017)

72. Han,X.,Quan, L.,Xiong,X.,Almeter,M.,Xiang, J., Lan,Y.:Anovel data clustering algorithm
based onmodified gravitational search algorithm.Eng.Appl.Artif. Intell.61(September 2016)
1–7 (2017)

73. Shukla, U.P., Nanda, S.J.: Parallel social spider clustering algorithm for high dimensional
datasets. Eng. Appl. Artif. Intell. 56, 75–90 (2016)

74. Jadhav, A.N., Gomathi, N.: WGC: hybridization of exponential grey wolf optimizer with
whale optimization for data clustering. Alexandria Eng. J. (2016)

75. Sahlol, A.T., Ewees, A.A., Hemdan, A.M., Hassanien, A.E.: Training of feedforward neural
networks using sine-cosine algorithm to improve the prediction of liver enzymesonfish farmed
on nano-selenite. In: Computer Engineering Conference (ICENCO), 2016 12th International
Conference, pp. 35–40 (2009)

76. Rere, L.M.R., Fanany, M.I., Arymurthy, A.M.: Simulated annealing algorithm for deep learn-
ing. Procedia Comput. Sci. 72, 137–144 (2015)

77. Pereira, D.R., et al.: Social-spider optimization-based support vector machines applied for
energy theft detection. Comput. Electr. Eng. 49, 25–38 (2016)

78. Li, P., Duan, H.: Path planning of unmanned aerial vehicle based on improved gravitational
search algorithm. Sci. Chin Technol. Sci. 55(10), 2712–2719 (2012)

79. Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12),
1695–1724 (2013)

References 65

80. Oz, I., Topcuoglu, H.R., Ermis, M.: A meta-heuristic based three-dimensional path planning
environment for unmanned aerial vehicles. Simulation 89(8), 903–920 (2013)

81. Behnck, L.P., Doering, D., Pereira, C.E., Rettberg, A.: A modified simulated annealing algo-
rithm for SUAVs path planning. IFAC-PapersOnLine 28(10), 63–68 (2015)

82. Xie, C., Zheng, H.: Application of improved Cuckoo search algorithm to path planning
unmanned aerial vehicles. In: Intelligent Computing Theories and Application, 12th Inter-
national Conference, ICIC 2016, pp. 722–729 (2016)

83. Tsai, P., Nguyen, T., Dao, T.: Genetic and evolutionary robot path planning optimization based
on multiobjective grey wolf optimizer. In: Genetic and Evolutionary Computing Proceedings
of the Tenth International Conference on Genetic and Evolutionary Computing, pp. 166–173
(2016)

84. Contreras-Cruz, M.A., Lopez-Perez, J.J., Ayala-Ramirez, V.: Distributed path planning for
multi-robot teams based on Artificial Bee Colony. In: IEEE Congress on Evolutionary Com-
putation (CEC) 2017—Proceeding, pp. 541–548 (2017)

85. Silva, P., Santos, C.P., Matos, V., Costa, L.: Automatic generation of biped locomotion con-
trollers using genetic programming. Rob. Auton. Syst. 62(10), 1531–1548 (2014)

86. Eskandar, H., Sadollah, A., Bahreininejad, A., Hamdi, M.: Water cycle algorithm—a novel
metaheuristic optimization method for solving constrained engineering optimization prob-
lems. Comput. Struct. 110–111, 151–166 (2012)

87. Benkhoud, K., Bouallègue, S.: Dynamics modeling and advanced metaheuristics based LQG
controller design for a Quad Tilt Wing UAV. Int. J. Dyn. Control 6(2), 630–651 (2017)

88. Ibrahim, E., Birchell, S., Elfayoumy, S.: Automatic heart volume measurement from CMR
images using ant colony optimization with iterative salient isolated thresholding. J. Cardio-
vasc. Magn. Reson. 14(1), 1–2 (2012)

89. Ouaddah, A., Boughaci, D.: Harmony search algorithm for image reconstruction from pro-
jections. Appl. Soft Comput. J. 46, 924–935 (2016)

90. Chen, C.: Image segmentation for lung lesions using ant colony optimization classifier in
chest CT. In: Advances in Intelligent Information Hiding and Multimedia Signal Processing,
pp. 283–289 (2017)

91. Oliva, D., Hinojosa, S., Cuevas, E., Pajares, G., Avalos, O., Gálvez, J.: Cross entropy based
thresholding for magnetic resonance brain images using crow search algorithm. Expert Syst.
Appl. 79, 164–180 (2017)

92. Kora, P., Kalva, S.R.: Improved Bat algorithm for the detection of myocardial infarction.
Springerplus 4(1), 666 (2015)

93. Nagpal, S., Arora, S., Dey, S., Shreya.: Feature selection using gravitational search algorithm
for biomedical data. Procedia Comput. Sci. 115, 258–265 (2017)

94. Sahoo, A., Chandra, S.: Multi-objective grey wolf optimizer for improved cervix lesion clas-
sification. Appl. Soft Comput. J. 52, 64–80 (2017)

95. Alshamlan, H., Badr, G., Alohali, Y.: MRMR-ABC: a hybrid gene selection algorithm for
cancer classification usingmicroarray gene expression profiling.BiomedRes. Int.2015 (2015)

96. Alomari, O.A., Khader, A.T., Al Betar, M.A., Abualigah, L.M.: Gene selection for cancer
classification by combiningminimum redundancymaximum relevancy and bat-inspired algo-
rithm. Int. J. Data Min. Bioinform. 19(1), 32 (2017)

97. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol.
Comput. 1(1), 67–82 (1997)

98. Vocking, B., et al.: Algorithms Unplugged. Springer, Berlin Heidelberg (2011)
99. Pardalos, P.M., Du, D.-Z., Graham, R. L.: Handbook of Combinatorial Optimization. Springer

US (2013)
100. Laguna, M., Martí, R.: Scatter Search, Methodology and Implementations in C. Springer US

(2003)
101. Galinier, P., Hamiez, J.P., Hao, J.K., Porumbel, D.: Handbook of Optimization, vol. 38 (2013)
102. Sapra, D., Sharma, R., Agarwal, A.P.: Comparative study of metaheuristic algorithms using

Knapsack Problem. In: Proceedings of 7th International Conference on Cloud Computing,
Data Science and Engineering-Confluence, pp. 134–137 (2017)

66 2 Metaheuristics and Swarm Methods: A Discussion …

103. Feng, Y., Wang, G.G., Deb, S., Lu, M., Zhao, X.J.: Solving 0–1 knapsack problem by a novel
binary monarch butterfly optimization. Neural Comput. Appl. 28(7), 1619–1634 (2017)

104. Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations. Springer US
(2007)

105. Saji,Y., Riffi,M.E.:Anovel discrete bat algorithm for solving the travelling salesmanproblem.
Neural Comput. Appl. 27(7), 1853–1866 (2016)

106. Zhou, Y., Wang, R., Zhao, C., Luo, Q., Metwally, M.A.: Discrete greedy flower pollination
algorithm for spherical traveling salesman problem. Neural Comput. Appl. 1–16 (2017)

107. Pereira, F.B., Tavares, J.: Bio-inspired Algorithms for the Vehicle Routing Problem. Springer
US (2009)

108. Yurtkuran, A., Emel, E.: A new hybrid electromagnetism-like algorithm for capacitated vehi-
cle routing problems. Expert Syst. Appl. 37(4), 3427–3433 (2010)

109. Wei, L., Zhang, Z., Zhang, D., Leung, S.C.H.: A simulated annealing algorithm for the capac-
itated vehicle routing problem with two-dimensional loading constraints. Eur. J. Oper. Res.
1–17 (2017)

110. Marinaki, M., Marinakis, Y.: A glowworm swarm optimization algorithm for the vehicle
routing problem with stochastic demands. Expert Syst. Appl. 46(4), 145–163 (2016)

111. Potvin, J.Y.: A review of bio-inspired algorithms for vehicle routing. Stud. Comput. Intell.
161(July), 1–34 (2009)

112. Xu, H., Pu, P., Duan, F.: Dynamic vehicle routing problems with enhanced ant colony opti-
mization. Discret. Dyn. Nat. Soc. 2018, 1–13 (2018)

113. Zhang, S.Z., Lee, C.K.M.: An improved artificial bee colony algorithm for the capacitated
vehicle routing problem. In: Proceedings of IEEE International Conference on Systems, Man,
and Cybernetics—SMC 2015, pp. 2124–2128 (2016)

114. Xiang, T.: Vehicle routing problem based on particle swarm optimization algorithmwith gauss
mutation. Am. J. Softw. Eng. Appl. 5(1), 1 (2016)

115. Jourdan, L., Basseur, M., Talbi, E.G.: Hybridizing exact methods and metaheuristics: a tax-
onomy. Eur. J. Oper. Res. 199(3), 620–629 (2009)

116. Puchinger, J.: Raidl, G.R.: Combining metaheuristics and exact algorithms in combinatorial
optimization: a survey and classification, pp. 1–12 (2006)

117. Plateau, A., Tachat, D., Tolla, P.: A hybrid search combining interior point methods and
metaheuristics for 0–1 programming. Int. Trans. Oper. Res. 9(6), 731–746 (2002)

118. Yan, L., Yujuan, Q., Zujian, W., Wang, L., Yan, J.: A hybrid method combining genetic algo-
rithm andHooke-Jeeves method for 4PLRP. In: International Conference on Communications
in China-Workshops (CIC/ICCC) 2014, vol. 10, no. 4, pp. 36–40 (2015)

119. Portmann, M.C., Vignier, A., Dardilhac, D., Dezalay, D.: Branch and bound crossed with GA
to solve hybrid flowshops. Eur. J. Oper. Res. 107(2), 389–400 (1998)

120. Basseur, M., Lemesre, J., Dhaenens, C., Talbi, E.-G.: Cooperation between branch and bound
and evolutionary approaches to solve a bi-objective flow shop problem, vol. 2632 (2004)

121. Gomes, A.M., Oliveira, J.F.: Solving Irregular Strip Packing problems by hybridising simu-
lated annealing and linear programming. Eur. J. Oper. Res. 171(3), 811–829 (2006)

122. Zelinka, I.: A survey on evolutionary algorithms dynamics and its complexity—mutual rela-
tions, past, present and future. Swarm Evol. Comput. 25, 2–14 (2015)

123. Valdivia-Gonzalez, A., Zaldívar, D., Fausto, F., Camarena, O., Cuevas, E., Perez-Cisneros,
M.: A States of matter search-based approach for solving the problem of intelligent power
allocation in plug-in hybrid electric vehicles. Energies 10(1), 92 (2017)

124. Cuevas, E., González, A., Fausto, F., Zaldívar, D., Cisneros, M.P.: An optimisation algorithm
based on the behaviour of locust swarms. Int. J. Bio-Inspired Comput. 7(6), 402 (2015)

125. González, A., Cuevas, E., Fausto, F., Valdivia, A., Rojas, R.: A template matching approach
based on the behavior of swarms of locust. Appl. Intell. 47(4) (2017)

126. Cuevas, E., González, A., Fausto, F., Zaldívar, D., Pérez-Cisneros, M.: Multithreshold seg-
mentation by using an algorithm based on the behavior of locust swarms. Math. Probl. Eng.
2015, 26 (2015)

References 67

127. Cuevas, E., Gálvez, J., Avalos, O.: Parameter estimation for chaotic fractional systems by
using the locust search algorithm. Comput. Sist. 21(2), 369–380 (2017)

128. Hinojosa, S., Oliva, D., Cuevas, E., Pajares, G., Avalos, O., Gálvez, J.: Improving multi-
criterion optimization with chaos: a novel multi-objective chaotic crow search algorithm.
Neural Comput. Appl. 29(8), 319–335 (2018)

129. Regis, R.G.: Particle swarm with radial basis function surrogates for expensive black-box
optimization. J. Comput. Sci. 5(1), 1–12 (2013)

130. Wild, S.M., Regis, R.G., Shoemaker, C.A.: ORBIT: optimization by radial basis function
interpolation in trust-regions. SIAM J. Sci. Comput. 30(6), 3197–3219 (2008)

131. Liu, B., Koziel, S., Zhang, Q.: A multi-fidelity surrogate-model-assisted evolutionary algo-
rithm for computationally expensive optimization problems. J. Comput. Sci. 12, 28–37 (2016)

132. Boussaïd, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. (Ny)
237, 82–117 (2013)

133. Cheng, S., Shi, Y., Qin, Q., Ting, T.O., Bai, R.:Maintaining population diversity in brain storm
optimization algorithm. In: Proceedings—2014 IEEE Congress Evolutionary Computation
(CEC), pp. 3230–3237 (2014)

134. Yang, X.S.: Metaheuristic optimization: algorithm analysis and open problems. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 6630, pp. 21–32. LNCS (2011)

135. Yang, X.S.: Nature-inspired algorithms: success and challenges. Comput. Methods Appl. Sci.
38, 129–143 (2015)

Chapter 3
The Selfish Herd Optimizer

Abstract In this chapter, a swarm optimization algorithm called Selfish Herd Opti-
mizer (SHO) is presented. The SHO algorithm’s design is based on the emulation
of the widely-observed selfish herd behavior, manifested by individuals living in
aggregations while exposed to some kind of predation risk. An interesting trait that
distinguish the SHO algorithm from other similar approaches is the division of the
entire population of search agents in two opposite groups: the members of a selfish
herd (the prey), and a pack of starving predators. These two types of search agents
interact with each other in ways that allows to emulate the intriguing interaction
between prey and predators that arise from the unique behaviors manifested by the
members of the so-called selfish herds. This chapter also presents a series of exper-
iments done with the purpose of comparing the performance of the SHO algorithm
against other similar swarm optimization approaches, showing remarkable results.

3.1 Introduction

The intelligent collective behavior of many species of animals and insects, have
attracted the attention of researches for many years. Many animal species such as
birds, ants, and fishes, which live in social animal groups such as flocks, colonies and
schools respectively, exhibit particular aggregative conducts widely known as swarm
behavior. Such collective phenomenon has been studied by entomologist in order to
model the behavior of the many biological swarms. Computer science researchers
have studied and adapted thesemodels as frameworks for solving complex real-world
problems, giving birth to a branch of artificial intelligence commonly addressed as
swarm intelligence. As a result of this, many unique swarm optimization algorithms,
which mimic the collective behavior of groups of animals or insects, have been
developed to solve a wide variety of optimization problems. Some of these methods
include well know state-of-the-art techniques such as Particle Swarm Optimization
(PSO), which emulates the social behavior of bird flocking and fish schooling [1],
Artificial Bee Colony (ABC), which is based on the cooperative behavior of bee
colonies [2], Firefly Algorithm (FA) which mimics the mating behavior of firefly
insects [3], and Cuckoo Search (CS), which draws inspiration from the cuckoo bird

© Springer Nature Switzerland AG 2020
E. Cuevas et al., New Advancements in Swarm Algorithms: Operators
and Applications, Intelligent Systems Reference Library 160,
https://doi.org/10.1007/978-3-030-16339-6_3

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16339-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-16339-6_3

70 3 The Selfish Herd Optimizer

lifestyle [4]. Although most of these methods are widely used to solving complex
optimization problems, they are known to suffer from some serious flaws, such as
premature convergence and the difficulty to overcome local optima [5, 6], which pre-
vent them from finding optimal solutions. The cause of such issues is usually related
to the operators used to modify each individual’s position. In the case of PSO, for
example, the position of each search agent for the next iteration is updated yielding
an attraction towards the best particle position seen so-far, while in the case of ABC,
positions are updated with respect of some other randomly chosen individuals. As
the algorithm evolves, those behaviors allow the entire population to, either rapidly
concentrates around the current best particle or to diverge without control, which in
return favors the premature convergence or a misbalance between exploration and
exploitation respectively [7, 8]. In addition, most state of the art swarm algorithms
only model individual entities that perform virtually the same behavior. Under such
circumstances, the possibility of adding new and selective operators based on indi-
vidual unique characteristics (such as task-responsibility, strength, size, sex, etc.)
that could improve several important algorithm characteristics such as population
diversity and searching capabilities.

While it is true that a wide range of organisms living in aggregations show dis-
tinctive cooperative behaviors, this is not true for every single animal species living
in social units. In contrast to the popular hypothesis that social behavior is based
on mutual benefits for the entire population, the widely accepted selfish herd the-
ory proposed by Hamilton in 1971 illustrates that actions among individuals within
aggregations (referred as herds) exhibit an unusual degree of selfishness, particularly
when members of such aggregations are endangered by the presence of predators
[9]. In fact, the selfish herd theory establishes that decisions made by any member
of such herds do not only benefit the individual itself but also, in exchange, there are
usually some negative repercussions for other members on said aggregation.

In this chapter, a novel swarm optimization algorithm called Selfish Herd Opti-
mizer (SHO), designed for solving optimization problems, is presented. Such algo-
rithm is inspired in the behaviors described on Hamilton’s selfish herd theory. The
algorithm considers two different kinds of search agents: predators and prey. Each of
these agents movements are conducted by a set of unique rules and operators based
the observed natural behavior of individuals on a selfish herd while they are endan-
gered by a pack of hungry predators. The rest of this chapter is organized as follows:
in Sect. 3.2, we address the selfish herd theory, as proposed by [9]; in Sect. 3.3, the
main characteristics of the SHO algorithm are addressed; in Sect. 3.4, we summa-
rize all steps regarding to the implementation of the SHO algorithm; in Sect. 3.5, a
discussion about SHO and its most distinctive traits in comparison to other similar
methods is given; in Sect. 3.6, a series of comparative experiments competing to
SHO and other similar approaches are presented; finally, in Sect. 3.7, conclusions
are drawn.

3.2 The Selfish Herd Theory 71

3.2 The Selfish Herd Theory

The selfish herd theory, as proposed byHamilton in [9], is an antithesis to the common
view of gregarious behavior as a way of seeking mutual benefits among members
of a population or group of organism. In his paper, Hamilton proposed that gregari-
ous behavior may be considered a form of cover-seeking, in which each individual
attempts to reduce their chance of being caught by a predator. It is also stated that,
during a predator attack, individuals within a population will attempt to reduce their
predation risk by putting other conspecifics between themselves and the predator(s).
The basic principle governing the selfish herd theory is that, in aggregations, pre-
dation risk increases among individuals in the periphery and decreases toward the
center of such aggregation. It is also proposed that more dominant (stronger) animals
within the population are easily able to obtain low-risk central positions among the
aggregation, whereas subordinate (weaker) animals are usually forced into higher
risk positions.

Hamilton illustrated his theory by modeling a circular lily pond in which a pop-
ulation of frogs (a group of prey) and a water snake (a predator) are sheltered. Upon
appearance of the water snake, it is supposed that the frogs will scatter to the rim
of the pond and that the water snake will most certainly attack the one nearest to it.
In this model Hamilton suggests that the predation risk of each frog is related not
only to how close they are from the attacking predator, but also with the relative
position of all other frogs on the pond. Under these considerations, Hamilton pro-
poses that each frog has a better chance of not being closest to, and thus, vulnerable
to attack by the water snake, if other frogs are between them. As a result, modeled
frogs attempt to reduce their predation risk by jumping to smaller gaps between other
neighboring frogs in an attempt to use them as a “shield”. Hamilton also went on to
model two-dimensional predation by considering lions as examples.He proposed that
movements whichwould lower an individual’s domain of danger are largely based on
the theory of marginal predation, which states that predators attack the closest prey
(which are typically those at the periphery of an aggregation). From this, Hamilton
suggested that, in the face of predation, there should be a strong movement of indi-
viduals toward the center of an aggregation. Research has also revealed that there
exist several factors which may influence chosen movement rules, such as initial
spatial position, population density, the predator’s attack strategy, and vigilance. In
particular, it has been observed that individuals holding initially central positions are
more likely to be successful at remaining in the center of the aggregation, increasing
their chances of surviving a predator attack [10].

The selfish herd theory may also be applied to the situation of group escape, in
which, the safest position, relative to predation risk, is not the central position but
rather that in the front of the herd. In this sense,members at the backof the aggregation
have the greatest domain of danger, and thus, suffer the highest predation risk. As
the most likely targets for predation, these slower members must choose whether to
stay with the herd, or to desert it, which may in turn entice the pursuit of the predator
to such vulnerable individuals. This strategy, formally known as herd desertion, is

72 3 The Selfish Herd Optimizer

mainly used by slower individuals among the aggregation in an attempt to escape
from the sight of predators, although this in turn may signal their vulnerability and
thus promote the predators to pursuit such individual [11].

By considering this, it could be assumed that the escape route chosen by members
in front of the herd may be greatly affected by the actions of the slowest members.
For example, if the herd’s leader chooses an escape route that promotes the dispersal
of the slowest members of the group it may endanger itself due to the dissipations
of its protective buffer. Also, it is known that the leader’s chosen escape strategy is
often affected by terrain particularities [11].

Many examples of selfish herd behavior have been witnessed in nature. One of the
most extensively studied examples is that of aggregations of fiddler crab, in which,
dispersed groups are more likely to form an aggregate when subjected to a danger
while at the same time individual members attempt to move toward the center of the
forming group [12]. Other selfish herd behavior examples include that of mammals
living in open plains, such as wildebeest and zebras (which aggregations are likely
associated with predation risk reduction), many species of fishes (such as minnows,
which school to reduce their individual predation risk) [13], the Adelie Penguins
(which frequently wait to jump into the water until they have formed an aggregate to
form protective buffers against seal predation) [14], and the Forest Tent Caterpillar
(famous for foraging in groups as a strategy to reduce predation risk) [15].

3.3 The Selfish Herd Optimizer Algorithm

The selfish herd theory establishes that, in the face of predation, each individual
within a herd of possible prey pursues to increases their chance of survival by aggre-
gating with other conspecifics in ways which could potentially increase their chances
of surviving a predator attack without regard of how such behavior affects other
individuals’ chances of survival [9]. Based on these observations, Fausto et al. devel-
oped the swarm optimization algorithm known as the Selfish Herd Optimizer (SHO)
[16]. This optimization approach assumes that the entire search space is an open
plain where groups of animals interact. This algorithm models two different types of
search agents: a herd of prey living in aggregation (also referred as a selfish herd) and
a pack of predators which hunts for the prey within said aggregation. Both kinds of
search agents are individually conducted by a set of different evolutionary operators
based on the unique behavioral aspects observed in such prey-predator relationship.

3.3.1 Initializing the Population

Similar to other evolutionary algorithms, SHO is an iterative process which first step
is to randomly initialize a population of animals (prey and predators). The algorithm
starts by initializing a set A of N individual positions ai (A = {a1, a2, . . . , aN }),

3.3 The Selfish Herd Optimizer Algorithm 73

with N representing the total population size. Each of such positions is represented
as an n-dimensional vector ai = [

ai,1, ai,2, . . . , ai,n
]
, which further represents a

possible solution for a given optimization problem. These positions are initialized by
considering a random uniform distribution between a pair of pre-specified parameter
bounds as given as follows:

a0i, j = x lowj + rand(0, 1) ·
(
xhighj − x lowj

)

i = 1, 2, . . . , N ; j = 1, 2, . . . , n
(3.1)

where x lowj and xhighj represent the decision space’s lower and upper bounds, respec-
tively. Furthermore, i and j denote the individual and parameter indexes correspond-
ing to each animal, respectively. Also, rand(0, 1) stand for randomly generated num-
ber, drawn from within the interval [0, 1].

The selfish herd theory establishes a series of distinctive behaviors, resulting
from the interaction between a group of prey and predators. With this in mind,
SHO employs two different types of search agents: a group of prey (known as a
herd while in an aggregation) and a group of predators (collectively known as a
pack). With that being said, the entire population of animals A is divided in two
sub-groups: a groupH = {

h1,h2, . . . ,hNh

}
formed by all individuals which belong

to the herd of prey (with Nh denoting the number of individuals of H) and a group
P = {

p1,p2, . . . ,pNp

}
represented by the members of the pack of predators (with

Np denoting the number of individuals of P), and such that A = H ∪ P (A =
{a1 = h1, a2 = h2, . . . , aNh = hNh , aNh+1 = p1, aNh+2 = p2, . . . , aN = pNp }). In
nature, the number of animals within a herd of prey usually outnumbers those within
most packs of predators. In SHO, the number of prey (herd’s size) Nh is randomly
selected within a range of between 70 and 90% of the total population N , while the
remainder individuals are labeled as predators. As such, Nh and Np are calculated
by the following equations:

Nh = floor(N · rand(0.7, 0.9)) (3.2)

Np = N − Nh (3.3)

where rand(0.7, 0.9) denotes a random number from within the interval [0.7, 0.9],
while floor(·) maps a real number to an integer number. Furthermore, the number of
predators (pack’s size) Np is simply computed as the complement between the total
population N and the herd’s size Nh .

3.3.2 Survival Value Assignation

In the biological metaphor of a common prey-predator interaction, each individual
within a herd of prey or a pack of predator, depending on their survival capabilities,

74 3 The Selfish Herd Optimizer

has a chance of surviving an attack or succeed on killing an animal, respectively. In
the proposed approach, each animal ai (irrespective of it being a prey or a predator)
is assigned with a survival value SVai which represents its survival aptitude (solution
quality) relative to its current positionwithin the solution space. In SHO, it is assumes
that each animal’s survival value SVai is related to both the safest and the riskiest
positions currently known by all members of the population, which in the context of
a global optimization problem are represented by the current best and worst solutions
found so far by the optimization process. As such, the survival value assigned to of
each individual animal is calculated as follows:

SVai = f (ai) − fbest
fbest − fworst

(3.4)

where f (ai) denotes the fitness value corresponding to the evaluation of the objective
function f (·) with regard to the individual’s position ai , while fbest and fworst stand
for the best andworst fitness values found so far by the SHO algorithm’s evolutionary
process which, considering a maximization problem, are defined as follows:

fbest = max
j∈{0,1,...,k}

((
max

i∈{1,2,...,N }(f (ai))
)

j

)

(3.5)

fworst = min
j∈{0,1,...,k}

((
min

i∈{1,2,...,N }(f (ai))
)

j

)

(3.6)

with k denoting the current iteration of SHO’s evolutionary process.

3.3.3 Structure of a Selfish Herd

In most selfish herds, a dominant member, known as the herd’s leader, may be iden-
tified. Such individual distinguishes itself from the rest of the herd as the individual
with the greatest survival aptitudes. During a predator attack, the herd’s leader per-
forms an important task in choosing the escape route or strategy to be employed by
all other members of the herd, and as such, its leadership behavior heavily influences
the movement patterns of the entire aggregation [11]. On the other hand, it is known
that animals among an aggregation of prey will try to reduce their predation risk by
putting other conspecifics between them and the attacking predators [9]. Intuitively,
since a given individual’s chance of surviving a predator attack is related to its rel-
ative position among the herd aggregation, such selfish behavior is also necessarily
related to the herd’s current internal structure and movement patterns.

By considering this, SHO models several distinctive decision making behaviors
by first dividing the herd’s population with regard to three distinctive roles: 1. a
herd leader tasked to guide the movement of the prey aggregation; 2. a group of herd
followerswhich guide theirmoves by considering the positions and survival aptitudes

3.3 The Selfish Herd Optimizer Algorithm 75

of other herd members; and 3. a group of herd deserters which move independently
of other prey individuals.

3.3.3.1 Leader of a Selfish Herd

The leader of a selfish herd is the strongest, wisest and most capable individual for
survival among themembers of the herd, and as such has an important role on guiding
the movement of all of its conspecifics. The herd’s leader is usually the individual
whose position inside the herd aggregation promotes it to have the highest chances
of surviving a predator attack [11]. Analogous to this, at each iteration k, the SHO
algorithm designates a single individual hi among the herd’s population (H) as the
leader of the selfish herd. Such individual (designated as hL) is chosen by considering
the current survival values possessed by each individual within the herd’s aggregation
as follows:

hk
L =

(
hk
i ∈ Hk |SVhki

= max
j∈{1,2,...,Nh}

(
SVhkj

))
(3.7)

In other words, the prey individual hk
i (with i ∈ [1, 2, . . . , Nh]) possessing highest

survival value among all other members ofHk (with k denoting the current iteration)
is assigned as the herd’s leader (see Fig. 3.1).

3.3.3.2 Nearest Best Neighbors Within a Selfish Herd

As previously stated, individuals within a selfish herd aims to increase their chances
of surviving a predator attack by putting other members of the herd between them

Fig. 3.1 The individual hi
holding the highest survival
value from among all other
members within the herd’s
population is designated as
the herd’s leader (hL)

76 3 The Selfish Herd Optimizer

Fig. 3.2 The nearest best
neighbor hci to any given
prey individual hi (in this
case illustrated as h5) is the
herd member h j (different to
the herd’s leader hL) which
is both closer to hi and that
possess a higher survival
value than hi (represented as
h2 in this case)

and the attacking predators [9]. In this sense, individuals within a herd of prey move
toward closer conspecifics among the aggregation, which they could potentially use
to protect themselves from the attacking predators. Intuitively, in order to motivate
such movement pattern, such closer individuals must first possess a relatively safer
position respective to the predator’s location. In this context, at each iteration k, SHO
considers that the nearest best neighbor to any prey individual within the selfish herd
is that which possess two important traits: 1. it is the nearest herd member to hi (other
than the herd’s leader hL , as illustrated in Sect. 3.3.3.1); and 2. it has better survival
aptitudes than said individual hi (see Fig. 3.2). By considering this, the nearest best
neighbor of hi may be defined as follows:

hk
ci =

(
hk
j ∈ Hk,hk

j �= [
hk
i ,h

k
L

]|SVhkj
> SVhki

, ri, j = min
j∈{1,2,...,Nh}

(∥∥hk
i − hk

j

∥∥))

(3.8)

where ri, j denotes the Euclidean distance between the indexed herd members i and
j (hk

i and hk
k respectively), and with k denoting the current iteration number.

3.3.3.3 Herd Followers and Herd Deserters

Perhaps the most interesting behaviors observed in selfish herds is the decision taken
by its members for either following the group’s movement or to desert the aggrega-
tion and move independently of it [11]. The decision making criteria behind these
behaviors is strongly related to the degree of safety experimented by each individ-
ual among the herd during a predators attack, which in turn is also related to each
individual’s relative position among the herd. By considering this, the SHO algo-
rithm models a set of unique individual decision making operators which consider
the individual survival capabilities of each member of the herd. Such behaviors are
modeled by further dividing the herd’s populationH in two subgroups: 1. a group of
herd followers (HF), formed by those members who opt to follow the aggregation

3.3 The Selfish Herd Optimizer Algorithm 77

and 2. a group of herd deserters (HD), which comprises all prey individuals which
decided to move independently of other members of the herd. In SHO, these two
groups are defined for each iteration k as follows:

Hk
F =

{
hk
i �= hk

L |SVhki
≥ rand(0, 1)

}
(3.9)

Hk
D =

{
hk
i �= hk

L |SVhki
< rand(0, 1)

}
(3.10)

where Hk
F denotes the groups of herd followers whereas Hk

D stands for the group of
herd deserters. Furthermore, rand(0, 1) denotes a random number from the interval
[0, 1].

In other words, each individual hi on a selfish herd (other than the herd’s leader
hL as illustrated in Sect. 3.3.3.1) is grouped in either HF or HD depending on its
current survival value SVhi . In this sense, it is clear that for any given prey individual
hi �= hL , having a higher survival value SVhi yields to higher chances of following
the herd, whereas lower values increases the chance of deserting such aggregation
(see Fig. 3.3).

Furthermore, prey individuals within HF may be further divided into a set of
dominant herdmembers (Hd) and a set of subordinate herdmembers (Hs) depending
on their current survival capabilities. With this in mind, SHO divides the members
of HF as either dominant or subordinate members as follows:

Hk
d =

{
hk
i ∈ Hk

F |SVhki
≥ SVHk

μ

}
(3.11)

Hk
s =

{
hk
i ∈ Hk

F |SVhki
< SVHk

μ

}
(3.12)

where SVHμ
represents themean survival value of the herd’s aggregationH as defined

as follows:

Fig. 3.3 Designation of herd
followers (HF) and herd
deserting members (HD) for
a given value rand(0, 1)

78 3 The Selfish Herd Optimizer

SVHk
μ

=
∑Nh

i=1 SVhki

Nh
(3.13)

In other words, individuals hi belonging to HF are classified within Hd (dom-
inant members) if their survival value SVhi is equal to or greater than the mean
survival value SVHμ

of the entire herd aggregation, otherwise, they grouped within
Hs (subordinated members). As stated in [11], in most cases, dominant members
(individuals with higher survival aptitudes) are more frequently able to secure safer
position within the herd aggregation while subordinate members (individuals with
lower survival aptitudes) are usually forced to assume higher risk positions. This fact
is specially considered in SHO to model several different movement rules, which
depend on the survival value of each member currently following the herd aggrega-
tion.

3.3.3.4 Relative Safer and Riskier Positions

In most cases, the predation risk of individuals within a selfish herd increases among
individuals in the herd’s periphery (where there are fewer animals to use as protection)
and decreases toward the center of such aggregation. With this in mind, the SHO
algorithm considers the existence of a relatively safer central position within the herd
of prey. In this approach such location is given by the herd’s population center of
mass, as defined as follows:

hk
M =

∑Nh
i=1 SVhki

· hk
i

∑Nh
j=1 SVhkj

(3.14)

While the previous is useful to illustrate the location of a potentially safe location
within a selfish herd, such assumption does not consider the presence of predators
as the main source of danger to any individual within such aggregation. In a similar
manner to Eq. (3.14), it is possible to define a position of relatively higher risk
by considering both, the current locations and survival aptitudes of the attacking
predators as follows:

pkM =
∑Np

i=1 SVpki
· pki

∑Np

j=1 SVpkj

(3.15)

Furthermore, since both, hM and pM represent potential solutions within the solu-
tion space of a given optimization problem, a corresponding survival value SVhcm and
SVpcm may be assigned to each of such positions by applying Eq. (3.4) (see Fig. 3.4).

3.3 The Selfish Herd Optimizer Algorithm 79

Fig. 3.4 Relatively safer and
riskier positions represented
by the herd’s center of mass
hM and the predator’s center
of mass pM respectively

3.3.4 Herd Movement Operators

In order to model the movement of each individual within a selfish herd, SHO con-
siders two different sets of evolutionary operators: 1. a set of herd’s leader movement
operators, and 2. a set of herd’s following and desertion movement operators. Such
movement operators consider important characteristics shared by all members of a
selfish herd, such as individual survival values and the distance to other members of
the aggregation, in order to accurately model the movement patterns manifested by
such prey aggregations.

3.3.4.1 Selfish Attraction and Repulsion

When endangered by the presence of one ofmore predators, individuals within a self-
ish herd pursue to improve their chances of surviving a predator attack bymoving in a
way which could allow them to put other conspecifics between them and the attack-
ing predators. This behavior could be effectively modeled as an attraction toward
other individuals among the herd aggregation. Analogous to this, SHO assumes that
each individual within the herd’s populationH (as illustrated in Sect. 3.3.3.1) is able
to manifest a certain degree of attraction toward other members within such aggrega-
tion. This attraction depends on both, the relative distance toward a given individual
and the current survival value possessed by said individual. By considering this, we
may define an attraction factor experienced by a given herd member hi toward any
different member h j as follows:

ψhi ,h j = SVh j · e−‖hi−h j‖2

(3.16)

where SVh j denotes for the survival value related to the herd member h j , whereas∥∥hi − h j

∥∥ stands for the Euclidian distance between the prey individuals hi and h j .
The factor ψhi ,h j in Eq. (3.16) is known as selfish attraction. While it is possi-

ble to compute such value for virtually any pair of prey individuals, four specific
relationships are of particular importance within the proposed approach:

80 3 The Selfish Herd Optimizer

1. The selfish attraction ϕhi ,hL , which represents the attraction experimented by hi
toward the current herd’s leader hL (as illustrated in Sect. 3.3.3.1). This value
represents the influence exerted by the herd’s leader which is responsible of
guiding the movements of all other members following the herd aggregation.
Such attraction value is defined as follows:

ψhi ,hL = SVhL · e−‖hi−hL‖2 (3.17)

2. The selfish attraction ϕhi ,hci
representing the attraction factor experimented by hi

toward its nearest best neighborhci (as illustrated in Sect. 3.3.3.2). Such attraction
value is given as:

ψhi ,hci
= SVhci

· e−‖hi−hci ‖2

(3.18)

3. The selfish attraction ϕhi ,hcm denoting the attraction experienced by hi toward
the herd’s center of mass hM (as illustrated in Sect. 3.3.3.4). Such attraction is
expressed as:

ψhi ,hM = SVhM · e−‖hi−hM‖2 (3.19)

Furthermore, while the previous allows to represent the attraction experimented
by hi toward other herd members, it is also useful to define an attraction with respect
to the safest position currently known by the whole aggregation as follows:

ψhi ,xbest = e−‖hi−xbest‖2 (3.20)

where xbest stands for the best position found so far by during SHO’s evolutionary
process, which satisfies that:

f (xbest) = fbest (3.21)

with f (xbest) denoting the fitness value corresponding to the evaluation of the objec-
tive function f (·) with regard to xbest and where fbest stands for the best fitness value
found so far, as given by Eq. (3.5).

Furthermore, while Eq. (3.16) represents an attraction factor toward other indi-
viduals within the selfish herd, it is important to remember that predators represent
the main source of danger, and as such the movement patterns of individuals within
such aggregation are also subject of being influenced by their presence. By consid-
ering this, SHO also assumes that individuals within the selfish herd are also able
to experience some degree of repulsion toward the pack of attacking predators. To
model such behavior, a repulsion factor may be defined as follows:

ϕhi ,pM = −SVpM · e−‖hi−pM‖2 (3.22)

3.3 The Selfish Herd Optimizer Algorithm 81

where SVpM denotes the survival value related to the predators’ center of mass pM

as given by Eq. (3.15).
In SHO, the value ϕhi ,pM is known as selfish repulsion. Moreover, while it is

possible to define a repulsion value between any given pair of prey and predator
individuals, SHO only considers the repulsion experimented toward the predators’
mass pM under the assumption that any prey individual will always try to get as far
as possible from all attacking predators.

3.3.4.2 Herd’s Leader Movement Operators

Predation risk is themainmotivation behind the individual decision-making behavior
manifested by the members of a selfish herd. In this sense, while the leader of the
herd is known to hold the safest position within the herd aggregation (and thus the
highest chances of surviving a predator attack) this does not necessarily means that
such individual is completely safe from the predators.With that being said, the leader
of the selfish herd is able to manifest several different types of leadership behaviors
depending on its current survival value. In SHO, the herd’s leader position for the
next iteration is updated as follows:

hk+1
L =

{
hk
L + ck if SVhkL

= 1
hk
L + sk if SVhkL

< 1
(3.23)

where k denoting the current iteration number.
The movement rule chosen by the herd’s leader assuming that SVk

hL
= 1 is

called seemingly cooperative leadership. Such movement is performed under the
assumption that the herd’s leader hk

L is located on either the current best location
know so far by the selfish herd or an equally good position, thus granting it the
highest possible survival value. In this sense, it can be shown from Eq. (3.4) that:

if f
(
hk
L

) = fbest → SVk
hL

= 1 (3.24)

It is important to recall that the movement of all other members within a selfish
herd is strongly influenced by the decisions taken by the herd’s leader. In this sense,
a seemingly cooperative leadership aims to guide the movement of all other herd
members in a way that could be potentially beneficial to the whole aggregation. In
general, this is achieved by moving away of the pack of attacking predators (see
Fig. 3.5). With that being said, the movement vector ck could be expressed as:

ck = 2 · α · ϕk
hL ,pM

· (
pkM − hk

L

)
(3.25)

where ϕk
hL ,pM

, as illustrated by Eq. (3.22), denotes the selfish repulsion experimented
by the current herd’s leader hk

L toward the predators’ center of mass pkM as given by
Eq. (3.15), whereas α stand for random number within the interval [0, 1].

82 3 The Selfish Herd Optimizer

Fig. 3.5 Seemingly
cooperative movement rule.
Under such circumstance the
herd’s leader hL (represented
by h1) “altruistically” guides
the herd aggregation away
from the pack of attacking
predators (represented by the
predator’s mass pM)

Fig. 3.6 Openly selfish
movement rule. In such a
case, the herd’s leader hL
(shown as h1 in this case)
aims to improve its own
survival value by moving
toward the currently known
safest location (represented
as xbest)

On the other hand, if SVhkL
< 1, the herd’s leader chooses the movement rule

known as openly selfish leadership. In the biological metaphor of the selfish herd
behavior, each individual belonging to a selfish herd (including the herd’s leader) will
try at all cost to reduce their predation risk by moving to relatively safer positions. In
an effort to improve its current survival value, the leader of the herd will opt to move
toward the safest position currently known by the herd’s aggregation (see Fig. 3.6).
By considering this, the movement vector sk may be defined as:

sk = 2 · α · ψk
hL ,xbest ·

(
xkbest − hk

L

)
(3.26)

where ψk
hL ,xbest , as in Eq. (3.20), denotes the selfish attraction experienced by the

herd’s leader hk
L toward the global best position xkbest found so far during SHO’s

evolutionary process, whereas α stand for random number from within the interval
[0, 1].

3.3 The Selfish Herd Optimizer Algorithm 83

From what was previously illustrated, the herd’s leader selection criteria for a
given movement rule may be summarized as follows: for any given iteration, if the
leader of the herd hL is the best individual among the members of the entire herd,
the seemingly cooperative leadership movement rule is chosen; otherwise the openly
selfish leadership movement rule is applied.

3.3.4.3 Herd’s Following and Desertion Movement Operators

As illustrated in Sect. 3.3.3, depending on the current survival values of each indi-
vidual within the selfish herd, SHO classifies the members of such aggregation in
two distinctive groups: a group of herd followers (HF), and a group of herd deserters
(HD). In SHO, the movement patterns manifested by the selfish herd are entirely
dependent on the role assumed by each of its members. By considering this, at each
iteration k, SHO computes the position update for each herd member as follows:

hk+1
i =

{
hk
i + fki ifhk

i ∈ Hk
F

hk
i + dk

i ifhk
i ∈ Hk

D

(3.27)

whereHk
F andHk

D denote the sets of herd following and herd deserting members, as
illustrated by Eqs. (3.9) and (3.10), respectively.

The movement rule chosen by the herd member hk
i , assuming that it belongs

to the group of herd following members
(
hk
i ∈ Hk

F

)
, is called herd following rule.

This movement rule assumes that the herd member hk
i opts to follow other members

within the aggregation in an attempt to improve its own survival value, and as such, fki
denotes a movement vector computed with regard to the positions and survival apti-
tudes of other members within the herd. Furthermore, as previously stated, members
within Hk

F may be further identified as either dominant members (Hd) or subordi-
nate members (Hs), depending on how higher or lower their survival values are with
respect to the mean survival value of the entire herd population. With this in mind,
in SHO, the herd’s following movement fki performed by each herd member within
Hk

F is calculated depending on whether it is a dominant or a subordinate member, as
illustrated as follows:

fki =
{
2 ·

(
β · ψk

hi ,hL
· (
hk
L − hk

i

) + γ · ψk
hi ,hci

· (
hk
ci − hk

i

))
ifhk

i ∈ Hk
d

2 · δ · ψk
hi ,hM

· (
hk
M − hk

i

)
ifhk

i ∈ Hk
s

(3.28)

where Hk
d and Hk

s denote the sets of dominant and subordinate herd members , as
given by Eqs. (3.11) and (3.12), respectively, whereas the values β, γ , and δ each
represent a random number drawn from the interval [0, 1].

The movement rule performed by the herd’s dominant members
(
Hk

d

)
is known

as the nearest neighbor movement rule, which represent the situation in which the
herd member hk

i considers the positions of both, its nearest best neighbor and the
current herd’s leader when deciding where to move [9]. With that being said, hk

L and

84 3 The Selfish Herd Optimizer

hk
ci stands for the position of the current herd’s leader and the nearest best neighbor

to hk
i , respectively, both as defined by Eqs. (3.7) and (3.8). Furthermore, ψk

hi ,hL
and

ψk
hi ,hci

, as given by Eqs. (3.17) and (3.18), denote the selfish attractions experimented

by the herd member hk
i toward hi tL and hi tCi

respectively (see Fig. 3.7).
On the other hand, the movement rule chosen by the herd’s subordinate members(

Hk
s

)
is known as crowded horizon movement. In this situation, each herd mem-

ber considers both the location and survival values of all other members within the
aggregation to guide its movement [17]. In SHO, such movement is performed by
considering the herd’s center of mass hk

M , as defined by Eq. (3.14), and its corre-
sponding selfish attraction ψk

hi ,hM
, as given by according to Eq. (3.19) (see Fig. 3.8).

Finally, if the herd member hk
i is instead identified as a herd deserting mem-

ber
(
hk
i ∈ Hk

D

)
, said individual performs movement rule known in SHO as herd

desertion. In this case, individuals grouped as herd deserting members are assumed

Fig. 3.7 Nearest neighbor
movement rule for a
dominant herd member
(illustrated as h3). In this
case, the dominant member
considers the positions of
both, its nearest best
neighbor hc3 (shown as h2)
and the current herd’s leader
hL (represented by h1)

Fig. 3.8 Crowded horizon
movement rule for a
subordinated herd member
(represented by h2). In this
situation, the subordinated
member moves toward the
location of the herd’s center
of mass (shown as hM)

3.3 The Selfish Herd Optimizer Algorithm 85

Fig. 3.9 Herd desertion
movement rule. In such
situation a given herd
deserting member (shown as
h6) move independently of
all other members within the
herd aggregation

tomove independently to all other members of the herd [11], and as such dk
i denotes a

movement performed without regard to any other individuals within the aggregation
(see Fig. 3.9). By considering this, the herd desertion movement dk

i may then be
given as following:

dk
i = 2 ·

(
β · ψk

hi ,xbest ·
(
xkbest − hk

i

) + γ ·
(
1 − SVhki

)
· r̂

)
(3.29)

where ψk
hi ,xbest , as in Eq. (3.20), denotes the selfish attraction experienced by the herd

member hk
i toward the current global best position

(
xkbest

)
, whereas β and γ stand for

random numbers drawn from the interval [0, 1]. Furthermore r̂ denotes unit vector
pointing to a random direction within the given n-dimensional solution space.

3.3.5 Predators Movement Operators

Herd members within an aggregation typically have lower predation risk in compar-
ison to solitary individuals. This is because the effects of delusion and the confusion
caused by the movement of many individuals influence the predator’s decision to
aim its attack toward a particular individual [18]. However, these benefits are not
homogenous among all members of a herd aggregation. As previously stated, the
predation risk of any given member of a selfish herd is directly related to its current
position within such aggregation [9]. Intuitively, attacking predators take advantage
of these apparent vulnerabilities when choosing a prey for pursuing. In addition,
the relative position occupied by such predators with respect to the members of the
herd is also an influential factor when deciding which herd member is going to be
attacked.

86 3 The Selfish Herd Optimizer

By considering these facts, SHO models the movement of each individual within
the pack of predators by considering both, the survival aptitudes of individuals within
attacked herd and the distance which separate such individuals from the attacking
predators.

3.3.5.1 Pursuit Probabilities

In order to model the movement of individuals within the group of predators P (as
defined in Sect. 3.3.3.1), it is first assumed that each member h j within the herd H
has a certain probability of being pursued by an attacking predator pi . In SHO, such
pursuit probability is given as:

Ppi ,h j = ωpi ,h j
∑Nh

m=1 ωpi ,hm

(3.30)

The value ωpi ,h j in Eq. (3.30) is referred as the prey attractiveness between pi and
h j . Such value considers both, the survival aptitudes possessed h j and the distance
separating such individual from the attacking predator pi , as illustrated as follows:

ωpi ,h j = (
1 − SVh j

) · e−‖pi−h j‖2

(3.31)

where SVh j denotes for the survival value related to h j whereas
∥∥pi − h j

∥∥ stands
for the Euclidian distance between pi and h j . Intuitively, prey attractiveness ωpi ,h j

yield to higher values toward members h j possessing lower survival values SVh j ,
whereas a higher survival value SVh j implies a lower attractiveness value. This is
analogous to a predator’s preference to attack apparently weaker prey over those
who are seemingly stronger. Similarly, it can also be observed that the value of ωpi ,h j

increases as the distance
∥∥pi − h j

∥∥ between pi and h j decreases, while such value
decreases as the distance gap between both individuals increases. Once again, this
refers to a predator’s preference to attack nearby preys rather than those occupying
distant positions.

3.3.5.2 Predators Position Update

The pursuit probabilityPpi ,h j represents the probability for a given predator pi to pur-
suit a certain herd member h j given its perceived survival aptitudes and the distance
separating them. With this in mind, at each iteration k, SHO models the movement
of the each predator pi within the pack of attacking predators P by considering the
position of a particular herd member, as illustrated as follows:

pk+1
i = pki + 2 · ρ · (

hk
r − pki

)
(3.32)

3.3 The Selfish Herd Optimizer Algorithm 87

Fig. 3.10 By applying the
roulette selection method
with regard to the pursuit
probabilities Ppi ,h j , related
to pi (illustrated as p1) and
each individual h j within the
herd of prey (shown as
h1–h6), a single member h j
is chosen to be pursued by pi

where ρ denotes a random number between from the interval [0, 1]. Furthermore,
hk
r = hk

j ∈ Hk (with r ∈ {1, 2, . . . , Nh}) denotes a herd member randomly chosen
fromamong themembers of thewhole herd aggregation

(
Hk

)
by applying the roulette

selection method [19] with regard to their individual pursuit probabilities Ppi ,h j , as
given by Eq. (3.31) (see Fig. 3.10).

3.3.6 Predation Phase

In nature, the biological interaction between groups of prey and predators, in which
the former individuals are hunted by the latter, is known as predation. Such interac-
tions often result in the death of prey and its eventual consumption by the predators.
Typical hunting behavior suggest that there is a finite distance range over which a
predator can launch a successful attack against a pursued prey. In the case of the
selfish herd behavior described by [9], such finite range is described by the so called
domain of danger which represents the area around a given prey in which, if a preda-
tor is present, there is a high change that such individual is attacked and possibly
killed. Also, it is suggested that, if multiple domains of danger are invaded by attack-
ing predator at the same time, there is usually a higher preference for killing the
nearest prey; however other factors, such as the apparent survival aptitudes of each
endangered prey, may also be an influential factor in the predator’s final decision to
attack.

In SHO, a computational procedure, called predation phase, is implemented to
model such prey-predator interactions. In the predation phase, it is assumed that,
after both the members of a selfish herd (the prey) and the pack of predators have
performed a movement (according to the operators described in Sects. 3.3.4 and
3.3.5), there is a chance for several herd members to be killed by the attacking

88 3 The Selfish Herd Optimizer

predators, which further implies the exclusion of their respective solutions from
within the given decision space.

3.3.6.1 Domain of Danger

As previously illustrated, the domain of danger represents the area around a particular
prey, in which, if a predator is present, there is a high chance for such prey to be
attacked and killed. For the predation phase, SHO defines a finite domain of danger,
represented as a circular area of finite radius around each prey as follows:

R =
∑n

j=1

∣∣
∣x lowj − xhighj

∣∣
∣

2 · n (3.33)

where x lowj and xhighj stand for initial lower and upper bounds respectively, whereas
n denotes the number of dimensions (for simplicity, SHO assumes that the radius of
each domain of danger is the same for all prey).

3.3.6.2 Threatened Prey

At the start of the predation phase, it is assumed that no prey has been hunted (killed)
by the attacking predators. To represent this, SHO first initializes an empty set K.
That is:

K = {∅} (3.34)

During the predation phase, such setK is used to group all herdmembers
(
h j ∈ H

)

that are killed by the attacking predators (pi ∈ P).
In SHO, a predator pi is assumed to be able to hunt a certain herd member h j if

two specific conditions are met: 1. the member h j has a lower survival value than pi ,
and 2. the distance between pi and h j is equal to or lower than the domain of danger
radius R (as given by Eq. (3.33)), which implies that pi has invaded h j ’s domain of
danger. Furthermore, it is also assumed that more than one herd member could be
threatened by particular predator, assuming the previous two conditions have been
met. With that being said, for each predator pi we may represent a set of threatened
prey as follows:

Tpi = {
h j ∈ H|SVh j < SVpi ,

∥∥pi − h j

∥∥ ≤ R,h j /∈ K
}

(3.35)

where SVpi and SVp j denote the survival values of pi and h j , respectively, whereas
pi − h j denotes the Euclidian distance between the individuals pi and h j . Further-
more, note fromEq. (3.36) that onlymembers that are not currently groupedwithinK

3.3 The Selfish Herd Optimizer Algorithm 89

(which groups all herd members hunted during the predation phase) are able targeted
by pi as candidates to be hunted.

3.3.6.3 Probability of Being Hunted

Once a set threatened prey Tpi (as given by Eq. (3.35)) has been identified for
a particular predator pi , one of such threatened individuals must be chosen, and
then, killed. In SHO, such decision is taken based each threatened herd member
probabilities of being hunted, as given as follows:

Hpi ,h j = ωpi ,h j∑
(hm∈Tpi)

ωpi ,hm
,hj ∈ Tpi (3.36)

whereωpi ,h j denotes the prey attractiveness betweenpi andh j , as given byEq. (3.31).
Finally, by applying the roulette selection method [19] with regard to the proba-

bilities Hpi ,h j of each threatened prey, one of such individuals is chosen, and then,
considered to be killed by the attacking predator pi (see Fig. 3.11). Furthermore, any
member hj ∈ Tpi selected by applying this method is grouped within the set of killed
herd membersK. It should be noted that if Tpi = {∅} for any given predator pi (that
is, there is no prey that could be threatened by pi), then no prey is hunted by pi and
as such, no changes are made toK for that case. With the previous being said, at the
end of the predation phase, the previously empty setK may group all herd members
(if any) hunted by each of the attacking predators, such that:

K = {
ki = (

h j ∈ H
)}

for i = 1, . . . , Nk, j ∈ {1, 2, . . . , Nh} (3.37)

where Nk denote the total number of herd members h j killed during the predation
phase.

Furthermore, any solutions corresponding to a killed herd member h j during the
predation phase is further considered to be excluded from within the given decision
space. However, as it will be illustrated in the next section, such excluded solutions
will be replaced by some new solutions, generated by applying a special mating-like
operator.

3.3.7 Restoration Phase

In nature, the size of prey populations change dynamically through time as a result of
predation, but in general, in well balanced biological systems, such change tends to
be periodical. This means that even if a population of prey decreases as a result of the
predation, the natural balance of the ecosystem will eventually allow the restoration
of such population [20].

90 3 The Selfish Herd Optimizer

(a)

(b) (c)

Fig. 3.11 Example of the predation phase procedure. a Optimization problem, b position’s config-
uration for both prey (herd members) and predators, and c outcome of the predation phase where the
herd members h3 and h9 are assumed to be killed by the attacking predators p1 and p2, respectively

Analogous to this phenomenon, SHO implements a computational procedure
which allows the replacement of herdmembers killed during the predation phase (see
Sect. 3.3.6). Such procedure, called restoration phase, employs a special mating-like
operator to generate new solutions based on the survival aptitudes of the remaining
herd members, and then such solutions are used to replace all solutions excluded as
a result of such predation phase.

3.3.7.1 Mating Probabilities

SHO’s mating operation considers the positions and survival values of all herd mem-
bers that weren’t hunted during the predation phase. As such, we may first define a
set of mating candidates as follows:

3.3 The Selfish Herd Optimizer Algorithm 91

M = {
h j /∈ K

}
(3.38)

whereK denotes the set of herd members killed during the predation phase, as given
by Eq. (3.37).

For themating operation applied in SHO, eachmember h j within the set ofmating
candidates M is considered to have a certain probability Mh j of being considered
for the generation of new solution. Such probability depends on the survival aptitude
of each mating candidate, as illustrated as follows:

Mh j = SVh j∑
(hm∈M) SVhm

,h j ∈ M (3.39)

From the previous, it is clear that mating candidates possessing higher survival
values SVh j will a have a higher chance to influence the generation of new solutions,
whereas individuals with lower survival values are less likely to be considered for
such a process.

3.3.7.2 Mating Operation

In order to generate a new candidate solution, we first consider a set of n randomly
chosen individuals

{
hr1 ,hr2 , . . . ,hrn

}
(with hri = h j ∈ M), selected by applying the

roulette selection method [19] with regard to the probabilitiesMh j of each member
within the set of mating candidates M, as given by Eq. (3.39).

hnew = mix
([
hr1,1, hr2,2, . . . , hrn ,n

])
(3.40)

where hri ,l (with l = 1, 2, . . . , n) correspond to the l-esim position element of the
random candidate hri and where n stands for the dimensionality of the solution
space. Furthermore, the function mix(·) is applied to change the ‘l’ indexing of
each element hri ,l , such that each of said elements is indexed on a different entry
(dimension). An example of SHO’s mating operation for generating a new candidate
solution is illustrated in Table 3.1.

3.3.7.3 Replacement of Excluded Herd Members

As previously stated, the mating operation in SHO is used to replace herd members
(solutions) excluded as a result of the predation phase (as described in Sect. 3.3.6).
With that being said, for each of member h j ∈ K (with K denoting the set of killed
herd members, as given by Eq. (3.37)), we generate a new candidate solution hnew by
applying the mating operation described by Eq. (3.40), and then such new solution
is assigned to h j , such that:

92 3 The Selfish Herd Optimizer

Ta
bl
e
3.
1

E
xa
m
pl
e
of

a
m
at
in
g
op

er
at
io
n
us
ed

to
ge
ne
ra
te
a
ne
w
he
rd

m
em

be
r
h n

ew

M
at
in
g
ca
nd

id
at
es

(h
j
∈M

)
Po

si
tio

ns
[h

j,
1
,
h
j,
2
,
h
j,
3
]

SV
h
j

M
h
j

h r
i

R
ou

le
tte

h 1
(0
.3
,0

.5
,−

0.
8)

1
0.
26

h r
1

h 2
(0
.6
,−

0.
4,

0.
7)

0.
55

0.
14

h 3
(0
.2
,−

0.
5,

0.
3)

0.
76

0.
20

h r
2

h 4
(0
.1
,0

.5
,−

0.
7)

0.
68

0.
18

h 5
(−

0.
4,

0.
3,

0.
7)

0.
83

0.
22

h r
3

M
ix
ed

el
em

en
ts

N
ew

po
si
ti
on

[h
5,
3
,
h
1,
1
,
h
3,
1
]

h n
ew

=
[0

.7
,
0.
3,

−0
.5
]

3.3 The Selfish Herd Optimizer Algorithm 93

h j = hnew,h j ∈ K (3.41)

By applying this procedure, all previously excluded herd members h j ∈ K are
replaced with new solutions, formed by considering the positions and survival apti-
tudes of the members which survived the predation phase.

3.4 Summary of the SHO Algorithm

The Selfish Herd Optimizer (SHO) is an evolutionary algorithm developed to solve
global optimization problems. The proposed method draws inspiration on the inter-
esting selfish herd behavior observed in a wide variety of species subjected to a
prey-predator relationship. Such method employs to kinds of search agents: a herd
of prey and a pack predators. The movement of each of this agents within the solu-
tion space is performed by applying a set of unique evolutionary operators inspired
in several movement rules observed in most selfish herds. Furthermore, the compu-
tational procedure known as predation phase emulates the situation in which prey
belonging to a selfish herd are hunted down and killed by attacking predators. Such
mechanism is employed to allow the exclusion of either bad or redundant solutions,
found during SHO’s the evolutionary process. Finally, the restoration phase allows
the restitution of solutions previously excluded during the predation phase by gen-
erating a set of new candidate solution. Such procedure is reminiscent to the natural
balance mechanism found in many biological systems and allows the diversification
of the set of solutions found by SHO.

In general, the SHO algorithm’s computational procedure may be summarized by
the following steps:

Step 1 Initialize the animal population A.
Step 2 Split A in two groups: a group of prey H and a group of predators P.
Step 3 Calculate the survival values for each individual within H and P.
Step 4 Apply the herd movement operators to each individual of H.
Step 5 Apply the predators movement operators to each individual of P.
Step 6 Re-calculate the survival values for each individual within H and P.
Step 7 Perform predation phase.
Step 8 Perform restoration phase.
Step 9 If stop criterion is met, the process is finished; otherwise, return to Step 4.

A more detailed explanation of the computational procedure employed by the
SHO method is given in by the following pseudocode (Algorithm 1):

Algorithm 1. SHO algorithm computational procedure

94 3 The Selfish Herd Optimizer

3.4 Summary of the SHO Algorithm 95

96 3 The Selfish Herd Optimizer

3.5 Discussion About the SHO Algorithm

Within the framework ofmany EvolutionaryAlgorithms (EA), the dilemma concern-
ing to the balance between exploration and exploitation of solutions has remained
as an important topic for many years. In this sense, it is known that emphasizing to
much on exploration increases the capacity of an EA to find new potential solutions;
however, this usually yields to a degradation on the precision of such EA’s evolu-
tionary process. On the other hand, giving more importance to exploitation allows
the refinement of currently existing solutions but, adversely, there is a tendency to
drive the process toward local optima. With that being said, the ability of an EA to
find a global optimum depends on its capacity to properly balance the exploration of
the solutions and the exploitation of found-so-far elements. Furthermore, many EAs
suffer from some common flaws, such as premature convergence and an inherent
difficulty to overcome local optima [5, 6]. These issues usually arise from the oper-
ators used to update the position of search agents. In the case of PSO, for example,
search agents are usually attracted towards the position of the current best individ-
ual which inherently causes the entire population to concentrate around the best

3.5 Discussion About the SHO Algorithm 97

particle seen-so-far, and thus, favoring premature convergence [7]. Also, many EAs,
such as PSO, FA and CS, only model search agents with equal properties, and thus,
restricting them to perform virtually the same behavior. Under these circumstances,
these methods waste the possibility to add new and selective operators which could
potentially improve some important traits, such as population diversity and search
capabilities.

Different to other EA, the SHO algorithm models each individual of the entire
population by first considering its role as either a prey belonging to a selfish herd or a
hungry predator. Furthermore, individuals within such selfish herd manifest unique
individual behaviorswhich depends not only on the aptitudes of better individuals, but
also on their own aptitude with regard to a given optimization problem. This allows
SHO to incorporate computational mechanisms that allow the avoidance of critical
flaws commonly found in other EAs, such as premature convergence and inadequate
balance between exploration and exploitation of solutions. From an optimization
point of view, the use of selfish herd behaviors as ametaphor provide some interesting
concepts to EAs: First of all, the division of the entire population into different
search-agent categories and the implementation of selective and specialized operators
allows SHO to improve the balance between exploration and exploitation without
altering the total population size. Furthermore, the selfish herd behavior introduces
an interesting computational scheme with three distinctive traits: 1. individuals are
separately processed according to their classification as either prey or predators, with
prey further manifesting a unique internal social structure; 2. although operators
employed to modify the position of each individual differs depending of its type (as
either a prey or a predator), they all use global information (such as the positions and
aptitudes of other individuals); 3. the predation and restoration mechanisms allows
the exclusion of potentially bad or redundant solutions,while at the same time enables
the diversification of the whole set of solutions.

3.6 Comparative Experiments and Results

The SHO algorithm has been applied in the optimization of 15 benchmark functions
collected from [21–23], and whose results have also been compared against those
produced by Particle Swarm Optimization (PSO) [1], Artificial Bee Colony (ABC)
[2], FireflyAlgorithm (FA) [3], Differential Evolution (DE) [21], GeneticAlgorithms
(GA) [24], Crow Search Algorithm (CSA) [25], Dragonfly Algorithm (DA) [26],
Moth-flameOptimizationAlgorithm (MOA) [27], and SineCosineAlgorithm (SCA)
[28]. For all comparisons, the population size is set to N = 50 individuals, while the
maximum iteration number is set to T = 1000. Such stop criterion has been selected
to keep consistency with other similar works currently reported on the literature [29,
30]. A detailed description of each implemented test functions is given in Table 3.2.

The parameter settings for each of the compared methods is as follows:

98 3 The Selfish Herd Optimizer

Ta
bl
e
3.
2

Te
st
fu
nc
tio

ns
us
ed

fo
r
ou
r
ex
pe
ri
m
en
ts

N
am

e
Fu

nc
tio

n
S

n
M
in
im

um

A
ck
le
y

f 1
(x

)
=

−
20

·e
xp

⎛ ⎝
−0

.2

√ √ √ √
1 n

n ∑ i=
1

x2 i

⎞ ⎠

−
ex
p(

1 n

n ∑ i=
1

co
s2

π
x i

)

+
20

+
ex
p

[−
32

.8
,
32

.8
]n

30
f 1

(x
∗)

=
0;

x∗
=

(0
,
..

.,
0)

Sp
he
re

f 2
(x

)
=

n ∑ i=
1
x2 i

[−
10
0,

10
0]

n
30

f 2
(x

∗)
=

0;
x∗

=
(0

,
..

.,
0)

Su
m

of
Sq

ua
re
s

f 3
(x

)
=

n ∑ i=
1
ix

2 i
[−

10
,
10

]n
30

f 3
(x

∗)
=

0;
x∗

=
(0

,
..

.,
0)

Po
w
el
l

f 4
(x

)
=

n/
4

∑ i=
1

[(x
4i

−3
+

10
x 4

i−
2
)2

+
5 (
x 4

i−
1
−

x 4
i)
2

+
(x

4i
−2

−
2x

4i
−1

)4
+

10
(x

4i
−

x 4
i)
4
]

[−
4,
5]

n
30

f 4
(x

∗)
=

0;
x∗

=
(0

,
..

.0
)

L
ev
y

f 5
(x

)
=
co
s2

(π
w
1
)
+

n−
1

∑ i=
1

(w
i
−

1)
2
[1

+
10

si
n

π
w
i
+

1]

+
(w

n
−

1)
2
[1

+
si
n2

2π
w
n

]

w
i
=

1
+

(
x i

+1 4

)

[−
10

,
10

]n
30

f 5
(x

∗)
=

0;
x∗

=
(1

,
..

.,
1)

R
os
en
br
oc
k

f 6
(x

)
=

n−
1

∑ i=
1

[10
0(x i

+1
−

x2 i

) 2
+

(x
i
−

1)
2
]

[−
5,
10

]n
30

f 6
(x

∗)
=

0;
x∗

=
(1

,
..

.,
1)

Sc
hw

ef
el
2

f 7
(x

)
=

n ∑ i=
1(

i ∑ j=
1
x i

)
2

[−
10
0,

10
0]

n
30

f 7
(x

∗)
=

0;
x∗

=
(0

,
..

.,
0)

(c
on
tin

ue
d)

3.6 Comparative Experiments and Results 99

Ta
bl
e
3.
2

(c
on
tin

ue
d)

N
am

e
Fu

nc
tio

n
S

n
M
in
im

um

Sc
hw

ef
el
26

f 8
(x

)
=

41
8.
98
29
n

−
n ∑ i=
1
x i
si
n(√

| x i
|)

[−
50
0,

50
0]

n
30

f 8
(x

∗)
=

0;
x∗

=
(4
20

.9
68

,
..

.,
42
0.
96
8)

T
ri
d

f 9
(x

)
=

n ∑ i=
1(x

i
−

1)
2
−

n ∑ i=
2
x i

(x
i−

1
)

[−n
2
,
n2

] n
30

f 9
(x

∗)
=

−4
50
0

D
ix
on

an
d
Pr
ic
e

f 1
0
(x

)
=

(x
i
−

1)
2
+

n ∑ i=
1
i(2x

2 i
−

x i
−1

) 2
[−

10
,
10

]n
30

f 1
0
(x

i)
=

0

x i
=

2−
2i

−2 2i
fo
r
i
=

1,
..

.,
n

R
ot
at
ed

H
yp

er
-E
lli
ps
oi
d

f 1
1
(x

)
=

n ∑ i=
1

i ∑ j=
1
x2
j

[−
65

.5
,
65

.5
]n

30
f 1
1
(x

∗)
=

0;
x∗

=
(0

,
..

.,
0)

Z
ak
ha
ro
v

f 1
2
(x

)
=

n ∑ i=
1
x2 i

+
(

n ∑ i=
1
0.
5i
x i

)
2

+
(

n ∑ n=
1
0.
5i
x i

)
4

[−
5,
10

]n
30

f 1
2
(x

∗)
=

0;
x∗

=
(0

,
..

.,
0)

Q
ua
rt
ic

f 1
3
(x

)
=

n ∑ i=
1[(i

x i
)4

+
ra

nd
]

[−
1.
28

,
1.
28

]n
30

f 1
3
(x

∗)
=

0;
x∗

=
(0

.5
,
..

.,
0.
5)

Sa
lo
m
on

f 1
4
(x

)
=

−
co
s(

2π

√
n ∑ i=
1
x2 i

)

+
0.
1√

n ∑ i=
1
x2 i

+
1

[−
10
0,

10
0]

n
30

f 1
4
(x

∗)
=

0;
x∗

=
(0

,
..

.,
0)

Q
in
g

f 1
5
(x

)
=

n ∑ i=
1(x2 i

−
i) 2

[−
50
0,

50
0]

n
30

f 1
5
(x

∗)
=

0;
x∗

=
(±√ 1,

±√ 2,
..

.,
±√ n)

In
th
e
ta
bl
e,
S
in
di
ca
te
s
th
e
su
bs
et
of

R
n
w
hi
ch

co
m
pr
is
es

th
e
fu
nc
tio

n’
s
se
ar
ch

sp
ac
e
an
d
n
in
di
ca
te
s
th
e
fu
nc
tio

n’
s
di
m
en
si
on
.A

ls
o,
th
e
va
lu
e
f i
(x

∗)
in
di
ca
te
s

th
e
op
tim

um
va
lu
e
of

ea
ch

fu
nc
tio

n,
w
hi
le
x∗

in
di
ca
te
s
th
e
op

tim
um

po
si
tio

n

100 3 The Selfish Herd Optimizer

1. PSO: The algorithm’s learning factors are set to c1 = 2 and c2 = 2; also,
the inertia weight w is set to decreases linearly from 0.9 to 0.2 as the process
evolves.

2. ABC: The algorithm was implemented by setting the parameter limit =
numOfFoodSources*dims, where numOfFoodSources = N (population size)
and dims = n (dimensionality of the solution space).

3. FA: The parameters setup for the randomness factor and the light absorption
coefficient are set to α = 0.2 and γ = 1.0, respectively.

4. DE: The algorithm’s differential weight is set to F = 1 while the crossover
probability is set to CR = 0.2.

5. GA: The crossover and mutation probabilities are both set to cp = 0.8 and
mp = 0.2 respectively.

6. CSA: The awareness probability and flight length are set to AP = 0.1 and
fl = 2, respectively.

7. DA: The parameters are set as: w = 0.9 (inertia weight), s = 0.1 (separation
weight), a = 0.1 (alignment weight), c = 0.7 (cohesion weight), f = 1.0 (food
factor) and e = 1.0 (enemy factor).

8. MOA: The constant value used to model the moths’ logarithmic spiral move-
ment is set to b = 1.

9. SCA: The constant value used to generate the random value r1 is set to a = 2.
10. SHO: The proposed method is tested by considering a herd population pro-

portion randomly chosen from between a 70 and 90%, with the remaining
individuals assigned as predators.

The previously illustrated sets of parameters were determined through exhaustive
experimentation and as such represent the best possible configurations for each of
the compared methods [16].

The experimental setup aims to compare SHO’s performance against those of
PSO, ABC, FA, DE and GA. The reported results consider the following perfor-
mance indexes: the Average Best-so-far (AB) solution, theMedian Best-so-far (MB)
and the Standard Deviation (SD) of the best-so-far solution. The averaged results
corresponding to 30 individual runs are reported in Table 3.3, where the best out-
come for each function is boldfaced. According to this table, for most cases, SHO’s
performance over the considered test functions is superior to those of the other com-
pared methods. Such large difference in performance is intuitively related to a better
trade-off between exploration and exploitation (Fig. 3.12).

Also, the non-parametric statistical significance proof known as the Wilcoxon’s
rank sum test for independent samples [31, 32] was conducted over the best fitness
values found by each of the compared method on 30 independent test runs (30
samples per set). Table 3.4 reports the p-values produced by the Wilcoxon’s test
for the pair-wise comparison over two independent fitness samples (SHO vs. PSO,
ABC, FA, GA, CSA, DA, MOA and SCA), by considering a 5% significance level.
As a null hypothesis, it is assumed that there is a significant difference between mean
values of two algorithms. On the other hand, the alternative hypothesis (rejection of
the null hypothesis) considers that the difference between the mean values of both

3.6 Comparative Experiments and Results 101

Ta
bl
e
3.
3

M
in
im

iz
at
io
n
re
su
lts

fo
r
th
e
be
nc
hm

ar
k
fu
nc
tio

ns
lis
te
d
in

Ta
bl
e
3.
2

SH
O

PS
O

A
B
C

FA
D
E

G
A

C
SA

f 1
(x

)
A
B

M
B

SD

3.
30

×
10

−1
3

7.
50

×
10

−1
0

2.
80

×
10

−0
9

1.
40

×
10

−0
4

1.
70

×
10

01

6.
80

×
10

00

2.
90

×
10

−0
1

1.
20

×
10

00

3.
20

×
10

−0
1

5.
30

×
10

00

6.
80

×
10

00

7.
10

×
10

−0
1

5.
66

×
10

−0
6

5.
41

×
10

−0
6

1.
62

×
10

−0
6

1.
16

×
10

00

1.
34

×
10

00

8.
01

×
10

−0
1

3.
25

×
10

00

3.
35

×
10

00

6.
31

×
10

−0
1

f 2
(x

)
A
B

M
B

SD

1.
00

×
10

−1
3

2.
50

×
10

−1
3

1.
40

×
10

−1
4

7.
50

×
10

−1
1

1.
70

×
10

00

6.
70

×
10

00

1.
70

×
10

−0
5

1.
40

×
10

−0
4

7.
30

×
10

−0
5

1.
70

×
10

−0
1

5.
00

×
10

−0
1

2.
70

×
10

−0
1

1.
27

×
10

−1
3

1.
06

×
10

−1
3

5.
70

×
10

−1
4

6.
12

×
10

−0
4

2.
71

×
10

−0
4

8.
89

×
10

−0
4

4.
07

×
10

−0
5

3.
53

×
10

−0
5

2.
37

×
10

−0
5

f 3
(x

)
A
B

M
B

SD

7.
20

×
10

−1
2

1.
90

×
10

−1
2

8.
60

×
10

−1
2

3.
30

×
10

−0
8

6.
10

×
10

02

5.
00

×
10

02

2.
20

×
10

−0
3

9.
00

×
10

−0
3

6.
10

×
10

−0
3

4.
40

×
10

00

1.
90

×
10

01

8.
50

×
10

00

7.
50

×
10

−1
2

6.
58

×
10

−1
2

3.
36

×
10

−1
2

7.
30

×
10

−0
2

2.
18

×
10

−0
2

1.
21

×
10

−0
1

3.
15

×
10

−0
1

2.
64

×
10

−0
1

2.
27

×
10

−0
1

f 4
(x

)
A
B

M
B

SD

1.
20

×
10

−0
3

2.
90

×
10

−0
3

1.
10

×
10

−0
3

1.
70

×
10

02

1.
70

×
10

03

1.
80

×
10

03

5.
60

×
10

−0
1

3.
40

×
10

00

1.
90

×
10

00

3.
00

×
10

00

1.
50

×
10

01

7.
30

×
10

00

8.
05

×
10

00

7.
19

×
10

00

4.
83

×
10

00

7.
30

×
10

−0
2

2.
18

×
10

−0
2

1.
21

×
10

−0
1

6.
25

×
10

−0
3

6.
20

×
10

−0
3

3.
01

×
10

−0
3

f 5
(x

)
A
B

M
B

SD

1.
10

×
10

−1
3

3.
40

×
10

−1
3

2.
90

×
10

−1
3

9.
40

×
10

−0
7

5.
60

×
10

00

6.
20

×
10

00

3.
60

×
10

−0
4

1.
00

×
10

−0
3

5.
90

×
10

−0
4

7.
40

×
10

−0
1

1.
70

×
10

00

6.
40

×
10

−0
1

1.
91

×
10

−1
2

1.
76

×
10

−1
2

9.
60

×
10

−1
3

4.
19

×
10

−0
1

4.
54

×
10

−0
1

4.
24

×
10

−0
1

3.
36

×
10

−0
1

3.
20

×
10

−0
1

1.
53

×
10

−0
1

f 6
(x

)
A
B

M
B

SD

1.
80

×
10

00

4.
30

×
10

01

3.
60

×
10

01

7.
30

×
10

01

2.
00

×
10

05

1.
00

×
10

05

2.
20

×
10

01

6.
80

×
10

01

3.
10

×
10

01

5.
70

×
10

02

2.
40

×
10

03

1.
60

×
10

03

2.
99

×
10

02

2.
65

×
10

02

1.
19

×
10

02

7.
05

×
10

01

7.
18

×
10

01

4.
46

×
10

01

3.
10

×
10

01

2.
89

×
10

01

1.
17

×
10

01

f 7
(x

)
A
B

M
B

SD

1.
60

×
10

−0
9

7.
40

×
10

−0
9

4.
90

×
10

−0
9

1.
00

×
10

04

1.
50

×
10

06

1.
20

×
10

06

2.
30

×
10

00

1.
40

×
10

01

8.
60

×
10

00

9.
70

×
10

04

2.
60

×
10

05

9.
80

×
10

04

9.
52

×
10

−0
9

8.
93

×
10

−0
9

5.
30

×
10

−0
9

2.
37

×
10

00

9.
74

×
10

−0
1

3.
97

×
10

00

2.
14

×
10

02

2.
07

×
10

02

9.
20

×
10

01

f 8
(x

)
A
B

M
B

SD

3.
80

×
10

−0
4

6.
60

×
10

02

4.
40

×
10

02

2.
50

×
10

03

4.
80

×
10

03

8.
10

×
10

02

6.
60

×
10

02

1.
10

×
10

03

2.
30

×
10

02

9.
20

×
10

03

1.
00

×
10

04

3.
40

×
10

02

3.
80

×
10

02

9.
31

×
10

00

6.
52

×
10

02

1.
20

×
10

04

1.
20

×
10

04

2.
90

×
10

01

1.
25

×
10

04

1.
25

×
10

04

2.
56

×
10

00

(c
on
tin

ue
d)

102 3 The Selfish Herd Optimizer

Ta
bl
e
3.
3

(c
on
tin

ue
d)

SH
O

PS
O

A
B
C

FA
D
E

G
A

C
SA

f 9
(x

)
A
B

M
B

SD

−4
.5
0
×

10
03

−2
.6
0
×

10
03

1.
10

×
10

03

1.
10

×
10

05

9.
00

×
10

05

5.
10

×
10

05

5.
30

×
10

03

1.
60

×
10

04

6.
40

×
10

03

4.
30

×
10

04

7.
80

×
10

04

2.
80

×
10

04

4.
65

×
10

05

4.
60

×
10

05

2.
13

×
10

05

−1
.5
3

×
10

03

−1
.5
3

×
10

03

2.
21

×
10

01

−1
.3
9

×
10

03

−1
.3
4

×
10

03

3.
89

×
10

02

f 1
0
(x

)
A
B

M
B

SD

6.
70

×
10

−0
1

6.
80

×
10

−0
1

6.
50

×
10

−0
2

6.
70

×
10

−0
1

1.
40

×
10

04

3.
30

×
10

04

2.
60

×
10

00

6.
80

×
10

00

2.
20

×
10

00

1.
00

×
10

01

4.
00

×
10

01

4.
20

×
10

01

6.
73

×
10

00

6.
67

×
10

00

1.
64

×
10

−0
1

4.
58

×
10

00

4.
47

×
10

00

2.
83

×
10

00

7.
30

×
10

01

3.
03

×
10

01

9.
83

×
10

01

f 1
1
(x

)
A
B

M
B

SD

2.
40

×
10

−1
0

1.
00

×
10

−1
0

6.
90

×
10

−1
1

9.
00

×
10

−0
7

3.
70

×
10

04

3.
10

×
10

04

1.
30

×
10

−0
1

3.
10

×
10

−0
1

1.
80

×
10

−0
1

3.
00

×
10

03

6.
70

×
10

03

2.
10

×
10

03

2.
94

×
10

−1
0

2.
70

×
10

−1
0

1.
30

×
10

−1
0

4.
50

×
10

−0
2

1.
94

×
10

−0
2

7.
57

×
10

−0
2

7.
36

×
10

02

4.
74

×
10

02

6.
33

×
10

02

f 1
2
(x

)
A
B

M
B

SD

1.
20

×
10

01

2.
10

×
10

01

5.
70

×
10

00

1.
50

×
10

02

4.
80

×
10

02

1.
60

×
10

02

2.
30

×
10

02

2.
90

×
10

02

2.
90

×
10

01

7.
30

×
10

01

4.
10

×
10

03

2.
20

×
10

04

1.
63

×
10

03

1.
63

×
10

03

2.
75

×
10

02

2.
80

×
10

02

3.
17

×
10

02

1.
63

×
10

02

3.
89

×
10

00

3.
49

×
10

00

1.
97

×
10

00

f 1
3
(x

)
A
B

M
B

SD

8.
30

×
10

00

9.
30

×
10

00

5.
40

×
10

−0
1

9.
90

×
10

00

1.
40

×
10

01

4.
50

×
10

00

1.
10

×
10

01

1.
20

×
10

01

6.
20

×
10

−0
1

1.
40

×
10

01

2.
00

×
10

01

3.
50

×
10

00

1.
05

×
10

02

1.
05

×
10

02

3.
61

×
10

00

1.
58

×
10

01

1.
54

×
10

01

2.
18

×
10

00

1.
16

×
10

01

1.
14

×
10

01

8.
52

×
10

−0
1

f 1
4
(x

)
A
B

M
B

SD

1.
00

×
10

−0
1

1.
20

×
10

−0
1

4.
10

×
10

−0
2

5.
00

×
10

−0
1

1.
70

×
10

00

2.
90

×
10

00

3.
10

×
10

00

4.
00

×
10

00

4.
80

×
10

−0
1

2.
30

×
10

00

3.
60

×
10

00

6.
10

×
10

−0
1

4.
11

×
10

00

4.
01

×
10

00

3.
01

×
10

−0
1

5.
67

×
10

−0
1

6.
00

×
10

−0
1

8.
02

×
10

−0
2

1.
66

×
10

00

1.
65

×
10

00

3.
19

×
10

−0
1

f 1
5
(x

)
A
B

M
B

SD

2.
40

×
10

−0
4

6.
10

×
10

−0
4

5.
60

×
10

−0
4

7.
60

×
10

−0
4

1.
40

×
10

−0
1

3.
00

×
10

−0
1

1.
87

×
10

01

5.
94

×
10

01

2.
08

×
10

01

7.
60

×
10

06

6.
20

×
10

07

3.
60

×
10

07

8.
97

×
10

02

9.
03

×
10

02

2.
81

×
10

02

9.
20

×
10

−0
2

3.
89

×
10

−0
2

1.
78

×
10

−0
1

1.
61

×
10

01

1.
14

×
10

01

1.
28

×
10

01

(c
on
tin

ue
d)

3.6 Comparative Experiments and Results 103

Ta
bl
e
3.
3

(c
on
tin

ue
d)

D
F

M
O
A

SC
A

6.
36

×
10

00

5.
67

×
10

00

1.
83

×
10

00

1.
88

×
10

01

1.
91

×
10

01

1.
20

×
10

00

1.
12

×
10

01

1.
84

×
10

01

9.
61

×
10

00

9.
96

×
10

−0
1

8.
96

×
10

−0
1

7.
58

×
10

−0
1

1.
48

×
10

01

3.
90

×
10

−0
1

1.
77

×
10

01

3.
81

×
10

−0
1

6.
42

×
10

−0
2

9.
01

×
10

−0
1

6.
12

×
10

01

3.
79

×
10

01

5.
46

×
10

01

2.
37

×
10

03

2.
01

×
10

03

2.
25

×
10

03

1.
74

×
10

01

3.
98

×
10

00

3.
63

×
10

01

1.
02

×
10

00

7.
22

×
10

−0
1

1.
05

×
10

00

2.
13

×
10

01

1.
72

×
10

01

1.
90

×
10

01

3.
56

×
10

−0
1

8.
76

×
10

−0
2

4.
96

×
10

−0
1

9.
42

×
10

−0
1

8.
46

×
10

−0
1

4.
67

×
10

−0
1

2.
25

×
10

01

2.
08

×
10

01

7.
49

×
10

00

4.
60

×
10

00

4.
45

×
10

00

6.
81

×
10

−0
1

1.
08

×
10

03

1.
04

×
10

03

9.
04

×
10

02

1.
60

×
10

05

8.
24

×
10

02

3.
57

×
10

05

8.
69

×
10

03

5.
12

×
10

03

1.
34

×
10

04

2.
25

×
10

03

2.
09

×
10

03

1.
47

×
10

03

8.
85

×
10

04

8.
61

×
10

04

5.
03

×
10

04

3.
95

×
10

01

1.
17

×
10

01

6.
11

×
10

01

1.
25

×
10

04

1.
25

×
10

04

0.
00

×
10

00

2.
08

×
10

04

2.
08

×
10

04

3.
70

×
10

−1
2

2.
09

×
10

04

2.
09

×
10

04

4.
13

×
10

00

(c
on
tin

ue
d)

104 3 The Selfish Herd Optimizer

Ta
bl
e
3.
3

(c
on
tin

ue
d)

D
F

M
O
A

SC
A

5.
23

×
10

02

1.
69

×
10

02

1.
26

×
10

03

5.
08

×
10

03

2.
82

×
10

03

8.
32

×
10

03

4.
60

×
10

02

2.
44

×
10

02

6.
19

×
10

02

2.
49

×
10

06

4.
72

×
10

05

5.
42

×
10

06

1.
67

×
10

09

7.
92

×
10

08

2.
74

×
10

09

3.
70

×
10

07

1.
97

×
10

07

4.
84

×
10

07

2.
02

×
10

05

1.
62

×
10

05

1.
91

×
10

05

8.
02

×
10

06

7.
25

×
10

06

5.
09

×
10

06

3.
67

×
10

04

5.
52

×
10

03

6.
45

×
10

04

1.
33

×
10

03

9.
72

×
10

02

1.
19

×
10

03

1.
31

×
10

04

1.
25

×
10

04

3.
35

×
10

03

2.
56

×
10

03

2.
43

×
10

03

7.
76

×
10

02

3.
30

×
10

03

2.
06

×
10

03

4.
75

×
10

03

4.
84

×
10

06

2.
43

×
10

06

6.
11

×
10

06

1.
38

×
10

05

2.
81

×
10

04

2.
05

×
10

05

1.
86

×
10

01

1.
90

×
10

01

8.
04

×
10

00

7.
08

×
10

01

8.
83

×
10

01

4.
02

×
10

01

8.
20

×
10

00

6.
76

×
10

00

6.
48

×
10

00

4.
22

×
10

02

3.
76

×
10

02

2.
76

×
10

02

1.
08

×
10

03

2.
18

×
10

01

1.
68

×
10

03

1.
92

×
10

04

1.
97

×
10

04

1.
69

×
10

03

R
es
ul
ts
w
er
e
av
er
ag
ed

fr
om

30
in
di
vi
du
al
ru
ns
,e
ac
h
by

co
ns
id
er
in
g
po
pu
la
tio

n
si
ze

N
=

50
an
d
m
ax
im

um
nu
m
be
r
of

ite
ra
tio

ns
T

=
10
00

3.6 Comparative Experiments and Results 105

Fig. 3.12 Evolution curves for SHO, PSO, ABC, FA, DE, GA, CSA, DA, MOA and SCA consid-
ering as examples the functions a f1, b f3, c f8, d f13, e f14 and f f15 from the experimental set
(see Table 3.4)

approaches is insignificant. As shown by all of the p-values on said table, there is
enough evidence to reject the null hypothesis (this is that all values are less than
0.05, and as such satisfy the 5% significance level criteria). Such evidence indicates
that the proposed method’s results are statistically significant and that they had not
occurred by coincidence (i.e. due to common noise contained in the process).

106 3 The Selfish Herd Optimizer

Ta
bl
e
3.
4

W
ilc

ox
on
’s
te
st
co
m
pa
ri
so
n
fo
r
SH

O
ve
rs
us

PS
O
,A

B
C
,F
A
,G

A
,C

SA
,D

A
,M

O
A
an
d
SC

A

Fu
nc
tio

n
SH

O
ve
rs
us

PS
O

SH
O
ve
rs
us

A
B
C

SH
O
ve
rs
us

FA
SH

O
ve
rs
us

D
E

SH
O
ve
rs
us

G
A

SH
O
ve
rs
us

C
SA

SH
O
ve
rs
us

D
A

SH
O
ve
rs
us

M
O
A

SH
O
ve
rs
us

SC
A

f 1
(x

)
5.
22

×
10

−1
2

3.
01

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

f 2
(x

)
3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

5.
86

×
10

−0
6

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

f 3
(x

)
2.
89

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

6.
52

×
10

−0
9

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

f 4
(x

)
3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

5.
86

×
10

−0
6

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
82

×
10

−0
9

f 5
(x

)
3.
00

×
10

−1
1

3.
01

×
10

−1
1

3.
01

×
10

−1
1

1.
09

×
10

−1
0

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

f 6
(x

)
6.
68

×
10

−1
1

4.
28

×
10

−0
2

3.
02

×
10

−1
1

3.
02

×
10

−1
1

2.
32

×
10

−0
2

8.
42

×
10

−0
1

6.
72

×
10

−1
0

3.
02

×
10

−1
1

7.
38

×
10

−1
1

f 7
(x

)
3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

4.
08

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

f 8
(x

)
2.
96

×
10

−1
1

7.
71

×
10

−0
6

2.
99

×
10

−1
1

2.
50

×
10

−0
3

3.
01

×
10

−1
1

3.
01

×
10

−1
1

1.
21

×
10

−1
2

1.
21

×
10

−1
2

3.
01

×
10

−1
1

f 9
(x

)
3.
01

×
10

−1
1

3.
01

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

1.
29

×
10

−0
6

4.
61

×
10

−1
0

2.
00

×
10

−0
5

4.
20

×
10

−1
0

f 1
0
(x

)
1.
01

×
10

−0
9

4.
11

×
10

−1
2

4.
11

×
10

−1
2

4.
11

×
10

−1
2

4.
17

×
10

−0
8

4.
11

×
10

−1
2

4.
58

×
10

−1
2

4.
11

×
10

−1
2

4.
11

×
10

−1
2

(c
on
tin

ue
d)

3.6 Comparative Experiments and Results 107

Ta
bl
e
3.
4

(c
on
tin

ue
d)

Fu
nc
tio

n
SH

O
ve
rs
us

PS
O

SH
O
ve
rs
us

A
B
C

SH
O
ve
rs
us

FA
SH

O
ve
rs
us

D
E

SH
O
ve
rs
us

G
A

SH
O
ve
rs
us

C
SA

SH
O
ve
rs
us

D
A

SH
O
ve
rs
us

M
O
A

SH
O
ve
rs
us

SC
A

f 1
1
(x

)
2.
97

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

1.
29

×
10

−0
9

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

f 1
2
(x

)
3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

1.
11

×
10

−0
6

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

f 1
3
(x

)
9.
92

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

f 1
4
(x

)
2.
70

×
10

−1
1

2.
71

×
10

−1
1

2.
71

×
10

−1
1

2.
71

×
10

−1
1

2.
67

×
10

−1
1

2.
71

×
10

−1
1

5.
07

×
10

−1
0

2.
71

×
10

−1
1

2.
71

×
10

−1
1

f 1
5
(x

)
8.
15

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

4.
08

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

3.
02

×
10

−1
1

T
he

ta
bl
e
sh
ow

s
th
e
re
su
lti
ng

p-
va
lu
es

fo
r
ea
ch

pa
ir
-w

is
e
co
m
pa
ri
so
n

108 3 The Selfish Herd Optimizer

3.7 Conclusions

In this chapter, a novel swarm optimization algorithm called Selfish Herd Optimizer
(SHO), developed to solve global optimization problems, was presented. SHO is
based on the widely observed selfish herd behavior, manifested as a result of the
predation risk inherently related to most prey-predator interactions. As such, the
proposed method considers two types of search agents: the members of a selfish
herd (prey) and the individuals which hunt for the individuals in such aggregation
(predators). Depending on their designation (and its internal social structure in the
case of the members of the herd), each individual moves around the solution space
of a given optimization problem by considering a set of distinctive evolutionary
operators, which mimic the different kind of behaviors manifested in said predatory
interactions. In contrast to most existing swarm optimization algorithms, the SHO
allows not only to emulate such interesting selfish behaviors, but also to incorpo-
rate computational mechanisms devised to avoid critical flaws commonly found on
other similar methods, such as premature convergence and the inappropriate balance
between the exploration and exploitation of solutions. The performance of SHO has
been analyzed through a series experiments involving a set of 15 different benchmark
optimization functions commonly cited on the literature. Furthermore, the perfor-
mance of SHO was also compared against popular methods, such as Particle Swarm
Optimization (PSO) Artificial Bee Colony (ABC, Firefly Algorithm (FA), Differ-
ential Evolution (DE), Genetic Algorithms (GA), Crow Search Algorithm (CSA),
Dragonfly Algorithm (DA), Moth-flame Optimization Algorithm (MOA) and Sine
Cosine Algorithm (SCA). The experimental data obtained though such exhaustive
experimentation demonstrates that SHO has a high performance in terms of solution
quality. Such remarkable performance is associated with two different traits: 1. the
use of operators which allow a better distribution within the search space, 2. the
division of the population into different individual types which enable the proposed
method to adopt different exploration and exploitation rates during the evolutionary
process, and 3. The integration of unique predation based operators which allows the
diversification of solutions.

References

1. Kennedy, J., Eberhart, R.: Particle swarm optimization. IEEE Int. Conf. Neural Netw. 4,
1942–1948 (1995)

2. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl.
Soft Comput. J. 8(1), 687–697 (2008)

3. Yang, X.: Firefly algorithm, Lévy flights and global optimization (2010)
4. Rajabioun, R.: Cuckoo optimization algorithm.Appl. Soft Comput. J. 11(8), 5508–5518 (2011)
5. Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., Tian, Q.: Self-adaptive learning based particle

swarm optimization. Inf. Sci. (Ny) 181(20), 4515–4538 (2011)
6. Xiang, W., An, M.: Computers & operations research an efficient and robust artificial bee

colony algorithm for numerical optimization. Comput. Oper. Res. 40(5), 1256–1265 (2013)

References 109

7. Wang, H., Sun, H., Li, C., Rahnamayan, S., Pan, J.: Diversity enhanced particle swarm opti-
mization with neighborhood search. Inf. Sci. (Ny) 223, 119–135 (2013)

8. Banharnsakun, A., Achalakul, T., Sirinaovakul, B.: The best-so-far selection in artificial bee
colony algorithm. Appl. Soft Comput. J. 11(2), 2888–2901 (2011)

9. Hamilton, W.D.: Geometry for the selfish herd. J. Theor. Biol. 31(2), 295–311 (1971)
10. Morrell, L.J., Ruxton, G.D., James, R.: Spatial positioning in the selfish herd. Behav. Ecol.

16–22 (2010)
11. Eshel, I., Sansone, E., Shaked, A.: On the evolution of group-escape strategies of selfish prey.

Theor. Popul. Biol. 80(2), 150–157 (2011)
12. Viscido, S.V., Wethey, D.S.: Quantitative analysis of fiddler crab flock movement: evidence for

‘selfish herd’ behaviour. Anim. Behav. 63(4), 735–741 (2002)
13. Orpwood, J.E.,Magurran, A.E., Armstrong, J.D., Griffiths, S.W.:Minnows and the selfish herd:

effects of predation risk on shoaling behaviour are dependent on habitat complexity. Anim.
Behav. 76(1), 143–152 (2008)

14. Alcock, J.: Animal Behavior: An Evolutionary Approach. Sinauer Associates Inc., Sunderland,
MA (2001)

15. Mcclure,M.,Despland, E.: Collective foraging patterns of field colonies ofMalacosomadisstria
caterpillars. Entomol. Soc. Canada2 142(5), 473–480 (2010)

16. Fausto, F., Cuevas, E., Valdivia, A., González, A.: A global optimization algorithm inspired in
the behavior of selfish herds. BioSystems 160, 39–55 (2017)

17. Viscido, S.V., Miller, M., Wethey, D.S.: The dilemma of the selfish herd: the search for a
realistic movement rule. J. Theor. Biol. 217(2), 183–194 (2002)

18. Reluga, T.C., Viscido, S.: Simulated evolution of selfish herd behavior. J. Theor. Biol. 234(2),
213–225 (2005)

19. Thomas, B.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, Inc.
(1996)

20. Voltera, V.: Variations and fluctuations of the number of individuals in animal species libing
together. In: Chapman, R.N. (ed.) Animal Ecology. McGraw-Hill (1931)

21. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global opti-
mization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

22. Yang, X.: Nature-Inspired Metaheuristic Algorithms, 2nd edn. Luniver Press, Beckington, UK
(2008)

23. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math.
Comput. 214(1), 108–132 (2009)

24. Mitchell, M.: An Introduction to Genetic Algorithms. The MIT Press, Cambridge, MA (1996)
25. Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimiza-

tion problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)
26. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solv-

ing single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4),
1053–1073 (2015)

27. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm.
Knowl.-Based Syst. 89, 228–249 (2015)

28. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based
Syst. 96, 120–133 (2016)

29. Ji, Y., Zhang, K., Qu, S.: A deterministic global optimization algorithm. Appl. Math. Comput.
185(1), 382–387 (2007)

30. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf.
Sci. (Ny) 179(13), 2232–2248 (2009)

31. Wilcoxon, F.: Individual comparisons by ranking methods Frank Wilcoxon. Biometrics Bull.
1(6), 80–83 (2006)

32. García, S., Molina, D., Lozano, M.: A study on the use of non-parametric tests for analyzing
the evolutionary algorithms’ behaviour : a case study on the CEC’2005 special session on real
parameter optimization. 617–644 (2009)

Chapter 4
The Swarm Method of the Social-Spider

Abstract Swarm intelligence is a computer science field which emulates the coop-
erative behavior of natural systems such as insects or animals. Many methods result-
ing from these models have been suggested to solve several complex optimization
problems. In this chapter, a metaheuristic approach known as the Social Spider Opti-
mization (SSO) is analyzed for solving optimization problems. The SSO method
considers the simulation of the collective operation of social-spiders. In SSO, can-
didate solutions represent a set of spiders which interacts among them based on the
natural laws of the colony. The algorithm examines two different kinds of search
agents (spiders): males and females. According to the gender, each element is con-
ducted by a set of different operations which imitate different behaviors that are
commonly observed in the colony.

4.1 Introduction

The collective intelligent behavior of insect or animal groups in nature such as flocks
of birds, colonies of ants, schools of fish, swarms of bees and termites have attracted
the attention of researchers. The aggregative conduct of insects or animals is known
as swarm behavior. Entomologists have studied this collective phenomenon to model
biological groups in nature while engineers have applied these models as a frame-
work for solving complex real-world problems. This branch of artificial intelligence
which deals with the collective behavior of elements through complex interaction
of individuals with no supervision is frequently addressed as swarm intelligence.
Bonabeau defined swarm intelligence as “any attempt to design algorithms or dis-
tributed problem solving devices inspired by the collective behavior of the social
insect colonies and other animal societies” [1]. Swarm intelligence has some advan-
tages such as scalability, fault tolerance, adaptation, speed, modularity, autonomy
and parallelism [2].

The key components of swarm intelligence are self-organization and labor divi-
sion. In a self-organizing system, each of the covered units responds to local stimuli
individually and may act together to accomplish a global task, via a labor separation

© Springer Nature Switzerland AG 2020
E. Cuevas et al., New Advancements in Swarm Algorithms: Operators
and Applications, Intelligent Systems Reference Library 160,
https://doi.org/10.1007/978-3-030-16339-6_4

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16339-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-16339-6_4

112 4 The Swarm Method of the Social-Spider

which avoids a centralized supervision. The entire system can thus efficiently adapt
to internal and external changes.

Several metaheuristic algorithms have been developed by a combination of deter-
ministic rules and randomness, mimicking the behavior of insect or animal groups
in nature. Such methods include the social behavior of bird flocking and fish school-
ing such as the Particle Swarm Optimization (PSO) algorithm [3], the cooperative
behavior of bee colonies such as the Artificial Bee Colony (ABC) technique [4],
the social foraging behavior of bacteria such as the Bacterial Foraging Optimization
Algorithm (BFOA) [5], the simulation of the herding behavior of krill individuals
such as the Krill Herd (KH) method [6], the mating behavior of firefly insects such
as the Firefly (FF) method [7] and the emulation of the lifestyle of cuckoo birds such
as the Cuckoo Optimization Algorithm (COA) [8].

In particular, insect colonies and animal groups provide a rich set of metaphors
for designing metaheuristic optimization algorithms. Such cooperative entities are
complex systems that are composed by individuals with different cooperative-tasks
where each member tends to reproduce specialized behaviors depending on its gen-
der [9]. However, most of metaheuristic algorithms model individuals as unisex enti-
ties that perform virtually the same behavior. Under such circumstances, algorithms
waste the possibility of adding new and selective operators as a result of considering
individuals with different characteristics such as sex, task-responsibility, etc. These
operators could incorporate computational mechanisms to improve several important
algorithm characteristics including population diversity and searching capacities.

Although PSO and ABC are the most popular metaheuristic algorithms for solv-
ing complex optimization problems, they present serious flaws such as premature
convergence and difficulty to overcome local minima [10, 11]. The cause for such
problems is associated to the operators that modify individual positions. In such
algorithms, during their evolution, the position of each agent for the next iteration
is updated yielding an attraction towards the position of the best particle seen so-far
(in case of PSO) or towards other randomly chosen individuals (in case of ABC). As
the algorithm evolves, those behaviors cause that the entire population concentrates
around the best particle or diverges without control. It does favors the premature
convergence or damage the exploration-exploitation balance [12, 13].

The interesting and exotic collective behavior of social insects have fascinated and
attracted researchers for many years. The collaborative swarming behavior observed
in these groups provides survival advantages, where insect aggregations of relatively
simple and “unintelligent” individuals can accomplish very complex tasks using
only limited local information and simple rules of behavior [14]. Social-spiders are a
representative example of social insects [15].A social-spider is a spider specieswhose
membersmaintain a set of complex cooperative behaviors [16].Whereasmost spiders
are solitary and even aggressive toward other members of their own species, social-
spiders show a tendency to live in groups, forming long-lasting aggregations often
referred to as colonies [17]. In a social-spider colony, each member, depending on its
gender, executes a variety of tasks such as predation, mating, web design, and social
interaction [17, 18]. Theweb it is an important part of the colony because it is not only
used as a common environment for allmembers, but also as a communication channel

4.1 Introduction 113

among them [19]. Therefore, important information (such as trapped prays or mating
possibilities) is transmitted by small vibrations through the web. Such information,
considered as a local knowledge, is employed by each member to conduct its own
cooperative behavior, influencing simultaneously the social regulation of the colony
[20].

In this chapter, a metaheuristic algorithm, called the Social Spider Optimization
(SSO) is analyzed for solving optimization tasks. The SSO algorithm is based on the
simulation of the cooperative behavior of social-spiders. In this algorithm, individuals
emulate a group of spiders which interact to each other based on the biological
laws of the cooperative colony. The algorithm considers two different search agents
(spiders): males and females. Depending on gender, each individual is conducted by
a set of different swarm operators which mimic different cooperative behaviors that
are typical in a colony. Different to most of existent metaheuristic algorithms, in the
approach, each individual is modeled considering two genders. Such fact allows not
only to emulate in abetter realisticway the cooperative behavior of the colony, but also
to incorporate computational mechanisms to avoid critical flaws commonly present
in the popular PSO and ABC algorithms, such as the premature convergence and the
incorrect exploration-exploitation balance. In order to illustrate the proficiency and
robustness of the approach, it is compared to other well-known swarm methods. The
comparison examines several standard benchmark functions which are commonly
considered in the literature. The results show a high performance of the method for
searching a global optimum in several benchmark functions.

This chapter is organized as follows. In Sect. 4.2, we introduce basic biological
aspects of the algorithm. In Sect. 4.3, the novel SSO algorithm and its characteristics
are both described. Section 4.4 presents the experimental results and the comparative
study. Finally, in Sect. 4.5, conclusions are drawn.

4.2 Biological Concepts

Social insect societies are complex cooperative systems that self-organize within a
set of constraints. Cooperative groups are better at manipulating and exploiting their
environment, defending resources and brood, and allowing task specialization among
group members [21, 22]. A social insect colony functions as an integrated unit that
not only possesses the ability to operate at a distributed manner, but also to undertake
enormous construction of global projects [23]. It is important to acknowledge that
global order in social insects can arise as a result of internal interactions among
members.

A few species of spiders have been documented exhibiting a degree of social
behavior [15]. The behavior of spiders can be generalized into two basic forms:
solitary spiders and social spiders [17]. This classification is made based on the level
of cooperative behavior that they exhibit [18]. In one side, solitary spiders create
and maintain their own web while live in scarce contact to other individuals of the

114 4 The Swarm Method of the Social-Spider

same species. In contrast, social spiders form colonies that remain together over a
communal web with close spatial relationship to other group members [19].

A social spider colony is composed of two fundamental components: its members
and the communal web.Members are divided into two different categories:males and
females. An interesting characteristic of social-spiders is the highly female-biased
population. Some studies suggest that the number of male spiders barely reaches the
30% of the total colony members [17, 24]. In the colony, each member, depending
on its gender, cooperate in different activities such as building and maintaining the
communal web, prey capturing, mating and social contact [20]. Interactions among
members are either direct or indirect [25]. Direct interactions imply body contact or
the exchange of fluids such as mating. For indirect interactions, the communal web is
used as a “medium of communication” which conveys important information that is
available to each colony member [19]. This information encoded as small vibrations
is a critical aspect for the collective coordination among members [20]. Vibrations
are employed by the colony members to decode several messages such as the size of
the trapped preys, characteristics of the neighboring members, etc. The intensity of
such vibrations depend on the weight and distance of the spiders that have produced
them.

In spite of the complexity, all the cooperative global patterns in the colony level
are generated as a result of internal interactions among colony members [26]. Such
internal interactions involve a set of simple behavioral rules followed by each spider
in the colony.Behavioral rules are divided into twodifferent classes: social interaction
(cooperative behavior) and mating [27].

As a social insect, spiders perform cooperative interactionwith other colonymem-
bers. Theway inwhich this behavior takes place depends on the spider gender. Female
spiders which show amajor tendency to socialize present an attraction or dislike over
others, irrespectively of gender [17]. For a particular female spider, such attraction
or dislike is commonly developed over other spiders according to their vibrations
which are emitted over the communal web and represent strong colony members
[20]. Since the vibrations depend on the weight and distance of the members which
provoke them, stronger vibrations are produced either by big spiders or neighboring
members [19]. The bigger a spider is, the better it is considered as a colony member.
The final decision of attraction or dislike over a determined member is taken accord-
ing to an internal state which is influenced by several factors such as reproduction
cycle, curiosity and other random phenomena [20].

Different to female spiders, the behavior ofmalemembers is reproductive-oriented
[28]. Male spiders recognize themselves as a subgroup of alpha males which domi-
nate the colony resources. Therefore, the male population is divided into two classes:
dominant and non-dominant male spiders [28]. Dominant male spiders have better
fitness characteristics (normally size) in comparison to non-dominant. In a typical
behavior, dominant males are attracted to the closest female spider in the communal
web. In contrast, non-dominant male spiders tend to concentrate upon the center
of the male population as a strategy to take advantage of the resources wasted by
dominant males [29].

4.2 Biological Concepts 115

Mating is an important operation that no only assures the colony survival, but also
allows the information exchange amongmembers.Mating in a social-spider colony is
performed by dominant males and female members [30]. Under such circumstances,
when a dominant male spider locates one or more female members within a specific
range, it mates with all the females in order to produce offspring [31].

4.3 The SSO Algorithm

In this chapter, the operational principles from the social-spider colony have been
used as guidelines for developing a new metaheuristic optimization algorithm. The
SSO assumes that entire search space is a communal web, where all the social-
spiders interact to each other. In the approach, each solution within the search space
represents a spider position in the communal web. Every spider receives a weight
according to the fitness value of the solution that is symbolized by the social-spider.
The algorithm models two different search agents (spiders): males and females.
Depending on gender, each individual is conducted by a set of different evolutionary
operators which mimic different cooperative behaviors that are commonly assumed
within the colony.

An interesting characteristic of social-spiders is the highly female-biased popu-
lations. In order to emulate this fact, the algorithm starts by defining the number of
female and male spiders that will be characterized as individuals in the search space.
The number of females N f is randomly selected within the range of 65–90% of the
entire population N. Therefore, N f is calculated by the following equation:

N f = floor[(0.9 − rand · 0.25) · N] (4.1)

where rand is a random number between [0, 1] whereas floor(·) maps a real number
to an integer number. The number ofmale spiders Nm is computed as the complement
between N and N f . It is calculated as follows:

Nm = N − N f (4.2)

Therefore, the complete population S, composed by N elements, is divided
in two sub-groups F and M. The Group F assembles the set of female indi-
viduals F = {f1, f2, . . . , fN f } whereas M groups the male members (M =
{m1,m2, . . . ,mNm }), where S = F ∪ M (S = {s1, s2, . . . , sN }), such that S ={
s1 = f1, s2 = f2, . . . , sN f = fN f , sN f +1 = m1, sN f +2 = m2, . . . , sN = mNm

}
.

116 4 The Swarm Method of the Social-Spider

4.3.1 Fitness Assignation

In the biological metaphor, the spider size is the characteristic that evaluates the
individual capacity to perform better over its assigned tasks. In the approach, every
individual (spider) receives a weight wi which represents the solution quality that
corresponds to the spider i (irrespective of gender) of the population S. In order to
calculate the weight of every spider the next equation is used:

wi = J (si) − worstS
bestS − worstS

(4.3)

where J (si) is the fitness value obtained by the evaluation of the spider position si
with regard to the objective function J (·). The values worstS and bestS are defined
as follows (considering a maximization problem):

bestS = max
k∈{1,2,...,N }(J (sk)) and worstS = min

k∈{1,2,...,N }(J (sk)) (4.4)

4.3.2 Modeling of the Vibrations Through the Communal
Web

The communal web is used as a mechanism to transmit information among the
colony members. This information is encoded as small vibrations that are critical for
the collective coordination of all individuals in the population. The vibrations depend
on the weight and distance of the spider which has generated them. Since the distance
is relative to the individual that provokes the vibrations and the member who detects
them, members located near to the individual that provokes the vibrations, perceive
stronger vibrations in comparison withmembers located in distant positions. In order
to reproduce this process, the vibrations perceived by the individual i as a result of
the information transmitted by the member j are modeled according to the following
equation:

V ibi, j = w j · e−d2
i, j (4.5)

where the di, j is the Euclidian distance between the spiders i and j, such that di, j =∥∥si − s j
∥∥.

Although it is virtually possible to compute perceived-vibrations by considering
any pair of individuals, three special relationships are considered within the SSO
approach:

1. Vibrations V ibci are perceived by the individual i (si) as a result of the informa-
tion transmitted by the member c (sc) who is an individual that has two important

4.3 The SSO Algorithm 117

characteristics: it is the nearest member to i and possesses a higher weight in
comparison to i (wc > wi).

V ibci = wc · e−d2
i,c (4.6)

2. The vibrations V ibbi perceived by the individual i as a result of the infor-
mation transmitted by the member b (sb), with b being the individual hold-
ing the best weight (best fitness value) of the entire population S, such that
wb = max

k∈{1,2,...,N }(wk).

V ibbi = wb · e−d2
i,b (4.7)

3. The vibrations V ib fi perceived by the individual i (si) as a result of the informa-
tion transmitted by the member f (s f), with f being the nearest female individual
to i.

V ib fi = w f · e−d2
i, f (4.7)

Figure 4.1 shows the configuration of each special relationship: (a) V ibci , (b)
V ibbi and (c) V ib fi .

4.3.3 Initializing the Population

Like other swarm algorithms, the SSO is an iterative process whose first step is to
randomly initialize the entire population (female and male). The algorithm begins
by initializing the set S of N spider positions. Each spider position, fi or mi , is a n-
dimensional vector containing the parameter values to be optimized. Such values are
randomly and uniformly distributed between the pre-specified lower initial parameter
bound plowj and the upper initial parameter bound phighj , just as it described by the
following expressions:

f 0i, j = plowj + rand (0, 1) · (phighj − plowj) m0
k, j = plowj + rand (0, 1) · (phighj − plowj)

i = 1, 2, . . . , N f ; j = 1, 2, . . . , n k = 1, 2, . . . , Nm; j = 1, 2, . . . , n
(4.8)

where j, i and k are the parameter and individual indexes respectively whereas zero
signals the initial population. The function rand (0, 1) generates a random number
between 0 and 1. Hence, fi, j is the j-th parameter of the i-th female spider position.

118 4 The Swarm Method of the Social-Spider

Fig. 4.1 Configuration of each special relation: a V ibci , b V ibbi and c V ib fi

4.3.4 Cooperative Operators

Female cooperative operator

Social-spiders perform cooperative interaction over other colony members. The way
in which this behavior takes place depends on the spider gender. Female spiders
present an attraction or dislike over others irrespective of gender. For a particular
female spider, such attraction or dislike is commonly developed over other spiders
according to their vibrations which are emitted over the communal web. Since vibra-
tions depend on the weight and distance of the members which have originated them,
strong vibrations are produced either by big spiders or other neighboring members
lying nearby the individual which is perceiving them. The final decision of attraction
or dislike over a determined member is taken considering an internal state which is
influenced by several factors such as reproduction cycle, curiosity and other random
phenomena.

4.3 The SSO Algorithm 119

In order to emulate the cooperative behavior of the female spider, a new operator
is defined. The operator considers the position change of the female spider i at each
iteration. Such position change, which can be of attraction or repulsion, is computed
as a combination of three different elements. The first one involves the change in
regard to the nearestmember to i that holds a higherweight and produces the vibration
V ibci . The second one considers the change regarding the best individual of the entire
population S who produces the vibration V ibbi . Finally, the third one incorporates
a random movement.

Since the final movement of attraction or repulsion depends on several random
phenomena, the selection is modeled as a stochastic decision. For this operation, a
uniform random number rm is generated within the range [0, 1]. If rm is smaller than a
threshold PF, an attraction movement is generated; otherwise, a repulsion movement
is produced. Therefore, such operator can be modeled as follows:

fk+1
i =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

fki + α · V ibci · (sc − fki) + β · V ibbi · (sb − fki)

+δ ·
(
rand − 1

2

)
with probability PF

fki − α · V ibci · (sc − fki) − β · V ibbi · (sb − fki)

+δ ·
(
rand − 1

2

)
with probability 1 − PF

(4.9)

where α, β, δ and rand are random numbers between [0, 1] whereas k represents
the iteration number. The individual sc and sb represent the nearest member to i that
holds a higher weight and the best individual of the entire population S, respectively.

Under this operation, each particle presents a movement which combines the past
position that holds the attraction or repulsion vector over the local best element sc
and the global best individual sb seen so-far. This particular type of interaction avoids
the quick concentration of particles at only one point and encourages each particle
to search around the local candidate region within its neighborhood (sc), rather than
interacting to a particle (sb) in a distant region of the domain. The use of this scheme
has two advantages. First, it prevents the particles from moving towards the global
best position, making the algorithm less susceptible to premature convergence. Sec-
ond, it encourages particles to explore their own neighborhood thoroughly before
converging towards the global best position. Therefore, it provides the algorithm
with global search ability and enhances the exploitative behavior of the approach.

Male cooperative operator

According to the biological behavior of the social-spider, male population is divided
into two classes: dominant and non-dominant male spiders. Dominant male spiders
have better fitness characteristics (usually regarding the size) in comparison to non-
dominant. Dominant males are attracted to the closest female spider in the communal
web. In contrast, non-dominant male spiders tend to concentrate in the center of the
male population as a strategy to take advantage of resources that are wasted by
dominant males.

120 4 The Swarm Method of the Social-Spider

For emulating such cooperative behavior, the male members are divided into two
different groups (dominant members D and non-dominant members ND) according
to their position with regard to the median member. Male members, with a weight
value above themedianvaluewithin themale population, are considered thedominant
individuals D. On the other hand, those under the median value are labeled as non-
dominantNDmales. In order to implement such computation, themale populationM(
M = {m1,m2, . . . ,mNm }) is arranged according to their weight value in decreasing
order. Thus, the individualwhoseweightwN f +m is located in themiddle is considered
the median male member. Since indexes of the male population M in regard to the
entire population S are increased by the number of female members N f , the median
weight is indexed by N f + m. According to this, change of positions for the male
spider can be modeled as follows:

mk+1
i =

⎧
⎨

⎩

mk
i + α · V ib fi · (s f − mk

i) + δ · (rand − 1
2

)
ifwN f +i > wN f +m

mk
i + α ·

(∑Nm
h=1 m

k
h ·wN f +h

∑Nm
h=1 wN f +h

− mk
i

)
ifwN f +i ≤ wN f +m

,

(4.10)

where the individual s f represents the nearest female individual to the male member

i whereas
(∑Nm

h=1 m
k
h · wN f +h/

∑Nm
h=1 wN f +h

)
correspond to the weighted mean of

the male population M.
By using this operator, two different behaviors are produced. First, the set D of

particles is attracted to others in order to provokemating. Such behavior allows incor-
porating diversity into the population. Second, the set ND of particles is attracted to
the weighted mean of the male population M. This fact is used to partially control
the search process according to the average performance of a sub-group of the pop-
ulation. Such mechanism acts as a filter which avoids that very good individuals or
extremely bad individuals influence the search process.

4.3.5 Mating Operator

Mating in a social-spider colony is performed by dominant males and the female
members. Under such circumstances, when a dominant male mg spider (g ∈ D)
locates a set Eg of female members within a specific range r (range of mating), it
mates, forming a new brood snew which is generated considering all the elements of
the set Tg that, in turn, has been generated by the union Eg ∪ mg . It is important to
emphasize that if the set Eg is empty, the mating operation is canceled. The range r
is defined as a radius which depends on the size of the search space. Such radius r is
computed according to the following model:

r =
∑n

j=1 (phighj − plowj)

2 · n (4.11)

4.3 The SSO Algorithm 121

In the mating process, the weight of each involved spider (elements ofTg) defines
the probability of influence for each individual into the new brood. The spiders
holding a heavier weight aremore likely to influence the new product, while elements
with lighter weight have a lower probability. The influence probability Psi of each
member is assigned by the roulette method, which is defined as follows:

Psi = wi∑
j∈Tk w j

, (4.12)

where i ∈ Tg .
Once the new spider is formed, it is compared to the new spider candidate snew

holding the worst spider swo of the colony, according to their weight values (where
wwo = minl∈{1,2,...,N }(wl)). If the new spider is better than the worst spider, the
worst spider is replaced by the new one. Otherwise, the new spider is discarded
and the population does not suffer changes. In case of replacement, the new spider
assumes the gender and index from the replaced spider. Such fact assures that the
entire population S maintains the original rate between female and male members.

In order to demonstrate the mating operation, Fig. 4.2a illustrates a simple opti-
mization problem. As an example, it is assumed a population S of eight different
2-dimensional members (N = 8), five females (N f = 5) and three males (Nm = 3).
Figure 4.2b shows the initial configuration of the proposed example with three differ-
ent female members f2(s2), f3(s3) and f4(s4) constituting the set E2 which is located
inside of the influence range r of a dominant malem2 (s7). Then, the new candidate
spider snew is generated from the elements f2, f3, f4 and m2 which constitute the set
T2. Therefore, the value of the first decision variable snew,1 for the new spider is
chosen by means of the roulette mechanism considering the values already existing
from the set

{
f2,1, f3,1, f4,1,m2,1

}
. The value of the second decision variable snew,2

is also chosen in the same manner. Table 4.1 shows the data for constructing the new
spider through the roulette method. Once the new spider snew is formed, its weight
wnew is calculated. As snew is better than the worst member f1 that is present in the
population S, f1 is replaced by snew. Therefore, snew assumes the same gender and
index from f1. Figure 4.2c shows the configuration of S after the mating process.

Under this operation, new generated particles locally exploit the search space
inside the mating range in order to find better individuals.

122 4 The Swarm Method of the Social-Spider

Fig. 4.2 Example of the mating operation: a optimization problem, b initial configuration before
mating and c configuration after the mating operation

Table 4.1 Data for constructing the new spider snew through the roulette method

Spider Position wi Psi Roulette

s1 f1 (−1.9,
0.3)

0.00 –

s2 f2 (1.4, 1.1) 0.57 0.22

s3 f3 (1.5, 0.2) 0.42 0.16

s4 f4 (0.4, 1.0) 1.00 0.39

s5 f5 (1.0, −
1.5)

0.78 –

s6 m1 (−1.3, −
1.9)

0.28 –

s7 m2 (0.9, 0.7) 0.57 0.22

s8 m3 (0.8, −
2.6)

0.42 –

snew (0.9, 1.1) 1.00 –

4.3 The SSO Algorithm 123

4.3.6 Computational Procedure

The computational procedure for the algorithm can be summarized as follows:

124 4 The Swarm Method of the Social-Spider

4.3.7 Discussion About the SSO Algorithm

Evolutionary algorithms (EA) have been widely employed for solving complex opti-
mization problems. These methods are found to be more powerful than conventional
methods based on formal logics or mathematical programming [32]. In an EA algo-
rithm, search agents have to decidewhether to explore unknown search positions or to
exploit already tested positions in order to improve their solution quality. Pure explo-
ration degrades the precision of the evolutionary process but increases its capacity
to find new potential solutions. On the other hand, pure exploitation allows refining
existent solutions but adversely drives the process to local optimal solutions. There-
fore, the ability of an EA to find a global optimal solutions depends on its capacity
to find a good balance between the exploitation of found-so-far elements and the
exploration of the search space [33]. So far, the exploration–exploitation dilemma
has been an unsolved issue within the framework of evolutionary algorithms.

4.3 The SSO Algorithm 125

EA defines individuals with the same property, performing virtually the same
behavior. Under these circumstances, algorithms waste the possibility to add new
and selective operators as a result of considering individuals with different charac-
teristics. These operators could incorporate computational mechanisms to improve
several important algorithm characteristics such as population diversity or searching
capacities.

On the other hand, PSO and ABC are the most popular metaheuristic algorithms
for solving complex optimization problems.However, they present serious flaws such
as premature convergence and difficulty to overcome local minima [10, 11]. Such
problems arise from operators that modify individual positions. In such algorithms,
the position of each agent in the next iteration is updated yielding an attraction towards
the position of the best particle seen so-far (in case of PSO) or any other randomly
chosen individual (in case ofABC). Such behaviors produce that the entire population
concentrates around the best particle or diverges without control as the algorithm
evolves, either favoring the premature convergence or damaging the exploration-
exploitation balance [12, 13].

Different to other EA, at SSO each individual is modeled considering the gender.
Such fact allows incorporating computational mechanisms to avoid critical flaws
such as premature convergence and incorrect exploration-exploitation balance com-
monly present in both, the PSO and the ABC algorithm. From an optimization point
of view, the use of the social-spider behavior as a metaphor introduces interesting
concepts in EA: the fact of dividing the entire population into different search-agent
categories and the employment of specialized operators that are applied selectively to
each of them. By using this framework, it is possible to improve the balance between
exploitation and exploration, yet preserving the same population, i.e. individuals who
have achieved efficient exploration (female spiders) and individuals that verify exten-
sive exploitation (male spiders). Furthermore, the social-spider behavior mechanism
introduces an interesting computational scheme with three important particularities:
first, individuals are separately processed according to their characteristics. Second,
operators share the same communication mechanism allowing the employment of
important information of the evolutionary process to modify the influence of each
operator. Third, although operators modify the position of only an individual type,
they use global information (positions of all individual types) in order to perform such
modification. Figure 4.3 presents a schematic representation of the algorithm-data-
flow. According to Fig. 4.3, the female cooperative and male cooperative operators
process only female or male individuals, respectively. However, the mating operator
modifies both individual types.

4.4 Experimental Results

A comprehensive set of 19 functions, which have been collected from Refs. [34–40],
has been used to test the performance of the SSO approach. Table 4.4 in theAppendix
presents the benchmark functions used in our experimental study. In the table, n

126 4 The Swarm Method of the Social-Spider

Fig. 4.3 Schematic representation of the SSO algorithm-data-flow

indicates the function dimension, f (x∗) the optimum value of the function, x∗ the
optimum position and S the search space (subset of Rn). A detailed description of
each function is given in the Appendix.

4.4.1 Performance Comparison to Other Metaheuristic
Algorithms

Wehave applied theSSOalgorithm to19 functionswhose results have been compared
to those produced by the Particle Swarm Optimization (PSO) method [3] and the
Artificial Bee Colony (ABC) algorithm [4]. These are considered as themost popular
metaheuristic algorithms for many optimization applications. In all comparisons, the
population has been set to 50 individuals. The maximum iteration number for all
functions has been set to 1000. Such stop criterion has been selected to maintain
compatibility to similar works reported in the literature [41, 42].

Theparameter setting for each algorithm in the comparison is described as follows:

1. PSO: The parameters are set to c1 = 2 and c2 = 2; besides, the weight factor
decreases linearly from 0.9 to 0.2 [3].

2. ABC: The algorithm has been implemented using the guidelines provided by its
own reference [4], using the parameter limit = 100.

3. SSO: Once it has been determined experimentally, the parameter PF has been
set to 0.7. It is kept for all experiments in this section.

The experiment compares the SSO to other algorithms such as PSO andABC. The
results for 30 runs are reported in Table 4.2 considering the following performance
indexes: the Average Best-so-far (AB) solution, the Median Best-so-far (MB) and

4.4 Experimental Results 127

the Standard Deviation (SD) of best-so-far solution. The best outcome for each
function is boldfaced. According to this table, SSO delivers better results than PSO
and ABC for all functions. In particular, the test remarks the largest difference in
performance which is directly related to a better trade-off between exploration and
exploitation. Figure 4.4 presents the evolution curves for PSO, ABC and the SSO
algorithm considering as examples the functions f1, f3, f5, f10, f15 and f19 from
the experimental set. Among them, the rate of convergence of SSO is the fastest,
which finds the best solution in less of 400 iterations on average while the other
three algorithms needmuchmore iterations. A non-parametric statistical significance
proof known as the Wilcoxon’s rank sum test for independent samples [43, 44] has
been conducted over the “average best-so-far” (AB) data of Table 4.2, with an 5%
significance level. Table 4.3 reports the p-values produced by Wilcoxon’s test for
the pair-wise comparison of the “average best so-far” of two groups. Such groups
are constituted by SSO versus PSO and SSO versus ABC. As a null hypothesis, it
is assumed that there is no significant difference between mean values of the two
algorithms. The alternative hypothesis considers a significant difference between the
“average best-so-far” values of both approaches. All p-values reported in Table 4.3
are less than 0.05 (5% significance level) which is a strong evidence against the
null hypothesis. Therefore, such evidence indicates that SSO results are statistically
significant and it has not occurred by coincidence (i.e. due to commonnoise contained
in the process).

Table 4.2 Minimization results of benchmark functions of Table 4.4 with n = 30. Maximum
number of iterations = 1000

SSO ABC PSO

f1(x) AB 1.96E − 03 2.90E − 03 1.00E + 03

MB 2.81E − 03 1.50E − 03 2.08E − 09

SD 9.96E − 04 1.44E − 03 3.05E + 03

f2(x) AB 1.37E − 02 1.35E − 01 5.17E + 01

MB 1.34E − 02 1.05E − 01 5.00E + 01

SD 3.11E − 03 8.01E − 02 2.02E + 01

f3(x) AB 4.27E − 02 1.13E + 00 8.63E + 04

MB 3.49E − 02 6.11E − 01 8.00E + 04

SD 3.11E − 02 1.57E + 00 5.56E + 04

f4(x) AB 5.40E − 02 5.82E + 01 1.47E + 01

MB 5.43E − 02 5.92E + 01 1.51E + 01

SD 1.01E − 02 7.02E + 00 3.13E + 00

f5(x) AB 1.14E + 02 1.38E + 02 3.34E + 04

MB 5.86E + 01 1.32E + 02 4.03E + 02

SD 3.90E + 01 1.55E + 02 4.38E + 04

(continued)

128 4 The Swarm Method of the Social-Spider

Table 4.2 (continued)

SSO ABC PSO

f6(x) AB 2.68E − 03 4.06E − 03 1.00E + 03

MB 2.68E − 03 3.74E − 03 1.66E − 09

SD 6.05E − 04 2.98E − 03 3.06E + 03

f7(x) AB 1.20E + 01 1.21E + 01 1.50E + 01

MB 1.20E + 01 1.23E + 01 1.37E + 01

SD 5.76E − 01 9.00E − 01 4.75E + 00

f8(x) AB 2.14E + 00 3.60E + 00 3.12E + 04

MB 3.64E + 00 8.04E − 01 2.08E + 02

SD 1.26E + 00 3.54E + 00 5.74E + 04

f9(x) AB 6.92E − 05 1.44E − 04 2.47E + 00

MB 6.80E − 05 8.09E − 05 9.09E − 01

SD 4.02E − 05 1.69E − 04 3.27E + 00

f10(x) AB 4.44E − 04 1.10E − 01 6.93E + 02

MB 4.05E − 04 4.97E − 02 5.50E + 02

SD 2.90E − 04 1.98E − 01 6.48E + 02

f11(x) AB 6.81E + 01 3.12E + 02 4.11E + 02

MB 6.12E + 01 3.13E + 02 4.31E + 02

SD 3.00E + 01 4.31E + 01 1.56E + 02

f12(x) AB 5.39E − 05 1.18E − 04 4.27E + 07

MB 5.40E − 05 1.05E − 04 1.04E − 01

SD 1.84E − 05 8.88E − 05 9.70E + 07

f13(x) AB 1.76E − 03 1.87E − 03 5.74E − 01

MB 1.12E − 03 1.69E − 03 1.08E − 05

SD 6.75E − 04 1.47E − 03 2.36E + 00

f14(x) AB −9.36E + 02 −9.69E + 02 −9.63E + 02

MB −9.36E + 02 −9.60E + 02 −9.92E + 02

SD 1.61E + 01 6.55E + 01 6.66E + 01

f15(x) AB 8.59E + 00 2.64E + 01 1.35E + 02

MB 8.78E + 00 2.24E + 01 1.36E + 02

SD 1.11E + 00 1.06E + 01 3.73E + 01

f16(x) AB 1.36E − 02 6.53E − 01 1.14E + 01

MB 1.39E − 02 6.39E − 01 1.43E + 01

SD 2.36E − 03 3.09E − 01 8.86E + 00

f17(x) AB 3.29E − 03 5.22E − 02 1.20E + 01

MB 3.21E − 03 4.60E − 02 1.35E − 02

SD 5.49E − 04 3.42E − 02 3.12E + 01

(continued)

4.5 Conclusions 129

Table 4.2 (continued)

SSO ABC PSO

f18(x) AB 1.87E + 00 2.13E + 00 1.26E + 03

MB 1.61E + 00 2.14E + 00 5.67E + 02

SD 1.20E + 00 1.22E + 00 1.12E + 03

f19(x) AB 2.74E − 01 4.14E + 00 1.53E + 00

MB 3.00E − 01 4.10E + 00 5.50E − 01

SD 5.17E − 02 4.69E − 01 2.94E + 00

Bold data represent the best results

4.5 Conclusions

In this chapter, a novel metaheuristic algorithm called the Social Spider Optimization
(SSO) has been proposed for solving optimization tasks. The SSO algorithm is based
on the simulation of the cooperative behavior of social-spiders whose individuals
emulate a group of spiders which interact to each other based on the biological
laws of a cooperative colony. The algorithm considers two different search agents
(spiders): male and female. Depending on gender, each individual is conducted by a
set of different swarm operators which mimic different cooperative behaviors within
the colony.

In contrast to most of existent metaheuristic algorithms, the SSO approach mod-
els each individual considering two genders. Such fact allows not only to emulate
the cooperative behavior of the colony in a realistic way, but also to incorporate
computational mechanisms to avoid critical flaws commonly delivered by the popu-
lar PSO and ABC algorithms, such as the premature convergence and the incorrect
exploration-exploitation balance.

SSO has been experimentally tested considering a suite of 19 benchmark func-
tions. The performance of SSOhas been also compared to the followingmetaheuristic
algorithms: the Particle Swarm Optimization method (PSO) [16], and the Artificial
Bee Colony (ABC) algorithm [38]. Results have confirmed a acceptable performance
of the SSOmethod in terms of the solution quality of the solution for all tested bench-
mark functions.

The SSO’s remarkable performance is associated with two different reasons: (i)
their operators allow a better particle distribution in the search space, increasing the
algorithm’s ability to find the global optima; and (ii) the division of the population
into different individual types, provides the use of different rates between exploration
and exploitation during the evolution process.

130 4 The Swarm Method of the Social-Spider

0 200 400 600 800 1000
0

1

2

3

4

5

6

7
x 10

4

Iteration(s)

F
itn

es
s

V
al

ue

PSO
ABC
SSO

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Iteration(s)

F
itn

es
s

V
al

ue

PSO
ABC
SSO

Iteration(s)
0 200 400 600 800 1000

0

0.5

1

1.5

2

2.5

3 x 10
8

F
itn

es
s

V
al

ue

PSO
ABC
SSO

Iteration(s)
0 200 400 600 800 1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

F
itn

es
s

V
al

ue
PSO

ABC

SSO

Iteration(s)
0 200 400 600 800 1000

0

50

100

150

200

250

300

350

400

450

F
itn

es
s

V
al

ue

PSO
ABC
SSO

Iteration(s)
0 200 400 600 800 1000

0

5

10

15

20

25

30

F
itn

es
s

V
al

ue

PSO
ABC
SSO

(a) (b)

(c) (d)

(e) (f)

Fig. 4.4 Evolution curves for PSO, ABC and the SSO algorithm considering as examples the
functions a f1, b f3, c f5, d f10, e f15 and f f19 from the experimental set

Appendix: List of Benchmark Functions 131

Table 4.3 p-values produced
by Wilcoxon’s test comparing
SSO versus ABC and SSO
versus PSO, over the “average
best-so-far” (AB) values from
Table 4.2

Function SSO versus ABC SSO versus PSO

f1(x) 0.041 1.8E − 05

f2(x) 0.048 0.059

f3(x) 5.4E − 04 6.2E − 07

f4(x) 1.4E − 07 4.7E − 05

f5(x) 0.045 7.1E − 07

f6(x) 2.3E − 04 5.5E − 08

f7(x) 0.048 0.011

f8(x) 0.017 0.043

f9(x) 8.1E − 04 2.5E − 08

f10(x) 4.6E − 06 1.7E − 09

f11(x) 9.2E − 05 7.8E − 06

f12(x) 0.022 1.1E − 10

f13(x) 0.048 2.6E − 05

f14(x) 0.044 0.049

f15(x) 4.5E − 05 7.9E − 08

f16(x) 2.8E − 05 4.1E − 06

f17(x) 7.1E − 04 6.2E − 10

f18(x) 0.013 8.3E − 10

f19(x) 4.9E − 05 5.1E − 08

Appendix: List of Benchmark Functions

Table 4.4

132 4 The Swarm Method of the Social-Spider

Ta
bl
e
4.
4

Te
st
fu
nc
tio

ns
us
ed

in
th
e
ex
pe
ri
m
en
ta
ls
tu
dy

N
am

e
Fu

nc
tio

n
S

D
im

M
in
im

um

Sp
he
re

f 1
(x

)
=

n ∑ i=
1
x2 i

[−
10
0,

10
0]

n
n

=
30

x∗
=

(0
,
..

.,
0)

;
f(
x∗

)
=

0

Sc
hw

ef
el
2.
22

f 2
(x

)
=

n ∑ i=
1
| x i

| +
n ∏ i=
1
| x i

|
[−

10
,
10

]n
n

=
30

x∗
=

(0
,
..

.,
0)

;
f(
x∗

)
=

0

Sc
hw

ef
el
1.
2

f 3
(x

)
=

n ∑ i=
1

(
i ∑ j=
1
x
j)

2
[−

10
0,

10
0]

n
n

=
30

x∗
=

(0
,
..

.,
0)

;
f(
x∗

)
=

0

F4
f 4

(x
)
=

41
8.
98
29
n

+
n ∑ i=
1

(−x
i
si
n(

√ | x i
|))

[−
10
0,

10
0]

n
n

=
30

x∗
=

(0
,
..

.,
0)

;
f(
x∗

)
=

0

R
os
en
br
oc
k

f 5
(x

)
=

n−
1

∑ i=
1

[1
00

(x
i+

1
−

x2 i
)2

+
(x

i
−

1)
2
]

[−
30

,
30

]n
n

=
30

x∗
=

(1
,
..

.,
1)

;
f(
x∗

)
=

0

St
ep

f 6
(x

)
=

n ∑ i=
1
(� x

i
+

0.
5�

)2
[−

10
0,

10
0]

n
n

=
30

x∗
=

(0
,
..

.,
0)

;
f(
x∗

)
=

0

Q
ua
rt
ic

f 7
(x

)
=

n ∑ i=
1
ix

4 i
+
ra

nd
om

(0
,
1)

[−
1.
28

,
1.
28

]n
n

=
30

x∗
=

(0
,
..

.,
0)

;
f(
x∗

)
=

0

D
ix
on

an
d

pr
ic
e

f 8
(x

)
=

(x
1
−

1)
2
+

n ∑ i=
1
i(
2x

2 i
−

x i
−1
) 2

[−
10

,
10

]n
n

=
30

x∗
=

(0
,
..

.,
0)

;
f(
x∗

)
=

0

(c
on
tin

ue
d)

Appendix: List of Benchmark Functions 133

Ta
bl
e
4.
4

(c
on
tin

ue
d)

N
am

e
Fu

nc
tio

n
S

D
im

M
in
im

um

L
ev
y

f 9
(x

)
=

0.
1⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

si
n2

(3
π
x 1

)

+
n ∑ i=
1

(x
i
−

1)
2
[1

+
si
n2

(3
π
x i

+
1)
]

+
(x

n
−

1)
2
[1

+
si
n2

(2
π
x n

)]

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭

+
n ∑ i=
1

u
(x

i,
5,
10
0,

4)
;

u
(x

i,
a,

k,
m

)
=

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

k (
x i

−
a)

m
x i

>
a

0
−a

<
x i

<
a

k (
−x

i
−
a)

m
x i

<
−a

[−
10

,
10

]n
n

=
30

x∗
=

(1
,
..

.,
1)

;
f(
x∗

)
=

0

Su
m

of
sq
ua
re
s

f 1
0
(x

)
=

n ∑ i=
1
ix

2 i
[−

10
,
10

]n
n

=
30

x∗
=

(0
,
..

.,
0)

;
f(
x∗

)
=

0

Z
ak
ha
ro
v

f 1
1
(x

)
=

n ∑ i=
1
x2 i

+
(

n ∑ i=
1
0.
5i
x i

)
2

+
(

n ∑ i=
1
0.
5i
x i

)
4

[−
5,
10

]n
n

=
30

x∗
=

(0
,
..

.,
0)

;
f(
x∗

)
=

0

(c
on
tin

ue
d)

134 4 The Swarm Method of the Social-Spider

Ta
bl
e
4.
4

(c
on
tin

ue
d)

N
am

e
Fu

nc
tio

n
S

D
im

M
in
im

um

Pe
na
liz

ed

f 1
2
(x

)
=

π n

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

10
si
n(

π
y 1

)+
n−

1
∑ i=

1

(y
i
−

1)
2
[1

+
10

si
n2

(π
y i

+1
)]

+
(y

n
−

1)
2

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭

+
n ∑ i=
1

u
(x

i,
10

,
10
0,

4)

y i
=

1
+

(x
i+

1)
4

u
(x

i,
a,

k,
m

)
=

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

k (
x i

−
a)

m

0

k (
−x

i
−
a)

m

x i
>

a

−a
≤

x i
≤

a

x i
<

a

[−
50

,
50

]n
n

=
30

x∗
=

(0
,
..

.,
0)

;
f(
x∗

)
=

0

Pe
na
liz

ed
2

f 1
3
(x

)
=

0.
1⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

si
n2

(3
π
x 1

)

+
n ∑ i=
1

(x
i
−

1)
2
[1

+
si
n2

(3
π
x i

+
1)
]

+(
x n

−
1)

2
[1

+
si
n2

(2
π
x n

)]⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭

+
n ∑ i=
1

u
(x

i,
5,
10
0,

4)

w
he
re

u
(x

i,
a,

k,
m

)
is
th
e
sa
m
e
as

Pe
na
liz

ed
fu
nc
tio

n.

[−
50

,
50

]n
n

=
30

x∗
=

(0
,
..

.,
0)

;
f(
x∗

)
=

0

Sc
hw

ef
el

f 1
4
(x

)
=

n ∑ i=
1
−x

i
si
n(

√ | x i
|)

[−
50
0,

50
0]

n
n

=
30

x∗
=

(4
20

,
..

.,
42
0)

;
f(
x∗

)
=

−4
18

.9
82
9

×
n

R
as
tr
ig
in

f 1
5
(x

)
=

n ∑ i=
1

[x
2 i
−

10
co
s(
2π

x i
)
+

10
]

[−
5.
12

,
5.
12

]n
n

=
30

x∗
=

(0
,
..

.,
0)

;
f(
x∗

)
=

0

(c
on
tin

ue
d)

Appendix: List of Benchmark Functions 135

Ta
bl
e
4.
4

(c
on
tin

ue
d)

N
am

e
Fu

nc
tio

n
S

D
im

M
in
im

um

A
ck
le
y

f 1
6
(x

)
=

−2
0
ex
p⎛ ⎝

−0
.2

√ √ √ √
1 n

n ∑ i=
1

x2 i

⎞ ⎠

−
ex
p(

1 n

n ∑ i=
1

co
s (
2π

x i
))

+
20

+
ex
p

[−
32

,
32

]n
n

=
30

x∗
=

(0
,
..

.,
0)

;
f(
x∗

)
=

0

G
ri
ew

an
k

f 1
7
(x

)
=

1
40

00

n ∑ i=
1
x2 i

−
n ∏ i=
1
co
s(

x i √ i

)
+

1
[−

60
0,

60
0]

n
n

=
30

x∗
=

(0
,
..

.,
0)

;
f(
x∗

)
=

0

Po
w
el
l

f 1
8
(x

)
=

n/
k

∑ i=
1

(x
4i

−3
+

10
x 4

i−
2
)2

+
5 (
x 4

i−
1
−

x 4
i)
2

+
(x

4i
−2

−
x 4

i−
1
)4

+
10

(x
4i

−3
−

x 4
i)
4

[−
4,
5]

n
n

=
30

x∗
=

(0
,
..

.,
0)

;
f(
x∗

)
=

0

Sa
lo
m
on

f 1
9
(x

)
=

−
co
s(

2π

√
n ∑ i=
1
x2 i

)

+
0.
1√

n ∑ i=
1
x2 i

+
1

[−
10
0,

10
0]

n
n

=
30

x∗
=

(0
,
..

.,
0)

;
f(
x∗

)
=

0

136 4 The Swarm Method of the Social-Spider

References

1. Bonabeau, E., Dorigo,M., Theraulaz, G.: Swarm intelligence: fromnatural to artificial systems.
Oxford University Press Inc., New York, NY, USA (1999)

2. Kassabalidis, I., El-Sharkawi,M.A.,Marks, R.J., Arabshahi, P., Gray,A.A.: Swarm intelligence
for routing in communication networks. In: IEEE Global Telecommunications Conference,
GLOBECOM’01, vol. 6, pp. 3613–3617 (2001)

3. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

4. Karaboga,D.:An idea based onhoneybee swarm for numerical optimization. TechnicalReport-
TR06. Engineering Faculty, Computer Engineering Department, Erciyes University (2005)

5. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE
Control Syst. Mag. 22(3), 52–67 (2002)

6. Hossein, A., Hossein-Alavi, A.: Krill herd: a new bio-inspired optimization algorithm. Com-
mun. Nonlinear Sci. Numer. Simulat. 17, 4831–4845 (2012)

7. Yang, X.S.: Engineering optimization: an introduction with metaheuristic applications. Wiley,
London (2010)

8. Rajabioun, R.: Cuckoo optimization algorithm. Appl. Soft Comput. 11, 5508–5518 (2011)
9. Bonabeau, E.: Social insect colonies as complex adaptive systems. Ecosystems 1, 437–443

(1998)
10. Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., Tian, Q.: Self-adaptive learning based particle

swarm optimization. Inf. Sci. 181(20), 4515–4538 (2011)
11. Wan-Li, X., Mei-Qing, A.: An efficient and robust artificial bee colony algorithm for numerical

optimization. Comput. Oper. Res. 40, 1256–1265 (2013)
12. Wang, H., Sun, H., Li, C., Rahnamayan, S., Jeng-shyang, P.: Diversity enhanced particle swarm

optimization with neighborhood. Inf. Sci. 223, 119–135 (2013)
13. Banharnsakun, A., Achalakul, T., Sirinaovakul, B.: The best-so-far selection in artificial bee

colony algorithm. Appl. Soft Comput. 11, 2888–2901 (2011)
14. Gordon, D.: The organization of work in social insect colonies. Complexity 8(1), 43–46 (2003)
15. Lubin, T.B.: The evolution of sociality in spiders. In: Brockmann, H.J. (ed.) Advances in the

Study of Behavior, vol. 37, pp. 83–145 (2007)
16. Uetz, G.W.: Colonial web-building spiders: balancing the costs and benefits of group-living.

In: Choe, E.J., Crespi, B. (eds.) The Evolution of Social Behavior in Insects and Arachnids,
pp. 458–475. Cambridge University Press, Cambridge, England

17. Aviles, L.: Sex-ratio bias and possible group selection in the social spider Anelosimus eximius.
Am. Nat. 128(1), 1–12 (1986)

18. Burgess, J.W.: Social spacing strategies in spiders. In: Rovner, P.N. (ed.) Spider Communi-
cation: Mechanisms and Ecological Significance, pp. 317–351. Princeton University Press,
Princeton, New Jersey (1982)

19. Maxence, S.: Social organization of the colonial spider Leucauge sp. in the Neotropics: vertical
stratification within colonies. J. Arachnol. 38, 446–451 (2010)

20. Eric, C., Yip, K.S.: Cooperative capture of large prey solves scaling challenge faced by spider
societies. Proc. Natl. Acad. Sci. U. S. A. 105(33), 11818–11822 (2008)

21. Oster, G., Wilson, E.: Caste and ecology in the social insects. N. J. Princeton University Press,
Princeton (1978)

22. Hölldobler, B., Wilson, E.O.: Journey to the ants: a story of scientific exploration (1994). ISBN
0-674-48525-4

23. Hölldobler, B., Wilson, E.O.: The ants. Harvard University Press (1990). ISBN 0-674-04075-9
24. Avilés, L.: Causes and consequences of cooperation and permanent-sociality in spiders. In:

Choe, B.C. (ed.) The Evolution of Social Behavior in Insects and Arachnids, pp. 476–498.
Cambridge University Press, Cambridge, Massachusetts (1997)

25. Rayor, E.C.: Do social spiders cooperate in predator defense and foraging without a web?
Behav. Ecol. Sociobiol. 65(10), 1935–1945 (2011)

References 137

26. Gove, R., Hayworth, M., Chhetri, M., Rueppell, O.: Division of labour and social insect colony
performance in relation to task and mating number under two alternative response threshold
models. Insect. Soc. 56(3), 19–331 (2009)

27. Ann, L., Rypstra, R.S.: Prey size, prey perishability and group foraging in a social spider.
Oecologia 86(1), 25–30 (1991)

28. Pasquet, A.: Cooperation and prey capture efficiency in a social spider, Anelosimus eximius
(Araneae, Theridiidae). Ethology 90, 121–133 (1991)

29. Ulbrich, K., Henschel, J.: Intraspecific competition in a social spider. Ecol. Model. 115(2–3),
243–251 (1999)

30. Jones, T., Riechert, S.: Patterns of reproductive success associated with social structure and
microclimate in a spider system. Anim. Behav. 76(6), 2011–2019 (2008)

31. Damian, O., Andrade, M., Kasumovic, M.: Dynamic population structure and the evolution of
spider mating systems. Adv. Insect. Physiol. 41, 65–114 (2011)

32. Yang, X.-S.: Nature-inspired metaheuristic algorithms. Luniver Press, Beckington (2008)
33. Chen, D.B., Zhao, C.X.: Particle swarm optimization with adaptive population size and its

application. Appl. Soft Comput. 9(1), 39–48 (2009)
34. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global opti-

mization over continuous spaces. J. Global Optim. 11(4), 341–359 (1995)
35. Yang, E., Barton, N.H., Arslan, T., Erdogan, A.T.: A novel shifting balance theory-based

approach to optimization of an energy-constrained modulation scheme for wireless sensor
networks. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2008,
Hong Kong, China, pp. 2749–2756, 1–6 June 2008, IEEE (2008)

36. Duan, X., Wang, G.G., Kang, X., Niu, Q., Naterer, G., Peng, Q.: Performance study of mode-
pursuing sampling method. In: Engineering Optimization, vol. 41, no. 1 (2009)

37. Vesterstrom, J., Thomsen, R.: A comparative study of differential evolution, particle swarm
optimization, and evolutionary algorithms on numerical benchmark problems. In: Proceedings
of the 2004 Congress on Evolutionary Computation (CEC 2004), vol. 2, pp. 1980–1987, 19–23
June 2004

38. Mezura-Montes, E., Velázquez-Reyes, J., Coello Coello, C.A.: A comparative study of differ-
ential evolution variants for global optimization. In: Proceedings of the 8th Annual Confer-
ence on Genetic and Evolutionary Computation (GECCO ‘06), ACM, New York, NY, USA,
pp. 485–492 (2006)

39. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math.
Comput. 214(1), 108–132 (2009). ISSN 0096-3003

40. Krishnanand, K.R., Nayak, S.K., Panigrahi, B.K., Rout, P.K.: Comparative study of five bio-
inspired evolutionary optimization techniques. In: 2009 World Congress on Nature & Biolog-
ically Inspired Computing (NaBIC), pp. 1231–1236 (2009)

41. Ying, J., Ke-Cun, Z., Shao-Jian, Q.: A deterministic global optimization algorithm.Appl.Math.
Comput. 185(1), 382–387 (2007)

42. Rashedia, E., Nezamabadi-pour, H., Saryazdi, S.: Filter modeling using gravitational search
algorithm. Eng. Appl. Artif. Intell. 24(1), 117–122 (2011)

43. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)
44. Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests

for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special
session on real parameter optimization. J. Heurist. (2008). https://doi.org/10.1007/s10732-008-
9080-4

https://doi.org/10.1007/s10732-008-9080-4

Chapter 5
The Locust Swarm Optimization
Algorithm

Abstract In recent years swarm intelligence emulate the behavior of insects or ani-
mal. In this chapter, an optimization algorithmcalledLocust Search (LS) is presented.
The LS is inspired of the behavior of the locust swarms. In the algorithm consider two
different behaviors: solitary and social. This tow types of behavior interact with each
other in ways to allow find solution to a complex optimization problem. In order
to illustrate the efficiency and robustness the LS was compared with other well-
known optimization algorithms. The algorithm was proved with several benchmark
functions.

5.1 Introduction

The collective intelligent behavior of insect or animal groups in nature such as flocks
of birds, colonies of ants, schools of fish, swarms of bees and termites have attracted
the attention of researchers. The aggregative conduct of insects or animals is known as
swarm behavior. Even though the single members of swarms are non-sophisticated
individuals, they are able to achieve complex tasks in cooperation. The collective
swarm behavior emerges from relatively simple actions or interactions among the
members. Entomologists have studied this collective phenomenon to model biolog-
ical swarms while engineers have applied these models as a framework for solving
complex real-world problems. The discipline of artificial intelligence which is con-
cerned with the design of intelligent multi-agent algorithms by taking inspiration
from the collective behavior of social insects or animals is known as swarm intel-
ligence [1]. Swarm algorithms have several advantages such as scalability, fault
tolerance, adaptation, speed, modularity, autonomy and parallelism [2].

Several swarm algorithms have been developed by a combination of deterministic
rules and randomness, mimicking the behavior of insect or animal groups in nature.
Such methods include the social behavior of bird flocking and fish schooling such
as the Particle Swarm Optimization (PSO) algorithm [3], the cooperative behavior
of bee colonies such as the Artificial Bee Colony (ABC) technique [4], the social
foraging behavior of bacteria such as the Bacterial Foraging Optimization Algorithm
(BFOA) [5], the simulation of the herding behavior of krill individuals such as the

© Springer Nature Switzerland AG 2020
E. Cuevas et al., New Advancements in Swarm Algorithms: Operators
and Applications, Intelligent Systems Reference Library 160,
https://doi.org/10.1007/978-3-030-16339-6_5

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16339-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-16339-6_5

140 5 The Locust Swarm Optimization Algorithm

Krill Herd (KH) method [6], the mating behavior of firefly insects such as the Firefly
(FF) method [7] the emulation of the lifestyle of cuckoo birds such as the Cuckoo
Search (CS) [8], the social-spider behavior such as the Social Spider Optimization
(SSO) [9], the simulation of the animal behavior in a group such as the Collective
Animal Behavior [10] and the emulation of the differential evolution in species such
as the Differential Evolution (DE) [11].

In particular, insect swarms and animal groups provide a rich set of metaphors
for designing swarm optimization algorithms. Such methods are complex systems
composed by individuals that tend to reproduce specialized behaviors [12]. However,
most of swarm algorithms and other evolutionary algorithms tend to exclusively
concentrate the individuals in the current best positions. Under such circumstances,
these algorithms seriously limit their search capacities.

Although PSO and DE are the most popular algorithms for solving complex
optimization problems, they present serious flaws such as premature convergence
and difficulty to overcome local minima [13, 14]. The cause for such problems is
associated to the operators that modify individual positions. In such algorithms,
during their evolution, the position of each agent for the next iteration is updated
yielding an attraction towards the position of the best particle seen so-far (in case
of PSO) or towards other promising individuals (in case of DE). As the algorithm
evolves, these behaviors cause that the entire population rapidly concentrates around
the best particles, favoring the premature convergence and damaging the appropriate
exploration of the search space [15, 16].

The interesting and exotic collective behavior of insects have fascinated and
attracted researchers for many years. The intelligent behavior observed in these
groups provides survival advantages, where insect aggregations of relatively sim-
ple and “unintelligent” individuals can accomplish very complex tasks using only
limited local information and simple rules of behavior [17]. Locusts (Schistocerca
gregaria) are a representative example of such collaborative insects [18]. Locust is
a kind of grasshopper that can change reversibly between a solitary and a social
phase, which differ considerably in behavior [19]. The two phases show many dif-
ferences including both overall levels of activity and the degree to which locusts are
attracted or repulsed among them [20]. In the solitary phase, locusts avoid contact
each other (locust concentrations). As consequence, they distribute throughout the
space, exploring sufficiently the plantation [20]. On other hand, in the social phase,
locusts frantically concentrate around the elements that have already found good
food sources [21]. Under such a behavior, locust attempt to efficiently find better
nutrients by devastating promising areas within the plantation.

In this chapter, a swarm algorithm, called the Locust Search (LS) is applied
for solving optimization tasks. The LS algorithm is based on the simulation of the
behavior presented in swarms of locusts. In the proposed algorithm, individuals
emulate a group of locusts which interact to each other based on the biological
laws of the cooperative swarm. The algorithm considers two different behaviors:
solitary and social. Depending on the behavior, each individual is conducted by a
set of evolutionary operators which mimic the different cooperative behaviors that
are typically found in the swarm. Different to most of existent swarm algorithms,

5.1 Introduction 141

in the proposed approach, the modeled behavior explicitly avoids the concentration
of individuals in the current best positions. Such fact allows not only to emulate
in a better realistic way the cooperative behavior of the locust colony, but also to
incorporate a computational mechanism to avoid critical flaws commonly present
in the popular PSO and DE algorithms, such as the premature convergence and the
incorrect exploration-exploitation balance. In order to illustrate the proficiency and
robustness of the proposed approach, it is compared to otherwell-known evolutionary
methods. The comparison examines several standard benchmark functions which are
commonly considered in the literature. The results show a high performance of the
proposed method for searching a global optimum in several benchmark functions.

5.2 Biological Fundamentals and Mathematical Models

Social insect societies are complex cooperative systems that self-organize within a
set of constraints. Cooperative groups are better at manipulating and exploiting their
environment, defending resources and brood, and allowing task specialization among
group members [22, 23]. A social insect colony functions as an integrated unit that
not only possesses the ability to operate at a distributed manner, but also to undertake
enormous construction of global projects [24]. It is important to acknowledge that
global order in insects can arise as a result of internal interactions among members.

Locusts are a kind of grasshoppers that exhibit two opposite behavioral phases,
solitary and social (gregarious). Individuals in the solitary phase avoid contact each
other (locust concentrations). As consequence, they distribute throughout the space,
exploring sufficiently the plantation [20]. In contrast, locusts in the gregarious phase
form several concentrations. These concentrations may contain up to 1010 members,
cover cross-sectional areas of up to 10 km2, and travel up to 10 kmper day for a period
of days or weeks as they feed causing devastating crop loss [25]. The mechanism for
the switch from the solitary phase to the gregarious phase is complex, and has been a
subject of significant biological inquiry. A set of factors recently has been implicated,
including geometry of the vegetation landscape and the olfactory stimulus [26].

Only fewworks [20, 21] that mathematically model the locust behavior have been
published. In such approaches, it is developed two different minimal models with
the goal of reproducing the macroscopic structure and motion of a group of locusts.
Since the method proposed in [20] models the behavior of each locust in the group,
it is used to develop the algorithm proposed in this paper.

142 5 The Locust Swarm Optimization Algorithm

5.2.1 Solitary Phase

In this section, it is described the way in which the position of each locust is mod-
ified as a consequence of its behavior under the solitary phase. Considering that xki
represents the current position of the ith locust in a group of N different elements,
the new position xk+1

i is calculated by using the following model:

xk+1
i = xki + �xi , (5.1)

where �xi corresponds to the change of position experimented by xki as a conse-
quence of its social interaction with all the other elements in the group.

Two locusts in the solitary phase exert forces on each other according to basic
biological principles of attraction and repulsion (see, e.g., [20]). Repulsion operates
very strongly over a short length scale in order to avoid concentrations. Attraction is
weaker, and operates over a longer length scale, providing the social force necessary
for maintaining the cohesion in the group. Therefore, it is modeled the strength of
these social forces using the function:

s(r) = F · e−r/L − e−r (5.2)

Here, r is a distance, F describes the strength of attraction, and L is the typical
attractive length scale. We have scaled the time and space coordinates so that the
repulsive strength and length scale are unity. We assume that F < 1 and L > 1 so that
repulsion is stronger and shorter-scale, and attraction in weaker and longer-scale.
This is typical for social organisms [21]. The social force exerted by locust j on
locust i is:

si j = s(ri j) · di j , (5.3)

where ri j = ∣
∣x j − xi

∣
∣ is the distance between the two locusts and di j = (x j −xi)/ri j

is the unit vector pointing from xi to x j . The total social force on each locust can be
modeled as the superposition of all of the pairwise interactions:

Si =
N

∑

j=1
j �=i

si j , (5.4)

The change of position �xi is modeled as the total social force experimented by
xki as the superposition of all of the pairwise interactions. Therefore, �xi is defined
as follows:

�xi = Si , (5.5)

5.2 Biological Fundamentals and Mathematical Models 143

1x

3x

12s

21s
13s

31s

23s

32s

2x

2S

1S

3S

Fig. 5.1 Behavioral model under the solitary phase

In order to illustrate the behavioral model under the solitary phase, Fig. 5.1
presents an example. It is assumed a population of three different members (N = 3)
which adopt a determined configuration in the current iteration k. As a consequence
of the social forces, each element suffers an attraction or repulsion to other elements
depending on the distance among them. Such forces are represented by s12, s13, s21,
s23, s31, s32. Since x1 and x2 are too close, the social forces s12 and s13 present a
repulsive nature. On the other hand, as the distances |x1 − x3| and |x2 − x3| are quite
long, the social forces s13, s23, s31 and s32 between x1 ↔ x3 and x2 ↔ x3 are from the
attractive nature. Therefore, the change of position �x1 is computed as the resultant
between s12 and s13(�x1 = s12 + s13). The values �x2 and �x3 of the locusts x1 and
x2 are also calculated accordingly.

In addition to the presented model [20], some studies [27–29] suggest that the
social force si j is also affected by the dominance of the involved individuals xi and x j

in the pairwise process. Dominance is a property that relatively qualifies the capacity
of an individual to survive, in relation to other elements in a group. Dominance
in locust is determined for several characteristics such as size, chemical emissions,
location with regard to food sources, etc. Under such circumstances, the social force
is magnified or weakened depending on the most dominant individual involved in
the repulsion-attraction process.

5.2.2 Social Phase

In this phase, locusts frantically concentrate around the elements that have already
found good food sources. Under such a behavior, locust attempt to efficiently find
better nutrients by devastating promising areas within the plantation.

144 5 The Locust Swarm Optimization Algorithm

(a) (b)

Fig. 5.2 Behavioral model under the social phase. a Initial configuration and food quality indexes,
b final configuration after the operation of the social phase

In order to simulate the social phase, to each locust xi of the group, it is associated
a food quality index Fqi . This index reflex the quality of the food source where xi
is located.

Under this behavioral model, it is first ranked theN elements of the group accord-
ing to their food quality indexes. Afterward, the b elements with the best food quality
indexes are selected (b � N). Considering a concentration radius Rc created around
each selected element, a set of c new locusts is randomly generated inside Rc. As a
result, most of the locusts will be concentrated around the best b elements. Figure 5.2
shows a simple example of behavioral model under the social phase. In the example,
it is assumed a configuration of eight locust (N = 8), as it is illustrated in Fig. 5.2a. In
the Figure, it is also presented the food quality index for each locust. A food quality
index near to one indicates a better food source. Therefore, considering b = 2, the
final configuration after the social phase, it is presented in Fig. 5.2b.

5.3 The Locust Search (LS) Algorithm

In this paper, the behavioral principles from a swarm of locusts have been used as
guidelines for developing a new swarm optimization algorithm. The LS assumes that
entire search space is a plantation, where all the locusts interact to each other. In the
proposed approach, each solution within the search space represents a locust position

5.3 The Locust Search (LS) Algorithm 145

in the plantation. Every locust receives a food quality index according to the fitness
value of the solution that is symbolized by the locust. The algorithm implements two
different behaviors: solitary and social. Depending on the behavior, each individual
is conducted by a set of evolutionary operators whichmimic the different cooperative
behaviors that are typically found in the swarm.

From the implementation point of view, in the LS operation, a population
Lk({lk1, lk2, . . . , lkN }) of N locusts (individuals) is evolved from the initial point (k =
0) to a total gen number iterations (k = gen). Each locust lki (i ∈ [1, . . . , N])) repre-
sents an n-dimensional vector

{

lki,1, l
k
i,2, . . . , l

k
i,n

}

where each dimension corresponds
to a decision variable of the optimization problem to be solved. The set of deci-
sion variables constitutes the feasible search space S = {

lki ∈ R
n
∣
∣lbd ≤ lki,d ≤ ubd

}

,
where lbd and ubd corresponds to the lower and upper bounds for the dimension d,
respectively. The food quality index associated to each locust lki (candidate solution)
is evaluated by using an objective function f (lki) whose final result represents the
fitness value of lki . In LS, each iteration of the evolution process consists of two
operators: (A) solitary and (B) social. Beginning by the solitary stage, the set of
locusts is operated in order to sufficiently explore the search space. Then, during the
social operation, existent solutions are refined within a determined neighborhood
(exploitation).

5.3.1 Solitary Operation (A)

One of the most interesting features of the proposed method is the use of the solitary
operator to modify the current locust positions. Under this approach, locusts are
displaced as a consequence of the social forces produced by the positional relations
among the elements of the swarm. Therefore, near individuals tend to repel with each
other, avoiding the concentration of elements in regions. On the other hand, distant
individuals tend to attract with each other, maintaining the cohesion of the swarm.
Different to the original model [20], in the proposed operator, social forces are also
magnified or weakened depending on the best fitness value (the most dominant) of
the individuals involved in the repulsion-attraction process.

In the solitary operation, a new position pi (i ∈ [1, . . . , N]) is produced by per-
turbing the current locust position lki with a change of position �li (pi = lki + �li).
The change of position �li is the result of the social interactions experimented by lki
as a consequence of its repulsion-attraction behavioral model. Such social interac-
tions are pairwise computed among lki and the other N-1 individuals in the swarm. In
the original model, social forces are calculated by using Eq. (5.3). However, in the
proposed method, it is modified to include the best fitness value (the most dominant)
of the individuals involved in the repulsion-attraction process. Therefore, the social
force exerted between lkj and lki is calculated by using the following new model:

smi j = ρ(lki , l
k
j) · s(ri j) · di j + rand(1,−1), (5.6)

146 5 The Locust Swarm Optimization Algorithm

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

(,)k k
i jρ l l

rank()k
il

Fig. 5.3 Behavior of ρ(lki , l
k
j) considering 100 individuals

where s(ri j) is the social force strength defined in Eq. (5.2) and di j = (lkj − lki)/ri j
is the unit vector pointing from lki to l

k
j . Besides, rand(1, −1) is a number randomly

generated between 1 and −1.
ρ(lki , l

k
j) is the dominance function that calculates the dominance value of themost

dominant individual from lkj and lki . In order to operate ρ(lki , l
k
j), all the individuals

from Lk({lk1, lk2, . . . , lkN }) are ranked according to their fitness values. The ranks are
assigned so that the best individual receives the rank 0 (zero) whereas the worst
individual obtains the rankN-1. Therefore, the functionρ(lki , l

k
j) is defined as follows:

ρ(lki , l
k
j) =

{

e−(5·rank(lki)/N) if rank(lki) < rank(lkj)

e−(5·rank(lkj)/N) if rank(lki) > rank(lkj)
, (5.7)

where the function rank(α) delivers the rank of theα-individual.According toEq. 5.7,
ρ(lki , l

k
j) gives as a result a value within the interval (1, 0). The maximum value of

one is reached by ρ(lki , l
k
j) when one of the individuals lkj and lki is the best element

of the population Lk in terms of its fitness value. On the other hand, a value close to
zero, it is obtained when both individuals lkj and lki possess quite bad fitness values.
Figure 5.3 shows the behavior of ρ(lki , l

k
j) considering 100 individuals. In the Figure,

it is assumed that lki represents one of the 99 individuals with ranks between 0 and
98 whereas lkj is fixed to the element with the worst fitness value (rank 99).

Under the incorporation of ρ(lki , l
k
j) in Eq. (5.6), social forces are magnified or

weakened depending on the best fitness value (the most dominant) of the individuals
involved in the repulsion-attraction process.

5.3 The Locust Search (LS) Algorithm 147

Finally, the total social force on each individual lki is modeled as the superposition
of all of the pairwise interactions exerted over it:

Smi =
N

∑

j=1
j �=i

smi j , (5.8)

Therefore, the change of position�li is considered as the total social force exper-
imented by lki as the superposition of all of the pairwise interactions. Therefore, �li
is defined as follows:

�li = Smi , (5.9)

After calculating the new positions P ({p1,p2, . . . ,pN }) of the population
Lk({lk1, lk2, . . . , lkN }), the final positions F ({f1, f2, . . . , fN }) must be calculated. The
idea is to admit only the changes that guarantee an improvement in the search strat-
egy. If the fitness value of pi (f (pi)) is better than lki (f (l

k
i)), then pi is accepted as

the final solution. Otherwise, lki is retained. This procedure can be resumed by the
following statement (considering a minimization problem):

fi =
{

pi if f (pi) < f (lki)
lki otherwise

(5.10)

In order to illustrate the performance of the solitary operator, Fig. 5.4 presents
a simple example where the solitary operator is iteratively applied. It is assumed a
population of 50 different members (N = 50) which adopt a concentrated config-
uration as initial condition (Fig. 5.4a). As a consequence of the social forces, the
set of element tends to distribute through the search space. Examples of different
distributions are shown in Fig. 5.4b, c and d after applying 25, 50 and 100 different
solitary operations, respectively.

5.3.2 Social Operation (B)

The social procedure represents the exploitation phase of the LS algorithm. Exploita-
tion is the process of refining existent individuals within a small neighborhood in
order to improve their solution quality.

The social procedure is a selective operation which is applied only to a subset E
of the final positions F (where E ⊆ F). In the operation first is necessary to sort F
according to their fitness values and store the sorted elements in a temporal popula-
tion B = {b1,b2, . . . ,bN }. The elements in B are sorted so that the best individual
receives the position b1 whereas the worst individual obtains the location bN . There-
fore, the subsetE is integrated by only the first g locations of B (promising solutions).

148 5 The Locust Swarm Optimization Algorithm

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(a) (b)

(c) (d)

Fig. 5.4 Examples of different distributions. a initial condition, b distribution after applying 25
operations, c 50 and d 100

Under this operation, a subspace C j is created around each selected particle f j ∈ E.
The size of C j depends on the distance ed which is defined as follows:

ed =
∑n

q=1 (ubq − lbq)

n
· β (5.11)

where ubq and lbq are the upper and lower bounds in the q-th dimension, n is the
number of dimensions of the optimization problem, whereas β ∈ [0, 1] is a tuning
factor. Therefore, the limits of C j are modeled as follows:

ussqj = b j,q + ed

lssqj = b j,q − ed (5.12)

where ussqj and lssqj are the upper and lower bounds of the qth dimension for the
subspace C j , respectively.

Considering the subspace C j around each element f j ∈ E, a set of h new particles
(

Mh
j = {m1

j ,m
2
j , . . . ,m

h
j }

)

are randomly generated inside the bounds defined by

Eq. (5.12).Once theh samples are generated, the individual lk+1
j of thenext population

5.3 The Locust Search (LS) Algorithm 149

Lk+1 must be created. In order to calculate lk+1
j , the best particle mbest

j , in terms of
fitness value from the h samples (where mbest

j ∈ [m1
j ,m

2
j , . . . ,m

h
j]), is compared

to f j . If mbest
j is better than f j according to their fitness values, lk+1

j is updated with
mbest

j , otherwise f j is selected. The elements of F that have not been processed by
the procedure (fw /∈ E) transfer their corresponding values to Lk+1 with no change.

The social operation is used to exploit only prominent solutions. According to the
propose method, inside each subspace C j , h random samples are selected. Since the
number of selected samples in each subspace is very small (typically h < 4), the use
of this operator reduces substantially the number of fitness function evaluations.

In order to demonstrate the social operation, a numerical example has been set
by applying the proposed process to a simple function. Such function considers the
interval of −3 ≤ d1, d2 ≤ 3 whereas the function possesses one global maxima
of value 8.1 at (0, 1.6). Notice that d1 and d2 correspond to the axis coordinates
(commonly x and y). For this example, it is assumed a final position population F
of six 2-dimensional members (N = 6). Figure 5.5 shows the initial configuration
of the proposed example, the black points represents the half of the particles with
the best fitness values (the first three element of B, g = 3) whereas the grey points
(f2, f4, f6 /∈ E) corresponds to the remaining individuals. From Fig. 5.5, it can be
seen that the social procedure is applied to all black particles (f5 = b1, f3 = b2 and
f1 = b3, f5, f3, f1 ∈ E) yielding two new random particles (h = 2), characterized by
the white points m1

1, m
2
1, m

1
3, m

2
3, m

1
5 and m2

5 for each black point inside of their
corresponding subspaces C1, C3 and C5. Considering the particle f3 in Fig. 5.5, the
particlem2

3 corresponds to the best particle (mbest
3) from the two randomly generated

particles (according to their fitness values) within C3. Therefore, the particle mbest
3

will substitute f3 in the individual lk+1
3 for the next generation, since it holds a better

fitness value than f3
(

f (f3) < f (mbest
3)

)

.

5.3.3 Complete LS Algorithm

LS is a simple algorithm with only five adjustable parameters: the strength of attrac-
tion F, the attractive length L, number of promising solutions g, the population size
N and the number of generations gen. The operation of LS is divided in three parts:
Initialization, solitary operation and the social process. In the initialization (k = 0),
the first population L0({l01, l02, . . . , l0N }) is produced. The values

{

l0i,1, l
0
i,2, . . . , l

0
i,n

}

of each individual lki and each dimension d are randomly and uniformly distributed
between the pre-specified lower initial parameter bound lbd and the upper initial
parameter bound ubd .

l0i, j = lbd + rand · (ubd − lbd);
i = 1, 2, . . . , N ; d = 1, 2, . . . , n. (5.13)

150 5 The Locust Swarm Optimization Algorithm

−6

−4

−4

−2

−2

−2

−2

−2

0

0

0

0

0

0

0

2

2

2

2

2

2

2

4

4

4

6

6

8

d
1

d 2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

1,1y

1C

4,1y

6,1y

2,1y
3,1y

3C

5,1y

5C

2f

6f

1f

4f

3f

5f

1
1m

2
1m

1
5m

2
5m

2
3m
1
3m

Fig. 5.5 Operation of the social procedure

In the evolution process, the solitary (A) and social (B) operations are iteratively
applied until the number of iterations k = gen has been reached. The complete LS
procedure is illustrated in the Algorithm 1.

5.3.4 Discussion About the LS Algorithm

Evolutionary algorithms (EA) have been widely employed for solving complex opti-
mization problems. These methods are found to be more powerful than conventional
methods based on formal logics or mathematical programming [30]. In an EA algo-
rithm, search agents have to decidewhether to explore unknown search positions or to
exploit already tested positions in order to improve their solution quality. Pure explo-
ration degrades the precision of the evolutionary process but increases its capacity to

5.3 The Locust Search (LS) Algorithm 151

find new potentially solutions. On the other hand, pure exploitation allows refining
existent solutions but adversely drives the process to local optimal solutions. There-
fore, the ability of an EA to find a global optimal solution depends on its capacity
to find a good balance between the exploitation of found-so-far elements and the
exploration of the search space [31]. So far, the exploration-exploitation dilemma
has been an unsolved issue within the framework of evolutionary algorithms.

Most of swarm algorithms and other evolutionary algorithms tend to exclusively
concentrate the individuals in the current best positions. Under such circumstances,
these algorithms seriously limit their exploration-exploitation capacities.

Different to most of existent evolutionary algorithms, in the proposed approach,
the modeled behavior explicitly avoids the concentration of individuals in the cur-
rent best positions. Such fact allows not only to emulate in a better realistic way the
cooperative behavior of the locust colony, but also to incorporate a computational
mechanism to avoid critical flaws commonly present in the popular PSOandDEalgo-
rithms, such as the premature convergence and the incorrect exploration-exploitation
balance.

5.4 Experimental Results

A comprehensive set of 13 functions, collected from Refs. [32–37], has been used to
test the performance of the proposed approach. Tables 5.5 and 5.6 in the Appendix
present the benchmark functions used in our experimental study. Such functions
are classified into two different categories: Unimodal test functions (Table 5.5) and
multimodal test functions (Table 5.6). In these tables, n is the dimension of function,
fopt is the minimum value of the function, and S is a subset of Rn . The optimum
location (xopt) for functions in Tables 5.5 and 5.6, are in [0]n , except for f5, f12, f13
with xopt in [1]n and f8 in [420.96]n . A detailed description of optimum locations is
given in Table 5.6 of the Appendix.

5.4.1 Performance Comparison

We have applied the LS algorithm to 13 functions whose results have been compared
to those produced by the Particle Swarm Optimization (PSO) method [3] and the
Differential Evolution (DE) algorithm [11]. These are considered as themost popular
algorithms for many optimization applications. In all comparisons, the population
has been set to 40 (N = 40) individuals. The maximum iteration number for all
functions has been set to 1000. Such stop criterion has been selected to maintain
compatibility to similar works reported in the literature [34, 35].

The parameter settings for each of the algorithms in the comparison are described
as follows:

152 5 The Locust Swarm Optimization Algorithm

1. PSO: In the algorithm, c1 = c2 = 2 while the inertia factor (ω) is decreasing
linearly from 0.9 to 0.2.

2. DE: The DE/Rand/1 scheme is employed. The parameter settings follow the
instructions in [11]. The crossover probability is CR = 0.9 and the weighting
factor is F = 0.8.

3. In LS, F and L are set to 0.6 and L, respectively. Besides, g is fixed to 20
(N /2) whereas gen and N are configured to 1000 and 40, respectively. Once
these parameters have been determined experimentally, they are kept for all
experiments in this section.

Uni-Modal Test Functions
Functions f1 to f7 are unimodal functions. The results for unimodal functions, over
30 runs, are reported in Table 5.1 considering the following performance indexes: the
average best-so-far solution (ABS), themedian of the best solution in the last iteration
(MBS) and the standard deviation (SD). According to this table, LS provides better
results than PSO and DE for all functions. In particular this test yields the largest
difference in performance which is directly related to a better trade-off between
exploration and exploitation produced by LS operators.

A non-parametric statistical significance proof known as theWilcoxon’s rank sum
test for independent samples [38, 39] has been conducted with an 5% significance
level, over the “average best-so-far” data of Table 5.1. Table 5.2 reports the p-values
produced byWilcoxon’s test for the pair-wise comparison of the “average best so-far”
of two groups. Such groups are formed byLS versus PSO andLS versusDE.As a null
hypothesis, it is assumed that there is no significant difference between mean values
of the two algorithms. The alternative hypothesis considers a significant difference
between the “average best-so-far” values of both approaches. All p-values reported
in the table are less than 0.05 (5% significance level) which is a strong evidence
against the null hypothesis, indicating that the LS results are statistically significant
and that it has not occurred by coincidence (i.e. due to the normal noise contained in
the process).

Multimodal Test Functions
Multimodal functions have many local minima, being the most difficult to optimize.
For multimodal functions, the final results are more important since they reflect
the algorithm’s ability to escape from poor local optima and locate a near-global
optimum.We have done experiments on f8 to f13 where the number of local minima
increases exponentially as the dimension of the function increases. The dimension
of these functions is set to 30. The results are averaged over 30 runs, reporting the
performance indexes in Table 5.3 as follows: the average best-so-far solution (ABS),
the median of the best solution in the last iteration (MBS) and the standard deviation
(SD). Likewise, p-values of the Wilcoxon signed-rank test of 30 independent runs
are listed in Table 5.4.

For f9, f10, f11 and f12, LS yields amuch better solution than the others. However,
for functions f8 and f13, LS produces similar results to DE. The Wilcoxon rank test
results, presented in Table 5.4, show that LS performed better than PSO and DE

5.4 Experimental Results 153

Table 5.1 Minimization
result of benchmark functions
in Table 5.5 with n = 30

PSO DE LS

f1 ABS 1.66 × 10−1 6.27 × 10−3 4.55 × 10−4

MBS 0.23 5.85 × 10−3 2.02 × 10−4

SD 3.79 × 10−1 1.68 × 10−1 6.98 × 10−4

f2 ABS 4.83 × 10−1 2.02 × 10−1 5.41 × 10−3

MBS 0.53 1.96 × 10−1 5.15 × 10−3

SD 1.59 × 10−1 0.66 1.45 × 10−2

f3 ABS 2.75 5.72 × 10−1 1.61 × 10−3

MBS 3.16 6.38 × 10−1 1.81 × 10−3

SD 1.01 0.15 1.32 × 10−3

f4 ABS 1.84 0.11 1.05 × 10−2

MBS 1.79 0.10 1.15 × 10−2

SD 0.87 0.05 6.63 × 10−3

f5 ABS 3.07 2.39 4.11 × 10−2

MBS 3.03 2.32 3.65 × 10−2

SD 0.42 0.36 2.74 × 10−3

f6 ABS 6.36 6.51 5.88 × 10−2

MBS 6.19 6.60 5.17 × 10−2

SD 0.74 0.87 1.67 × 10−2

f7 ABS 6.14 0.12 2.71 × 10−2

MBS 2.76 0.14 1.10 × 10−2

SD 0.73 0.02 1.18 × 10−2

Maximum number of iterations = 1000

Table 5.2 p-values produced
by Wilcoxon’s test comparing
LS versus PSO and DE over
the “average best-so-far”
values from Table 5.1

LS versus PSO DE

f1 1.83 × 10−4 1.73 × 10−2

f2 3.85 × 10−3 1.83 × 10−4

f3 1.73 × 10−4 6.23 × 10−3

f4 2.57 × 10−4 5.21 × 10−3

f5 4.73 × 10−4 1.83 × 10−3

f6 6.39 × 10−5 2.15 × 10−3

f7 1.83 × 10−4 2.21 × 10−3

154 5 The Locust Swarm Optimization Algorithm

Table 5.3 Minimization
result of benchmark functions
in Table 5.5 with n = 30

PSO DE LS

f8 ABS −6.7 × 103 −1.26 × 104 −1.26 × 104

MBS −5.4 × 103 −1.24 × 104 −1.23 × 104

SD 6.3 × 102 3.7 × 102 1.1 × 102

f9 ABS 14.8 4.01 × 10−1 2.49 × 10−3

MBS 13.7 2.33 × 10−1 3.45 × 10−3

SD 1.39 5.1 × 10−2 4.8 × 10−4

f10 ABS 14.7 4.66 × 10−2 2.15 × 10−3

MBS 18.3 4.69 × 10−2 1.33 × 10−3

SD 1.44 1.27 × 10−2 3.18 × 10−4

f11 ABS 12.01 1.15 1.47 × 10−4

MBS 12.32 0.93 3.75 × 10−4

SD 3.12 0.06 1.48 × 10−5

f12 ABS 6.87 × 10−1 3.74 × 10−1 5.58 × 10−3

MBS 4.66 × 10−1 3.45 × 10−1 5.10 × 10−3

SD 7.07 × 10−1 1.55 × 10−1 4.18 × 10−4

f13 ABS 1.87 × 10−1 1.81 × 10−2 1.78 × 10−2

MBS 1.30 × 10−1 1.91 × 10−2 1.75 × 10−2

SD 5.74 × 10−1 1.66 × 10−2 1.64 × 10−3

Maximum number of iterations = 1000

Table 5.4 p-values produced
by Wilcoxon’s test comparing
LS versus PSO and DE over
the “average best-so-far”
values from Table 5.3

LS versus PSO DE

f8 1.83 × 10−4 0.061

f9 1.17 × 10−4 2.41 × 10−4

f10 1.43 × 10−4 3.12 × 10−3

f11 6.25 × 10−4 1.14 × 10−3

f12 2.34 × 10−5 7.15 × 10−4

f13 4.73 × 10−4 0.071

considering the four problems f9 − f12, whereas, from a statistical viewpoint, there
is not difference in results between LS and DE for f8 and f13.

5.5 Conclusions

In this paper, a novel swarm algorithm, called the Locust Search (LS) has been
proposed for solving optimization tasks. The LS algorithm is based on the simulation
of the behavior presented in swarms of locusts. In the proposed algorithm, individuals
emulate a group of locusts which interact to each other based on the biological

5.5 Conclusions 155

laws of the cooperative swarm. The algorithm considers two different behaviors:
solitary and social. Depending on the behavior, each individual is conducted by a set
of evolutionary operators which mimic the different cooperative behaviors that are
typically found in the swarm.

Different to most of existent evolutionary algorithms, in the proposed approach,
the modeled behavior explicitly avoids the concentration of individuals in the cur-
rent best positions. Such fact allows not only to emulate in a better realistic way the
cooperative behavior of the locust colony, but also to incorporate a computational
mechanism to avoid critical flaws commonly present in the popular PSOandDEalgo-
rithms, such as the premature convergence and the incorrect exploration-exploitation
balance.

LS has been experimentally tested considering a suite of 13 benchmark functions.
The performance of LS has been also compared to the following algorithms: the
Particle Swarm Optimization method (PSO) [3], and the Differential Evolution (DE)
algorithm [11]. Results have confirmed an acceptable performance of the proposed
method in terms of the solution quality for all tested benchmark functions.

The LS remarkable performance is associated with two different reasons: (i) the
solitary operator allows abetter particle distribution in the search space, increasing the
algorithm’s ability to find the global optima; and (ii) the use of the social operation,
provides of a simple exploitation operator that intensifies the capacity of finding
better solutions during the evolution process.

Appendix: List of Benchmark Functions

In Table 5.5, n is the dimension of function, fopt is theminimumvalue of the function,
and S is a subset of Rn . The optimum location (xopt) for functions in Table 5.5 is in
[0]n , except for f5 with xopt in [1]n .

The optimum location (xopt) for functions in Table 5.6, are in [0]n , except for f8
in [420.96]n and f12– f13 in [1]n .

156 5 The Locust Swarm Optimization Algorithm

Table 5.5 Unimodal test functions

Test function S fopt

f1(x) =
n∑

i=1
x2i

[−100, 100]n 0

f2(x) =
n∑

i=1
|xi | +

n∏

i=1
|xi | [−10, 10]n 0

f3(x) =
n∑

i=1

(
i∑

j=1
x j

)2 [−100, 100]n 0

f4(x) = max
i

{|xi |, 1 ≤ i ≤ n} [−100, 100]n 0

f5(x) =
n−1∑

i=1

[

100(xi+1 − x2i)
2 + (xi − 1)2

] [−30, 30]n 0

f6(x) =
n∑

i=1
(xi + 0.5)2

[−100, 100]n 0

f7(x) =
n∑

i=1
i x4i + rand(0, 1)

[−1.28, 1.28]n 0

Appendix: List of Benchmark Functions 157

Ta
bl
e
5.
6

M
ul
tim

od
al
te
st
fu
nc
tio

ns

Te
st
fu
nc
tio

n
S

f o
pt

f 8
(x

)
=

n
∑ i=

1
−x

i
si
n(

√ | x i
|)

[−
50
0,

50
0]n

−4
18
.9
8*
n

f 9
(x

)
=

n
∑ i=

1

[

x2 i
−

10
co
s(
2π

x i
)
+

10
]

[−
5.
12

,
5.
12

]n
0

f 1
0
(x

)
=

−2
0
ex
p(

−0
.2

√

1 n

n
∑ i=

1
x2 i

)

−
ex
p(

1 n

n
∑ i=

1
co
s(
2π

x i
))

+
20

[−
32

,
32

]n
0

f 1
1
(x

)
=

1
40

00

n
∑ i=

1
x2 i

−
n ∏ i=
1
co
s(

x i √ i

)

+
1

[−
60
0,

60
0]n

0

f 1
2
(x

)
=

π n

{

10
si
n(

π
y 1

)
+

n−
1

∑ i=
1

(y
i
−

1)
2
[

1
+

10
si
n2

(π
y i

+1
)]

+
(y

n
−

1)
2

}

+
n

∑ i=
1

u
(x

i,
10

,
10
0,

4)

y i
=

1
+

x i
+1 4

u
(x

i,
a,

k,
m

)
=

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

k(
x i

−
a)

m
x i

>
a

0
−a

<
x i

<
a

k(
−x

i
−
a)

m
x i

<
−a

[−
50

,
50

]n
0

f 1
3
(x

)
=

0.
1{

si
n2

(3
π
x 1

)
+

n
∑ i=

1

(x
i
−

1)
2
[

1
+

si
n2

(3
π
x i

+
1)

]

+
(x

n
−

1)
2
[

1
+

si
n2

(2
π
x n

)]
}

+
n

∑ i=
1

u
(x

i,
5,
10
0,

4)

[−
50

,
50

]n
0

158 5 The Locust Swarm Optimization Algorithm

References

1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Sys-
tems. Oxford University Press Inc., New York (1999)

2. Kassabalidis, I., El-Sharkawi, M.A., Marks, R.J. II, Arabshahi, P., Gray, A.A.: Swarm intel-
ligence for routing in communication networks. In: Global Telecommunications Conference,
GLOBECOM ’01, 6, IEEE, pp. 3613–3617 (2001)

3. Kennedy, J., & Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948 (Dec. 1995)

4. Karaboga,D.:An idea based onhoneybee swarm for numerical optimization. TechnicalReport-
TR06. Engineering Faculty, Computer Engineering Department, Erciyes University (2005)

5. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE
Control Syst. Mag. 22(3), 52–67 (2002)

6. Hossein, A., Hossein-Alavi, A.: Krill herd: a new bio-inspired optimization algorithm. Com-
mun. Nonlinear Sci. Numer. Simul. 17, 4831–4845 (2012)

7. Yang, X.S.: Engineering optimization: an introduction with metaheuristic applications. Wiley,
New York (2010)

8. Yang, X.S., Deb, S.: Proceedings of World Congress on Nature & Biologically Inspired Com-
puting. IEEE Publications, India, pp. 210–214 (2009)

9. Cuevas, E., Cienfuegos, M., Zaldívar, D., Pérez-Cisneros, M.: A swarm optimization algorithm
inspired in the behavior of the social-spider. Expert Syst. Appl. 40(16), 6374–6384 (2013)

10. Cuevas, E., González,M., Zaldivar, D., Pérez-Cisneros,M., García, G.: An algorithm for global
optimization inspired by collective animal behaviour.Discrete Dynamics in Nature and Society
2012, art. no. 638275

11. Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global
optimisation over continuous spaces. Technical Report TR-95–012, ICSI, Berkeley, CA (1995)

12. Bonabeau, E.: Social insect colonies as complex adaptive systems. Ecosystems 1, 437–443
(1998)

13. Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., Tian, Q.: Self-adaptive learning based particle
swarm optimization. Inf. Sci. 181(20), 4515–4538 (2011)

14. Tvrdík, Josef:Adaptation in differential evolution: a numerical comparison.Appl. SoftComput.
9(3), 1149–1155 (2009)

15. Wang, H., Sun, H., Li, C., Rahnamayan, S., Jeng-shyang, P.: Diversity enhanced particle swarm
optimization with neighborhood. Inf. Sci. 223, 119–135 (2013)

16. Gong, Wenyin, Fialho, Álvaro, Cai, Zhihua, Li, Hui: Adaptive strategy selection in differential
evolution for numerical optimization: an empirical study. Inf. Sci. 181(24), 5364–5386 (2011)

17. Gordon, D.: The organization of work in social insect colonies. Complexity 8(1), 43–46 (2003)
18. Kizaki, Shinya, Katori, Makoto: A Stochastic lattice model for locust outbreak. Phys. A 266,

339–342 (1999)
19. Rogers, Stephen M., Cullen, Darron A., Anstey, Michael L., Burrows, Malcolm, Dodgson,

Tim, Matheson, Tom, Ott, Swidbert R., Stettin, Katja, Sword, Gregory A., Despland, Emma,
Simpson, Stephen J.:Rapid behavioural gregarization in the desert locust,Schistocercagregaria
entails synchronous changes in both activity and attraction to conspecifics. J. Insect Physiol.
65, 9–26 (2014)

20. Topaz, C.M., Bernoff, A.J., Logan, S., Toolson, W.: A model for rolling swarms of locusts.
Eur. Phys. J. Special Topics 157, 93–109 (2008)

21. Topaz, C.M., D’Orsogna, M.R., Edelstein-Keshet, L., Bernoff, A.J.: Locust dynamics: behav-
ioral phase change and swarming. PLOS Computational Biology 8(8), 1–11

22. Oster, G., Wilson, E.: Caste and Ecology in the Social Insects. N.J. Princeton University Press,
Princeton (1978)

23. Hölldobler, B., Wilson, E.O.: Journey to the Ants: A Story of Scientific Exploration (1994).
ISBN 0-674-48525-4

24. Hölldobler, B.,Wilson, E.O.: The Ants. Harvard University Press (1990). ISBN 0-674-04075-9

References 159

25. Tanaka, Seiji, Nishide, Yudai: Behavioral phase shift in nymphs of the desert locust, Schisto-
cerca gregaria: Special attention to attraction/avoidance behaviors and the role of serotonin. J.
Insect Physiol. 59, 101–112 (2013)

26. Gaten, Edward, Huston, Stephen J., Dowse, Harold B., Matheson, Tom: Solitary and gregari-
ous locusts differ in circadian rhythmicity of a visual output neuron. J. Biol. Rhythms 27(3),
196–205 (2012)

27. Benaragama, Indika, Gray, John R.: Responses of a pair of flying locusts to lateral looming
visual stimuli. J. Comp. Physiol. A. 200(8), 723–738 (2014)

28. Michael G. Sergeev, Distribution patterns of grasshoppers and their kin in the boreal zone, vol.
2011, Article ID 324130, 9 pages (2011)

29. Ely, S.O.,Njagi, P.G.N.,Bashir,M.O.,El-Amin, S.E.-T.,Diel,A.H.:Behavioral activity patterns
in adult solitarious desert locust, Schistocerca gregaria (Forskål). Psyche Volume 2011, Article
ID 459315, 9 (2011)

30. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Beckington (2008)
31. Cuevas, E., Echavarría, A., Ramírez-Ortegón, M.A.: An optimization algorithm inspired by the

States of Matter that improves the balance between exploration and exploitation. Appl. Intell.
40(2), 256–272 (2014)

32. Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic
algorithms on selected continuous global optimization test problems. J. Global Optim. 31(4),
635–672 (2005)

33. Chelouah, R., Siarry, P.: A continuous genetic algorithm designed for the global optimization
of multimodal functions. J. Heurist. 6(2), 191–213 (2000)

34. Herrera, F., Lozano, M., Sánchez, A.M.: A taxonomy for the crossover operator for real-coded
genetic algorithms: an experimental study. Int. J. Intell. Syst. 18(3), 309–338 (2003)

35. Laguna, M., Martí, R.: Experimental testing of advanced scatter search designs for global
optimization of multimodal functions. J. Global Optim. 33(2), 235–255 (2005)

36. Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-coded memetic algorithms with
crossover hill-climbing. Evol. Comput. 12(3), 273–302 (2004)

37. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM
Trans. Math. Softw. 7(1), 17–41 (1981)

38. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)
39. Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests

for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special
session on real parameter optimization. J. Heurist. (2008). https://doi.org/10.1007/s10732-008-
9080-4

https://doi.org/10.1007/s10732-008-9080-4

Chapter 6
A Swarm Algorithm Inspired
by the Collective Animal Behavior

Abstract In this chapter, a swarm algorithm for global optimization called the Col-
lective Animal Behavior (CAB) is introduced. The algorithm is based on animal
groups, such as schools of fish, flocks of birds, swarms of locusts, and herds of
wildebeest, that exhibit a variety of behaviors including swarming about a food
source, milling around a central location or migrating over large distances in aligned
groups. These collective behaviors are often advantageous to groups, allowing them
to increase their harvesting efficiency, to follow better migration routes, to improve
their aerodynamic and to avoid predation. In the presented algorithm in this chapter,
the searcher agents emulate a group of animals which interact to each other based
on the biological laws of collective motion. The optimization method presented in
this chapter has been compared to other well-known optimization algorithms. The
results, experiments and practical examples confirm the high performance of the
presented method to find a global optimum of several benchmark functions.

6.1 Introduction

Global Optimization (GO) has yielded remarkable applications to many areas of
science, engineering, economics and others through mathematical modelling [1]. In
general, the goal is to find a global optimum of an objective function which has been
defined over a given search space.Global optimization algorithms are usually broadly
divided into deterministic and metaheuristic [2]. Since deterministic methods only
provide a theoretical guarantee of locating a local minimum of the objective function,
they often face great difficulties in solving global optimization problems [3]. On the
other hand, metaheuristic or swarm methods are usually faster in locating a global
optimum [4]. They virtuously adapt to black-box formulations and extremely ill-
behaved functions, whereas deterministic methods usually require some theoretical
assumptions about the problem formulation and its analytical properties (such as
Lipschitz continuity) [5].

Several metaheuristic algorithms have been developed by a combination of rules
and randomness mimicking several phenomena. Such phenomena include evolution-
ary processes e.g. the evolutionary algorithm proposed by Fogel et al. [6], De Jong

© Springer Nature Switzerland AG 2020
E. Cuevas et al., New Advancements in Swarm Algorithms: Operators
and Applications, Intelligent Systems Reference Library 160,
https://doi.org/10.1007/978-3-030-16339-6_6

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16339-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-16339-6_6

162 6 A Swarm Algorithm Inspired by the Collective Animal Behavior

[7], and Koza [8], the genetic algorithm (GA) proposed by Holland [9] and Goldberg
[10] and the artificial immune systems proposed by De Castro et al. [11]. On the
other hand, physical processes consider the simulated annealing proposed by Kirk-
patrick et al. [12], the electromagnetism-like algorithm proposed by İlker et al. [13],
the gravitational search algorithm proposed by Rashedi et al. [14] and the musical
process of searching for a perfect state of harmony, which has been proposed by
Geem et al. [15], Lee and Geem [16] and Geem [17].

Many studies have been inspired by animal behavior phenomena for developing
optimization techniques. For instance, the Particle swarm optimization (PSO) algo-
rithm which models the social behavior of bird flocking or fish schooling [18]. PSO
consists of a swarm of particles which move towards best positions, seen so far,
within a searchable space of possible solutions. Another behavior-inspired approach
is the Ant Colony Optimization (ACO) algorithm proposed by Dorigo et al. [19],
which simulates the behavior of real ant colonies. Main features of the ACO algo-
rithm are the distributed computation, the positive feedback and the constructive
greedy search. Recently, a new swarm approach which is based on the animal behav-
ior while hunting has been proposed in [20]. Such algorithm considers hunters as
search positions and preys as potential solutions.

Just recently, the concept of individual-organization [21, 22] has been widely
referenced to understand collective behavior of animals. The central principle of
individual-organization is that simple repeating interactions between individuals can
produce complex behavioral patterns at group level [21, 23, 24]. Such inspiration
comes from behavioral patterns previously seen in several animal groups. Examples
include ant pheromone trail networks, aggregation of cockroaches and the migration
of fish schools, all of which can be accurately described in terms of individuals
following simple sets of rules [25]. Some examples of these rules [24, 26] are keeping
the current position (or location) for best individuals, local attraction or repulsion,
random movements and competition for the space within of a determined distance.

On the other hand, new studies [27–29] have also shown the existence of collec-
tive memory in animal groups. The presence of such memory establishes that the
previous history of the group structure influences the collective behavior exhibited in
future stages. According to such principle, it is possible to model complex collective
behaviors by using simple individual rules and configuring a general memory.

In this chapter, a new optimization algorithm inspired by the collective animal
behavior is presented. In this algorithm, the searcher agents emulate a group of ani-
mals that interact to each other based on simple behavioral rules which are modeled
as mathematical operators. Such operations are applied to each agent considering
that the complete group has a memory storing their own best positions seen so far, by
using a competition principle. The presented approach has been compared to other
well-known optimization methods. The results confirm a high performance of the
presented method for solving various benchmark functions.

This chapter is organized as follows. In Sect. 6.2, we introduce the basic biologic
aspects of the algorithm. In Sect. 6.3, the novel CAB algorithm and its characteristics
are both described. Section 6.4 presents the experimental results and the comparative
study. Finally, in Sect. 6.5, the conclusions are discussed.

6.2 Biological Fundamentals 163

6.2 Biological Fundamentals

The remarkable collective behavior of organisms such as swarming ants, schooling
fish and flocking birds has long captivated the attention of naturalists and scientists.
Despite a long history of scientific research, the relationship between individuals and
group-level properties has just recently begun to be deciphered [30].

Grouping individuals often have to make rapid decisions about where to move
or what behavior to perform in uncertain and dangerous environments. However,
each individual typically has only a relatively local sensing ability [31]. Groups are,
therefore, often composed of individuals that differwith respect to their informational
status and individuals are usually not aware of the informational state of others [32],
such as whether they are knowledgeable about a pertinent resource or about a threat.

Animal groups are based on a hierarchic structure [33] which considers differ-
ent individuals according to a fitness principle called Dominance [34] which is
the domain of some individuals within a group that occurs when competition for
resources leads to confrontation. Several studies [35, 36] have found that such ani-
mal behavior lead to more stable groups with better cohesion properties among
individuals.

Recent studies have begun to elucidate how repeated interactions among grouping
animals scale to collective behavior. They have remarkably revealed that collective
decision-makingmechanisms across awide range of animal group types, from insects
to birds (and even among humans in certain circumstances) seem to share similar
functional characteristics [21, 25, 37]. Furthermore, at a certain level of description,
collective decision-making by organisms shares essential common features such as
a general memory. Although some differences may arise, there are good reasons to
increase communication between researchers working in collective animal behavior
and those involved in cognitive science [24].

Despite the variety of behaviors and motions of animal groups, it is possible
that many of the different collective behavioral patterns are generated by simple
rules followed by individual group members. Some authors have developed different
models, one of them, known as the self-propelled particle (SPP) model, attempts to
capture the collective behavior of animal groups in terms of interactions between
group members which follow a diffusion process [38–41].

On other hand, following a biological approach, Couzin et al. [24, 25] have pro-
posed a model in which individual animals follow simple rules of thumb: (1) keep
the current position (or location) for best individuals; (2) move from or to nearby
neighbors (local attraction or repulsion); (3) move randomly and (4) compete for the
space within of a determined distance. Each individual thus admits three different
movements: attraction, repulsion or random and holds two kinds of states: preserve
the position or compete for a determined position. In the model, the movement,
which is executed by each individual, is decided randomly (according to an internal
motivation). On the other hand, the states follow a fixed criteria set.

The dynamical spatial structure of an animal group can be explained in terms of
its history [36]. Despite such a fact, the majority of studies have failed in considering

164 6 A Swarm Algorithm Inspired by the Collective Animal Behavior

the existence of memory in behavioral models. However, recent research [27, 42]
have also shown the existence of collective memory in animal groups. The presence
of suchmemory establishes that the previous history of the group structure influences
the collective behavior which is exhibited in future stages. Such memory can contain
the location of special group members (the dominant individuals) or the averaged
movements produced by the group.

According to these new developments, it is possible to model complex collective
behaviors by using simple individual rules and setting a general memory. In this
work, the behavioral model of animal groups inspires the definition of novel swarm
operators which outline the CAB algorithm. A memory is incorporated to store best
animal positions (best solutions) considering a competition-dominance mechanism.

6.3 Collective Animal Behavior Algorithm (CAB)

The CAB algorithm assumes the existence of a set of operations that resembles the
interaction rules that model the collective animal behavior. In the approach, each
solution within the search space represents an animal position. The “fitness value”
refers to the animal dominance with respect to the group. The complete process
mimics the collective animal behavior.

The approach in this chapter implements a memory for storing best solutions
(animal positions) mimicking the aforementioned biologic process. Such memory is
divided into two different elements, one for maintaining the best locations at each
generation (Mg) and the other for storing the best historical positions during the
complete evolutionary process (Mh).

6.3.1 Description of the CAB Algorithm

Following other swarm approaches, the CAB algorithm is an iterative process that
starts by initializing the population randomly (generated random solutions or ani-
mal positions). Then, the following four operations are applied until a termination
criterion is met (i.e. the iteration number NI):

1. Keep the position of the best individuals.
2. Move from or to nearby neighbors (local attraction and repulsion).
3. Move randomly.
4. Compete for the space within a determined distance (update the memory).

6.3 Collective Animal Behavior Algorithm (CAB) 165

6.3.1.1 Initializing the Population

The algorithm begins by initializing a set A of Np animal positions(
A = {

a1, a2, . . . , aNp

})
Each animal position a1 is a D-dimensional vector con-

taining parameter values to be optimized. Such values are randomly and uniformly
distributed between the pre-specified lower initial parameter bound alowj and the

upper initial parameter bound ahighj .

ai, j = alowj + rand (0, 1) ·
(
ahighj − alowj

)
;

j = 1, 2, . . . , D; i = 1, 2, . . . , Np (6.1)

with j and i being the parameter and individual indexes respectively. Hence, ai, j is
the j-th parameter of the i-th individual.

All the initial positions A are sorted according to the fitness function (dominance)
to form a new individual set X = {

x1, x2, . . . , xNp

}
, so that we can choose the best

B positions and store them in the memory Mg and Mh . The fact that both memories
share the same information is only allowed at this initial stage.

6.3.1.2 Keep the Position of the Best Individuals

Analogous to the biological metaphor, this behavioral rule, typical from animal
groups, is implemented as a swarm operation in our approach. In this operation,
the first B elements ({a1, a2, . . . , aB}), of the new animal position set A, are gen-
erated. Such positions are computed by the values contained inside the historical
memory Mh , considering a slight random perturbation around them. This operation
can be modeled as follows:

al = ml
h + v (6.2)

where l ∈ {1, 2, . . . , B} while ml
h represents the l-element of the historical memory

Mh . v is a random vector with a small enough length.

6.3.1.3 Move from or to Nearby Neighbors

From the biological inspiration, animals experiment a random local attraction or
repulsion according to an internal motivation. Therefore, we have implemented new
swarm operators that mimic such biological pattern. For this operation, a uniform
random number rm is generated within the range [0, 1]. If rm is less than a thresh-
old H, a determined individual position is moved (attracted or repelled) consider-
ing the nearest best historical position within the group (i.e. the nearest position in
Mh); otherwise, it goes to the nearest best location within the group for the current

166 6 A Swarm Algorithm Inspired by the Collective Animal Behavior

generation (i.e. the nearest position inMg). Therefore such operation can bemodeled
as follows:

ai =
{

xi ± r · (mnearest
h − xi) with probability H

xi ± r · (mnearest
g − xi) with probability (1 − H)

(6.3)

where i ∈ {B + 1, B + 2, . . . , Np
}
, mnearest

h and mnearest
g represent the nearest ele-

ments of Mh and Mg to xi , while r is a random number.

6.3.1.4 Move Randomly

Following the biological model, under some probability P, one animal randomly
changes its position. Such behavioral rule is implemented considering the next
expression:

ai =
{

r with probability P
xi with probability (1 − P)

(6.4)

being i ∈ {
B + 1, B + 2, . . . , Np

}
and r a random vector defined in the search

space. This operator is similar to re-initialize the particle in a random position, as it
is done by Eq. (6.1).

6.3.1.5 Compete for the Space Within of a Determined Distance
(Update the Memory)

Once the operations to keep the position of the best individuals, such as moving from
or to nearby neighbors and moving randomly, have all been applied to the all Np

animal positions, generating Np new positions, it is necessary to update the memory
Mh .

In order to update de memoryMh , the concept of dominance is used. Animals that
interact within a group maintain a minimum distance among them. Such distance
ρ depends on how aggressive the animal behaves [34, 42]. Hence, when two ani-
mals confront each other inside such distance, the most dominant individual prevails
meanwhile other withdraw. Figure 6.1 depicts the process.

In the presented algorithm, the historical memory Mh is updated considering the
following procedure:

1. The elements of Mh and Mg are merged into MU
(
MU = Mh ∪ Mg

)
.

2. Each elementmi
U of thememoryMU is comparedpair-wise to remainingmemory

elements
({

m1
U , m2

U , . . . , m2B−1
U

})
. If the distance between both elements is less

than ρ, the element getting a better performance in the fitness function prevails
meanwhile the other is removed.

6.3 Collective Animal Behavior Algorithm (CAB) 167

Fig. 6.1 Dominance
concept as it is presented
when two animals confront
each other inside of a ρ

distance

3. From the resulting elements of MU (from step 2), it is selected the B best value
to build the new Mh .

Unsuitable values of ρ yield a lower convergence rate, a longer computational
time, a larger function evaluation number, the convergence to a local maximum or to
an unreliable solution. The ρ value is computed considering the following equation:

ρ =

D∏

j=1
(ahighj − alowj)

10 · D (6.5)

where alowj and ahighj represent the pre-specified lower and upper bound of the j-
parameter respectively, in an D-dimensional space.

6.3.1.6 Computational Procedure

The computational procedure for the presented algorithm can be summarized as
follows:

Step 1 Set the parameters Np, B, H, P and NI.
Step 2 Generate randomly the position set A = {a1, a2, . . . , aNp } using Eq. (6.1).
Step 3 Sort A according to the objective function (dominance) to build X =

{x1, x2, . . . , xNp }.
Step 4 Choose the first B positions of X and store them into the memory Mg .
Step 5 Update Mh according to Sect. 6.3.1.5 (during the first iteration: Mh = Mg).
Step 6 Generate the first B positions of the new solution set A = {a1, a2, . . . , aB}.

Such positions correspond to the elements of Mh making a slight random
perturbation around them.
al = ml

h + v; being v a random vector of a small enough length.
Step 7 Generate the rest of theAelements using the attraction, repulsion and random

movements.

168 6 A Swarm Algorithm Inspired by the Collective Animal Behavior

for i=B+1: pN
if (1r < P) then
attraction and repulsion movement

{ if (2r < H) then
()nearest

i i h ir= ± ⋅ −a x m x
else if
 ()nearest

i i g ir= ± ⋅ −a x m x
}

else if
random movement

{
i =a r

}
end for where 1 2, , rand(0,1)r r r ∈

Step 8 If NI is completed, the process is finished; otherwise go back to step 3.
The best value in Mh represents the global solution for the optimization
problem.

6.4 Experimental Results

A comprehensive set of 23 functions, collected from Refs. [43–53], has been used
to test the performance of the presented approach. Tables 6.1, 6.2, 6.3 present the
benchmark functions used in the experimental study. Such functions are classified
into three different categories: Unimodal test functions (Table 6.1), multimodal test
functions (Table 6.2) and multimodal test functions with fix dimensions (Table 6.2).
In these tables, n is the dimension of function, fopt is the minimum value of the
function, and S is a subset of Rn . The optimum location (xopt) for functions in
Tables 6.1 and 6.2, are in [0]n , except for f5, f12 and f13 with xopt in [1]n and f8 in
[420.96]n . A detailed description of optimum locations is given in Table 6.4.

6.4.1 Effect of the CAB Parameters

To study the impact of parameters P and H (described on Sects. 6.3.1.3 and 6.3.1.4)
over the performance ofCAB, different values have been tested on5 typical functions.
The maximum number of iterations is set to 1000. Np and B are fixed to 50 and 10
respectively. The mean best function values μ and the standard deviations (σ 2) of
CAB, averagedover 30 runs, for the different values ofP andH are listed inTables 6.5,
6.6 respectively. The results suggest that a proper combination of different parameter

6.4 Experimental Results 169

Table 6.1 Unimodal test functions

Test function S fopt

f1(x) =
n∑

i=1
x2i

[−100, 100]n 0

f2(x) =
n∑

i=1
|xi | +

n∏

i=1
|xi | [−10, 10]n 0

f3(x) =
n∑

i=1

(
i∑

j=1
x j

)2 [−100, 100]n 0

f4(x) = max
i

{|xi |, 1 ≤ i ≤ n} [−100, 100]n 0

f5(x) =
n−1∑

i=1

[
100(xi+1 − x2i)

2 + (xi − 1)2
] [−30, 30]n 0

f6(x) =
n∑

i=1
(xi + 0.5)2

[−100, 100]n 0

f7(x) =
n∑

i=1
i x4i + rand(0, 1)

[−1.28, 1.28]n 0

values can improve the performance of CAB and the quality of solutions. Table 6.5
shows the results of an experiment which consist in fixing H = 0.8 and varying P
from 0.5 to 0.9. On a second test, the experimental setup is swapped i.e. P = 0.8
and H varies from 0.5 to 0.9. The best results in the experiments are highlighted in
Tables 6.5 and 6.6.

6.4.2 Performance Comparison

The CAB has been applied over the 23 functions comparing the results with those
produced by Real Genetic Algorithm (RGA) [54], the PSO [18], the Gravitational
Search Algorithm (GSA) [55] and the Differential Evolution method (DE) [56]. In
all cases, population size is set to 50. The maximum iteration number is 1000 for
functions in Tables 6.1 and 6.2 and 500 for functions in Table 6.3. Such stop criteria
have been chosen as to keep compatibility to similar works in [14] and [57].

The parameter settings for each of the algorithms in the comparison are described
as follows:

1. RGA:According to [54], the approach uses arithmetic crossover, Gaussianmuta-
tion and roulette wheel selection. The crossover and mutation probabilities have
been set to 0.3 and 0.1 respectively.

2. PSO: In the algorithm, c1 = c2 = 2 while the inertia factor (ω) is decreasing
linearly from 0.9 to 0.2.

170 6 A Swarm Algorithm Inspired by the Collective Animal Behavior

Table 6.2 Multimodal test functions

Test function S fopt

f8(x) =
n∑

i=1
−xi sin

(√|xi |
) [−500, 500]n −418.98*n

f9(x) =
n∑

i=1

[
x2i − 10 cos(2πxi) + 10

] [−5.12, 5.12]n 0

f10(x) =
−20 exp

(

−0.2

√
1
n

n∑

i=1
x2i

)

− exp

(
1
n

n∑

i=1
cos(2πxi)

)
+ 20

[−32, 32]n 0

f11(x) = 1
4000

n∑

i=1
x2i −

n∏

i=1
cos
(

xi√
i

)
+ 1

[−600, 600]n 0

f12(x) = π

n

{

10 sin(πy1) +
n−1∑

i=1

(yi − 1)2
[
1 + 10 sin2(πyi+1)

]

+(yn − 1)2
}

+
n∑

i=1

u(xi , 10, 100, 4)

yi = 1 + xi+1
4 u(xi , a, k,m) =

⎧
⎪⎪⎨

⎪⎪⎩

k(xi − a)m xi > a

0 −a < xi < a

k(−xi − a)m xi < −a

[−50, 50]n 0

f13(x) = 0.1

{

sin2(3πx1) +
n∑

i=1

(xi − 1)2
[
1 + sin2(3πxi + 1)

]

+(xn − 1)2
[
1 + sin2(2πxn)

]}
+

n∑

i=1

u(xi , 5, 100, 4)

[−50, 50]n 0

3. In GSA,G0 is set to 100 and α is set to 20; T is the total number of iterations (set
to 1000 for functions f1 − f13 and to 500 for functions f14 − f23). Besides, K0

is set to 50 (total number of agents) and is decreased linearly to 1. Such values
have been found as the best configuration set according to [55].

4. DE: The DE/Rand/1 scheme is employed. The parameter settings follow the
instructions in [56]. The crossover probability is CR = 0.9 and the weighting
factor is F = 0.8.

Unimodal test functions
Functions f1 to f7 are unimodal functions. The results for unimodal functions, over
30 runs, are reported in Table 6.7 considering the following performance indexes:
the average best-so-far solution, the average mean fitness function and the median of
the best solution in the last iteration. The best result for each function is boldfaced.
According to this table, CABprovides better results thanRGA, PSO,GSAandDE for
all functions. In particular this test yields the largest difference in performance which

6.4 Experimental Results 171

Table 6.3 Multimodal test functions with fix dimensions

Test function S f opt

f14(x) =
(

1
500 +

25∑

j=1

1
j+∑2

i=1 (xi−ai j)6

)−1

ai j =
(

−32,−16, 0, 16, 32,−32, . . . , 0, 16, 32

−32,−32,−32,−32, 16, . . . , 32, 32, 32

)

[−65.5, 65.5]2 1

f15(x) =
11∑

i=1

[
ai − xi (b2i +bi x2)

b2i +bi x3+x4

]2

a = [0.1957, 0.1947, 0.1735, 0.1600, 0.0844,
0.0627, 0.0456, 0.0342, 0.0342, 0.0235, 0.0246]

b = [0.25, 0.5, 1, 2, 4, 6, 8, 10, 12, 14, 16]

[−5, 5]4 0.00030

f16(x1, x2) = 4x21 − 2.1x41 + 1
3 x

6
1 + x1x2 − 4x22 + 4x42

[−5, 5]2 −1.0316

f17(x1.x2) =(
x2 − 5.1

4π2 x
2
1 + 5

π
x1 − 6

)2 + 10
(
1 − 1

8π

)
cos x1 + 10

x1 ∈
[−5, 10]
x2 ∈ [0, 15]

0.398

f18(x1, x2) =
[
1 + (x1 + x2 + 1)2(19 − 14x1 + 3x21

−14x2 + 6x1x2 + 3x22
]

×
[
30 + (2x1 − 3x2)

2

×(18 − 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22
]

[−5, 5]2 3

f19(x) = −
4∑

i=1
ci exp

(
−∑3

j=1 ai j (x j − pi j)2
)

a =

⎡

⎢⎢
⎢⎢
⎣

3 10 30

0.1 10 35

3 10 30

0.1 10 30

⎤

⎥⎥
⎥⎥
⎦

c = [1, 1.2, 3, 3.2]

P =

⎡

⎢⎢
⎢⎢
⎣

0.3689 0.117 0.2673

0.4699 0.4387 0.7470

0.1091 0.8732 0.5547

0.0381 0.5743 0.8828

⎤

⎥⎥
⎥⎥
⎦

[0, 1]3 −3.86

(continued)

172 6 A Swarm Algorithm Inspired by the Collective Animal Behavior

Table 6.3 (continued)

Test function S f opt

f20(x) = −
4∑

i=1
ci exp

(

−
6∑

j=1
ai j (x j − pi j)2

)

a =

⎡

⎢
⎢⎢
⎢
⎣

10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 17 10 17 8

17 8 0.05 10 0.1 14

⎤

⎥
⎥⎥
⎥
⎦

c = [1, 1.2, 3, 3.2]

P =

⎡

⎢
⎢⎢
⎢
⎣

0.131 0.169 0.556 0.012 0.828 0.588

0.232 0.413 0.830 0.373 0.100 0.999

0.234 0.141 0.352 0.288 0.304 0.665

0.404 0.882 0.873 0.574 0.109 0.038

⎤

⎥
⎥⎥
⎥
⎦

[0, 1]6 −3.32

f21(x) = −
5∑

i=1

[
(x − ai)(x − ai)T + ci

]−1

a =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎣

4 4 4 4

1 1 1 1

8 8 8 8

6 6 6 6

3 7 3 7

2 9 2 9

5 5 3 3

8 1 8 1

6 2 6 2

7 3.6 7 3.6

⎤

⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎦

c = [0.1, 0.2, 0.2, 0.4, 0.4, 0.6, 0.3, 0.7, 0.5, 0.5]

[0, 10]4 −10.1532

f22(x) = −
7∑

i=1

[
(x − ai)(x − ai)T + ci

]−1

a and c, equal to f21

[0, 10]4 −10.4028

f23(x) = −
7∑

i=1

[
(x − ai)(x − ai)T + ci

]−1

a and c, equal to f21.

[0, 10]4 −10.5363

6.4 Experimental Results 173

Table 6.4 Optimum locations of Table 6.3

Test
function

xopt Test function xopt

f14 (−32, 32) f19 (0.114, 0.556, 0.852)

f15 (0.1928, 0.1908, 0.1231,
0.1358)

f20 (0.201, 0.15, 0.477, 0.275,
0.311, 0.657)

f16 (0.089, −0.71), (−0.0089,
0.712)

f21 5 local minima in
ai j , i = 1, . . . , 5

f17 (−3.14, 12.27), (3.14, 2.275),
(9.42, 2.42)

f22 7 local minima in
ai j , i = 1, . . . , 7

f18 (0, −1) f23 10 local minima in
ai j , i = 1, . . . , 10

is directly related to a better trade-off between exploration and exploitation produced
by CAB operators. Moreover, the good convergence rate of CAB can be observed
from Fig. 6.2 According to this figure, CAB tends to find the global optimum faster
than other algorithms and yet offering the highest convergence rate.

A non-parametric statistical significance proof known as the Wilcoxon’s rank
sum test for independent samples [58, 59] has been conducted with 5% significance
level, over the “average best-so-far” data of Table 6.7. Table 6.8 reports the p-values
produced by Wilcoxon’s test for the pair-wise comparison of the “average best so-
far” of four groups. Such groups are formed by CAB versus RGA, CAB versus
PSO, CAB versus GSA and CAB versus DE. As a null hypothesis, it is assumed
that there is no significant difference between mean values of the two algorithms.
The alternative hypothesis considers a significant difference between the “average
best-so-far” values of both approaches. All p-values reported in the table are less than
0.05 (5% significance level) which is a strong evidence against the null hypothesis,
indicating that the CAB results are statistically significant and that it has not occurred
by coincidence (i.e. due to the normal noise contained in the process).

Multimodal test functions
Multimodal functions have many local minima, being the most difficult to optimize.
For multimodal functions, the final results are more important since they reflect
the algorithm’s ability to escape from poor local optima and locate a near-global
optimum.Experiments have been done on f8 to f13 where the number of localminima
increases exponentially as the dimension of the function increases. The dimension
of these functions is set to 30. The results are averaged over 30 runs, reporting the
performance indexes in Table 6.9 as follows: the average best-so-far solution, the
average mean fitness function and the median of the best solution in the last iteration
(the best result for each function is highlighted) Likewise, p-values of the Wilcoxon
signed-rank test of 30 independent runs are listed in Table 6.10. For f9, f10, f11 and
f12, CAB yields a much better solution than the others. However, for functions f8
and f13, CAB produces similar results to RGA and GSA respectively. TheWilcoxon
rank test results, presented in Table 6.10, show that CAB performed better than

174 6 A Swarm Algorithm Inspired by the Collective Animal Behavior

Ta
bl

e
6.

5
R
es
ul
ts
of

C
A
B
w
ith

va
ri
an
tv

al
ue
s
of

pa
ra
m
et
er

P
ov
er

5
ty
pi
ca
lf
un

ct
io
ns
,w

ith
H

=
0.
8

Fu
nc
tio

n
n

P
=

0.
5,

μ
(σ

2
)

P
=

0.
6,

μ
(σ

2
)

P
=

0.
7,

μ
(σ

2
)

P
=

0.
8,

μ
(σ

2
)

P
=

0.
9,

μ
(σ

2
)

f 1
30

2.
63

×
10

−1
1
(2
.1
3

×
10

−1
2
)

1.
98

×
10

−1
7
(6
.5
1

×
10

−1
8
)

1.
28

×
10

−2
3
(3
.5
4

×
10

−2
4
)

2.
33

×
10

−2
9

(4
.4

1
×

10
−3

0
)

4.
53

×
10

−2
3
(5
.1
2

×
10

−2
4
)

f 3
30

5.
71

×
10

−1
3
(1
.1
1

×
10

−1
4
)

7.
78

×
10

−1
9
(1
.5
2

×
10

−2
0
)

4.
47

×
10

−2
7
(3
.6

×
10

−2
8
)

7.
62

×
10

−3
1

(4
.2

3
×

10
−3

2
)

3.
42

×
10

−2
6
(3
.5
4

×
10

−2
7
)

f 5
30

5.
68

×
10

−1
1
(2
.2
1

×
10

−1
2
)

1.
54

×
10

−1
7
(1
.6
8

×
10

−1
8
)

5.
11

×
10

−2
2
(4
.4
2

×
10

−2
3
)

9.
02

×
10

−2
8

(6
.7

7
×

10
−2

9
)

4.
77

×
10

−2
0
(1
.9
4

×
10

−2
1
)

f 1
0

30
3.
50

×
10

−5
(3
.2
2

×
10

−6
)

2.
88

×
10

−9
(3
.2
8

×
10

−1
0
)

2.
22

×
10

−1
2
(4
.2
1

×
10

−1
3
)

8.
88

×
10

−1
6

(3
.4

9
×

10
−1

7
)

1.
68

×
10

−1
1
(5
.3
1

×
10

−1
2
)

f 1
1

30
1.
57

×
10

−2
(1
.2
5

×
10

−3
)

1.
14

×
10

−6
(3
.7
1

×
10

−7
)

2.
81

×
10

−8
(5
.2
1

×
10

−9
)

4.
21

×
10

−1
0

(4
.8

7
×

10
−1

1
)

4.
58

×
10

−4
(6
.9
2

×
10

−5
)

6.4 Experimental Results 175

Ta
bl

e
6.

6
R
es
ul
ts
of

C
A
B
w
ith

va
ri
an
tv

al
ue
s
of

pa
ra
m
et
er

H
ov
er

5
ty
pi
ca
lf
un

ct
io
ns
,w

ith
P

=
0.
8

Fu
nc
tio

n
n

P
=

0.
5,

μ
(σ

2
)

P
=

0.
6,

μ
(σ

2
)

P
=

0.
7,

μ
(σ

2
)

P
=

0.
8,

μ
(σ

2
)

P
=

0.
9,

μ
(σ

2
)

f 1
30

2.
23

×
10

−1
0
(8
.9
2

×
10

−1
1
)

3.
35

×
10

−1
8
(3
.2
1

×
10

−1
9
)

3.
85

×
10

−2
2
(6
.7
8

×
10

−2
3
)

2.
33

×
10

−2
9
(4
.4
1

×
10

−3
0
)

4.
72

×
10

−2
1
(6
.2
9

×
10

−2
2
)

f 3
30

5.
71

×
10

−1
0
(5
.1
2

×
10

−1
1
)

3.
24

×
10

−1
8
(1
.3
2

×
10

−1
9
)

6.
29

×
10

−2
7
(8
.2
6

×
10

−2
3
)

7.
62

×
10

−3
1
(4
.2
3

×
10

−3
2
)

5.
41

×
10

−2
2
(5
.2
8

×
10

−2
3
)

f 5
30

8.
80

×
10

−9
(5
.5
5

×
10

−1
0
)

6.
72

×
10

−2
1
(1
.1
1

×
10

−2
2
)

1.
69

×
10

−2
3
(1
.3
4

×
10

−2
4
)

9.
02

×
10

−2
8
(6
.7
7

×
10

−2
9
)

7.
39

×
10

−2
1
(4
.4
1

×
10

−2
2
)

f 1
0

30
2.
88

×
10

−4
(3
.1
1

×
10

−5
)

3.
22

×
10

−1
0
(2
.1
8

×
10

−1
2
)

1.
23

×
10

−1
4
(4
.6
5

×
10

−1
5
)

8.
88

×
10

−1
6
(3
.4
9

×
10

−1
7
)

5.
92

×
10

−7
(3
.1
7

×
10

−9
)

f 1
1

30
1.
81

×
10

−4
(2
.1
6

×
10

−5
)

2.
89

×
10

−6
(6
.4
3

×
10

−7
)

2.
36

×
10

−7
(3
.7
5

×
10

−4
)

4.
21

×
10

−1
0
(4
.8
7

×
10

−1
1
)

3.
02

×
10

−4
(4
.3
7

×
10

−6
)

176 6 A Swarm Algorithm Inspired by the Collective Animal Behavior

Table 6.7 Minimization result of benchmark functions in Table 6.1 with n = 30

RGA PSO GSA DE CAB

f 1 Average best
so-far

23.13 1.8 × 10−3 7.3 × 10−11 11.21 2.3 × 10−29

Median best
so-far

21.87 1.2 × 10−3 7.1 × 10−11 13.21 1.1 × 10−20

Average
mean fitness

23.45 1.2 × 10−2 2.1 × 10−10 11.78 1.2 × 10−10

f 2 Average best
so-far

1.07 2.0 4.03 × 10−5 0.95 5.28 ×
10−20

Median best
so-far

1.13 1.9 × 10−3 4.07 × 10−5 1.05 2.88 ×
10−11

Average
mean fitness

1.07 2.0 6.9 × 10−5 0.90 1.43 × 10−9

f 3 Average best
so-far

5.6 ×
103

4.1 × 103 0.16 × 103 0.12 7.62 ×
10−31

Median best
so-far

5.6 ×
103

2.2 × 103 0.15 × 103 0.09 1.28 ×
10−19

Average
mean fitness

5.6 ×
103

2.9 × 103 0.16 × 103 0.11 3.51 ×
10−12

f 4 Average best
so-far

11.78 8.1 3.7 × 10−6 0.012 2.17 ×
10−17

Median best
so-far

11.94 7.4 3.7 × 10−6 0.058 5.65 ×
10−12

Average
mean fitness

11.78 23.6 8.5 × 10−6 0.013 4.96 ×
10−10

f 5 Average best
so-far

1.1 ×
103

3.6 × 104 25.16 0.25 9.025 ×
10−28

Median best
so-far

1.0 ×
103

1.7 × 103 25.18 0.31 3.10 ×
10−18

Average
mean fitness

1.1 ×
103

3.7 × 104 25.16 0.24 6.04 ×
10−14

f 6 Average best
so-far

24.01 1.0 × 10−3 8.3 × 10−11 1.25 × 10−3 4.47 ×
10−29

Median best
so-far

24.55 6.6 × 10−3 7.7 × 10−11 3.33 × 10−3 4.26 ×
10−21

Average
mean fitness

24.52 0.02 2.6 × 10−10 1.27 × 10−3 1.03 ×
10−12

f 7 Average best
so-far

0.06 0.04 0.018 6.87 × 10−3 3.45 × 10−5

Median best
so-far

0.06 0.04 0.015 4.72 × 10−3 7.39 × 10−4

Average
mean fitness

0.56 1.04 0.533 1.28 × 10−2 8.75 × 10−4

Maximum number of iterations = 1000

6.4 Experimental Results 177

(a)

(b)

Fig. 6.2 Performance comparison of RGA, PSO, GSA, DE and CAB for minimization of a f1 and
b f7 considering n = 30

RGA, PSO, GSA and DE considering the four problems f9 − f12, whereas, from a
statistical viewpoint, there is not difference in results between CAB and RGA for
f8, and between CAB and GSA for f13. The progress of the “average best-so-far”
solution over 30 runs for functions f10 and f12 are shown in Fig. 6.3.

Multimodal test functions with fix dimensions
Table 6.11 shows the comparison between CAB, RGA, PSO, GSA and DE on multi-
modal benchmark functions with fix dimensions of Table 6.3. The results show that
RGA, PSO and GSA have similar solutions and performances are nearly the same
as it can be seen in Fig. 6.4. The results, presented in Table 6.11, show how swarm
algorithmsmaintain a similar average performancewhen they faced low-dimensional
functions [57].

Comparison to continuous optimization methods
Finally, CAB has been further compared to continuous optimization methods by

178 6 A Swarm Algorithm Inspired by the Collective Animal Behavior

Table 6.8 p-values produced
by Wilcoxon’s test comparing
CAB versus RGA, PSO, GSA
and DE over the “average
best-so-far” values from
Table 6.8

CAB RGA PSO GSA DE

f 1 1.21 ×
10−6

3.94 ×
10−5

7.39 ×
10−4

1.04 ×
10−6

f 2 2.53 ×
10−6

5.62 ×
10−5

4.92 ×
10−4

2.21 ×
10−6

f 3 8.34 ×
10−8

6.42 ×
10−8

7.11 ×
10−7

1.02 ×
10−4

f 4 3.81 ×
10−8

1.91 ×
10−8

7.39 ×
10−4

1.27 ×
10−6

f 5 4.58 ×
10−8

9.77 ×
10−9

4.75 ×
10−7

0.23 ×
10−4

f 6 8.11 ×
10−8

1.98 ×
10−6

5.92 ×
10−4

2.88 ×
10−5

f 7 5.12 ×
10−7

4.77 ×
10−7

8.93 ×
10−6

1.01 ×
10−4

considering the presented benchmark functions. Since the BFSG algorithm [60] is
one of the most effective continuous methods for solving unconstrained optimization
problems, it has been considered as a basis for the algorithms in the comparison. All
experiments have been tested in MatLAB© over the same Dell Optiplex GX260
computer with a Pentium-4 2.66G-HZ processor, running Windows XP operating
system over 1 Gb of memory.

Local optimization
In the first experiment, the performance of algorithmsBFGS andCABover unimodal
functions is compared. In unimodal functions, the global minimum matches the
local minimum. Quasi-Newton methods, such as the BFGS, have a fast rate of local
convergence despite it depends on the problem’s dimension [61, 62]. Considering
that not all unimodal functions of Table 6.1 fulfill the requirements imposed by the
gradient based approaches (i.e. f2 and f4 are not differentiable meanwhile f7 is
non-smooth), we have chosen the Rosenbrock function (f5) as a benchmark.

In the test, both algorithms (BFGS and CAB) are employed to minimize f5, con-
sidering different dimensions. For the BFGS implementation, it is considered B0 = I
as initial matrix. Likewise, parameters δ and δ are set to 0.1 and 0.9 respectively.
Although several performance criteria may define a comparison index, most can be
applied to only one method timely (such as the number of gradient evaluations).
Therefore, this chapter considers the elapsed time and the iteration number (once
the minimum has been reached) as performance indexes in the comparison. In the
case of BFGS, the termination condition is assumed as ‖g5(x)‖ ≤ 1 × 10−6, with
g5(x) being the gradient of f5(x). On the other hand, the stopping criterion of CAB
considers when no more changes to the best element in memory Mh are registered.
Table 6.12 presents the results of both algorithms considering several dimensions
(n ∈ {2, 10, 30, 50, 70, 100, 120}) of f5. In order to assure consistency, such results

6.4 Experimental Results 179

Table 6.9 Minimization result of benchmark functions in Table 6.2 with n = 30

RGA PSO GSA DE CAB

f 8 Average
best so-far

−1.26 ×
104

−9.8 × 103 −2.8 × 103 −4.1 × 103 −1.2 × 104

Median best
so-far

−1.26 ×
104

−9.8 × 103 −2.6 × 103 −4.1 × 103 −1.2 × 104

Average
mean fitness

−1.26 ×
104

−9.8 × 103 −1.1 × 103 −4.1 × 103 −1.2 × 104

f 9 Average
best so-far

5.90 55.1 15.32 30.12 1.0 × 10−3

Median best
so-far

5.71 56.6 14.42 31.43 7.6 × 10−4

Average
mean fitness

5.92 72.8 15.32 30.12 1.0 × 10−3

f 10 Average
best so-far

2.13 9.0 × 10−3 6.9 × 10−6 3.1 × 10−3 8.88 ×
10−16

Median best
so-far

2.16 6.0 × 10−3 6.9 × 10−6 2.3 × 10−3 2.97 ×
10−11

Average
mean fitness

2.15 0.02 1.1 × 10−5 3.1 × 10−3 9.0 × 10−10

f 11 Average
best so-far

1.16 0.01 0.29 1.0 × 10−3 1.14 ×
10−13

Median best
so-far

1.14 0.0081 0.04 1.0 × 10−3 1.14 ×
10−13

Average
mean fitness

1.16 0.055 0.29 1.0 × 10−3 1.14 ×
10−13

f 12 Average
best so-far

0.051 0.29 0.01 0.12 2.32 ×
10−30

Median best
so-far

0.039 0.11 4.2 × 10−13 0.01 5.22 ×
10−22

Average
mean fitness

0.053 9.3 × 103 0.01 0.12 4.63 ×
10−17

f 13 Average
best so-far

0.081 3.1 × 10−18 3.2 × 10−32 1.77 ×
10−25

1.35 ×
10−32

Median best
so-far

0.032 2.2 × 1023 2.3 × 10−32 1.77 ×
10−25

2.20 ×
10−21

Average
mean fitness

0.081 4.8 × 105 3.2 × 10−32 1.77 ×
10−25

3.53 ×
10−17

Maximum number of iterations = 1000

180 6 A Swarm Algorithm Inspired by the Collective Animal Behavior

Table 6.10 p-values
produced by Wilcoxon’s test
comparing CAB versus RGA,
PSO, GSA and DE over the
“average best-so-far” values
from Table 6.9

CAB RGA PSO GSA DE

f 8 0.89 8.38 ×
10−4

1.21 ×
10−4

4.61 ×
10−4

f 9 7.23 ×
10−7

1.92 ×
10−9

5.29 ×
10−8

9.97 ×
10−8

f 10 6.21 ×
10−9

4.21 ×
10−5

1.02 ×
10−4

3.34 ×
10−4

f 11 7.74 ×
10−9

3.68 ×
10−7

4.10 ×
10−7

8.12 ×
10−5

f 12 1.12 ×
10−8

8.80 ×
10−9

2.93 ×
10−7

4.02 ×
10−8

f 13 4.72 ×
10−9

3.92 ×
10−5

0.93 2.20 ×
10−4

(a)

(b)

Fig. 6.3 Performance comparison of RGA, PSO, GSA, DE and CAB for minimization of a f10
and b f12 considering n = 30

6.4 Experimental Results 181

Table 6.11 Minimization result of benchmark functions in Table 6.3 with n = 30

RGA PSO GSA DE CAB

f 14 Average
best so-far

0.998 0.998 3.70 0.998 0.998

Median best
so-far

0.998 0.998 2.07 0.998 0.998

Average
mean fitness

0.998 0.998 9.17 0.998 0.998

f 15 Average
best so-far

4.0 × 10−3 2.8 × 10−3 8.2 × 10−3 2.2 × 10−3 1.1 × 10−3

Median best
so-far

1.7 × 10−4 7.1 × 10−4 7.4 × 10−4 5.3 × 10−4 2.2 × 10−4

Average
mean fitness

4.0 × 10−3 215.60 9.0 × 10−3 2.2 × 10−3 1.1 × 10−3

f 16 Average
best so-far

−1.0313 −1.0316 −1.0316 −1.0316 −1.0316

Median best
so-far

−1.0315 −1.0316 −1.0316 −1.0316 −1.0316

Average
mean fitness

−1.0313 −1.0316 −1.0316 −1.0316 −1.0316

f 17 Average
best so-far

0.3996 0.3979 0.3979 0.3979 0.3979

Median best
so-far

0.3980 0.3979 0.3979 0.3979 0.3979

Average
mean fitness

0.3996 2.4112 0.3979 0.3979 0.3979

f 18 Average
best so-far

−3.8627 −3.8628 −3.8628 −3.8628 −3.8628

Median best
so-far

−3.8628 −3.8628 −3.8628 −3.8628 −3.8628

Average
mean fitness

−3.8627 −3.8628 −3.8628 −3.8628 −3.8628

f 19 Average
best so-far

−3.3099 −3.3269 −3.7357 −3.3269 −3.8501

Median best
so-far

−3.3217 −3.2031 −3.8626 −3.3269 −3.8501

Average
mean fitness

−3.3098 −3.2369 −3.8020 −3.3269 −3.8501

f 20 Average
best so-far

−3.3099 −3.2369 −2.0569 −3.2369 −3.2369

Median best
so-far

−3.3217 −3.2031 −1.9946 −3.2369 −3.2369

Average
mean fitness

−3.3098 −3.2369 −1.6014 −3.2369 −3.2369

(continued)

182 6 A Swarm Algorithm Inspired by the Collective Animal Behavior

Table 6.11 (continued)

RGA PSO GSA DE CAB

f 21 Average
best so-far

−5.6605 −6.6290 −6.0748 −6.6290 −10.1532

Median best
so-far

−2.6824 −5.1008 −5.0552 −6.0748 −10.1532

Average
mean fitness

−5.6605 −5.7496 −6.0748 −6.6290 −10.1532

f 22 Average
best so-far

−7.3421 −9.1118 −9.3339 −9.3339 −10.4028

Median best
so-far

−10.3932 −10.402 −10.402 −9.3339 −10.4028

Average
mean fitness

−7.3421 −9.9305 −9.3399 −9.3339 −10.4028

f 23 Average
best so-far

−6.2541 −9.7634 −9.4548 −9.7634 −10.5363

Median best
so-far

−4.5054 −10.536 −10.536 −9.7636 −10.5363

Average
mean fitness

−6.2541 −8.7626 −9.4548 −9.7634 −10.5363

Maximum number of iterations = 500

Table 6.12 Performance
comparison between the
BFGS and the CAB
algorithm, considering
different dimensions over the
Rosenbrock function

f 5
n

AET AIN

BFGS CAB BFGS CAB

2 0.15 4.21 6 89

10 0.55 5.28 22 98

30 1.35 5.44 41 108

50 2.77 5.88 68 112

70 4.23 6.11 93 115

100 5.55 6.22 105 121

120 6.64 6.71 125 129

The averaged elapsed time (AET) is referred in seconds

represent the averaged elapsed time (AET) and the averaged iteration number (AIN)
over 30 different executions. It is additionally considered that at each execution both
methods are initialized to a random point (inside the search space).

From Table 6.12, we can observe that the BFGS algorithm produces shorter
elapsed times and fewer iterations than the CAB method. However, from n =
70, the CAB algorithm contend with similar results. The fact that the BFGS
algorithm outperforms the CAB approach cannot be deemed as a negative fea-
ture considering the restrictions imposed to the functions by the BFGS method.

6.4 Experimental Results 183

(a)

(b)

Fig. 6.4 Performance comparison of RGA, PSO, GSA, DE and CAB for minimization of a f15
and b f22

Global optimization
Since the BFGS algorithm exploits only local information, it may easily get trap
into local optima restricting its use for global optimization. Therefore several other
methods for continuous optimization have been proposed. One of the most widely
used techniques is the so called Multi-Start [63] (MS). In MS a point is randomly
chosen from a feasible region as initial solution and subsequently a continuous opti-
mization algorithm (local search) starts from it. Then, the process is repeated until a
near global optimum is reached. The weakness of MS is that the same local minima
may be found over and over again, wasting computational resources [64].

In order to compare the performance of theCABapproach to continuous optimiza-
tion methods in the context of global optimization, the MS algorithm ADAPT [65]
has been chosen. ADAPT uses an iterative BFGS algorithm as local search method.

184 6 A Swarm Algorithm Inspired by the Collective Animal Behavior

Table 6.13 Performance comparison between the ADAPT and the CAB algorithm considering
different multimodal functions

Function n ADAPT CAB

ALS AET AIN ABS AET AIN ABS

f 9 30 3705 45.4 23,327 1.2 × 10−2 10.2 633 1.0 × 10−3

f 10 30 4054 1′05.7 38,341 6.21 ×
10−12

12.1 723 8.88 ×
10−16

f 11 30 32,452 2′12.1 102,321 4.51 ×
10−10

15.8 884 1.14 ×
10−13

f 17 2 1532 33.2 20,202 0.3976 7.3 332 0.3979

f 18 2 1233 31.6 18,845 −3.8611 6.6 295 −3.8628

The averaged elapsed time (AET) is referred in the format M’s (Minute’second)

Thus, ADAPT possess two different stop criteria, one for the local procedure BFGS
and other for the complete MS approach. For the comparison, the ADAPT algorithm
has been implemented as suggested by [65].

In the second experiment, the performance of theADAPTand theCABalgorithms
is compared over several multimodal functions described in Tables 6.2 and 6.3. The
study considers the following performance indexes: the elapsed time, the iteration
number and the average best so-far solution. In case of the ADAPT algorithm, the
iteration number is computed as the total iteration number produced by all the local
search procedures as the MS method operates. The termination condition of the
ADAPT local search algorithm (BFGS) is assumed when ‖gk(x)‖ ≤ 1×10−5, being
gk(x) the gradient of fk(x). On the other hand, the stopping criterion for the CAB and
the ADAPT algorithms, is considered when no more changes in the best element are
registered, i.e. the best element inMh forCABor the best found-so-far element during
theMS process. Table 6.13 presents results from both algorithms considering several
multimodal functions. In order to assure consistency, results ponder the averaged
elapsed time (AET), the averaged iteration number (AIN) and the average best so-far
solution (ABS) over 30 different executions. In Table 6.13, the averaged number of
local searches (ALS) executed by ADAPT during the optimization, is additionally
considered.

Table 6.13 provides a summarized performance comparison between the ADAPT
and the CAB algorithms. Despite both algorithms are able to acceptably locate the
globalminimum for both cases, there exist significant differences in the required time
for reaching it. When comparing the averaged elapsed time (AET) and the averaged
iteration number (AIN) in Table 6.13, CAB uses significantly less time and fewer
iterations to reach the global minimum than the ADAPT algorithm.

6.5 Summary 185

6.5 Summary

In recent years, several swarm optimization methods have been developed including
some that have been inspired by nature-related phenomena. This chapter presents a
novel optimization algorithm that is called theCollectiveAnimalBehaviorAlgorithm
(CAB). In CAB, the searcher agents emulate a group of animals that interact to each
other based on simple behavioral rules which aremodeled asmathematical operators.
Such operations are applied to each agent considering that the complete group has a
memory storing their own best positions seen so far by using a competition principle.

CAB has been experimentally tested considering a challenging test suite con-
sisting of 23 benchmark functions. The performance of CAB has been compared
against the following swarm algorithms: the Real Genetic Algorithm (RGA) [54],
the PSO [18], the Gravitational Search Algorithm (GSA) [55] and the Differential
Evolution (DE) method [56]. The experiments have demonstrated that CAB gen-
erally outperforms other swarm algorithms for most of the benchmark functions
regarding the solution quality. In this study the CAB algorithm has also been com-
pared to algorithms based in continuous optimization methods such as the BFGS
[60] and the ADAPT [65]. The results shown that although BFGS outperforms CAB
for local optimization tasks, ADAPT faces great difficulties in solving global opti-
mization problems. CAB’s remarkable performance is due to two different reasons:
(i) the defined operators allow a better exploration of the search space, increasing
the capacity to find multiple optima; and (ii) the diversity of the solutions contained
in the Mh memory, in terms of multimodal optimization, is maintained and even
improved by implementing the competition principle (dominance concept).

References

1. Pardalos Panos,M., Romeijn Edwin, H., Tuy, Hoang: Recent developments and trends in global
optimization. J. Comput. Appl. Math. 124, 209–228 (2000)

2. Floudas, C., Akrotirianakis, I., Caratzoulas, S., Meyer, C., Kallrath, J.: Global optimization in
the 21st century: advances and challenges. Comput. Chem. Eng. 29(6), 1185–1202 (2005)

3. Ying, J., Ke-Cun, Z., Shao-Jian, Q.: A deterministic global optimization algorithm.Appl.Math.
Comput. 185(1), 382–387 (2007)

4. Georgieva, A., Jordanov, I.: Global optimization based on novel heuristics, low-discrepancy
sequences and genetic algorithms. Eur. J. Oper. Res. 196, 413–422 (2009)

5. Lera, D., Y, Sergeyev: Lipschitz and Hölder global optimization using space-filling curves.
Appl. Nume. Math. 60(1–2), 115–129 (2010)

6. Fogel, L.J.,Owens,A.J.,Walsh,M.J.:Artificial intelligence through simulated evolution.Wiley,
Chichester, UK (1966)

7. De Jong, K.: Analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis,
University of Michigan, Ann Arbor, MI (1975)

8. Koza, J.R.: Genetic programming: a paradigm for genetically breeding populations of computer
programs to solve problems. Report no. STAN-CS-90-1314. Stanford University, CA (1990)

9. Holland, J.H.: Adaptation in Natural and Artificial Systems. University ofMichigan Press, Ann
Arbor, MI (1975)

186 6 A Swarm Algorithm Inspired by the Collective Animal Behavior

10. Goldberg,D.E.:Genetic algorithms in search. In:Optimization andMachineLearning,Addison
Wesley, Boston, MA (1989)

11. de Castro, L.N., Von Zuben F.J., Artificial immune systems: Part I—basic theory and applica-
tions. Technical report TR-DCA 01/99 (Dec 1999)

12. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science
220(4598), 671–680 (1983)

13. İlker, B., Birbil, S., Shu-Cherng, F.: An electromagnetism-like mechanism for global optimiza-
tion. J. Glob. Optim. 25, 263–282 (2003)

14. Rashedia, E., Nezamabadi-pour, H., Saryazdi, S.: Filter modeling using gravitational search
algorithm. Eng. Appl. Artif. Intell. 24(1), 117–122 (2011)

15. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony
search. Simulation 76(2), 60–68 (2001)

16. Lee,K.S.,Geem,Z.W.:Anewmeta-heuristic algorithm for continues engineering optimization:
harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 194, 3902–3933
(2004)

17. Zong Woo Geem: Novel derivative of harmony search algorithm for discrete design variables.
Appl. Math. Comput. 199, 223–230 (2008)

18. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the 1995 IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

19. Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Technical report
no. 91-016. Politecnico di Milano (1991)

20. Oftadeh, R., Mahjoob, M.J., Shariatpanahi, M.: A novel meta-heuristic optimization algorithm
inspired by group hunting of animals: Hunting search. Comput. Math Appl. 60, 2087–2098
(2010)

21. Sumper, D.: The principles of collective animal behaviour. Philos. Trans. R. Soc. Lond. B Biol.
Sci. 361(1465), 5–22 (2006)

22. Petit, O., Bon, R.: Decision-making processes: The case of collective movements. Behav. Proc.
84, 635–647 (2010)

23. Kolpas, A., Moehlis, J., Frewen, T., Kevrekidis, I.: Coarse analysis of collective motion with
different communication mechanisms. Math. Biosci. 214, 49–57 (2008)

24. Couzin, I.: Collective cognition in animal groups. Trends Cogn. Sci. 13(1), 36–43 (2008)
25. Couzin, I.D., Krause, J.: Self-organization and collective behavior in vertebrates. Adv. Stud.

Behav. 32, 1–75 (2003)
26. Bode, N., Franks, D., Wood, A.: Making noise: emergent stochasticity in collective motion. J.

Theor. Biol. 267, 292–299 (2010)
27. Couzi, I., Krause, I., James, R., Ruxton, G., Franks, N.: Collective memory and spatial sorting

in animal groups. J. Theor. Biol. 218, 1–11 (2002)
28. Couzin, I.D.: Collective minds. Nature 445, 715–728 (2007)
29. Bazazi, S., Buhl, J., Hale, J.J., Anstey, M.L., Sword, G.A., Simpson, S.J., Couzin, I.D.: Col-

lective motion and cannibalism in locust migratory bands. Curr. Biol. 18, 735–739 (2008)
30. Bode, N., Wood, A., Franks, D.: The impact of social networks on animal collective motion.

Anim. Behav. 82(1), 29–38 (2011)
31. Lemasson, B., Anderson, J., Goodwin, R.: Collective motion in animal groups from a neuro-

biological perspective: the adaptive benefits of dynamic sensory loads and selective attention.
J. Theor. Biol. 261(4), 501–510 (2009)

32. Bourjade, M., Thierry, B., Maumy, M., Petit, O.: Decision-making processes in the collective
movements of Przewalski horses families Equus ferus Przewalskii: influences of the environ-
ment. Ethology 115, 321–330 (2009)

33. Banga, A., Deshpande, S., Sumanab, A., Gadagkar, R.: Choosing an appropriate index to
construct dominance hierarchies in animal societies: a comparison of three indices. Anim.
Behav. 79(3), 631–636 (2010)

34. Hsu, Y., Earley, R., Wolf, L.: Modulation of aggressive behaviour by fighting experience:
mechanisms and contest outcomes. Biol. Rev. 81(1), 33–74 (2006)

References 187

35. Broom, M., Koenig, A., Borries, C.: Variation in dominance hierarchies among group-living
animals: modeling stability and the likelihood of coalitions. Behav. Ecol. 20, 844–855 (2009)

36. Bayly, K.L., Evans, C.S., Taylor, A.: Measuring social structure: a comparison of eight domi-
nance indices. Behav. Proc. 73, 1–12 (2006)

37. Conradt, L., Roper, T.J.: Consensus decision-making in animals. Trends Ecol. Evol. 20,
449–456 (2005)

38. Okubo, A.: Dynamical aspects of animal grouping. Adv. Biophys. 22, 1–94 (1986)
39. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioural model. Comp. Graph. 21,

25–33 (1987)
40. Gueron, S., Levin, S.A., Rubenstein, D.I.: The dynamics of mammalian herds: from individual

to aggregations. J. Theor. Biol. 182, 85–98 (1996)
41. Czirok, A., Vicsek, T.: Collective behavior of interacting self-propelled particles. Phys. A 281,

17–29 (2000)
42. Ballerini, M.: Interaction ruling collective animal behavior depends on topological rather than

metric distance: evidence from a field study. Proc. Natl. Acad. Sci. U.S.A. 105, 1232–1237
(2008)

43. Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic
algorithms on selected continuous global optimization test problems. J. Glob. Optim. 31(4),
635–672 (2005)

44. Chelouah, R., Siarry, P.: A continuous genetic algorithm designed for the global optimization
of multimodal functions. J. Heuristics 6(2), 191–213 (2000)

45. Herrera, F., Lozano, M., Sánchez, A.M.: A taxonomy for the crossover operator for real-coded
genetic algorithms: an experimental study. Int. J. Intell. Syst. 18(3), 309–338 (2003)

46. Laguna, M., Martí, R.: Experimental testing of advanced scatter search designs for global
optimization of multimodal functions. J. Global Optim. 33(2), 235–255 (2005)

47. Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-coded memetic algorithms with
crossover hill-climbing. Evol. Comput. 12(3), 273–302 (2004)

48. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM
Trans. Math. Softw. 7(1), 17–41 (1981)

49. Ortiz-Boyer, D., Hervás-Martınez, C., García-Pedrajas, N.: CIXL2: a crossover operator for
evolutionary algorithms based on population features. J. Artif. Intell. Res. 24(1), 1–48 (2005)

50. Price, K., Storn, R.M., Lampinen, J.A.: Differential evolution: a practical approach to global
optimization. Springer, New York (2005)

51. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-based differential evolution.
IEEE Trans. Evol. Comput. 12(1), 64–79 (2008)

52. Whitley, D., Rana, D., Dzubera, J., Mathias, E.: Evaluating evolutionary algorithms. Artif.
Intell. 85(1–2), 245–276 (1996)

53. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput.
3(2), 82–102 (1999)

54. Hamzaçebi, C.: Improving genetic algorithms’ performance by local search for continuous
function optimization. Appl. Math. Comput. 196(1), 309–317 (2008)

55. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf.
Sci. 179, 2232–2248 (2009)

56. Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global
optimisation over continuous spaces. Technical report TR-95–012. ICSI, Berkeley, CA (1995)

57. Shilane, D., Martikainen, J., Dudoit, S., Ovaska, S.: A general framework for statistical perfor-
mance comparison of evolutionary computation algorithms. Inf. Sci. 178, 2870–2879 (2008)

58. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)
59. Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests

for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special
session on real parameter optimization. J. Heurist. (2008). https://doi.org/10.1007/s10732-008-
9080-4

60. Al-Baali, M.: On the behavior of bombined extra-updating/self scaling BFGSmethod. J. Com-
put. Appl. Math. 134, 269–281 (2001)

https://doi.org/10.1007/s10732-008-9080-4

188 6 A Swarm Algorithm Inspired by the Collective Animal Behavior

61. Powell, M.: How bad are the BFGS and DFPmethods when the objective function is quadratic?
Math. Program. 34, 34–37 (1986)

62. Hansen, E., Walster, G.: Global Optimization Using Interval Analysis. CRC Press (2004)
63. Lasdona, L., Plummer, J.: Multistart algorithms for seeking feasibility. Comput. Oper. Res.

35(5), 1379–1393 (2008)
64. Theos, F., Lagaris, I., Papageorgiou, D.: PANMIN: sequential and parallel global optimization

procedures with a variety of options for the local search strategy. Comput. Phys. Commun.
159, 63–69 (2004)

65. Voglis, C., Lagaris, I.: Towards “Ideal Multistart”. A stochastic approach for locating the
minima of a continuous function inside a bounded domain. Appl. Math. Comput. 213, 216–229
(2009)

Chapter 7
Auto-calibration of Fractional Fuzzy
Controllers by Using the Swarm
Social-Spider Method

Abstract Fuzzy controllers (FCs) based on integer concepts have proved their inter-
esting capacities in several engineering domains. The fact that dynamic processes can
be more precisely modeled by using fractional systems has generated a great interest
in considering the design of FCs under fractional principles. In the design of frac-
tional FCs, the parameter adjustment operation is converted into a multidimensional
optimization task where fractional orders, and controller parameters, are assumed as
decision elements. In the design of fractional FCs, the complexity of the optimization
problem produces multi-modal error surfaces which are significantly hard to solve.
Several swarm algorithms have been successfully used to identify the optimal ele-
ments of fractional FCs. But, most of them present a big weakness since they usually
get sub-optimal solutions as a result of their improper balance between exploitation
and exploration in their search process. This chapter analyses the optimal parameter
calibration of fractional FCs. To determine the best elements, the approach employs
the Social Spider Optimization (SSO) algorithm, which is based on the simulation
of the cooperative operation of social-spiders. In SSO, candidate solutions represent
a group of spiders, which interact with each other by considering the biological con-
cepts of the spider colony. Different to most of the swarm algorithms, the approach
explicitly avoids the concentration of solutions in the promising positions, eliminat-
ing critical defects such as the premature convergence and the deficient balance of
exploration-exploitation.

7.1 Introduction

A fractional order model is a system that is characterized by a fractional differen-
tial equation containing derivatives of non-integer order. In fractional calculus, the
integration and the differentiation operators are generalized into a non-integer order
element, where is a fractional number and a and t symbolize the operator limits
[1, 2]. Several dynamic systems can be more accurately described and controlled by
fractional models in comparison to integer order schemes. For this reason, in the last
decade, the fractional order controllers [3–5] have attracted the interests of several
research communities.

© Springer Nature Switzerland AG 2020
E. Cuevas et al., New Advancements in Swarm Algorithms: Operators
and Applications, Intelligent Systems Reference Library 160,
https://doi.org/10.1007/978-3-030-16339-6_7

189

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16339-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-16339-6_7

190 7 Auto-calibration of Fractional Fuzzy Controllers …

A fractional-order controller incorporates an integrator of order and a differentia-
tor of order. The superior performance of such controllers with regard to conventional
PIDs has been widely demonstrated in the literature [6].

On the other hand, fuzzy logic [7] provides an alternative method to design con-
trollers through the use of heuristic information. Remarkably, such heuristic infor-
mation may come from a human-operator who directly manipulates the process.
In the fuzzy logic methodology, a human operator defines a set of rules on how
to control a process, then incorporated it into a fuzzy controller that emulates the
decision-making process of the operator [8].

Fractional fuzzy controllers (FFCs) are the results of the combination of con-
ventional fuzzy controllers and fractional operators. Under such combination, FFCs
exhibit better results than conventional FCs for an extensive variety of dynamical sys-
tems. This capacity is attributed to the additional flexibility offered by the inclusion
of the fractional parameters.

Parameter calibration is an important step to implement applications with FFCs.
This procedure is long and time consuming, since it is commonly conducted through
trial and error. Therefore, the problem of parameter estimation in FFCs can be han-
dled by evolutionary optimization methods. In general, they have demonstrated to
deliver interesting results in terms of accuracy and robustness [5]. In these methods,
an individual is represented by a candidate parameter set, which symbolizes the con-
figuration of a determined fractional fuzzy controller. Just as the evolution process
unfolds, a set of swarm operators is applied in order to produce better individuals.
The quality of each candidate solution is evaluated through an objective function
whose final result represents the performance of the parameter set in terms of the
produced error. Some examples of such approaches being applied to the identifica-
tion of fractional order systems have involved methods such as Genetic Algorithms
(GA) [5], Particle SwarmOptimization (PSO) [9], Harmony Search (HS) [10], Grav-
itational Search Algorithm (GSA) [11] and Cuckoo Search (CS) [12]. Although such
algorithms present interesting results, they have exhibited an important limitation:
they frequently obtained sub-optimal solutions as a consequence of the limited bal-
ance between exploration and exploitation in their search strategies. Such limitation
is associated to the evolutionary operators that have been employed to modify indi-
vidual positions. In such algorithms, during their operation, the position of each
individual for the next iteration is updated, producing an attraction towards the posi-
tion of the best particle seen so far or towards other promising individuals. Therefore,
as the algorithm evolves, such behaviors cause that the entire population concentrate
rapidly around the best particles, favoring the premature convergence and damaging
the appropriate exploration of the search space [13, 14].

The Social Spider Optimization (SSO) algorithm [15] is a recent swarm method
that is inspired on the emulation of the collaborative behavior of social-spiders. In
SSO, solutions imitate a set of spiders, which cooperate to each other based on the
natural laws of the cooperative colony. Unlike the most popular swarm algorithms
such as GA [16], PSO [17], HS [18], GSA [19] and CS [20], it explicitly evades
the concentration of individuals in the best positions, avoiding critical flaws such
as the premature convergence to sub-optimal solutions and the limited balance of

7.1 Introduction 191

exploration-exploitation. Such characteristics havemotivated the use of SSO to solve
an extensive variety of engineering applications such as energy theft detection [21],
machine learning [22], electromagnetics [23], image processing [24] and integer
programming problems [25].

This chapter presents a method for the optimal parameter calibration of fractional
FCs based on the SSO algorithm. Under this approach, the calibration process is
transformed into a multidimensional optimization problem where fractional orders,
as well as controller parameters of the fuzzy system, are considered as a candi-
date solution to the calibration task. In the method, the SSO algorithm searches
the entire parameter space while an objective function evaluates the performance of
each parameter set. Conducted by the values of such objective function, the group of
candidate solutions are evolved through the SSO algorithm so that the optimal solu-
tion can be found. Experimental evidence shows the effectiveness and robustness
of the method for calibrating fractional FCs. A comparison with similar methods
such as the Genetic Algorithms (GA), the Particle Swarm Optimization (PSO), the
Harmony Search (HS), the Gravitational Search Algorithm (GSA) and the Cuckoo
Search (CS) on different dynamical systems has been incorporated to demonstrate
the performance of this approach. Conclusions of the experimental comparison are
validated through statistical tests that properly support the discussion.

The chapter is organized as follows: Sect. 7.2 introduces the concepts of frac-
tional order systems; Sect. 7.3 describes the fractional fuzzy controller used in the
calibration; Sect. 7.4 presents the characteristics of SSO; Sect. 7.5 formulates the
parameter calibration problem; Sect. 7.6 shows the experimental results while some
final conclusions are discussed in Sect. 7.7.

7.2 Fractional-Order Models

Dynamical fractional-order systems are modeled by using differential equations,
which involve non-integer integral and/or derivative operators [26, 27]. Since these
operators produce irrational continuous transfer functions, or infinite dimensional
discrete transfer functions, fractionalmodels are normally studied through simulation
tools instead of analytical methods [5, 28–33]. The remainder of this section provides
a background of the fundamental aspects of the fractional calculus, and the discrete
integer-order approximations of fractional order operators that are used in this paper.

7.2.1 Fractional Calculus

Fractional calculus is a generalization of integration and differentiation to the non-
integer order fundamental operator. The differential-integral operator, denoted by

192 7 Auto-calibration of Fractional Fuzzy Controllers …

aDα
t , takes both the fractional derivative and the fractional integral into a single

expression defined as:

aD
α
t =

⎧
⎪⎪⎨

⎪⎪⎩

dα

dtα , α > 0,
1, α = 0,

t∫

a
(dτ)α, α < 0.

(7.1)

where a and t represent the operation bounds, whereas α ∈ �. The commonly
used definitions for fractional derivatives are the Grünwald-Letnikov, Riemann-
Liouville [34] andCaputo [35]. According to theGrünwald-Letnikov approximation,
the fractional-order derivative of order α is defined as follows:

Dα
t f (t) = lim

h→0

1

hα

∞∑

j=0

(−1) j
(

α

j

)

f (t − jh) (7.2)

In the numerical calculation of fractional-order derivatives, the explicit numerical
approximation of the α-th derivative at the points kh, (k = 1, 2, . . .) maintains the
following form [36]:

(k−Mm/h)D
α
tk f (t) ≈ h−α

k∑

j=0

(−1) j
(

α

j

)

f (tk − j) (7.3)

where Mm is the memory length tk = kh, h is the time step and (−1) j
(

α

j

)

are the

binomial coefficients. For their calculation, we can use the following expression:

c(α)
0 = 1, c(α)

j =
(

1 − 1 + α

j

)

c(α)
j−1 (7.4)

Then, the general numerical solution of the fractional differential equation is
defined as follows:

y(tk) = f (y(tk), tk)h
α −

k∑

j=1

c(α)
j y(tk− j) (7.5)

7.2.2 Approximation of Fractional Operators

Assuming zero initial conditions, the fractional operator is defined in the Laplace
domain as L(aDα

t f (t)) = sαF(s). Several approaches [37–39] have been proposed
for producing discrete versions of continuous operators of type sα . In this chapter,

7.2 Fractional-Order Models 193

the Grünwald-Letnikov approximation has been used due to its interesting properties
for generating discrete equivalences [40–43]. Under this method, the discretization
considers the following model:

Dα(z−1) =
(
1 − z−1

Tc

)

=
∞∑

k=0

(
1

Tc

)α

(−1)

(
α

k

)

z−k =
∞∑

k=0

hα(k)z−k, (7.6)

where hα(k) is the impulse response sequence, whereas Tc represents the sampling
frequency. It has been already demonstrated in the literature [36] that rational models
converge faster than polynomial methods. Consequently, the Padé approximation
approach has been employed to obtain a fractional model from the impulse response
by using the definition provided in Eq. (7.7).

H(z−1) = b0 + b1z−1 + . . . + bmz−m

1 + a1z−1 + . . . + anz−n
=

∞∑

k=0

h(k)z−k, m ≤ n (7.7)

where m, n and the parameters ai and bi are calculated by adjusting the first m + n
+ 1 coefficients of hα(k).

7.3 Fuzzy Controller

A fuzzy controller (FC) is a nonlinear system produced from empirical rules. Such
empirical informationmay come fromahumanoperatorwhodirectlymanipulates the
process. Each rule, just as the natural language, presents an IF-THEN format. The
collection of all rules constitutes the rule base that emulates the decision-making
process of the operator. An important characteristic of one FC is the partitioning
of the control scheme into regions [44]. At each region, the control strategy can be
simply modeled by using a rule that associates the region under which certain actions
are performed. Despite proposing several configurations of FCs in the literature, the
fuzzy fractional PDα +I has been selected since it presents interesting characteristics
of robustness and stability [5]. In this structure, the integral error is incorporated to the
output of the fuzzy fractional PDα controller. Under this configuration, the integral
action supports the elimination of the final steady state error.

The controller configuration is shown in Fig. 7.1. In the figure, E, DE and IE
represents the error, the fractional derivative error and the integral error, respectively.
It has four gains Kp, Kd , Ki and Ku to be calibrated, the first three gains correspond
to the input and the last one to the output. The control action u is a nonlinear mapping
function of E, DE and IE with the following model:

u(k) = (f (E,CE) + I E)Ku

u(k) = [
f
(
Kpe, KdDαe

) + Ki I e
] · Ku,

(7.8)

194 7 Auto-calibration of Fractional Fuzzy Controllers …

Fig. 7.1 Fuzzy PDα + I
controller e

pK

dK

iK

uK

DD

I

++
v

u

E

DE

IE

Fuzzy
Controller

Table 7.1 Rule base of the
controller to be calibrated

E/DE NL NM NS ZR PS PM PL

NL NL NL NL NL NM NS ZR

NM NL NL NL NM NS ZR PS

NS NL NL NM NS ZR PS PM

ZR NL NM NS ZR PS PM PL

PS NM NS ZR PS PM PL PL

PM NS ZR PS PM PL PL PL

PL ZR PS PM PL PL PL PL

Fig. 7.2 Control surface

A fuzzy controller consists of three conceptual components: a rule base, which
contains a selection of fuzzy rules; a database, which defines the membership func-
tions used by the fuzzy rules; and a reasoning mechanism, which performs the
inference procedure. There are two different fuzzy systems: the Mamdani [45] and
the Takagi-Sugeno (TS) [46]. In order to maintain compatibility to similar works
reported in the literature, the rule base and the membership functions are selected
the same as [5, 9]. Under such conditions, Table 7.1 shows the rule base used by the
fuzzy controller to be calibrated. In Table 7.1, NL, NM, NS, ZR, PS, PM and PL
represent the linguistic variables “Negative Large”, “Negative Medium”, “Negative
Small”, “Zero”, “Positive Small”, “Positive Medium” and “Positive Large”, respec-
tively. Figure 7.2 shows the membership functions that model the premises and the
consequences of each rule. Consequently, a determined rule from Table 7.1 can be
constructed in the following form:

7.3 Fuzzy Controller 195

If E isNL and DE isZR then v isNL

In this rule, the control strategy can be simply modeled as follows: if the error is
“Negative Large” and the error derivate “Zero” then the output is “Negative Large”.
The acting of all rules produces the control strategy which is shown by the nonlinear
surface in Fig. 7.2.

7.4 Social Spider Optimization (SSO)

The social spider optimization (SSO) algorithm [15] is a swarm computation method
that emulates the cooperative behavior of spiders within a communal colony. SSO
has been designed to find the global solution of a nonlinear optimization problem
with box constraints in the form:

minimize f (x) x = (x1, . . . , xd) ∈ R
d

subject to x ∈ X
(7.9)

where f : R
d → R is a nonlinear function whereas X = {x ∈ R

d
∣
∣lh ≤ xh ≤

uh, h = 1, . . . , d} is a bounded feasible space, constrained by the lower (lh) and
upper (uh) limits.

SSO utilizes a population S of N candidate solutions to solve the problem formu-
lated in Eq. (7.1). Each candidate solution represents a spider position whereas the
general web symbolizes the search space X. In SSO, the spider population S is classi-
fied into two categories: males (M) and females (F). In order to simulate a real spider
colony, in SSO, the number N f of females F is randomly selected within a range
of 65–90% of the entire population S, whereas the rest Nm is considered as male
individuals

(
Nm = N − N f

)
. Under such conditions, the Group F assembles the

set of female individuals
(
F = {f1, f2, . . . , fN f }

)
whereas M groups the male mem-

bers
(
M = {m1, m2, . . . , mNm }), where S = F∪M (S = {s1, s2, . . . , sN }), such that

S = {s1 = f1, s2 = f2, . . . , sN f = fN f , sN f +1 = m1, sN f +2 = m2, . . . , sN = mNm }.
In the approach, each spider i maintain a weight wi according to its solution

quality. Therefore, wi is calculated as follows:

wi = f i tnessi − worst

best − worst
(7.10)

where f i tnessi represents the fitness value produced by the evaluation of the i-th
spider’s position, i ∈ 1, . . . , N . best and worst symbolize the best fitness value and
worst fitness value of the whole population S, respectively.

In the optimization process, the main mechanism of SSO is the information
exchange, which it is simulated trough vibrations produced in the communal web.
The vibration that a spider i perceives from a spider j is modeled with the following
expression:

196 7 Auto-calibration of Fractional Fuzzy Controllers …

Vi, j = w j e
d2
i, j (7.11)

where w j represents the weight of the spider j and d2
i, j the distance between both

spiders. It is considered that each spider i is only able to perceive three types of
vibrations Vi,c, Vi,b and Vi, f .

Vi,c is the vibration transmitted by the nearest individual c with a higher weight
with regard to i (wc > wi). Vi,b represents the vibration emitted by best element of
the entire population S. Finally, Vi, f considers the vibration produced by the nearest
female spider. This vibration type is only applicable if i is a male individual.

In the operation of SSO, a population of N spiders is processed from the initial
stage (k = 0) to a determined number gen of iterations (k = gen). Each individual
depending on its gender is conducted by a set of different swarmoperators. Therefore,
in case of the female members, a new position fk+1

i is generated by modifying the
current element location fki . The modification is randomly controlled by using a
probability factor PF. Consequently, the movement is produced in relation to other
spiders according their vibrations, which are transmitted trough the communal web:

fk+1
i =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

fki + α · Vi,c · (sc − fki) + β · Vi,b · (sb − fki)

+ δ · (rand − 1

2
)

withprobability PF

fki − α · Vi,c · (sc − fki) − β · Vi,b · (sb − fki)

+ δ · (rand − 1

2
)

withprobability1 − PF

(7.12)

here α, β, δ and rand represent random numbers between [0, 1] whereas k is the
iteration number. The individuals sc and sb symbolize the nearest member to i that
maintains a higher weight and the best element of the complete population S, respec-
tively.

On the other hand, male spider members are classified into two types: non-
dominant (ND) and dominant (D). The dominant group D is composed by the half
of the male individuals whose fitness values are better with regard to the complete
male set. Consequently, the non-dominant (ND) category collects the rest of the male
elements. In the optimization process, male members are operated according to the
following model:

mk+1
i =

{
mk

i + α · Vi, f · (s f − mk
i) + δ · (rand − 1

2) ifm
k
i ∈ D

mk
i + α ·

(∑
h∈ND mk

h ·wh∑
h∈ND wh

− mk
i

)
ifmk

i ∈ ND
(7.13)

where s f symbolizes the nearest female element to the male individual i.
The final operation in SSO is mating. It is performed between dominant males

and the female individuals. Under this operation, a new individual snew is produced
by the combination of a dominant male mg and other female members within a
specific range r. The weight of each involved element defines the probability of
influence of each spider into snew. The elements with heavier weights are more likely

7.4 Social Spider Optimization (SSO) 197

to influence the new individual snew. Once snew is generated, it is compared with the
worst element of the colony. If snew is better than the worst spider, the worst spider is
replaced by snew. Otherwise, snew is discarded. Figure 7.3 illustrates the operations
of the optimization process performed by the SSO algorithm. More details can be
found in [15].

Initialize 1 2, , , NS s s s

Divide S

1 2{ , , , }
mN

M m m m1 2{ , , , }
fNF f f f

1 1 2 2 1 1 2 2, , , , , , ,
f f f f mN N N N N NS s f s f s f s m s m s m

Calculate the weights jw
1, ,j N

Process
1 2{ , , , }

fNF f f f
Process

1 2{ , , , }
mN

M m m m

Calculate ,i cV ,i bV
1, , fi N

Calculate
1, , mi N

,i fV

rand PF()< Classify M

Perform mating among
andF 1k

im D

k>gen

End

Yes

No

ND

D

Yes

1
,

,

()
1() (rand)
2

k k k
i i i c c i

k
i b b i

V

V

f f s f

s f

f 1
,

,

()
1() (rand)
2

k k k
i i i c c i

k
i b b i

V

V

f s f

s f

1
, ()

1
(rand)

2

k k k
i i i f f iVm m s m

1

k
h h

k k kh
i i i

h
h

w

w
ND

ND

m
m m m

No

Fig. 7.3 Operations of the optimization process performed by the SSO algorithm

198 7 Auto-calibration of Fractional Fuzzy Controllers …

7.5 Problem Formulation

In the design stage of fractional FCs, the parameter calibration process is transformed
into a multidimensional optimization problem where fractional orders, as well as
controller parameters of the fuzzy system, are both considered as decision variables.
Under this approach, the complexity of the optimization problem tends to produce
multimodal error surfaceswhose cost functions are significantly difficult tominimize.

This chapter presents an algorithm for the optimal parameter calibration of frac-
tional FCs. To determine the parameters, the estimationmethod uses the Social Spider
Optimization (SSO) method. Different to the most of existent swarm algorithms, the
method explicitly evades the concentration of individuals in the best positions, avoid-
ing critical flaws such as the premature convergence to sub-optimal solutions and the
limited balance of exploration-exploitation.

Therefore, the calibration process consists of finding the optimal controller param-
eters that present the best possible performance for the regulation of a dynamical
system. Figure 7.4 illustrates the SSO scheme for the parameter calibration process.

Under such conditions, the fractional fuzzy controller parameters
(α, Kp, Kd , Ki , Ku) represent the dimensions of each candidate solution (spi-
der position) for the calibration problem. To evaluate the performance of the
fractional fuzzy controller under each parameter configuration (candidate solution),
the Integral Time Absolute Error (ITAE) [47] criterion has been considered. The
ITAE index J measures the similarity between the closed-loop step response y(t)
produced by a determined parameter configuration (α, Kp, Kd , Ki , Ku) and the
step function r(t). Therefore, the quality of each candidate solution is evaluated
according to the following model:

J (α, Kp, Kd , Ki , Ku) =
∞∫

0

t |r(t) − y(t)| (7.14)

Thereby, the problem of parameter calibration can be defined by the following
optimization formulation:

Fractional FC
, , , ,p d i uK K K Kα

Dynamical
system

SSO

y(t)r(t) +
-

Fig. 7.4 SSO scheme for the parameter calibration process

7.5 Problem Formulation 199

minimize J (x) x = (α, Kp, Kd , Ki , Ku) ∈ R
5

subject to 0 ≤ α ≤ 3
0 ≤ Kp ≤ 5
0 ≤ Kd ≤ 5
0 ≤ Ki ≤ 5
0 ≤ Ku ≤ 5

(7.15)

7.6 Numerical Simulations

This section presents the performance of the SSO scheme for the calibration of frac-
tional FCs considering several dynamical systems. The algorithm is also evaluated
in comparison to other similar approaches that are based on swarm algorithms. To
test the performance of the SSO approach, the technique uses a representative set of
three transfer functions that have been previously employed. Equations (7.4)–(7.6)
present the transfer functions that are used in our simulations. Such functions involve
three different system categories: High-order plants (G1(s)), non-minimum systems
(G2(s)) and dynamical fractional systems (G3(s)).

G1(s) = 1

(s + 1)(1 + 0.5s)(1 + 0.25s)(1 + 0.125s)
(7.16)

G2(s) = 1 − 5s

(s + 1)3
(7.17)

G3(s) = 1

(s1.5 + 1)
(7.18)

In the experiments, we have applied the SSO algorithm to calibrate the fractional
parameters for each dynamical systems, and the results are compared to those pro-
duced by the Genetic Algorithms (GA) [5], Particle Swarm Optimization (PSO) [9],
Harmony Search (HS) [10], Gravitational Search Algorithm (GSA) [11] and Cuckoo
Search (CS) [12]. In the comparison, all methods have been set according to their
own reported guidelines. Such configurations are described as follows:

1. PSO, parameters c1 = 2, c2 = 2 and weights factors have been set to wmax =
0.9, and wmin = 0.4 [17].

2. GA, the crossover probability is 0.55, themutation probability is 0.10 and number
of elite individuals is 2. Furthermore, the roulette wheel selection and the 1-point
crossover are both applied.

3. GSA, from the model Gt = GOe−α t
T , it is considered α = 10, GO = 100 and T

= 100 or T = 500.
4. HS, its parameters are set as follows: the harmony memory consideration rate

HMCR = 0.7, the pitch adjustment rate PAR = 0.3 and the Bandwidth rate BW
= 0.1.

200 7 Auto-calibration of Fractional Fuzzy Controllers …

5. CS, its elements are configured such as the discovery rate pa = 0.25 and the
stability index β = 3/2.

6. SSO, the parameter PF has been set to 0.7 following an experimental definition.

The experimental results are divided into three sections. In the first Sect. 7.6.1,
the performance of the SSO algorithm is evaluated with regard to high-order plants
(G1(s)). In the second Sect. 7.6.2, the results for non-minimum systems (G2(s))
are provided and finally, in the third Sect. 7.6.3, the performance of the calibration
scheme over fractional dynamical systems (G3(s)) is discussed.

7.6.1 Results Over High-Order Plants (G1(s))

In this experiment, the performance of the SSO calibration scheme is compared to
GA, PSO, HS, GSA and CS, considering the regulation of high-order dynamical
systems (G1(s)). In the simulations, a temporal response from 0 to 10 s has been
considered. In the comparison, all algorithms are operated with a population of 50
individuals (N = 50). To appropriately evaluate the convergence properties of all
calibration methods, the maximum number of generations has been set to (A) 100
iterations and (B) 500 iterations. This stop criterion has been selected to maintain
compatibility to similar works reported in the literature [5, 9, 28]. By selecting such
number of iterations, the experiment aims to test the quality of the produced solutions
when the operation of each calibration method is limited to a reduced number of
iterations.

All the experimental results in this section consider the analysis of 35 independent
executions of each algorithm. Table 7.2 presents the calibrated parameters obtained
through each method. Such results consider the best controller parameters in terms
of the produced ITAE values after 100 iterations. On the other hand, Table 7.3 shows
the calibrated parameters considering 500 iterations.

According to Tables 7.2 and 7.3, the SSO scheme provides better performance
than GA, PSO, HS, GSA and CS for both cases. Such differences are directly related
to a better trade-off between exploration and exploitation of the SSO method. It is
also evident that the SSOmethod produces similar results with 100 or 500 iterations.

Table 7.2 Calibrated parameters for G1(s) produced by each algorithm after 100 iterations

G1(s) Kp Kd Ki Ku α ITAE

PSO 0.3034 0 0.4475 2.9988 0 5281.2115

GA 0.7581 0.3510 0.3038 4.3276 0.8000 926.1352

GSA 1.3387 2.7209 0.5482 1.0545 0.2311 4164.1935

HS 0.7867 0.8128 0.8271 3.6129 0.9319 3562.1834

CS 0.9700 0.3497 0.4054 3.0002 0.9516 916.5816

SSO 0.8100 0.3493 0.2392 4.8235 0.9897 492.2912

7.6 Numerical Simulations 201

Table 7.3 Calibrated parameters for G1(s) produced by each algorithm after 500 iterations

G1(s) Kp Kd Ki Ku α ITAE

PSO 0 0.5061 0.4681 4.0578 0.4629 2900.7502

GA 1.1860 0.3826 0.5204 1.5850 0.9497 974.0881

GSA 1.2000 0.6531 0.9607 2.5442 0.8745 1975.3254

HS 1.3112 0.9450 0.9262 1.2702 0.6075 2776.2160

CS 1.0093 0.4506 0.2611 4.6964 1.0002 464.5376

SSO 1.0386 0.4621 0.2751 4.4147 0.9998 473.7492

Therefore, it can be established that SSO maintains better convergence properties
than GA, PSO, HS, GSA and CS in the process of parameter calibration.

Figure 7.5 exhibits the step responses produced by each parameter set, considering
100 and 500 iterations. The remarkable convergence rate of the SSO algorithm can
be observed at Fig. 7.5. According to the graphs, the step responses produced by the
controller parameters that have been defined through SSO, are practically the same
irrespective of the number of iterations. This fact means that the SSO scheme is able
to find an acceptable solution in less than 100 iterations.

7.6.2 Results Over Non-minimum Systems (G2(s))

This section presents the comparison of the SSO calibration scheme with GA, PSO,
HS,GSAandCS, considering the regulation of non-minimum systems (G2(s)). Non-
minimum systems are defined by transfer functions with one or more poles or zeros
in the right half of the s-plane. As a consequence, the response of a non-minimum
system to a step input exhibits an “undershoot”, which indicates that the output of
the dynamical system becomes negative first before changing direction to positive
values.

The experimental simulation runs from 0 to 50 s. All algorithms are operated with
a population of 50 individuals (N = 50),matchingwith the experiments in Sect. 7.6.1.
Table 7.4 presents the calibrated parameter of eachmethod after 100 iterations, while
Table 7.5 exhibits the results for 500 iterations. Both tables show that the SSO scheme
delivers better results than GA, PSO, HS, GSA and CS in terms of the ITAE index.
Figure 7.6 presents the step responses produced by each parameter set, considering
100 and 500 iterations. By analyzing the plot in Fig. 7.6, it is observed that the step
response of the SSO scheme is less sensitive to the number of iterations than other
techniques.

202 7 Auto-calibration of Fractional Fuzzy Controllers …

Time (second)

(a)

Time (second)

(b)

0 2 4 6 8 10
0

0.5

1

1.5
Ref
GA
PSO
HS
GSA
CS
SSO

0 2 4 6 8 10
0

0.5

1

1.5
Ref
GA
PSO
HS
GSA
CS
SSO

Fig. 7.5 Step responses after applying the calibrated parameters to the high order plant G1(s)with
a 100 iterations, and with b 500 iterations

Table 7.4 Calibrated parameters for G2(s) produced by each algorithm after 100 iterations

G2(s) Kp Kd Ki Ku α ITAE

PSO 0.4645 0 0.2378 0.4147 0.0643 50,289.0994

GA 0.6061 0.0326 0.3175 0.2909 0.2000 55,043.6316

GSA 0.9377 1.8339 0.5020 0.1427 1.0266 101,160.6241

HS 2.2838 3.7685 0.1328 0.5324 2.3214 126,996.7047

CS 0.9305 1.1329 1.1045 0.0674 0.0222 90,962.6199

SSO 0.4668 0.1165 0.2139 0.4642 0.5470 44,368.6620

7.6 Numerical Simulations 203

Table 7.5 Calibrated parameters for G2(s) produced by each algorithm after 500 iterations

G2(s) Kp Kd Ki Ku α ITAE

PSO 0.4606 0 0.2027 0.4866 0.0688 46,912.4985

GA 1.0449 1.1921 0.8839 0.0903 0.0822 81,550.0790

GSA 0.8862 1.3919 0.3746 0.2386 1.9259 63,186.5783

HS 1.0362 1.1105 0.5360 0.1389 0.9007 91,536.3894

CS 0.0386 0.0059 0.0243 4.0625 0.5516 43,565.1588

SSO 0.4537 0.1597 0.2004 0.5124 0.6422 41,772.3344

Time (second) Time (second)

(b)(a)

-0.5

0

0.5

1

1.5
Ref
GA
PSO
HS
GSA
CS
SSO

0 10 20 30 40 50 0 10 20 30 40 50
-1

-0.5

0

0.5

1

1.5
Ref
GA
PSO
HS
GSA
CS
SSO

Fig. 7.6 Step responses after applying the calibrated parameters to the high order plant G2(s)with
a 100 iterations, and with b 500 iterations

7.6.3 Results Over Fractional Systems (G3(s))

Unlike high-order plants and non-minimum systems, fractional dynamical systems
produce multimodal error surfaces with different local optima. As a consequence,
fractional fuzzy controllers that regulate their behavior are, in general, more difficult
to calibrate [9]. Under such conditions, the experiment reflects the capacity of each
calibration algorithm to locate the global optimum inpresence of several local optima.

In this experiment, the performance of the SSO calibration scheme is compared
to GA, PSO, HS, GSA and CS, considering the regulation of fractional dynamical
systems (G3(s)). In the simulations, a temporal response from 0 to 3 s is considered.
In the test, all algorithms are operated with a population of 50 individuals (N = 50).

The calibrated parameters are averaged over 30 executions obtaining the values
reported in Tables 7.6 and 7.7. The results exhibit the configuration for each method
with 100 and 500 iterations, respectively. It is evident that the SSO scheme presents
better performance thanPSO,HSandGSA independently on thenumber of iterations.
However, the difference between GA and the SSO approach in terms of the ITAE
index is relatively small for the case of 100 iterations. On the other hand, in the
case of 500 iterations, the performance among the SSO approach, GA and CS are
practically the same. Figure 7.7 presents the step response that is produced by each

204 7 Auto-calibration of Fractional Fuzzy Controllers …

Table 7.6 Calibrated parameters for G3(s) produced by each algorithm after 100 iterations

G3(s) Kp Kd Ki Ku α ITAE

PSO 1.331 0 0.6937 5 5 311.4558

GA 1.3329 0.6341 0.6130 5 0.4932 97.7016

GSA 1.0823 0.6463 0.2924 4.0152 0.5802 346.6765

HS 0.7867 0.8128 0.8271 3.6129 0.9319 3562.1834

CS 1.2220 0.6590 0.6647 5 0.4232 105.0266

SSO 1.3173 0.6560 0.5932 4.9797 0.5091 98.5974

Table 7.7 Calibrated parameters for G3(s) produced by each algorithm after 500 iterations

G3(s) Kp Kd Ki Ku α ITAE

PSO 1.0187 1.2010 0.7553 5 0 181.5380

GA 1.3320 0.5599 0.5991 5 0.5631 97.1981

GSA 1.3319 0.7502 0.6689 3.4968 0.5185 152.2198

HS 1.3112 0.9450 0.9262 1.2702 0.6075 2776.2160

CS 1.3325 0.5857 0.5987 4.9999 0.5450 97.0307

SSO 1.3087 0.5883 0.5808 4.9991 0.5642 97.1085

parameter set, considering 100 and 500 iterations. Similar to Sects. 7.6.1 and 7.6.2, it
is demonstrated (from Fig. 7.7) that the SSO-calibrator obtains better solutions than
GA, HS and PSO yet demanding a lower number of iterations.

Finally, in order to stress the importance of the fractional PDα + I scheme, an
experiment that evaluates the influence of the parameter α in the regulation of G3(s)
is conducted. In the experiment, the fractional PDα + I controller is operated as an
integer fuzzy controller by setting α = 1. Under such conditions, the rest of the
parameters of PDα + I (Kp, Kd , Ki , Ku) are calibrated through the SSO approach
considering the regulation of the fractional system G3(s). Then, the values α vary
from 0 to 1 while registering the performance of the regulation.

As a result of the optimization method, the following parameter val-
ues are obtained: (Kp, Kd , Ki , Ku) ≡ (1.3087, 0.5883, 0.5808, 4.0012) with
ITAE = 418.8032. After calibrating the integer fuzzy controller, the values
of α are modified from 0 to 1, while the parameter set remains fixed to
(1.3087, 0.5883, 0.5808, 4.0012). Table 7.8 presents the results obtained from the
experiment. Such values report the regulation quality of G3(s) in terms of the ITEA
values. By analyzing Table 7.8, it is clear that the regulation quality strongly depends
on the selection of the order for α. Particularly in this experiment, the best regulation
performance is reached when the order of α is set to 0.6. Figure 7.8 presents the
influence of α in terms of the regulation quality.

7.6 Numerical Simulations 205

Time (second)

(a)

Time (second)

(b)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5
Ref

GA

PSO

HS

GSA

CS

SSO

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5
Ref
GA
PSO
HS
GSA
CS
SSO

Fig. 7.7 Step responses after applying the calibrated parameters to the high order plant G3(s)with
a 100 iterations, and with b 500 iterations

Table 7.8 Regulation quality of G3(s) in terms of the ITEA values

α ITAE

0 216.839600

0.1 198.666000

0.2 180.783670

0.3 159.871905

0.4 134.127486

0.5 108.724153

0.6 105.942730

0.7 136.404140

0.8 183.213124

0.9 262.521840

1 418.803215

206 7 Auto-calibration of Fractional Fuzzy Controllers …

0 0.2 0.4 0.6 0.8 1
100

150

200

250

300

350

400

450

α

IT
A
E

Fig. 7.8 Influence of α in the regulation quality of G3(s) in terms of the ITEA values

7.7 Conclusions

Due to its multiple applications, the calibration of fractional fuzzy controllers has
attracted the interests of several research communities. In the calibration process, the
parameter estimation is transformed into a multidimensional optimization problem
whose fractional order and the corresponding controller parameters of the fuzzy
system are considered as decision variables. Under this approach, the complexity of
fractional-order chaotic systems tends to producemultimodal error surfaces forwhich
their cost functions are significantly difficult to minimize. Several algorithms that are
based on swarm intelligence principles have been successfully applied to calibrate
the parameters of fuzzy systems. However, most of them still have an important
limitation since they frequently obtain sub-optimal results as a consequence of an
inappropriate balance between exploration and exploitation in their search strategies.

This chapter presents a method for the optimal parameter calibration of frac-
tional FCs that is based on the SSO algorithm. The SSO algorithm is a novel
swarm method that is inspired on the emulation of the collaborative behavior of
social-spiders. Unlike most of the existing swarm algorithms, the method explicitly
evades the concentration of individuals in best positions, avoiding critical flaws such
as the premature convergence to sub-optimal solutions and the limited balance of
exploration-exploitation.

In order to illustrate the proficiency and the robustness of this approach, SSO
scheme has been experimentally evaluated considering three different system cate-
gories: high-order plants, non-minimum systems and dynamical fractional systems.

7.7 Conclusions 207

To assess the performance of the SSOalgorithm, it has been compared to other similar
swarm approaches such as Genetic Algorithms (GA), Particle Swarm Optimization
(PSO), Harmony Search (HS), Gravitational Search Algorithm (GSA) and Cuckoo
Search (CS). The experiments have demonstrated that the SSO method outperforms
other techniques in terms of solution quality and convergence.

References

1. Oldham, K., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation
and Integration to Arbitrary Order. Academic Press, New York (1974)

2. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
3. Das, S., Pan, I., Das, S., Gupta, A.: A novel fractional order fuzzy PID controller and its

optimal time domain tuning based on integral performance indices. J. Eng. Appl. Artif. Intell.
25, 430–442 (2012)

4. Delavari, H., Ghaderi, R., Ranjbar, A., Momani, S.: Fuzzy fractional order sliding mode con-
troller for nonlinear systems. Commun. Nonlinear Sci. Numer. Simul. 15(4), 963–978 (2010)

5. Jesus, I.S., Barbosa, R.S.: Genetic optimization of fuzzy fractional PD+I controllers. ISATrans.
57, 220–230 (2015)

6. Barbosa, R.S., Jesus, I.S.: Amethodology for the design of fuzzy fractional PID controllers. In:
ICINCO 2013—Proceedings of the 10th International Conference on Informatics in Control,
Automation and Robotics, vol. 1, pp. 276–281 (2013)

7. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
8. He, Y., Chen, H., He, Z., Zhou, L.: Multi-attribute decision making based on neutral averaging

operators for intuitionistic fuzzy information. Appl. Soft Comput. 27, 64–76 (2015)
9. Pana, I., Das, S.: Fractional order fuzzy control of hybrid power system with renewable gener-

ation using chaotic PSO. ISA Trans. 62, 19–29 (2016)
10. Roy, G.G., Chakraborty, P., Das, S.: Designing fractional-order PIλDμ controller using differ-

ential harmony search algorithm. Int. J. Bio-Inspired Comput. 2(5), 303–309 (2010)
11. Xu, Y., Zhou, J., Xue, X., Fu, W., Zhu, W., Li, C.: An adaptively fast fuzzy fractional order PID

control for pumped storage hydro unit using improved gravitational search algorithm. Energy
Convers. Manag. 111, 67–78 (2016)

12. Sharma, R., Rana, K.P.S., Kumar, V.: Performance analysis of fractional order fuzzy PID
controllers applied to a robotic manipulator. Expert Syst. Appl. 41, 4274–4289 (2014)

13. Tan, K.C., Chiam, S.C., Mamun, A.A., Goh, C.K.: Balancing exploration and exploitation
with adaptive variation for evolutionary multi-objective optimization. Eur. J. Oper. Res. 197,
701–713 (2009)

14. Chen, G., Low, C.P., Yang, Z.: Preserving and exploiting genetic diversity in evolutionary
programming algorithms. IEEE Trans. Evol. Comput. 13(3), 661–673 (2009)

15. Cuevas, E., Cienfuegos, M., Zaldívar, D., Pérez-Cisneros, M.: A swarm optimization algorithm
inspired in the behavior of the social-spider. Expert Syst. Appl. 40(16), 6374–6384 (2013)

16. Goldberg, D.E.: Genetic Algorithm in Search Optimization and Machine Learning. Addison-
Wesley (1989)

17. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948, Dec 1995

18. Geem, Z.W., Kim, J., Loganathan, G.: Music-inspired optimization algorithm harmony search.
Simulation 76, 60–68 (2001)

19. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf.
Sci. 179, 2232–2248 (2009)

20. Yang, X.S., Deb, S.: Engineering optimization by cuckoo search. Int. J. Math. Model. Numer.
Optim. 1(4), 339–343 (2010)

208 7 Auto-calibration of Fractional Fuzzy Controllers …

21. Pereira, D.R., Pazoti, M.A., Pereira, L.A.M., Rodrigues, D., Ramos, C.O., Souza, A.N., Papa,
J.P.: Social-spider optimization-based support vector machines applied for energy theft detec-
tion. Comput. Electr. Eng. 49, 25–38 (2016)

22. Mirjalili, S.Z., Saremi, S.,Mirjalili, S.M.: Designing evolutionary feedforward neural networks
using social spider optimization algorithm. Neural Comput. Appl. 26(8), 1919–1928 (2015)

23. Klein, C.E., Segundo, E.H.V., Mariani, V.C., Coelho, L.D.S.: Modified social-spider optimiza-
tion algorithm applied to electromagnetic optimization. IEEE Trans. Magn. 52(3), 2–10 (2016)

24. Ouadfel, S., Taleb-Ahmed, A.: Social spiders optimization and flower pollination algorithm for
multilevel image thresholding: a performance study. Expert Syst. Appl. 55, 566–584 (2016)

25. Tawhid, M.A., Ali, A.F.: A simplex social spider algorithm for solving integer programming
and minimax problems. Memetic Comput. (In press)

26. Jesus, I., Machado, J.: Application of fractional calculus in the control of heat systems. J. Adv.
Comput. Intell. Intell. Inform. 11(9), 1086–1091 (2007)

27. Machado, J.: Analysis and design of fractional-order digital control systems. SAMS J. Syst.
Anal. Modell. Simul. 27, 107–122 (1997)

28. Liu, L., Pan, F., Xue, D.: Variable-order fuzzy fractional PID controller. ISATrans. 55, 227–233
(2015)

29. Shah, P., Agashe, S.: Review of fractional PID controller. Mechatronics 38, 29–41 (2016)
30. El-Khazali, R.: Fractional-order PIλDμ controller design. Comput. Math. Appl. 66, 639–646

(2013)
31. Owolabi, K.M.: Robust and adaptive techniques for numerical simulation of nonlinear partial

differential equations of fractional order. Commun. Nonlinear Sci. Numer. Simul. 44, 304–317
(2017)

32. Hélie, T.: Simulation of fractional-order low-pass filters. IEEE/ACM Trans. Audio Speech
Lang. Process. 22(11), 1636–1647 (2014)

33. Hwang, C., Leu, J.-F., Tsay, S.-Y.: A note on time-domain simulation of feedback fractional-
order systems. IEEE Trans. Autom. Control 47(4), 625–631 (2002)

34. Podlubny, I.: Fractional Differential Equations. Academic Press (1998)
35. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential

Equations. Wiley (1993)
36. Dorcak,L.:Numericalmodels for the simulationof the fractional-order control systems.Numer.

Model. Simul. Fractional-Order Control Syst. (1994)
37. Barbosa, R.,Machado, J.A., Silva,M.: Time domain design of fractional differintegrators using

least-squares. Signal Process. 86(10), 2567–2581 (2006)
38. Chen, Y.Q., Vinagre, B., Podlubny, I.: Continued fraction expansion to discretize fractional

order derivatives—an expository review. Nonlinear Dyn. 38(1–4), 155–170 (2004)
39. Vinagre, B.M., Chen,Y., Petráš, I.: Twodirect Tustin discretizationmethods for fractional-order

differentiator/integrator. J. Frankl. Inst. 340(5), 349–362 (2003)
40. Jacobs, B.A.: A newGrünwald-Letnikov derivative derived from a second-order scheme.Abstr.

Appl. Anal. 2015, Article ID 952057, 9 pages (2015). https://doi.org/10.1155/2015/952057
41. Scherer, R., Kalla, S.L., Tang, Y., Huang, J.: The Grünwald-Letnikov method for fractional

differential equations. Comput. Math Appl. 62, 902–917 (2011)
42. Liu, H., Li, S., Cao, J., Li, G., Alsaedi, A., Alsaadi, F.E.: Adaptive fuzzy prescribed perfor-

mance controller design for a class of uncertain fractional-order nonlinear systemswith external
disturbances. Neurocomputing (In press)

43. Bigdeli, N.: The design of a non-minimal state space fractional-order predictive functional
controller for fractional systems of arbitrary order. J. Process Control 29, 45–56 (2015)

44. Cordón, O., Herrera, F.: A three-stage evolutionary process for learning descriptive and approx-
imate fuzzy-logic-controller knowledge bases from examples. Int. J. Approximate Reasoning
17(4), 369–407 (1997)

https://doi.org/10.1155/2015/952057

References 209

45. Mamdani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller.
Int. J. Man Mach. Stud. 7, 1–13 (1975)

46. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and
control. IEEE Trans. Syst. Man Cybern. SMC-15, 116–132 (1985)

47. Xu, J.-X., Li, C., Hang, C.C.: Tuning of fuzzy PI controllers based on gain/phase margin
specifications and ITAE index. ISA Trans. 35(1), 79–91 (1996)

Chapter 8
Locust Search Algorithm Applied
to Multi-threshold Segmentation

Abstract In a computer vision one problem is image segmentation as an alternative
the problem has been handled whit optimization algorithm. Most of the methods
have two difficulties (1) sub-optimal results (2) the number of classes is previously
known. In this chapter presented an algorithm that automatic selection of this classes
for image segmentation whit a new objective function in gaussian mixture model.
The optimization algorithm called Locust Search (LS), is based on behavior of locust
swarms, presented a balance between exploration and exploitation. The method was
tested over several images to validate the efficacy over other techniques.

8.1 Introduction

Image segmentation [1] consists in grouping image pixels based on some criteria such
as intensity, color, texture, etc., and still represents a challenging problem within the
field of image processing. Edge detection [2], region-based segmentation [3] and
thresholding methods [4] are the most popular solutions for image segmentation
problems.

Among such algorithms, thresholding is the simplest method. It works by consid-
ering threshold (points) values to adequately separate distinct pixels regions within
the image being processed. In general, thresholding methods are divided into two
types depending on the number of threshold values namely, bi-level and multilevel.
In bi-level thresholding, only a threshold value is required to separate the two objects
of an image (e.g. foreground and background). On the other hand, multilevel thresh-
olding divides pixels into more than two homogeneous classes that require several
threshold values.

The thresholding methods use a parametric or nonparametric approach [5]. In
parametric approaches [6, 7], it is necessary to estimate the parameters of a probability
density function that is capable of modelling each class. A nonparametric technique
[8–11] employs a given criteria such as the between-class variance or the entropy
and error rate, in order to determine optimal threshold values.

A common method to accomplish parametric thresholding is the modeling of the
image histogram through a Gaussian mixture model [12] whose parameters define

© Springer Nature Switzerland AG 2020
E. Cuevas et al., New Advancements in Swarm Algorithms: Operators
and Applications, Intelligent Systems Reference Library 160,
https://doi.org/10.1007/978-3-030-16339-6_8

211

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16339-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-16339-6_8

212 8 Locust Search Algorithm Applied to Multi-threshold Segmentation

a set of pixel classes (threshold points). Therefore, each pixel that belongs to a
determined class is labeled according to its corresponding threshold points with
several pixel groups gathering those pixels that share a homogeneous gray-scale
level.

The problem of estimating the parameters of a Gaussian mixture that better model
an image histogram has been commonly solved through the Expectation Maxi-
mization (EM) algorithm [13, 14] or Gradient-based methods such as Levenberg-
Marquardt, LM [15]. Unfortunately, EM algorithms are very sensitive to the choice
of the initial values [16], meanwhile Gradient-based methods are computationally
expensive and may easily get stuck within local minima [17].

As an alternative to classical techniques, the problem of Gaussian mixture identi-
fication has also been handled through evolutionary methods. In general, they have
demonstrated to deliver better results than those based on classical approaches in
terms of accuracy and robustness [18]. Under these methods, an individual is repre-
sented by a candidate Gaussian mixture model. Just as the evolution process unfolds,
a set of evolutionary operators are applied in order to produce better individuals. The
quality of each candidate solution is evaluated through an objective function whose
final result represents the similarity between the mixture model and the histogram.
Some examples of these approaches involve optimization methods such as Artificial
Bee Colony (ABC) [19], Artificial Immune Systems (AIS) [20], Differential Evo-
lution (DE) [21], Electromagnetism optimization (EO) [22], Harmony Search (HS)
[23] and Learning Automata (LA) [24]. Although these algorithms own interest-
ing results, they present two important limitations. (1) They frequently obtain sub-
optimal approximations as a consequence of a limited balance between exploration
and exploitation in their search strategies. (2) They are based on the assumption that
the number of Gaussians (classes) in the mixture is pre-known and fixed, otherwise
they cannot work. The cause of the first limitation is associated to their evolutionary
operators employed to modify the individual positions. In such algorithms, during
their evolution, the position of each agent for the next iteration is updated yielding
an attraction towards the position of the best particle seen so-far or towards other
promising individuals. Therefore, as the algorithm evolves, these behaviors cause
that the entire population rapidly concentrates around the best particles, favoring
the premature convergence and damaging the appropriate exploration of the search
space [25, 26]. The second limitation is produced as a consequence of the objective
function that evaluates the similarity between the mixture model and the histogram.
Under such an objective function, the number of Gaussians functions in the mixture
is fixed. Since the number of threshold values (Gaussian functions) used for image
segmentation varies depending on the image, the best threshold number and values
are obtained by an exhaustive trial and error procedure.

On the other hand, bio-inspired algorithms represent a field of research that is
concerned with the use of biology as a metaphor for producing optimization algo-
rithms. Such approaches use our scientific understanding of biological systems as
an inspiration that, at some level of abstraction, can be represented as optimization
processes.

8.1 Introduction 213

In the last decade, several optimization algorithms have been developed by a
combination of deterministic rules and randomness, mimicking the behavior of nat-
ural phenomena. Such methods include the social behavior of bird flocking and fish
schooling such as the Particle Swarm Optimization (PSO) algorithm [27] and the
emulation of the differential evolution in species such as the Differential Evolu-
tion (DE) [28]. Although PSO and DE are the most popular algorithms for solving
complex optimization problems, they present serious flaws such as premature conver-
gence and difficulty to overcome local minima [29, 30]. The cause for such problems
is associated to the operators that modify individual positions. In such algorithms,
during the evolution, the position of each agent for the next iteration is updated
yielding an attraction towards the position of the best particle seen so-far (in case
of PSO) or towards other promising individuals (in case of DE). As the algorithm
evolves, these behaviors cause that the entire population rapidly concentrates around
the best particles, favoring the premature convergence and damaging the appropriate
exploration of the search space [31, 32].

Recently, the collective intelligent behavior of insect or animal groups in nature
has attracted the attention of researchers. The intelligent behavior observed in these
groups provides survival advantages, where insect aggregations of relatively simple
and “unintelligent” individuals can accomplish very complex tasks using only limited
local information and simple rules of behavior [33]. Locusts (Schistocerca Gregaria)
are a representative example of such collaborative insects [34]. Locust is a kind of
grasshopper that can change reversibly between a solitary and a social phase, with
clear behavioral differences among both phases [35]. The two phases show many
differences regarding the overall level of activity and the degree to which locusts are
attracted or repulsed among them [36]. In the solitary phase, locusts avoid contact to
each other (locust concentrations). As consequence, they distribute throughout the
space, exploring sufficiently over the plantation [36]. On other hand, in the social
phase, locusts frantically concentrate around those elements that have already found
good food-sources [37]. Under such a behavior, locust attempt to efficiently find
better nutrients by devastating promising areas within the plantation.

This paper presents an algorithm for the automatic selection of pixel classes for
image segmentation. The proposed method combines a novel evolutionary method
with the definition of a new objective function that appropriately evaluates the seg-
mentation quality with regard to the number of classes. The new evolutionary algo-
rithm, called Locust Search (LS), is based on the behavior presented in swarms of
locusts. In the proposed algorithm, individuals emulate a group of locusts which
interact to each other based on the biological laws of the cooperative swarm. The
algorithm considers two different behaviors: solitary and social. Depending on the
behavior, each individual is conducted by a set of evolutionary operators which mim-
ics different cooperative conducts that are typically found in the swarm. Different
to most of existent evolutionary algorithms, the behavioral model in the proposed
approach explicitly avoids the concentration of individuals in the current best posi-
tions. Such fact allows to avoid critical flaws such as the premature convergence to
sub-optimal solutions and the incorrect exploration-exploitation balance. In order to
automatically define the optimal number of pixel classes (Gaussian functions in the

214 8 Locust Search Algorithm Applied to Multi-threshold Segmentation

mixture), a new objective function has been also incorporated. The new objective
function is divided in two parts. The first part evaluates the quality of each candidate
solution in terms of its similarity with regard to the image histogram. The second part
penalizes the overlapped area among Gaussian functions (classes). Under these cir-
cumstances, Gaussian functions that do not “positively” participate in the histogram
approximation could be easily eliminated in the final Gaussian mixture model.

In order to illustrate the proficiency and robustness of the proposed approach,
several numerical experiments have been conducted. Such experiments are divided
into two sections. In the first part, the proposed LS method is compared to other
well-known evolutionary techniques over a set of benchmark functions. In the second
part, the performance of the proposed segmentation algorithm is compared to other
segmentationmethodswhich are also based on evolutionary principles. The results in
both cases validate the efficiency of the proposed technique with regard to accuracy
and robustness.

8.2 Gaussian Mixture Modelling

In this section, the modeling of image histograms through Gaussian mixture models
is presented. Let consider an image holding L gray levels [0, . . . , L − 1] whose
distribution is defined by a histogram h(g) represented by the following formulation:

h(g) = ng
Np

, h(g) > 0,

Np =
L−1∑

g=0

ng, and
L−1∑

g=0

h(g) = 1, (8.1)

where ng denotes the number of pixels with gray level g and Np the total number
of pixels in the image. Under such circumstances, h(g) can be modeled by using a
mixture p(x) of Gaussian functions of the form:

p(x) =
K∑

i=1

Pi√
2πσi

exp

[−(x − μi)
2

2σ 2
i

]
(8.2)

whereK symbolizes the number of Gaussian functions of themodel whereasPi is the
apriori probability of function i.μi and σi represent the mean and standard deviation
of the i-th Gaussian function, respectively. Furthermore, the constraint

∑K
i=1 Pi = 1

must be satisfied by the model. In order to evaluate the similarity between the image
histogram and a candidate mixture model, the mean square error can be used as
follows:

8.2 Gaussian Mixture Modelling 215

J = 1

n

L∑

j=1

[
p(x j) − h(x j)

]2 + ω ·
∣∣∣∣∣

(
K∑

i=1

Pi

)
− 1

∣∣∣∣∣ (8.3)

whereω represents the penalty associatedwith the constrain
∑K

i=1 Pi = 1. Therefore,
J is considered as the objective function which must be minimized in the estimation
problem. In order to illustrate the histogram modeling through a Gaussian mixture,
Fig. 8.3 presents an example, assuming three classes, i.e.K = 3.Considering Fig. 8.3a
as the image histogram h(x), the Gaussian mixture p(x), that is shown in Fig. 8.3c,
is produced by adding the Gaussian functions p1(x), p2(x) and p3(x) in the con-
figuration presented in Fig. 8.3b. Once the model parameters that better model the
image histogram have been determined, the final step is to define the threshold values
Ti (i ∈ [1, . . . , K]) which can be calculated by simple standard methods, just as it is
presented in [19–21].

8.3 The Locust Search (LS) Algorithm

TheLocust Search (LS) algorithm is a swarmoptimizationmethod inspired in several
behaviors commonly found in swarms of locust [36]. In the LS method, the entire
search space is assumed as a plantation, where all individuals within the swarm
interact to each other. In the LS approach, each solution within the search space
represents a locust position within the plantation. Also, each locust receives a food
quality index based on the fitness value related to the solution that is represented by
each of such individuals [20]. Furthermore, and unique to the LSmethod, individuals
within the swarm’s population are guided by a set of evolutionary operators based
on two distinctive behaviors that are commonly observed in swarms of locust: (1) a
solitary phase, and (2) a social phase.

8.3.1 LS Solitary Phase

One distinctive feature of the LS method is the integration of a unique behavior
known as solitary phase.Under this behavioralmodel, each locustwithin the swarm is
assumed to be displaced as a result of a social force, which is related to their positional
relationships with respect to other members of the aggregation. Therefore, the net
effect caused by such social force are: (1) an attraction toward distant individuals, or
(2) a repulsion between nearer individuals.

In the LS approach, the concept of social force is applied to develop a solitary oper-
ator specifically devised to explicitly avoid the concentration of individual toward
the best solutions found during the evolutionary process, which in turn allows a
sufficient exploration of the entire search space [21]. In order to illustrate such oper-
ator, let Lk = {

lk1, l
k
2, . . . , l

k
N

}
denote a population (set of solutions) comprised by

216 8 Locust Search Algorithm Applied to Multi-threshold Segmentation

N locusts, where k = 1, 2, . . . , gen denotes the current iteration number of whole
the evolutionary process (with gen denoting the maximum number of iterations). At
each iteration k, the solitary operation produces a new position pki by perturbing the
current locust position lki with a change of position �lki , such that:

pki = lki + �lki (8.4)

The position change �lki results from the social force experimented by the indi-
vidual lki with respect to the other N − 1 individuals in the entire locust population.
With that being said, the social force exerted between a given individual lki and any
other locust lkj within the swarm is calculated as follows:

ski j = ρ
(
lki , l

k
j

) · s(ri j) · di j + rand(1,−1) (8.5)

where ri j =
∥∥∥lki − lkj

∥∥∥ denotes the Euclidian distance between individuals lki and lkj .

Furthermore, di j = (lkj − lki)/ri j represent a unit vector which points from lki to lkj ,
while rand(1,−1) stands for a randomly generated number from within the interval
[1,−1]. Also, s(ri j) represents the so called social relation between lki and lkj , as
defined as follows:

s(ri j) = F · e−ri j /L − e−ri j (8.6)

where F and L denote, an attraction magnitude and an attractive length scale, respec-
tively [36]. On the other hand, ρ(lki , l

k
j) stand for what is referred as the dominance

value between lki and l
k
j . In theLSapproach, each individual fromLk

({
lk1, l

k
2, . . . , l

k
N

})

is ranked according to their fitness values, with the best individual (most dominant
locust) receiving a rank of 0 (zero), whereas the worst individual (least dominant
locust) gains the rank N − 1. With that being said, the value of ρ(lki , l

k
j) is computed

by considering the rank corresponding to the individuals lki and lkj , as defined as
follows:

ρ(lki , l
k
j) =

{
e−(rank(lki)/N) if rank(lki) < rank(lkj)

e
−

(
rank(lkj)/N

)

if rank(lki) > rank(lkj)
(8.7)

where rank(lki) and rank(l
k
j) stand for the ranks of the individuals l

k
i and l

k
j respectively.

Intuitively, the value ρ(lki , l
k
j) has the property to magnify or weaken the social force

experimented between the individuals lki and l
k
j depending on the fitness of the most

dominant member among them.
Finally, the total social force experimented by individual lki is computed as a

superposition of all pairwise interactions exerted on it, as given as follows:

8.3 The Locust Search (LS) Algorithm 217

Ski =
N∑

j=1
j �=1

ski j (8.8)

Therefore, the change of position �lki is given by the total social force S
k
i experi-

mented by lki , such that (Fig. 8.1):

�lki = Ski (8.9)

Once a new set of positions Pk = {
pk1,p

k
2, . . . ,p

k
N

}
, corresponding to the individ-

uals within the populationLk
({
lk1, l

k
2, . . . , l

k
N

})
, has been computed, each individual’s

position lki for the next iteration of the evolutionary process is updated as follows:

lk+1
i =

{
pki if f (pki) > f (lki)
lki otherwise

(8.10)

where f (pki) and f (lki) denotes the fitness evaluation function with respect to posi-
tions pki and lki respectively. In other words, the position of a given individual lki
for the iteration k + 1 is updated only if its respective position pki promotes such
individual to get a better fitness value than that on its current position; otherwise, its
position remains unchanged. It is important to note that the previous is illustrated by
considering a maximization optimization problem.

Fig. 8.1 LS solitary phase. Under this behavioral model, each locust’s movement is computed
respective to the total social force experimented by such individual

218 8 Locust Search Algorithm Applied to Multi-threshold Segmentation

8.3.2 LS Social Phase

Different to the solitary phase illustrated in Sect. 8.3.1, in the LS approach, the so
called social phase represents a selective operator used to refine a particular sub-
set of individuals B = {b1,b2, . . . ,bq} in order to improve their solution qual-
ity. Such subset B is formed by the q best individuals within the set of solutions
Lk+1 = {

lk+1
1 , lk+1

2 , . . . , lk+1
N

}
, which correspond to the individuals’ positions for

the next iteration of the evolutionary process. Therefore, for each individual within
the subset B ∈ Lk+1, a subspace C j around each of such individuals is created. The
limits of each of such subspaces depend on distance r, as defined as follows:

r =
∑n

d=1

(
bhighd − blowd

)

n
· β (8.11)

where blowd and bhighd denote the lower and upper bounds in the d-th dimension, while
n stand for total number of decision variables (dimensions). Furthermore, β ∈ [0, 1]
represents a scalar factor used to modulate the size of the subspace. Therefore, for

each individual lk+1
j =

[
lk+1
j,1 , lk+1

j,2 , . . . , lk+1
j,n

]
(where lk+1

j ∈ B), the limits of each

subspace C j is given as follows:

Clow
j,d = lk+1

j,d − r

Chigh
j,d = lk+1

j,d + r (8.12)

where Clow
j,d and Chigh

j,d represent the upper and lower bounds of each subspace C j at
the d-th dimension, respectively. Finally, for each of subspace C j , a new set of h new

solutions M j =
{
m j

1,m
j
2, . . . ,m

j
h

}
is generated within the bounds of each of such

subspaces (see Fig. 8.4). If any of the fitness value of any of the solutions withinM j

is better than that of their corresponding individual lk+1
j ∈ B, then lk+1

j is replaced

with such better solution; otherwise, no changes are made to lk+1
j (Fig. 8.2).

8.4 Segmentation Algorithm Based on LS

In the proposed method, the segmentation process is approached as an optimization
problem. Computational optimization generally involves two distinct elements: (1) a
search strategy to produce candidate solutions (individuals, particles, insects, locust,
etc.) and (2) an objective function that evaluates the quality of each selected candidate
solution. Several computational algorithms are available to perform the first element.
The second element, where the objective function is designed, is unquestionably the
most critical. In the objective function, it is expected to embody the full complex-
ity of the performance, biases, and restrictions of the problem to be solved. In the

8.4 Segmentation Algorithm Based on LS 219

(b)(a)

Fig. 8.2 LS social phase. a Initial locusts’ configuration and rank according to their respective
food quality indexes, and b social phase operator applied by considering q = 2 and h = 3

(a)

(c)

(b)

Fig. 8.3 Histogram approximation through a Gaussian mixture. a Original histogram, b configu-
ration of the Gaussian components p1(x), p2(x) and p3(x), c final Gaussian mixture p(x)

segmentation problem, candidate solutions represent Gaussian mixtures. The objec-
tive function J (Eq. 8.3) is used as a fitness value to evaluate the similarity presented
between the Gaussian mixture and the image histogram. Therefore, guided by the
fitness values (J values), the set of encoded candidate solutions are evolved using the
evolutionary operators until the best possible resemblance can be found (Fig. 8.3).

220 8 Locust Search Algorithm Applied to Multi-threshold Segmentation

Over the last decade, several algorithms based on evolutionary and swarm prin-
ciples [19–22] have been proposed to solve the problem of segmentation through
a Gaussian mixture model. Although these algorithms own certain good perfor-
mance indexes, they present two important limitations. (1) They frequently obtain
sub-optimal approximations as a consequence of an inappropriate balance between
exploration and exploitation in their search strategies. (2) They are based on the
assumption that the number of Gaussians (classes) in the mixture is pre-known and
fixed, otherwise they cannot work.

In order to eliminate such flaws, the proposed approach includes (A) a new search
strategy and (B) the definition of a new objective function. For the search strategy, it
is adopted the LS method. Under LS, the concentration of individuals in the current
best positions is explicitly avoided. Such fact allows reducing critical problems such
as the premature convergence to sub-optimal solutions and the incorrect exploration-
exploitation balance.

8.4.1 New Objective Function Jnew

Previous segmentation algorithms based on evolutionary and swarm methods use
Eq. (8.3) as objective function. Under these circumstances, each candidate solution
(Gaussian mixture) is only evaluated in terms of its approximation with the image
histogram.

Since the proposed approach aims to automatically select the number of Gaussian
functions K in the final mixture p(x), the objective function must be modified. The
new objective function J new is defined as follows:

J new = J + λ · Q, (8.13)

where λ is a scaling constant. The new objective function is divided in two parts.
The first part J evaluates the quality of each candidate solution in terms of its sim-
ilarity with regard to the image histogram (Eq. 8.3). The second part Q penalizes
the overlapped area among Gaussian functions (classes), with Q being defined as
follows:

Q =
K∑

i=1

K∑

j=1
j �=i

L∑

l=1

min
(
Pi · pi (l), Pj · p j (l)

)
, (8.14)

whereK and L represents the number of classes and the gray levels, respectively. The
parameters pi (l) and p j (l) symbolize the Gaussian functions i and j respectively,
that are to be evaluated on the point l (gray level) whereas the elements Pi and
Pj represent the apriori probabilities of the Gaussian functions i and j, respectively.

8.4 Segmentation Algorithm Based on LS 221

Under such circumstances, mixtures with Gaussian functions that do not “positively”
participate in the histogram approximation are severely penalized.

Figure 8.4 illustrates the effect of the new objective function J new in the evaluation
of Gaussian mixtures (candidate solutions). From the image histogram (Fig. 8.4a),
it is evident that two Gaussian functions are enough to accurately approximate the
original histogram. However, if the Gaussian mixture is modeled by using a greater
number of functions (for example four as it is shown in Fig. 8.4b), the original
objective function J is unable to obtain a reasonable approximation. Under the new
objective function J new, it is penalized the overlapped area among Gaussian func-
tions (classes). Such areas, in Fig. 8.4c, correspond to Q12, Q23, Q34, where Q12

represents the penalization value produced between the Gaussian function p1(x) and
p2(x). Therefore, due to the penalization, the Gaussian mixture shown in Fig. 8.4b
and c provides a solution of low quality. On the other hand, the Gaussian mixture
presented in Fig. 8.4d maintains a low penalty, thus, it represents a solution of high
quality. From Fig. 8.4d, it is easy to see that functions p1(x) and p4(x) can be
removed from the final mixture. This elimination could be performed by a simple
comparison with a threshold value θ since p1(x) and p4(x) have a reduced ampli-
tude (p1(x) ≈ p2(x) ≈ 0). Therefore, under J new, it is possible to find the reduced
Gaussian mixture model starting from a considerable number of functions.

Since the proposed segmentationmethod is conceived as an optimization problem,
the overall operation can be reduced to solve the formulation of Eq. (8.15) by using
the LS algorithm.

(a) (b)

(c) (d)

Fig. 8.4 Effect of the newobjective function Jnew in the evaluation ofGaussianmixtures (candidate
solutions). a Original histogram, b Gaussian mixture considering four classes, c penalization areas
and d Gaussian mixture of better quality solution

222 8 Locust Search Algorithm Applied to Multi-threshold Segmentation

minimize
J new(x) = J (x) + λ · Q(x),

x = (P1, μ1, σ1, . . . , PK , μK , σK) ∈ R3·K

subject to
0 ≤ Pd ≤ 1, d ∈ (1, . . . , K)

0 ≤ μd ≤ 255
0 ≤ σd ≤ 25

(8.15)

where Pd , μd and σd represent the probability, mean and standard deviation of the
class d. It is important to remark that the new objective function J new allows the
evaluation of a candidate solution in terms of the necessary number of Gaussian
functions and its approximation quality. Under such circumstances, it can be used in
combination with any other evolutionary method and not only with the proposed LS
algorithm.

8.4.2 Complete Segmentation Algorithm

Once the new search strategy (LS) and objective function (J new) have been defined,
the proposed segmentation algorithm can be summarized by the Algorithm 1. The
new algorithm combines operators defined by LS and operations for calculating the
threshold values.

Algorithm 1. Segmentation LS algorithm

1: Input: F, L, g, gen, N, K, λ and θ .
2: Initialize L0 (k = 0)
3: until (k = gen)

5: F ← SolitaryOperation(Lk) Solitary operator (Sect. 8.3.1)
6: Lk+1 ← SocialOperation(Lk , F) Social operator (Sect. 8.3.2)
8: k = k + 1
7: end until
8: Obtain lgenbest
9: Reduce lgenbest
10: Calculate the threshold values Ti from the reduced model
11: Use Ti to segment the image

(Line 1) The algorithm sets the operative parameters F, L, g, gen, N, K, λ and
θ . They rule the behavior of the segmentation algorithm. (Line 2) Afterwards, the
population L0 is initialized considering N different random Gaussian mixtures of K
functions. The idea is to generate an N-random Gaussian mixture subjected to the
constraints formulated in Eq. (8.20). The parameter K must hold a high value in
order to correctly segment all images (recall that the algorithm is able to reduce the
Gaussian mixture to its minimum expression). (Line 3) Then, the Gaussian mixtures
are evolved by using the LS operators and the new objective function J new. This
process is repeated during gen cycles. (Line 8)After this procedure, the best Gaussian

8.4 Segmentation Algorithm Based on LS 223

mixture lgenbest is selected according to its objective function J new. (Line 9) Then, the
Gaussian mixture lgenbest is reduced by eliminating those functions whose amplitudes
are lower than θ(pi (x) ≤ θ). (Line 10) Then, it is calculated the threshold values
Ti from the reduced model. (Line 11) Finally, the calculated Ti values are employed
to segment the image. Figure 8.5 shows a flow chart of the complete segmentation
procedure.

The proposed segmentation algorithm permits to automatically detect the num-
ber of segmentation partitions (classes). Furthermore, due to its remarkable search
capacities, the LSmethodmaintains a better accuracy than previous algorithms based

Fig. 8.5 Flow chart of the complete segmentation procedure

224 8 Locust Search Algorithm Applied to Multi-threshold Segmentation

on evolutionary principles. However, the proposed method presents two disadvan-
tages: first, it is related to its implementation which in general is more complex than
most of the other segmentators based on evolutionary basics. The second refers to the
segmentation procedure of the proposed approach which does not consider any spa-
tial pixel characteristics. As a consequence, pixels that may belong to a determined
region due to its position are labeled as a part of other region due to its gray-level
intensity. Such a fact adversely affects the segmentation performance of the method.

8.5 Segmentation Results

This section analyses the performance of the proposed segmentation algorithm. The
discussion is divided into three parts: the first one shows the performance of the pro-
posed LS segmentation algorithm while the second presents a comparison between
the proposed approach and others segmentation algorithms that are based on evolu-
tionary and swam methods. The comparison mainly considers the capacities of each
algorithm to accurately and robustly approximate the image histogram. Finally, the
third part presents an objective evaluation of segmentation results produced by all
algorithms that have been employed in the comparisons.

8.5.1 Performance of LS Algorithm in Image Segmentation

This section presents two experiments that analyze the performance of the proposed
approach. Table 8.1 presents the algorithm’s parameters that have been experimen-
tally determined and kept for all the test images through all experiments.

First image
The first test considers the histogram shown by Fig. 8.6b while Fig. 8.6a presents the
original image. After applying the proposed algorithm, just as it has been configured
according to parameters in Table 8.1, a minimum model of four classes emerges
after the start from Gaussian mixtures of 10 classes. Considering 30 independent
executions, the averaged parameters of the resultant Gaussian mixture are presented
in Table 8.2. One final Gaussian mixture (ten classes), which has been obtained by
LS, is presented in Fig. 8.7. Furthermore, the approximation of the reduced Gaussian
mixture is also visually compared with the original histogram in Fig. 8.6b. On the

Table 8.1 Parameter setup for the LS segmentation algorithm

F L g gen N K λ θ

0.6 0.2 20 1000 40 10 0.01 0.0001

8.5 Segmentation Results 225

(a) (b)

Fig. 8.6 a Original first image used on the first experiment, and b its histogram

Table 8.2 Results of the reduced Gaussian mixture for the first and the second image

Parameters First image Second image

P1 0.004 0.032

μ1 18.1 12.1

σ1 8.2 2.9

P2 0.0035 0.0015

μ2 69.9 45.1

σ2 18.4 24.9

P3 0.01 0.006

μ3 94.9 130.1

σ3 8.9 17.9

P4 0.007 0.02

μ4 163.1 167.2

σ4 29.9 10.1

other hand, Fig. 8.8 presents the segmented image after calculating the threshold
points.
Second image
For the second experiment, the image in Fig. 8.9 is tested. The method aims to
segment the image by using a reduced Gaussian mixture model obtained by the LS
approach. After executing the algorithm according to parameters from Table 8.1,
the resulting averaged parameters of the resultant Gaussian mixture are presented
in Table 8.2. In order to assure consistency, the results are averaged considering 30
independent executions. Figure 8.10 shows the approximation quality that is obtained
by the reduced Gaussian mixture model in (a) and the segmented image in (b).

226 8 Locust Search Algorithm Applied to Multi-threshold Segmentation

Fig. 8.7 Gaussian mixture obtained by LS for the first image

Fig. 8.8 Image segmented with the reduced Gaussian mixture

(a) (b)

Fig. 8.9 a Original second image used on the first experiment, and b its histogram

8.5 Segmentation Results 227

(a)

(b)

Fig. 8.10 a Segmentation result obtained by LS for the first image and b the segmented image

8.5.2 Histogram Approximation Comparisons

This section discusses the comparison between the proposed segmentation algorithm
and other evolutionary-segmentation methods that have been proposed in the litera-
ture. The set of methods used in the experiments includes the J +ABC [19], J +AIS
[20] and J + DE [21]. These algorithms consider the combination between the orig-
inal objective function J (Eq. 8.3) and an evolutionary technique such as Artificial
Bee Colony (ABC), the Artificial Immune Systems (AIS) and the Differential Evo-
lution (DE) [21], respectively. Since the proposed segmentation approach considers
the combination of the new objective function J new (Eq. 8.13) and the LS algorithm,
it will be referred as J new + LS. The comparison focuses mainly on the capacities
of each algorithm to accurately and robustly approximate the image histogram.

In the experiments, the populations have been set to 40 (N = 40) individuals.
The maximum iteration number for all functions has been set to 1000. Such stop
criterion has been considered to maintain compatibility to similar experiments that
are reported in the literature [18]. The parameter setting for each of the segmentation
algorithms in the comparison is described as follows:

228 8 Locust Search Algorithm Applied to Multi-threshold Segmentation

1. J + J + ABC [19]: In the algorithm, its parameters are configured as follows:
the abandonment limit = 100, α = 0.05 and limit = 30.

2. J + AIS [20]: it presents the following parameters, h = 120, Nc = 80, ρ = 10,
Pr = 20, L = 22 and Te = 0.01.

3. J +DE [21]: TheDE/Rand/1 scheme is employed. The parameter settings follow
the instructions in [21]. The crossover probability is CR = 0.9 and the weighting
factor is F = 0.8.

4. In J new + LS, the method is set according to the values described in Table 8.5.

In order to conduct the experiments, a synthetic image is designed to be used as a
reference in the comparisons. The main idea is to know in advance the exact number
of classes (and their parameters) that are contained in the image so that the histogram
can be considered as a ground truth. The synthetic image is divided into four sections.
Each section corresponds to a different class which is produced by setting each gray
level pixel Pvi to a value that is determined by the following model:

Pvi = e
−

(
(x−μi)

2

2σ2i

)

, (8.16)

where i represents the section, whereas μi and σi are the mean and the dispersion
of the gray level pixels, respectively. The comparative study employs the image of
512 × 512 that is shown in Fig. 8.11a and the algorithm’s parameters that have been
presented in Table 8.3. Figure 8.11b illustrates the resultant histogram.

(1)

(4)(3)

(2)

(b)(a)

Fig. 8.11 a Synthetic image used in the comparison, and b its histogram

Table 8.3 Employed parameters for the design of the reference image

Pi μi σi

(1) 0.05 40 8

(2) 0.04 100 10

(3) 0.05 160 8

(4) 0.027 220 15

8.5 Segmentation Results 229

In the comparison, the discussion focuses on the following issues: first of all,
accuracy; second, convergence; and third, computational cost.

Convergence
This section analyzes the approximation convergence when the number of classes
that are used by the algorithm during the evolution process is different to the actual
number of classes in the image. Recall that the proposed approach automatically
finds the reduced Gaussian mixture which better adapts to the image histogram.

In the experiment, the methods: J + ABC, J + AIS and J + DE are executed
considering Gaussian mixtures composed of 8 functions. Under such circumstances,
the number of classes to be detected is higher than the actual number of classes in the
image. On the other hand, the proposed algorithm maintains the same configuration
of Table 8.5. Therefore, it can detect and calculate up to ten classes (K = 10).

As a result, the techniques J + ABC, J + AIS and J + DE tend to overesti-
mate the image histogram. This effect can be seen in Fig. 8.12a, where the result-
ing Gaussian functions are concentrated within actual classes. Such a behavior is a
consequence of the evaluation that is considered by the original objective function
J, which privileges only the approximation between the Gaussian mixture and the
image histogram. This effect can be graphically illustrated by Fig. 8.13a that shows
the pixel misclassification produced by the wrong segmentation of Fig. 8.9a. On the
other hand, the proposed approach obtains a reduced Gaussian mixture model which
allows the detection of each class from the actual histogram (see Fig. 8.12b). As
a consequence, the segmentation is significantly improved by eliminating the pixel
misclassification, as it is shown by Fig. 8.13b.

It is evident from Fig. 8.12 that the techniques, J +ABC, J +AIS and J +DE, all
need an a priori knowledge of the number of classes that are contained in the actual
histogram in order to obtain a satisfactory result. On the other hand, the proposed
algorithm is able to find a reduced Gaussian mixture whose classes coincide with the
actual number of classes that are contained in the image histogram.

Accuracy
In this section, the comparison among the algorithms in terms of accuracy is reported.
Most of the reported comparisons [19–26] are concerned about comparing the param-
eters of the resultant Gaussian mixtures by using real images. Under such circum-
stances, it is difficult to consider a clear reference in order to define a meaningful
error. Therefore, the image defined in Fig. 8.11 has been used in the experiments
because its construction parameters are clearly defined in Table 8.3.

Since the parameter values from Table 8.3 act as ground truth, a simple averaged
difference between them and the values that are computed by each algorithm could
be used as comparison error. However, as each parameter maintains different active
intervals, it is necessary to express the differences in terms of percentage. Therefore,
if �β is the parametric difference and β the ground truth parameter, the percentage
error �β% can be defined as follows (Fig. 8.14):

�β% = �β

β
· 100% (8.17)

230 8 Locust Search Algorithm Applied to Multi-threshold Segmentation

(a)

(b)

Fig. 8.12 Convergence results. a Convergence of the following methods: J +ABC, J +AIS and J
+ DE considering Gaussian mixtures of 8 classes, b convergence of the proposed method (reduced
Gaussian mixture)

Fig. 8.13 Segmentation results obtained by a several methods including J + ABC, J + AIS and J
+ DE considering Gaussian mixtures of 8 classes; and b the proposed method (reduced Gaussian
mixture)

8.5 Segmentation Results 231

(a) (b)

(c) (d)

Fig. 8.14 Approximation results in terms of accuracy. a J + ABC, b J + AIS, c J + DE and d the
proposed Jnew + LS approach

In the segmentation problem, each Gaussian mixture represents a K-dimensional
model where each dimension corresponds to a Gaussian function of the optimization
problem to be solved. Since each Gaussian function possesses three parameters Pi ,
μi and σi , the complete number of parameters is 3 · K dimensions. Therefore, the
final error E produced by the final Gaussian mixture is:

E = 1

K · 3
K ·3∑

v=1

�βv%, (8.18)

where βv ∈ (Pi , μi , σi).
In order to compare accuracy, the algorithms, J + ABC, J + AIS, J + DE

and the proposed approach are all executed over the image shown by Fig. 8.12a.
The experiment aims to estimate the Gaussian mixture that better approximates
the actual image histogram. Methods J + ABC, J + AIS and J + DE consider
Gaussian mixtures composed of 4 functions (K = 4). In case of the J new + LS
method, although the algorithm finds a reduced Gaussian mixture of four functions,
it is initially set with ten functions (K = 10). Table 8.4 presents the final Gaussian
mixture parameters and the final error E. The final Gaussian mixture parameters

232 8 Locust Search Algorithm Applied to Multi-threshold Segmentation

Table 8.4 Results of the reduced Gaussian mixture in terms of accuracy

Algorithm Gaussian function Pi μi σi E (%)

J + ABC (1) 0.052 44.5 6.4 11.79

(2) 0.084 98.12 12.87

(3) 0.058 163.50 8.94

(4) 0.025 218.84 17.5

J + AIS (1) 0.072 31.01 6.14 22.01

(2) 0.054 88.52 12.21

(3) 0.039 149.21 9.14

(4) 0.034 248.41 13.84

J + DE (1) 0.041 35.74 7.86 13.57

(2) 0.036 90.57 11.97

(3) 0.059 148.47 9.01

(4) 0.020 201.34 13.02

Jnew + LS (1) 0.049 40.12 7.5 3.98

(2) 0.041 102.04 10.4

(3) 0.052 168.66 8.3

(4) 0.025 110.92 15.2

have been averaged over 30 independent executions in order to assure consistency.
A close inspection of Table 8.4 reveals that the proposed method is able to achieve
the smallest error (E) in comparison to the other algorithms. Figure 8.15 presents the
histogram approximations that are produced by each algorithm whereas Fig. 8.16
shows their correspondent segmented images. Both illustrations present the median
case obtained throughout 30 runs. Figure 8.17 exhibits that J + ABC, J + AIS, and
J + DE present different levels of misclassifications which are nearly absent in the
proposed approach case.

Computational cost
The experiment aims to measure the complexity and the computing time spent by the
J + ABC, the J + AIS, the J + DE and the J new + LS algorithm while calculating
the parameters of the Gaussian mixture in benchmark images (see Figs. 8.16a–d).
J + ABC, J + AIS and J + DE consider Gaussian mixtures that are composed
of 4 functions (K = 4). In case of the J new + LS method, although the algorithm
finds a reduced Gaussian mixture of four functions despite being initialized with ten
functions (K =10). Table 8.5 shows the averagedmeasurements after 30 experiments.
It is evident that the J + ABC and J + DE are the slowest to converge (iterations)
and the J + AIS shows the highest computational cost (time elapsed) because it
requires operators which demand long times. On the other hand, the J new + LS
shows an acceptable trade-off between its convergence time and its computational
cost. Therefore, although the implementation of J new +LS in general requires more
code than most of other evolution-based segmentators, such a fact is not reflected

8.5 Segmentation Results 233

Fig. 8.15 Segmentation results in terms of accuracy. a J + ABC, b J + AIS, c J + DE and d the
proposed Jnew + LS approach

in the execution time. Finally, Fig. 8.16 shows the segmented images as they are
generated by each algorithm. It can be seen that the proposed approach generate
more homogeneous regions whereas J + ABC, J + AIS and J + DE present several
artifacts that are produced by an incorrect pixel classification.

8.5.3 Performance Evaluation of the Segmentation Results

This section presents an objective evaluation of segmentation results that are pro-
duced by all algorithms in the comparisons. The ill-definednature of the segmentation

234 8 Locust Search Algorithm Applied to Multi-threshold Segmentation

(a) (b) (c) (d)

Fig. 8.16 Images employed in the computational cost analysis

problem makes the evaluation of a candidate algorithm difficult [38]. Traditionally,
the evaluation has been conducted by using some supervised criteria [39] which are
based on the computation of a dissimilarity measure between a segmentation result
and a ground truth image. Recently, the use of unsupervised measures has substi-
tuted supervised indexes for the objective evaluation of segmentation results [40].
They enable the quantification of the quality of a segmentation result without a priori
knowledge (ground truth image).

8.5 Segmentation Results 235

Fig. 8.17 Experimental set used in the evaluation of the segmentation results

Table 8.5 Iterations and time requirements of the J + ABC, the J + AIS, the J + DE and the
Jnew + LS algorithm as they are applied to segment benchmark images (see Fig. 8.16)

Iterations (a) (b) (c) (d)

Time elapsed

J + ABC 855 833 870 997

2.72 s 2.70 s 2.73 s 3.1 s

J + AIS 725 704 754 812

1.78 s 1.61 s 1.41 s 2.01 s

J + DE 657 627 694 742

1.25 s 1.12 s 1.45 s 1.88 s

Jnew + LS 314 298 307 402

0.98 s 0.84 s 0.72 s 1.02 s

Evaluation criteria
In this paper, the unsupervised index ROS proposed by Rosenberg [41] has been
used to objectively evaluate the performance of each candidate algorithm. This index
evaluates the segmentation quality in terms of the homogeneity within segmented
regions and the heterogeneity among the different regions. ROS can be computed as
follows:

ROS = D − D

2
, (8.19)

where D quantifies the homogeneity within segmented regions. Similarly, D mea-
sures the disparity among the regions. A segmentation result S1 is considered better
than S2, if ROSS1 > ROSS2 . The inter-region homogeneity characterized by D is
calculated considering the following formulation:

D = 1

NR

NR∑

c=1

Rc

I
· σc(∑NR

l=1 σl

) , (8.20)

236 8 Locust Search Algorithm Applied to Multi-threshold Segmentation

where NR represents the number of partitions inwhich the image has been segmented.
Rc symbolizes the number of pixels contained in the partition c whereas I considers
the number of pixels that integrate the complete image. Similarly, σc represents
the standard deviation from the partition c. On the other hand, disparity among the
regions D is computed as follows:

D = 1

NR

NR∑

c=1

Rc

I
·
[

1

(NR − 1)

NR∑

l=1

|μc − μl |
255

]
, (8.21)

where μc is the average gray-level in the partition c.
Experimental protocol
In the comparison of segmentation results, a set of four classical images has been
chosen to integrate the experimental set (Fig. 8.17). The segmentation methods used
in the comparison are J + ABC [19], J + AIS [20] and J + DE [21].

From all segmentation methods used in the comparison, the proposed J new + LS
algorithm is the only one that has the capacity to automatically detect the number
of segmentation partitions (classes). In order to conduct a fair comparison, all algo-
rithms have been proved by using the same number of partitions. Therefore, in the
experiments, the J new + LS segmentation algorithm is firstly applied to detect the
best possible number of partitions NR . Once obtained the number of partitions NR ,
the rest of the algorithms were configured to approximate the image histogram with
this number of classes.

Figure 8.18 presents the segmentation results obtained by each algorithm consid-
ering the experimental set from Fig. 8.17. On the other hand, Table 8.6 shows the
evaluation of the segmentation results in terms of the ROS index. Such values repre-
sent the averaged measurements after 30 executions. From them, it can be seen that
the proposed J new + LS method obtain the best ROS indexes. Such values indicate
that the proposed algorithm maintains the best balance between the homogeneity
within segmented regions and the heterogeneity among the different regions. From
Fig. 8.18, it can be seen that the proposed approach generate more homogeneous
regions whereas J + ABC, J + AIS and J + DE present several artifacts that are
produced by an incorrect pixel classification.

Table 8.6 Evaluation of the segmentation results in terms of the ROS index

Number of classes NR = 4
(a)

NR = 3
(b)

NR = 4
(c)

NR = 4
(d)Image

J + ABC 0.534 0.328 0.411 0.457

J + AIS 0.522 0.321 0.427 0.437

J + DE 0.512 0.312 0.408 0.418

Jnew + LS 0.674 0.401 0.514 0.527

8.6 Conclusions 237

(a) (d)(c)(b)

Fig. 8.18 Segmentation results using in the evaluation

8.6 Conclusions

Despite several evolutionary methods have been successfully applied to image seg-
mentation with interesting results, most of them have exhibited two important limi-
tations: (1) they frequently obtain sub-optimal results (misclassifications) as a con-
sequence of an inappropriate balance between exploration and exploitation in their
search strategies; (2) the number of classes is fixed and known in advance.

In this paper, a new swarm algorithm for the automatic image segmentation, called
the Locust Search (LS) has been presented. The proposed method eliminates the

238 8 Locust Search Algorithm Applied to Multi-threshold Segmentation

typical flaws presented by previous evolutionary approaches by combining a novel
evolutionary method with the definition of a new objective function that appropri-
ately evaluates the segmentation quality with respect to the number of classes. In
order to illustrate the proficiency and robustness of the proposed approach, several
numerical experiments have been conducted. Such experiments have been divided
into two parts. First, the proposed LS method has been compared to other well-
known evolutionary techniques on a set of benchmark functions. In the second part,
the performance of the proposed segmentation algorithm has been compared to other
segmentation methods based on evolutionary principles. The results in both cases
validate the efficiency of the proposed technique with regard to accuracy and robust-
ness.

Several research directionswill be considered for futurework such as the inclusion
of other indexes to evaluate similarity between a candidate solution and the image his-
togram, the consideration of spatial pixel characteristics in the objective function, the
modification of the evolutionary LS operators to control the exploration-exploitation
balance and the conversion of the segmentation procedure into a multi-objective
problem.

References

1. Zhang,H., Fritts, J.E.,Goldman, S.A.: Image segmentation evaluation: a survey of unsupervised
methods. Comput. Vis. Image Underst. 110(2), 260–280 (2008)

2. Uemura, T., Koutaki, G., Uchimura, K.: Image segmentation based on edge detection using
boundary code. Int. J. Innov. Comput. Inf. Control 7(10), 6073–6083 (2011)

3. Wang, L., Wu, H., Pan, C.: Region-based image segmentation with local signed difference
energy. Pattern Recogn. Lett. 34(6), 637–645 (2013)

4. Otsu, N.: A thresholding selection method from gray-level histogram. IEEE Trans. Syst. Man
Cybern. 9, 62–66 (1979)

5. Peng, R., Varshney, P.K.: On performance limits of image segmentation algorithms. Comput.
Vis. Image Underst. 132, 24–38 (2015)

6. Balafar, M.A.: Gaussian mixture model based segmentation methods for brain MRI images.
Artif. Intell. Rev. 41, 429–439 (2014)

7. McLachlan, G.J., Rathnayake, S.: On the number of components in a Gaussian mixture model.
Data Min. Knowl. Disc. 4(5), 341–355 (2014)

8. Oliva, D., Osuna-Enciso, V., Cuevas, E., Pajares, G., Pérez-Cisneros, M., Zaldívar, D.: Improv-
ing segmentation velocity using an evolutionarymethod. Expert Syst. Appl. 42(14), 5874–5886
(2015)

9. Ye, Z.-W.,Wang,M.-W., Liu,W., Chen, S.-B.: Fuzzy entropy based optimal thresholding using
bat algorithm. Appl. Soft Comput. 31, 381–395 (2015)

10. Sarkar, S., Das, S., Chaudhuri, S.S.: A multilevel color image thresholding scheme based on
minimum cross entropy and differential evolution. Pattern Recogn. Lett. 54, 27–35 (2015)

11. Bhandari, A.K., Kumar, A., Singh, G.K.: Modified artificial bee colony based computationally
efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and
Tsallis functions. Expert Syst. Appl. 42(3), 1573–1601 (2015)

12. Permuter, H., Francos, J., Jermyn, I.: A study of Gaussian mixture models of color and texture
features for image classification and segmentation. Pattern Recogn. 39, 695–706 (2006)

13. Dempster, A.P., Laird, A.P., Rubin, D.B.: Maximum likelihood from incomplete data via the
EM algorithm. J. R. Stat. Soc. Ser. B 39(1), 1–38 (1977)

References 239

14. Zhang, Z., Chen, C., Sun, J., Chan, L.: EM algorithms for Gaussian mixtures with split-and-
merge operation. Pattern Recogn. 36, 1973–1983 (2003)

15. Park, H., Amari, S., Fukumizu, K.: Adaptive natural gradient learning algorithms for various
stochastic models. Neural Netw. 13, 755–764 (2000)

16. Park, H., Ozeki, T.: Singularity and slow convergence of the EM algorithm for Gaussian
mixtures. Neural Process. Lett. 29, 45–59 (2009)

17. Gupta, L., Sortrakul, T.: A Gaussian-mixture-based image segmentation algorithm. Pattern
Recogn. 31(3), 315–325 (1998)

18. Osuna-Enciso, V., Cuevas, E., Sossa, H.: A comparison of nature inspired algorithms for multi-
threshold image segmentation. Expert Syst. Appl. 40(4), 1213–1219 (2013)

19. Cuevas, E., Sención, F., Zaldivar, D., Pérez-Cisneros, M., Sossa, H.: A multi-threshold seg-
mentation approach based on artificial bee colony optimization. Appl. Intell. 37(3), 321–336
(2012)

20. Cuevas, E., Osuna-Enciso, V., Zaldivar, D., Pérez-Cisneros, M., Sossa, H.: Multithreshold
segmentation based on artificial immune systems. Math. Probl. Eng. Article no. 874761 (2012)

21. Cuevas, E., Zaldivar, D., Pérez-Cisneros, M.: A novel multi-threshold segmentation approach
based on differential evolution optimization. Expert Syst. Appl. 37(7), 5265–5271 (2010)

22. Oliva, D., Cuevas, E., Pajares, G., Zaldivar, D., Osuna, V.: A multilevel thresholding algorithm
using electromagnetism optimization. Neurocomputing 39, 357–381 (2014)

23. Oliva, D., Cuevas, E., Pajares, G., Zaldivar, D., Perez-Cisneros, M.: Multilevel thresholding
segmentation based on harmony search optimization. J. Appl. Math. Article no. 575414 (2013)

24. Cuevas, E., Zaldivar, D., Pérez-Cisneros, M.: Seeking multi-thresholds for image segmentation
with learning automata. Mach. Vis. Appl. 22(5), 805–818 (2011)

25. Tan, K.C., Chiam, S.C., Mamun, A.A., Goh, C.K.: Balancing exploration and exploitation
with adaptive variation for evolutionary multi-objective optimization. Eur. J. Oper. Res. 197,
701–713 (2009)

26. Chen, G., Low, C.P., Yang, Z.: Preserving and exploiting genetic diversity in evolutionary
programming algorithms. IEEE Trans. Evol. Comput. 13(3), 661–673 (2009)

27. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948, Dec 1995

28. Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global
optimisation over continuous spaces. Technical Report TR-95-012. ICSI, Berkeley, CA (1995)

29. Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., Tian, Q.: Self-adaptive learning based particle
swarm optimization. Inf. Sci. 181(20), 4515–4538 (2011)

30. Tvrdík, J.: Adaptation in differential evolution: a numerical comparison. Appl. Soft Comput.
9(3), 1149–1155 (2009)

31. Wang, H., Sun, H., Li, C., Rahnamayan, S., Jeng-shyang, P.: Diversity enhanced particle swarm
optimization with neighborhood. Inf. Sci. 223, 119–135 (2013)

32. Gong, W., Fialho, Á., Cai, Z., Li, H.: Adaptive strategy selection in differential evolution for
numerical optimization: an empirical study. Inf. Sci. 181(24), 5364–5386 (2011)

33. Gordon, D.: The organization of work in social insect colonies. Complexity 8(1), 43–46 (2003)
34. Kizaki, S., Katori, M.: A stochastic lattice model for locust outbreak. Phys. A 266, 339–342

(1999)
35. Rogers, S.M., Cullen, D.A., Anstey, M.L., Burrows, M., Dodgson, T., Matheson, T., Ott, S.R.,

Stettin, K., Sword, G.A., Despland, E., Simpson, S.J.: Rapid behavioural gregarization in the
desert locust, Schistocerca gregaria entails synchronous changes in both activity and attraction
to conspecifics. J. Insect Physiol. 65, 9–26 (2014)

36. Topaz, C.M., Bernoff, A.J., Logan, S., Toolson, W.: A model for rolling swarms of locusts.
Eur. Phys. J. Special Topics 157, 93–109 (2008)

37. Topaz, C.M., D’Orsogna, M.R., Edelstein-Keshet, L., Bernoff, A.J.: Locust dynamics: behav-
ioral phase change and swarming. PLoS Comput. Biol. 8(8), 1–11 (2012)

38. Unnikrishnan, R., Pantofaru, C., Hebert, M.: Toward objective evaluation of image segmenta-
tion algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 929–944 (2007)

240 8 Locust Search Algorithm Applied to Multi-threshold Segmentation

39. Unnikrishnan, R., Pantofaru, C., Hebert, M.: A measure for objective evaluation of image
segmentation algorithms. In: Proceedings of CVPR Workshop Empirical Evaluation Methods
in Computer Vision (2005)

40. Zhang, Y.J.: A survey on evaluating methods for image segmentation. Pattern Recogn. 29(8),
1335–1346 (1996)

41. Chabrier, S., Emile, B., Rosenberger, C., Laurent, H.: Unsupervised performance evaluation
of image segmentation. EURASIP J. Appl. Signal Process. 2006, Article ID 96306, pp. 1–12
(2006)

Chapter 9
Multimodal Swarm Algorithm Based
on the Collective Animal Behavior (CAB)
for Circle Detection

Abstract In engineering problems due to physical and cost constraints, the best
results, obtained by a global optimization algorithm, cannot be realized always.
Under such conditions, if multiple solutions (local and global) are known, the imple-
mentation can be quickly switched to another solution without much interrupting the
design process. This chapter presents a swarm multimodal optimization algorithm
named as the Collective Animal Behavior (CAB). Animal groups, such as schools of
fish, flocks of birds, swarms of locusts and herds of wildebeest, exhibit a variety of
behaviors including swarming about a food source, milling around a central location
or migrating over large distances in aligned groups. These collective behaviors are
often advantageous to groups, allowing them to increase their harvesting efficiency to
follow better migration routes, to improve their aerodynamic and to avoid predation.
In the proposed algorithm, searcher agents emulate a group of animals which inter-
act to each other based on simple biological laws that are modeled as evolutionary
operators. Numerical experiments are conducted to compare the proposed method
with the state-of-the-art methods on benchmark functions. The proposed algorithm
has been also applied to the engineering problem of multi circle detection, achieving
satisfactory results.

9.1 Introduction

A large number of real-world problems can be considered as multimodal function
optimization subjects. An objective functionmay have several global optima, i.e. sev-
eral points holding objective function values which are equal to the global optimum.
Moreover, it may exhibit some other local optima points whose objective function
values lay nearby a global optimum. Since the mathematical formulation of a real-
world problem often produces a multimodal optimization issue, finding all global or
even these local optima would provide to the decision makers multiple options to
choose from [1].

© Springer Nature Switzerland AG 2020
E. Cuevas et al., New Advancements in Swarm Algorithms: Operators
and Applications, Intelligent Systems Reference Library 160,
https://doi.org/10.1007/978-3-030-16339-6_9

241

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16339-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-16339-6_9

242 9 Multimodal Swarm Algorithm …

Several methods have recently been proposed for solving the multimodal opti-
mization problem. They can be divided into two main categories: deterministic and
stochastic (metaheuristic) methods. When facing complex multimodal optimization
problems, deterministicmethods, such as gradient descentmethod, the quasi-Newton
method and the Nelder-Mead’s simplex method, may get easily trapped into the local
optimum as a result of deficiently exploiting local information. They strongly depend
on a priori information about the objective function, yielding few reliable results.

Metaheuristic algorithms have been developed combined rules and randomness
mimicking several phenomena. These phenomena include evolutionary processes
(e.g., the evolutionary algorithm proposed by Fogel et al. [2], De Jong [3], and Koza
[4] and the genetic algorithms (GAs) proposed by Holland [5] and Goldberg [6]),
immunological systems (e.g., the artificial immune systems proposed by de Castro
et al. [7]), physical processes (e.g., simulated annealing proposed byKirkpatrick et al.
[8], electromagnetism-like proposed by İlker et al. [9] and the gravitational search
algorithm proposed by Rashedi et al. [10]) and the musical process of searching for
a perfect state of harmony (proposed by Geem et al. [11], Lee and Geem [12], Geem
[13] and Gao et al. [14]).

Traditional GA’s perform well for locating a single optimum but fail to provide
multiple solutions. Several methods have been introduced into the GA’s scheme to
achieve multimodal function optimization, such as sequential fitness sharing [15,
16], deterministic crowding [17], probabilistic crowding [18], clustering based nich-
ing [19], clearing procedure [20], species conserving genetic algorithm [21], and
elitist-population strategies [22]. However, algorithms based on the GA’s do not
guarantee convergence to global optima because of their poor exploitation capabil-
ity. GA’s exhibit other drawbacks such as the premature convergence which results
from the loss of diversity in the population and becomes a common problem when
the search continues for several generations. Such drawbacks [23] prevent the GA’s
from practical interest for several applications.

Using a different metaphor, other researchers have employed Artificial Immune
Systems (AIS) to solve the multimodal optimization problems. Some examples are
the clonal selection algorithm [24] and the artificial immunenetwork (AiNet) [25, 26].
Both approaches use some operators and structures which attempt to algorithmically
mimic the natural immune system’s behavior of human beings and animals.

Several studies have been inspired by animal behavior phenomena in order to
develop optimization techniques such as the Particle swarmoptimization (PSO) algo-
rithm which models the social behavior of bird flocking or fish schooling [27]. In
recent years, there have been several attempts to apply the PSO to multi-modal func-
tion optimization problems [28, 29]. However, the performance of such approaches
presents several flaws when it is compared to the other multi-modal metaheuristic
counterparts [26].

Recently, the concept of individual-organization [30, 31] has been widely used
to understand collective behavior of animals. The central principle of individual-
organization is that simple repeated interactions between individuals can produce
complex behavioral patterns at group level [30, 32, 33]. Such inspiration comes
from behavioral patterns seen in several animal groups, such as ant pheromone trail

9.1 Introduction 243

networks, aggregation of cockroaches and themigration of fish schools, which can be
accurately described in terms of individuals following simple sets of rules [34]. Some
examples of these rules [33, 35] include keeping current position (or location) for
best individuals, local attraction or repulsion, random movements and competition
for the space inside of a determined distance. On the other hand, new studies have also
shown the existence of collective memory in animal groups [36–38]. The presence
of such memory establishes that the previous history, of group structure, influences
the collective behavior exhibited in future stages. Therefore, according to these new
developments, it is possible to model complex collective behaviors by using simple
individual rules and configuring a general memory.

On the other hand, the problem of detecting circular features holds paramount
importance in several engineering applications. The circle detection in digital images
has been commonly solved through the Circular Hough Transform (CHT) [39].
Unfortunately, this approach requires a large storage space that augments the com-
putational complexity and yield a low processing speed. In order to overcome this
problem, several approaches which modify the original CHT have been proposed.
One well-known example is the Randomized Hough Transform (RHT) [40]. As an
alternative to Hough Transform-based techniques, the problem of shape recognition
has also been handled through optimization methods. In general, they have demon-
strated to deliver better results than those based on the HT considering accuracy,
speed and robustness [41]. Such approaches have produced several robust circle
detectors using different optimization algorithms such as Genetic algorithms (GA)
[41], Harmony Search (HSA) [42], Electromagnetism-Like (EMO) [43], Differen-
tial Evolution (DE) [44] and Bacterial Foraging Optimization (BFOA) [45]. Since
such evolutionary algorithms are global optimizers, they detect only the global opti-
mum (only one circle) of an objective function that is defined over a given search
space. However, extracting multiple circle primitives falls into the category of multi-
modal optimization,where each circle represents an optimumwhichmust be detected
within a feasible solution space. The quality for such optima is characterized by the
properties of their geometric primitives. Big and well drawn circles normally repre-
sent points in the search space with high fitness values (possible global maximum)
whereas small and dashed circles describe points with fitness values which account
for local maxima. Likewise, circles holding similar geometric properties, such as
radius, size, etc., tend to represent locations with similar fitness values. Therefore,
a multi-modal method must be applied in order to appropriately solve the problem
of multi-shape detection. In this paper, a new multimodal optimization algorithm
based on the collective animal behavior is proposed and also applied to multi-circle
detection.

This paper proposes a new optimization algorithm inspired by the collective ani-
mal behavior. In this algorithm, the searcher agents emulate a group of animals
that interact to each other based on simple behavioral rules which are modeled as
evolutionary operators. Such operations are applied to each agent considering that
the complete group has a memory which stores its own best positions seen so far
by applying a competition principle. Numerical experiments have been conducted
to compare the proposed method with the state-of-the-art methods on multi-modal

244 9 Multimodal Swarm Algorithm …

benchmark functions. Besides, the proposed algorithm is also applied to the engi-
neering problem of multi-circle detection, achieving satisfactory results.

This paper is organized as follows: Sect. 9.2 introduces the basic biological aspects
of the algorithm. In Sect. 9.3, the proposed algorithm and its characteristics are
described. A numerical study on different multi-modal benchmark function is pre-
sented in Sect. 9.4. Section 9.5 presents the application of the proposed algorithm
to multi-circle detection whereas Sect. 9.6 shows the obtained results. Finally, in
Sect. 9.7 the conclusions are discussed.

9.2 Biological Fundaments

The remarkable collective behavior of organisms such as swarming ants, schooling
fish and flocking birds has long captivated the attention of naturalists and scien-
tists. Despite a long history of scientific investigation, just recently we are beginning
to decipher the relationship between individuals and group-level properties [46].
Grouping individuals often have to make rapid decisions about where to move or
what behavior to perform, in uncertain and dangerous environments. However, each
individual typically has only relatively local sensing ability [47]. Groups are, there-
fore, often composed of individuals that differ with respect to their informational
status and individuals are usually not aware of the informational state of others [48],
such as whether they are knowledgeable about a pertinent resource, or of a threat.

Animal groups are based on a hierarchic structure [49] which differentiates indi-
viduals according to a fitness principle known as Dominance [50]. Such concept
represents the domain of some individuals within a group and occurs when compe-
tition for resources leads to confrontation. Several studies [51, 52] have found that
such animal behavior lead to stable groups with better cohesion properties among
individuals.

Recent studies have illustrated how repeated interactions among grouping animals
scale to collective behavior. They have also remarkably revealed, that collective
decision-making mechanisms across a wide range of animal group types, ranging
from insects to birds (and even among humans in certain circumstances) seem to
share similar functional characteristics [30, 34, 53]. Furthermore, at a certain level
of description, collective decision-making in organisms shares essential common
features such as a general memory. Although some differences may arise, there are
good reasons to increase communication between researchers working in collective
animal behavior and those involved in cognitive science [33].

Despite the variety of behaviors and motions of animal groups, it is possible
that many of the different collective behavioral patterns are generated by simple
rules followed by individual group members. Some authors have developed different
models, such as the self-propelled particle (SPP)model which attempts to capture the
collective behavior of animal groups in terms of interactions between groupmembers
following a diffusion process [54–57].

9.2 Biological Fundaments 245

On other hand, following a biological approach, Couzin et al. [33, 34] have pro-
posed amodel in which individual animals follow simple rules of thumb: (1) keep the
position of best individuals; (2) move from or to nearby neighbors (local attraction or
repulsion); (3) move randomly and (4) compete for the space inside of a determined
distance. Each individual thus admits three different movements: attraction, repul-
sion or random, while holds two kinds of states: preserve the position or compete for
a determined position. In the model, the movement experimented by each individual
is decided randomly (according to an internal motivation), meanwhile the states are
assumed according to a fixed criterion.

The dynamical spatial structure of an animal group can be explained in terms of
its history [54]. Despite this, the majority of the studies have failed in considering the
existence of memory in behavioral models. However, recent researches [36, 58] have
also shown the existence of collectivememory in animal groups. The presence of such
memory establishes that the previous history of the group structure, influences the
collective behavior exhibited in future stages. Such memory can contain the position
of special group members (the dominant individuals) or the averaged movements
produced by the group.

According to these new developments, it is possible to model complex collective
behaviors by using simple individual rules and setting a generalmemory. In thiswork,
the behavioral model of animal groups is employed for defining the evolutionary
operators through the proposed metaheuristic algorithm. A memory is incorporated
to store best animal positions (best solutions) considering a competition-dominance
mechanism.

9.3 Collective Animal Behavior Algorithm (CAB)

The CAB algorithm assumes the existence of a set of operations that resembles the
interaction rules that model the collective animal behavior. In the approach, each
solution within the search space represents an animal position. The “fitness value”
refers to the animal dominance with respect to the group. The complete process
mimics the collective animal behavior.

The approach in this paper implements amemory for storing best solutions (animal
positions) mimicking the aforementioned biologic process. Such memory is divided
into two different elements, one for maintaining the best found positions in each
generation

(
Mg

)
and the other for storing best history positions during the complete

evolutionary process (Mh).

9.3.1 Description of the CAB Algorithm

Likewise other metaheuristic approaches, the CAB algorithm is also an iterative
process. It starts by initializing the population randomly, i.e. generating random

246 9 Multimodal Swarm Algorithm …

solutions or animal positions. The following four operations are thus applied until
the termination criterion is met, i.e. the iteration number NI is reached as follows:

1. Keep the position of the best individuals.
2. Move from or nearby neighbors (local attraction and repulsion).
3. Move randomly.
4. Compete for the space inside of a determined distance (updating the memory).

9.3.1.1 Initializing the Population

The algorithm begins by initializing a set A of Np animal positions(
A = {a1, a2, . . . , aNp }

)
. Each animal position ai is a D-dimensional vector con-

taining the parameter values to be optimized, which are randomly and uniformly
distributed between the pre-specified lower initial parameter bound alowj and the

upper initial parameter bound ahighj .

a j,i = alowj + rand(0, 1) · (ahighj − alowj);
j = 1, 2, . . . , D; i = 1, 2, . . . , Np. (9.1)

with j and i being the parameter and individual indexes respectively. Hence, a j,i is
the jth parameter of the ith individual.

All the initial positions A are sorted according to the fitness function (dominance)
to form a new individual set X = {x1, x2, . . . , xNp }, so that we can choose the best
B positions and store them in the memory Mg and Mh . The fact that both memories
share the same information is only allowed at this initial stage.

9.3.1.2 Keep the Position of the Best Individuals

Analogously to the biologicalmetaphor, this behavioral rule, typical in animal groups,
is implemented as an evolutionary operation in our approach. In this operation, the
first B elements of the new animal position set A ({a1, a2, . . . , aB}) are generated.
Such positions are computed by the values contained in the historic memoryMh con-
sidering a slight random perturbation around them. This operation can be modelled
as follows:

al = ml
h + v (9.2)

where l ∈ {1, 2, . . . , B} while ml
h represents the l-element of the historic memory

Mh and v is a random vector holding an appropriate small length.

9.3 Collective Animal Behavior Algorithm (CAB) 247

9.3.1.3 Move from or to Nearby Neighbours

From the biological inspiration, where animals experiment a random local attraction
or repulsion according to an internalmotivation,we implement the evolutionary oper-
ators that mimic them. For this operation, a uniform random number rm is generated
within the range [0,1]. If rm is less than a threshold H, a determined individual posi-
tion is moved (attracted or repelled) considering the nearest best historical value of
the group (the nearest position contained inMh) otherwise it is considered the nearest
best value in the group of the current generation (the nearest position contained in
Mg). Therefore such operation can be modeled as follows:

ai =
{

xi ± r · (mnearest
h − xi) with probabilityH

xi ± r · (mnearest
g − xi) with probability(1 − H)

(9.3)

where i ∈ {
B + 1, B + 2, . . . , Np

}
, mnearest

h and mnearest
g represent the nearest ele-

ments of Mh and Mg to xi , while r is a random number between [−1,1]. Therefore,
if r > 0, the individual position xi is attracted to the position mnearest

h or mnearest
g ,

otherwise such movement is considered as a repulsion.

9.3.1.4 Move Randomly

Following the biological model, under some probability P an animal randomly
changes its position. Such behavioral rule is implemented considering the next
expression:

ai =
{

r with probability P
xi with probability (1 − P)

(9.4)

being i ∈ {
B + 1, B + 2, . . . , Np

}
and r a random vector defined within the search

space. This operator is similar to re-initialize the particle in a random position as it
is done by Eq. (9.1).

9.3.1.5 Compete for the Space Inside of a Determined Distance
(Updating the Memory)

Once the operations to preserve the position of the best individuals, to move from
or to nearby neighbors and to move randomly, have all been applied to the all Np

animal positions, generating Np new positions, it is necessary to update the memory
Mh .

248 9 Multimodal Swarm Algorithm …

Fig. 9.1 Dominance
concept, presented when two
animals confront each other
inside of a ρ distance

ρ

In order to update thememoryMh , the concept of dominance is used. Animals that
interact in a group keep a minimum distance among them. Such distance ρ depends
on how aggressive the animal behaves [50, 58]. Hence, when two animals confront
each other inside of such distance, the most dominant individual prevails as the other
withdraws. Figure 9.1 shows this process.

In the proposed algorithm, the historic memory Mh is updated considering the
following procedure:

1. The elements of Mh and Mg are merged into MU (MU = Mh ∪ Mg).
2. Each element mi

U of the memory MU , it is compared pair-wise with the remain-
der memory elements

({
m1

U , m2
U , . . . , m2B−1

U

})
. If the distance between both

elements is less than ρ, the element holding a better performance in the fitness
function will prevail meanwhile the other will be removed.

3. From the resulting elements of MU (as they are obtained in step 2), the B best
value is selected to integrate the new Mh .

Unsuitable values ofρ result in a lower convergence rate, longer computation time,
larger function evaluation number, convergence to a local maximum or unreliability
of solutions. The ρ value is computed considering the following equation:

ρ =
∏D

j=1 (ahighj − alowj)

10 · D (9.5)

where alowj and ahighj represent the pre-specified lower bound and the upper bound
of the j-parameter respectively, within an D-dimensional space.

9.3.1.6 Computational Procedure

The computational procedure for the proposed algorithm can be summarized as
follows:

9.3 Collective Animal Behavior Algorithm (CAB) 249

Step 1: Set the parameters Np , B, H, P and NI

Step 2: Generate randomly the position set A = {a1, a2, . . . , aNp } using Eq. (9.1)

Step 3: Sort A, according to the objective function (dominance), building
X = {x1, x2, . . . , xNp }

Step 4: Choose the first B positions of X and store them into the memory Mg

Step 5: Update Mh according to Sect. 3.1.5 (for the first iteration Mh = Mg)

Step 6: Generate the first B positions of the new solution set A = {a1, a2, . . . , aB}. Such
positions correspond to elements of Mh making a slight random perturbation around
them.
al = ml

h + v; being v a random vector holding an appropriate small length.

Step 7: Generate the rest of the A elements using the attraction, repulsion and random
movements

for i =B + 1: pN
if (1r < 1 P) then
attraction and repulsion movement

{ if (2r < H) then
()nearest

i i h ir= ± ⋅ −a x m x
else if
 ()nearest

i i g ir= ± ⋅ −a x m x
}

else if
random movement

{
i =a r

}
end for

where 1 2, , rand(0,1)r r r ∈ .

–

Step 8: If NI is completed, the process is thus completed; otherwise go back to step 3

9.3.1.7 Optima Determination

Just after the optimization process has finished, an analysis of the final Mh memory
is executed in order to find the global and significant local minima. For it, a threshold
value Th is defined to decide which elements will be considered as a significant local
minimum. Such threshold is thus computed as:

Th =
max
f i tness

(Mh)

6
(9.6)

250 9 Multimodal Swarm Algorithm …

where max
f i tness

(Mh) represents the best fitness value among Mh elements. Therefore,

memory elements whose fitness values are greater than Th will be considered as
global and local optima as other elements are discarded.

9.3.1.8 Capacities of CAB and Differences with PSO

Evolutionary algorithms (EA) have been widely employed for solving complex opti-
mization problems. These methods are found to be more powerful than conventional
methods based on formal logics ormathematical programming [59]. Exploitation and
exploration are two main features of the EA [60]. The exploitation phase searches
around the current best solutions and selects the best candidates or solutions. The
exploration phase ensures that the algorithm seeks the search space more efficiently
in order to analyze potential unexplored areas.

The EA do not have limitations in using different sources of inspiration (e.g.,
music-inspired [11] or physic-inspired charged system search [9]). However, nature
is a principal inspiration for proposing newmetaheuristic approaches and the nature-
inspired algorithms have been widely used in developing systems and solving prob-
lems [61]. Biologically-inspired algorithms are one of the main categories of the
nature-inspired metaheuristic algorithms. The efficiency of the bio-inspired algo-
rithms is due to their significant ability to imitate the best features in nature. More
specifically, these algorithms are based on the selection of the most suitable elements
in biological systems which have evolved by natural selection.

Particle swarm optimization (PSO) is undoubtedly one of the most employed
EA methods that use biologically-inspired concepts in the optimization procedure.
Unfortunately, like others stochastic algorithms, PSO also suffers from the premature
convergence [62], particularly in multi-modal problems. Premature convergence, in
PSO, is produced by the strong influence of the best particle in the evolution process.
Such particle is used by the PSOmovement equations as a main individual in order to
attract other particles. Under such conditions, the exploitation phase is privileged by
allowing the evaluation of new search position around the best individual. However,
the exploration process is seriously damaged, avoiding searching in unexplored areas.

As an alternative to PSO, the proposed scheme modifies some evolution opera-
tors for allowing not only attracting but also repelling movements among particles.
Likewise, instead of considering the best position as reference, our algorithm uses
a set of neighboring elements that are contained in an incorporated memory. Such
improvements, allow increasing the algorithm’s capacity to explore and to exploit
the set of solutions which are operated during the evolving process.

In the proposed approach, in order to improve the balance between exploitation
and exploration, we have introduced three new concepts. The first one is the “at-
tracting and repelling movement”, which outlines that one particle cannot be only
attracted, but also repelled. The application of this concept to the evolution operators
(Eq. 9.3) increases the capacity of the proposed algorithm to satisfactorily explore the
search space. Since the process of attraction or repulsion of each particle is randomly

9.3 Collective Animal Behavior Algorithm (CAB) 251

determined, the possibility of prematurely convergence is very low, even for cases
that hold an exaggerated number of local minima (excessive number of multimodal
functions).

The second concept is the use of the main individual. In the approach, the main
individual that is considered as pivot in the equations (in order to generate attracting
and repulsive movements), is not the best (as in PSO), but one element (mnearest

h
or mnearest

g) of a set which is contained in memories that store the best individual
seen so-far. Such pivot is the nearest element in memory with regard to the individual
whose position is necessary to evolve.Under such conditions, the points considered to
prompt the movement of a new individual are multiple. Such fact allows to maintain
a balance between exploring new positions and exploiting the best positions seen
so-far.

Finally, the third concept is the use of an incorporated memory which stores the
best individuals seen so-far. As it has been discussed in Sect. 3.1.5, each candidate
individual to be stored in the memory must compete with elements already contained
in thememory in order to demonstrate that such new point is relevant. For the compe-
tition, the distance between each individual and the elements in thememory is used to
decide pair-wise which individuals are actually considered. Then, the individual with
better fitness value prevails whereas its pair is discarded. The incorporation of such
concept allows simultaneously registering and refining the best-individual set seen-
so-far. This fact guarantees a high precision for final solutions of the multi-modal
landscape through an extensive exploitation of the solution set.

9.3.1.9 Numerical Example

In order to demonstrate the algorithm’s step-by-step operation, a numerical example
has been set by applying the proposed method to optimize a simple function which
is defined as follows:

f (x1, x2) = e−((x1−4)2−(x2−4)2) + e−((x1+4)2−(x2−4)2) + 2 · e−((x1)
2+(x2)2)

+ 2 · e−((x1)
2−(x2+4)2) (9.7)

Considering the interval of −5 ≤ x1, x2 ≤ 5, the function possesses
two global maxima of value 2 at (x1, x2) = (0, 0) and (0,−4). Likewise,
it holds two local minima of value 1 at (−4, 4) and (4, 4). Figure 9.2a
shows the 3D plot of this function. The parameters for the CAB algorithm
are set as: Np = 10, B = 4, H = 0.8, P = 0.1, ρ = 3 and NI = 30.

Like all evolutionary approaches, CAB is a population-based optimizer that
attacks the starting point problem by sampling the objective function at multiple, ran-
domly chosen, initial points. Therefore, after setting parameter bounds that define the
problem domain, 10 (Np) individuals (i1, i2, . . . , i10) are generated using Eq. (9.1).
Following an evaluation of each individual through the objective function (Eq. 9.7),
all are sorted decreasingly in order to build vector X = (x1, x2, . . . , x10). Figure 9.2b

252 9 Multimodal Swarm Algorithm …

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9.2 CAB numerical example: a 3D plot of the function used as example. b Initial individual
distribution. c Initial configuration of memories Mg and Mh . d The computation of the first four
individuals (a1, a2, a3, a4). e It shows the procedure employed by step 2 in order to calculate the
new individual position a8. f Positions of all new individuals (a1, a2, . . . , a10). g Application of
the dominance concept over elements of Mg and Mh . h Final memory configurations of Mg and
Mh after the first iteration. i Final memory configuration of Mh after 30 iterations

depicts the initial individual distribution in the search space. Then, both memories
Mg (m1

g, . . . , m4
g) and Mh (m1

h, . . . , m4
h) are filled with the first four (B) elements

present in X. Such memory elements are represented by solid points in Fig. 9.2c.
The new 10 individuals (a1, a2, . . . , a10) are evolved at each iteration follow-

ing three different steps: (1) Keep the position of best individuals. (2) Move from or
nearby neighbors and (3)Move randomly. The first new four elements (a1, a2, a3, a4)
are generated considering the first step (Keeping the position of best individuals).
Following such step, new individual positions are calculated as perturbed versions of
all the elements which are contained in the Mh memory (that represent the best indi-
viduals known so far). Such perturbation is done by using al = ml

h+v (l ∈ 1, . . . , 4).
Figure 9.2d shows a comparative view between the memory element positions and
the perturbed values of (a1, a2, a3, a4).

9.3 Collective Animal Behavior Algorithm (CAB) 253

The remaining 6 new positions (a5, . . . , a10) are individually computed according
to step 2 and 3. For such operation, a uniform random number r1 is generated within
the range [0, 1]. If r1 is less than 1 − P, the new position a j (j ∈ 5, . . . , 10) is
generated through step 2; otherwise, a j is obtained from a random re-initialization
(step 3) between search bounds.

In order to calculate a new position a j at step 2, a decision must be made on
whether it should be generated by using the elements ofMh orMg . For such decision,
a uniform random number r2 is generated within the range [0, 1]. If r2 is less than
H, the new position a j is generated by using x j ± r · (mnearest

h − x j); otherwise,
a j is obtained by considering x j ± r · (mnearest

g − x j). Where mnearest
h and mnearest

g
represent the closest elements to x j in memory Mh and Mg respectively. In the first
iteration, since there is not available information from previous steps, both memories
Mh and Mg share the same information which is only allowed at this initial stage.
Figure 9.2e shows graphically the whole procedure employed by step 2 in order to
calculate the new individual position a8 whereas Fig. 9.2 f presents the positions of
all new individuals (a1, a2, . . . , a10).

Finally, after all new positions (a1, a2, . . . , a10) have been calculated, memo-
ries Mh and Mg must be updated. In order to update Mh , new calculated positions
(a1, a2, . . . , a10) are arranged according to their fitness values by building vector
X = (x1, x2, . . . , x10). Then, the elements of Mh are replaced by the first four ele-
ments in X (the best individuals of its generation). In order to calculate the new
elements of Mh , current elements of Mh (the present values) and Mg (the updated
values) are merged into MU . Then, by using the dominance concept (explained in
Sect. 3.1.5) over MU , the best four values are selected to replace the elements in Mg .
Figure 9.2g and 2 h show the updating procedure for both memories. Applying the
dominance (see Fig. 9.2g), since the distances a = dist (m3

h, m4
g), b = dist (m2

h, m3
g)

and c = dist (m1
h, m1

g) are less than ρ = 3, elements with better fitness evaluation
will build the new memory Mh . Figure 9.2h depicts final memory configurations.
The circles and solid circles points represent the elements ofMg andMh respectively
whereas the bold squares perform as elements shared by both memories. Therefore,
if the complete procedure is repeated over 30 iterations, the memory Mh will contain
the 4 global and local maxima as elements. Figure 9.2i depicts the final configuration
after 30 iterations.

9.4 Results on Multi-modal Benchmark Functions

In this section, the performance of the proposed algorithm is tested. Section 9.4.1
describes the experiment methodology. Sections 9.4.2, and 9.4.3 report on a com-
parison between the CAB experimental results and other multimodal metaheuristic
algorithms for different kinds of optimization problems.

254 9 Multimodal Swarm Algorithm …

Table 9.1 The test suite of multimodal functions for Experiment 4.2
Function Search space Sketch

6
1 sin (5)f xπ=

[0,1]x ∈

Deb’s function
5 optima

22((0.1)/0.9)
2 () 2 sin(5)xf x xπ− −= ⋅ [0,1]x ∈

Deb’s decreasing function
5 optima

3 6

1()
1 1

f z
z

=
+ +

1,z C z x ix∈ = +

1 2, [2, 2]x x ∈ −
Roots function
6 optima

4 1 2 1 1 2 2(,) sin(4) sin(4) 1f x x x x x xπ π π= − + + 1 2, [2, 2]x x ∈ −

Two dimensional multi-modal function
100 optima

9.4.1 Experiment Methodology

In this section, we will examine the search performance of the proposed CAB by
using a test suite of 8 benchmark functions with different complexities. They are
listed in Tables 9.1 and 9.2. The suite mainly contains some representative, com-
plicated and multimodal functions with several local optima. These functions are
normally regarded as difficult to be optimized as they are particularly challenging to
the applicability and efficiency of multimodal metaheuristic algorithms. The perfor-
mance measurements considered at each experiment are the following:

– The consistency of locating all known optima; and
– The averaged number of objective function evaluations that are required to find
such optima (or the running time under the same condition).

The experiments compare the performance of CAB against the Deterministic
Crowding [17], the Probabilistic Crowding [18], the Sequential Fitness Sharing [15],
the Clearing Procedure [20], the Clustering Based Niching (CBN) [19], the Species
ConservingGenetic Algorithm (SCGA) [21], the Elitist-population strategy (AEGA)

9.4 Results on Multi-modal Benchmark Functions 255

[22], the Clonal Selection algorithm [24] and the artificial immune network (AiNet)
[25].

Since the approach solves real-valued multimodal functions, we have used, in the
GA-approaches, consistent real coding variable representation, uniform crossover
and mutation operators for each algorithm seeking a fair comparison. The crossover
probability Pc = 0.8 and the mutation probability Pm = 0.1 have been used. We
use the standard tournament selection operator with a tournament size = 2 in our
implementation of Sequential Fitness Sharing, Clearing Procedure, CBN, Clonal
Selection algorithm, and SCGA. On the other hand, the parameter values for the
aiNet algorithm have been defined as suggested in [25], with the mutation strength
β = 100, the suppression threshold σs(ai Net) = 0.2 and the update rate d = 40%.

In the case of the CAB algorithm, the parameters are set to Np = 200, B = 100,
P = 0.8 and H = 0.6. Once they have been all experimentally determined, they are
kept for all the test functions through all experiments.

To avoid relating the optimization results to the choice of a particular initial popu-
lation and to conduct fair comparisons, we perform each test 50 times, starting from
various randomly selected points in the search domain as it is commonly given in the

Table 9.2 The test suite of multimodal functions used in the Experiment 4.3

Function Search
space

Sketch

2 2
5 1 2 1 2 1 2(,) (20 10(cos(2) cos(2)f x x x x x xπ π= − + + − +

1 2, [10,10]x x ∈ −

Rastringin’s function
100 optima

2 5

6 1 2
11

(,) cos((1))i
ji

f x x j x j
==

= − + +∑∏ 1 2, [10,10]x x ∈ −

Shubert function
18 optima

22
2

7 1 2
1 1

1(,) cos 1
4000 2

i
i

i i

xf x x x
= =

⎛ ⎞= − +⎜ ⎟⎝ ⎠
∑ ∏

Griewank function
100 optima

1 2
8 1 2 1

cos(0.5) cos(0.5)(,) cos(10)cos(10
4000

x xf x x x x+= +
1 2, [0,120]x x ∈

Modified Griewank function
100 optima

1 2, [100,10]x x ∈ −

256 9 Multimodal Swarm Algorithm …

literature. An optimum o j is considered as found if ∃ xi ∈ Pop(k = T)|d(xi , o j) <

0.005, where Pop(k = T) is the complete population at the end of the run T and xi
is an individual in Pop(k = T).

All algorithms have been tested inMatLAB©over the sameDell Optiplex GX260
computer with a Pentium-4 2.66G-HZ processor, running Windows XP operating
system over 1 Gb of memory. Next sections present experimental results for multi-
modal optimization problemswhich have been divided into two groupswith different
purposes. The first one consists of functions with smooth landscapes andwell defined
optima (local and global values), while the second gathers functions holding rough
landscapes and complex location optima.

9.4.2 Comparing CAB Performance for Smooth Landscapes
Functions

This section presents a performance comparison for different algorithms solving
multimodal problems f1 – f4 in Table 9.1. The aim is to determine whether CAB
is more efficient and effective than other existing algorithms for finding all multiple
optima of f1 – f4. The stopping criterion analyzes if the number identified optima
cannot be further increased over 10 successive generations after the first 100 gener-
ations, then the execution will be stopped. Four measurements have been employed
to evaluate the performance:

• The average of optima found within the final population (NO);
• The average distance between multiple optima detected by the algorithm and their
closest individuals in the final population (DO);

• The average of function evaluations (FE); and
• The average of execution time in seconds (ET).

Table 9.3 provides a summarized performance comparison among several algo-
rithms. Best results have been bold-faced. From the NO measure, CAB always finds
better or equally optimal solutions for the multimodal problems f1 – f4. It is evident
that each algorithm can find all optima of f1. For function f2, only AEGA, Clonal
Selection algorithm, aiNet, and CAB can eventually find all optima each time. For
function f3, Clearing Procedure, SCGA, AEGA and CAB can get all optima at each
run. For function f4, Deterministic Crowding leads to premature convergence and
all other algorithms cannot get any better results but CAB yet can find all multiple
optima 48 times in 50 runs and its average successful rate for each run is higher than
99%. By analyzing the DOmeasure in Table 9.3, CAB has obtained the best score for
all the multimodal problems except for f3. In the case of f3, the solution precision
of CAB is only worse than that of Clearing Procedure. On the other hand, CAB has
smaller standard deviations in the NO and DO measures than all other algorithms
and hence its solution is more stable.

From the FE measure in Table 9.3, it is clear that CAB needs fewer function
evaluations than other algorithms considering the same termination criterion. Recall

9.4 Results on Multi-modal Benchmark Functions 257

Ta
bl

e
9.

3
Pe
rf
or
m
an
ce

co
m
pa
ri
so
n
am

on
g
th
e
m
ul
tim

od
al
op
tim

iz
at
io
n
al
go
ri
th
m
s
fo
r
th
e
te
st
fu
nc
tio

ns
f 1

−
f 4

Fu
nc
tio

n
A
lg
or
ith

m
N
O

D
O

FE
E
T

f 1
D
et
er
m
in
is
tic

cr
ow

di
ng

5
(0

)
1.
52

×
10

−4
(1

.3
8

×
10

−4
)

71
53

(3
58
)

0.
09
1
(0
.0
13
)

Pr
ob
ab
ili
st
ic
cr
ow

di
ng

5
(0

)
3.
63

×
10

−4
(6

.4
5

×
10

−5
)

10
,3
04

(4
87
)

0.
16
3
(0
.0
11
)

Se
qu
en
tia
lfi

tn
es
s
sh
ar
in
g

5
(0

)
4.
76

×
10

−4
(6

.8
2

×
10

−5
)

99
27

(6
91
)

0.
16
6
(0
.0
28
)

C
le
ar
in
g
pr
oc
ed
ur
e

5
(0

)
1.
27

×
10

−4
(2

.1
3

×
10

−5
)

58
60

(6
23
)

0.
12
8
(0
.0
21
)

C
B
N

5
(0

)
2.
94

×
10

−4
(4

.2
1

×
10

−5
)

10
,7
81

(5
27
)

0.
23
7
(0
.0
19
)

SC
G
A

5
(0

)
1.
16

×
10

−4
(3

.1
1

×
10

−5
)

67
92

(3
52
)

0.
13
1
(0
.0
09
)

A
E
G
A

5
(0

)
4.
6

×
10

−5
(1

.3
5

×
10

−5
)

25
91

(2
78
)

0.
03
9
(0
.0
07
)

C
lo
na
ls
el
ec
tio

n
al
go

ri
th
m

5
(0

)
1.
99

×
10

−4
(8

.2
5

×
10

−5
)

15
,8
03

(3
81
)

0.
35
9
(0
.0
15
)

A
iN
et

5
(0

)
1.
28

×
10

−4
(3

.8
8

×
10

−5
)

12
,3
69

(4
29
)

0.
42
1
(0
.0
21
)

C
A
B

5
(0

)
1.

69
×

10
−5

(5
.2

×
10

−6
)

17
76

(1
25

)
0.

02
0

(0
.0

09
)

f 2
D
et
er
m
in
is
tic

cr
ow

di
ng

3.
53

(0
.7
3)

3.
61

×
10

−3
(6

.8
8

×
10

−4
)

60
26

(8
32
)

0.
27
1
(0
.0
6)

Pr
ob
ab
ili
st
ic
cr
ow

di
ng

4.
73

(0
.6
4)

2.
82

×
10

−3
(8

.5
2

×
10

−4
)

10
,9
40

(9
51
7)

0.
39
2
(0
.0
7)

Se
qu
en
tia
lfi

tn
es
s
sh
ar
in
g

4.
77

(0
.5
7)

2.
33

×
10

−3
(4

.3
6

×
10

−4
)

12
,7
96

(1
43
0)

0.
47
3
(0
.1
1)

C
le
ar
in
g
pr
oc
ed
ur
e

4.
73

(0
.5
8)

4.
21

×
10

−3
(1

.2
4

×
10

−3
)

84
65

(7
73
)

0.
32
6
(0
.0
5)

C
B
N

4.
70

(0
.5
3)

2.
19

×
10

−3
(4

.5
3

×
10

−4
)

14
,1
20

(2
18
7)

0.
58
1
(0
.1
4)

SC
G
A

4.
83

(0
.3
8)

3.
15

×
10

−3
(4

.7
1

×
10

−4
)

10
,5
48

(1
38
2)

0.
37
4
(0
.0
9)

A
E
G
A

5
(0

)
1.
38

×
10

−4
(2

.3
2

×
10

−5
)

36
05

(4
26
)

0.
10
2
(0
.0
4)

C
lo
na
ls
el
ec
tio

n
al
go

ri
th
m

5
(0

)
1.
37

×
10

−3
(6

.8
7

×
10

−4
)

21
,9
22

(7
46
)

0.
72
8
(0
.0
6)

A
iN
et

5
(0

)
1.
22

×
10

−3
(5

.1
2

×
10

−4
)

18
,2
51

(8
29
)

0.
66
4
(0
.0
8)

C
A
B

5
(0

)
4.

5
×

10
−5

(8
.5

6
×

10
−6

)
20

65
(9

2)
0.

08
(0

.0
07

) (c
on
tin

ue
d)

258 9 Multimodal Swarm Algorithm …

Ta
bl

e
9.

3
(c
on
tin

ue
d)

Fu
nc
tio

n
A
lg
or
ith

m
N
O

D
O

FE
E
T

f 3
D
et
er
m
in
is
tic

cr
ow

di
ng

4.
23

(1
.1
7)

7.
79

×
10

−4
(4

.7
6

×
10

−4
)

11
,0
09

(1
13
7)

1.
07

(0
.1
3)

Pr
ob
ab
ili
st
ic
cr
ow

di
ng

4.
97

(0
.6
4)

2.
35

×
10

−3
(7

.1
4

×
10

−4
)

16
,3
91

(1
20
4)

1.
72

(0
.1
2)

Se
qu
en
tia
lfi

tn
es
s
sh
ar
in
g

4.
87

(0
.5
7)

2.
56

×
10

−3
(2

.5
8

×
10

−3
)

14
,4
24

(2
04
5)

1.
84

(0
.2
6)

C
le
ar
in
g
pr
oc
ed
ur
e

6
(0

)
7.

43
×

10
−5

(4
.0

7
×

10
−5

)
12
,6
84

(1
72
9)

1.
59

(0
.1
9)

C
B
N

4.
73

(1
.1
4)

1.
85

×
10

−3
(5

.4
2

×
10

−4
)

18
,7
55

(2
40
4)

2.
03

(0
.3
1)

SC
G
A

6
(0

)
3.
27

×
10

−4
(7

.4
6

×
10

−5
)

13
,8
14

(1
38
2)

1.
75

(0
.2
1)

A
E
G
A

6
(0

)
1.
21

×
10

−4
(8

.6
3

×
10

−5
)

62
18

(9
35
)

0.
53

(0
.0
7)

C
lo
na
ls
el
ec
tio

n
al
go

ri
th
m

5.
50

(0
.5
1)

4.
95

×
10

−3
(1

.3
9

×
10

−3
)

25
,9
53

(2
91
8)

2.
55

(0
.3
3)

A
iN
et

4.
8
(0
.3
3)

3.
89

×
10

−3
(4

.1
1

×
10

−4
)

20
,3
35

(1
02
2)

2.
15

(0
.1
0)

C
A
B

6
(0

)
9.
87

×
10

−5
(1

.6
9

×
10

−5
)

43
59

(7
5)

0.
11

(0
.0

23
)

f 4
D
et
er
m
in
is
tic

cr
ow

di
ng

76
.3

(1
1.
4)

4.
52

×
10

−3
(4

.1
7

×
10

−3
)

1,
86
1,
70
7
(3
29
,2
54
)

21
.6
3
(2
.0
1)

Pr
ob
ab
ili
st
ic
cr
ow

di
ng

92
.8

(3
.4
6)

3.
46

×
10

−3
(9

.7
5

×
10

−4
)

2,
63
8,
58
1
(5
97
,6
58
)

31
.2
4
(5
.3
2)

Se
qu
en
tia
lfi

tn
es
s
sh
ar
in
g

89
.9

(5
.1
9)

2.
75

×
10

−3
(6

.8
9

×
10

−4
)

2,
49
8,
25
7
(3
74
,8
04
)

28
.4
7
(3
.5
1)

C
le
ar
in
g
pr
oc
ed
ur
e

89
.5

(5
.6
1)

3.
83

×
10

−3
(9

.2
2

×
10

−4
)

2,
25
7,
96
4
(7
42
,5
69
)

25
.3
1
(6
.2
4)

C
B
N

90
.8

(6
.5
0)

4.
26

×
10

−3
(1

.1
4

×
10

−3
)

2,
97
8,
38
5
(8
72
,0
50
)

35
.2
7
(8
.4
1)

SC
G
A

91
.4

(3
.0
4)

3.
73

×
10

−3
(2

.2
9

×
10

−3
)

2,
84
5,
78
9
(4
32
,1
17
)

32
.1
5
(4
.8
5)

A
E
G
A

95
.8

(1
.6
4)

1.
44

×
10

−4
(2

.8
2

×
10

−5
)

1,
20
2,
31
8
(7
84
,1
14
)

12
.1
7
(2
.2
9)

C
lo
na
ls
el
ec
tio

n
al
go

ri
th
m

92
.1

(4
.6
3)

4.
08

×
10

−3
(8

.2
5

×
10

−3
)

3,
75
2,
13
6
(1
91
,8
49
)

45
.9
5
(1
.5
6)

A
iN
et

93
.2

(7
.1
2)

3.
74

×
10

−3
(5

.4
1

×
10

−4
)

2,
74
5,
96
7
(3
28
,1
76
)

38
.1
8
(3
.7
7)

C
A
B

10
0

(2
)

2.
31

×
10

−5
(5

.8
7

×
10

−6
)

69
7,

57
8

(5
7,

08
9)

5.
78

(1
.2

6)

T
he

st
an
da
rd

un
it
in

th
e
co
lu
m
n
E
T
is
se
co
nd
s.
Fo

r
al
l
th
e
pa
ra
m
et
er
s,
nu
m
be
rs

in
pa
re
nt
he
se
s
ar
e
th
e
st
an
da
rd

de
vi
at
io
ns
.B

ol
d-
ca
se
d
le
tte
rs

re
pr
es
en
ts
be
st

ob
ta
in
ed

re
su
lts

9.4 Results on Multi-modal Benchmark Functions 259

that all algorithms use the same conventional crossover and mutation operators. It
can be easily deduced from results that the CAB algorithm is able to produce better
search positions (better compromise between exploration and exploitation), in amore
efficient and effective way than other multimodal search strategies.

To validate that CAB improvement over other algorithms as a result of CAB pro-
ducing better search positions over iterations, Fig. 9.3 shows the comparison of CAB
and other multimodal algorithms for f4. The initial populations for all algorithms
have 200 individuals. In the final population of CAB, the 100 individuals belonging
to the Mh memory correspond to the 100 multiple optima, while, on the contrary, the
final population of the other nine algorithms fail consistently in finding all optima,
despite they have superimposed several times over some previously found optima.

When comparing the execution time (ET) in Table 9.3, CABuses significantly less
time to finish than other algorithms. The situation can be registered by the reduction
of the redundancy in the Mh memory due to competition (dominance) criterion.
All these comparisons show that CAB generally outperforms all other multimodal
algorithms regarding efficacy and efficiency.

9.4.3 Comparing CAB Performance in Rough Landscapes
Functions

This section presents the performance comparison among different algorithms solv-
ing multimodal optimization problems which are listed in Table 9.2. Such problems
hold lots of local optima and very rugged landscapes. The goal of multimodal opti-
mizers is to find as many as possible global optima and possibly good local optima.
Rastrigin’s function f5 and Griewank’s function f7 have 1 and 18 global optima
respectively, becoming practical as to test to whether a multimodal algorithm can
find a global optimum and at least 80 higher fitness local optima to validate the
algorithms’ performance.

Our main objective in these experiments is to determine whether CAB is more
efficient and effective than other existing algorithms for finding the multiple high
fitness optima of functions f5 − f8. In the experiments, the initial population size
for all algorithms has been set to 1000. For Sequential Fitness Sharing, Clearing
Procedure, CBN, Clonal Selection, SCGA, and AEGA, we have set the distance
threshold σs to 5. The algorithms’ stopping criterion checks whenever the number
of optima found cannot be further increased in 50 successive generations after the
first 500 generations. If such condition prevails then the algorithm is halted. We still
evaluate the performance of all algorithms using the aforementioned four measures
NO, DO, FE, and ET.

Table 9.4 provides a summary of the performance comparison among different
algorithms. From the NO measure, we observe that CAB could always find more
optimal solutions for the multimodal problems f5 − f8. For Rastrigin’s function
f5, only CAB can find all multiple high fitness optima 49 times out of 50 runs

260 9 Multimodal Swarm Algorithm …

(a) Deterministic crowding (b) Probabilistic crowding

(c) Sequential fitness sharing (d) Clearing procedure

(e) CBN (f) SCGA

(g) AEGA (h) Clonal selction algorithm

Fig. 9.3 Typical results of the maximization of f4. a–j Local and global optima located by all ten
algorithms in the performance comparison

9.4 Results on Multi-modal Benchmark Functions 261

(i) AiNet (j) CAB

Fig. 9.3 (continued)

and its average successful rate for each run is higher than 97%. On the contrary,
other algorithms cannot find all multiple higher fitness optima for any run. For f6, 5
algorithms (Clearing Procedure, SCGA, AEGA, clonal selection algorithm, AiNet
and CAB) can get all multiple higher fitness maxima for each run respectively. For
Griewank’s function (f7), only CAB can get all multiple higher fitness optima for
each run. In case of the modified Griewank’s function (f8), it has numerous optima
whose value is always the same. However, CAB still can find all global optima with
a effectiveness rate of 95%.

From the FE and ETmeasures in Table 9.4, we can clearly observe that CAB uses
significantly fewer function evaluations and a shorter running time than all other
algorithms under the same termination criterion. Moreover, Deterministic Crowding
leads to premature convergence as CAB is at least 2.5, 3.8, 4, 3.1, 4.1, 3.7, 1.4, 7.9
and 4.9 times faster than all others respectively according to Table 9.4 for functions
f5 − f8.

9.5 Application of CAB in Multi-circle Detection

9.5.1 Individual Representation

In order to detect circle shapes, candidate images must be preprocessed first by the
well-known Canny algorithm which yields a single-pixel edge-only image. Then,
the (xi , yi) coordinates for each edge pixel pi are stored inside the edge vector P ={
p1, p2, . . . , pNp

}
, with Np being the total number of edge pixels. Each circleC uses

three edge points as individuals in the optimization algorithm. In order to construct
such individuals, three indexes pi , p j and pk , are selected from vector P, considering
the circle’s contour that connects them. Therefore, the circle C = {pi , p j , pk} that
crosses over such points may be considered as a potential solution for the detection

262 9 Multimodal Swarm Algorithm …

Ta
bl

e
9.

4
Pe
rf
or
m
an
ce

co
m
pa
ri
so
n
am

on
g
m
ul
tim

od
al
op
tim

iz
at
io
n
al
go
ri
th
m
s
fo
r
th
e
te
st
fu
nc
tio

ns
f 5

−
f 8

Fu
nc
tio

n
A
lg
or
ith

m
N
O

D
O

FE
E
T

f 5
D
et
er
m
in
is
tic

cr
ow

di
ng

62
.4

(1
4.
3)

4.
72

×
10

−3
(4

.5
9

×
10

−3
)

1,
76
0,
19
9
(2
54
,3
41
)

14
.6
2
(2
.8
3)

Pr
ob

ab
ili
st
ic
cr
ow

di
ng

84
.7

(5
.4
8)

1.
50

×
10

−3
(9

.3
8

×
10

−4
)

2,
63
1,
62
7
(4
43
,5
22
)

34
.3
9
(5
.2
0)

Se
qu
en
tia
lfi

tn
es
s
sh
ar
in
g

76
.3

(7
.0
8)

3.
51

×
10

−3
(1

.6
6

×
10

−3
)

2,
72
6,
39
4
(5
62
,7
23
)

36
.5
5
(7
.1
3)

C
le
ar
in
g
pr
oc
ed
ur
e

93
.6

(2
.3
1)

2.
78

×
10

−3
(1

.2
0

×
10

−3
)

2,
10
7,
96
2
(4
62
,6
22
)

28
.6
1
(6
.4
7)

C
B
N

87
.9

(7
.7
8)

4.
33

×
10

−3
(2

.8
2

×
10

−3
)

2,
83
5,
11
9
(6
38
,1
95
)

37
.0
5
(8
.2
3)

SC
G
A

97
.4

(4
.8
0)

1.
34

×
10

−3
(8

.7
2

×
10

−4
)

2,
51
8,
30
1
(6
43
,1
29
)

30
.2
7
(7
.0
4)

A
E
G
A

99
.4

(1
.3
9)

6.
77

×
10

−4
(3

.1
8

×
10

−4
)

97
8,
43
5
(7
1,
13
5)

10
.5
6
(4
.8
1)

C
lo
na
ls
el
ec
tio

n
al
go

ri
th
m

90
.6

(9
.9
5)

3.
15

×
10

−3
(1

.4
7

×
10

−3
)

5,
07
5,
20
8
(1
94
,3
76
)

58
.0
2
(2
.1
9)

A
iN

et
93
.8

(7
.8
)

2.
11

×
10

−3
(3

.2
×

10
−3

)
3,
34
2,
86
4
(5
49
,4
52
)

51
.6
5
(6
.9
1)

C
A
B

10
0

(2
)

2.
22

×
10

−4
(3

.1
×

10
−5

)
68

0,
21

1
(1

2,
54

7)
7.

33
(1

.8
4)

f 6
D
et
er
m
in
is
tic

cr
ow

di
ng

9.
37

(1
.9
1)

3.
26

×
10

−3
(5

.3
4

×
10

−4
)

83
2,
54
6
(7
5,
41
3)

4.
58

(0
.5
7)

Pr
ob

ab
ili
st
ic
cr
ow

di
ng

15
.1
7
(2
.4
3)

2.
87

×
10

−3
(5

.9
8

×
10

−4
)

1,
82
3,
77
4
(2
65
,3
87
)

12
.9
2
(2
.0
1)

Se
qu
en
tia
lfi

tn
es
s
sh
ar
in
g

15
.2
9
(2
.1
4)

1.
42

×
10

−3
(5

.2
9

×
10

−4
)

1,
76
7,
56
2
(5
28
,3
17
)

14
.1
2
(3
.5
1)

C
le
ar
in
g
pr
oc
ed
ur
e

18
(0

)
1.
19

×
10

−3
(6

.0
5

×
10

−4
)

1,
87
5,
72
9
(2
65
,1
73
)

11
.2
0
(2
.6
9)

C
B
N

14
.8
4
(2
.7
0)

4.
39

×
10

−3
(2

.8
6

×
10

−3
)

2,
04
9,
22
5
(4
65
,0
98
)

18
.2
6
(4
.4
1)

SC
G
A

4.
83

(0
.3
8)

1.
58

×
10

−3
(4

.1
2

×
10

−4
)

2,
26
1,
46
9
(3
15
,7
27
)

13
.7
1
(1
.8
4)

A
E
G
A

18
(0

)
3.
34

×
10

−4
(1

.2
7

×
10

−4
)

65
6,
63
9
(8
4,
21
3)

3.
12

(1
.1
2)

C
lo
na
ls
el
ec
tio

n
al
go

ri
th
m

18
(0

)
3.
42

×
10

−3
(1

.5
8

×
10

−3
)

4,
98
9,
85
6
(6
18
,7
59
)

33
.8
5
(5
.3
6)

A
iN

et
18

(0
)

2.
11

×
10

−3
(3

.3
1

×
10

−3
)

3,
01
2,
43
5
(3
32
,5
61
)

26
.3
2
(2
.5
4)

C
A
B

18
(0

)
1.

02
×

10
−4

(4
.2

7
×

10
−5

)
43

1,
41

2
(2

1,
03

4)
2.

21
(0

.5
1)

(c
on
tin

ue
d)

9.5 Application of CAB in Multi-circle Detection 263

Ta
bl

e
9.

4
(c
on
tin

ue
d)

Fu
nc
tio

n
A
lg
or
ith

m
N
O

D
O

FE
E
T

f 7
D
et
er
m
in
is
tic

cr
ow

di
ng

52
.6

(8
.8
6)

3.
71

×
10

−3
(1

.5
4

×
10

−3
)

2,
38
6,
96
0
(2
21
,9
82
)

19
.1
0
(2
.2
6)

Pr
ob

ab
ili
st
ic
cr
ow

di
ng

79
.2

(4
.9
4)

3.
48

×
10

−3
(3

.7
9

×
10

−3
)

3,
86
1,
90
4
(4
57
,8
62
)

43
.5
3
(4
.3
8)

Se
qu
en
tia
lfi

tn
es
s
sh
ar
in
g

63
.0

(5
.4
9)

4.
76

×
10

−3
(3

.5
5

×
10

−3
)

3,
61
9,
05
7
(5
65
,3
92
)

42
.9
8
(6
.3
5)

C
le
ar
in
g
pr
oc
ed
ur
e

79
.4

(4
.3
1)

2.
95

×
10

−3
(1

.6
4

×
10

−3
)

3,
74
6,
32
5
(5
94
,7
58
)

45
.4
2
(7
.6
4)

C
B
N

71
.3

(9
.2
6)

3.
29

×
10

−3
(4

.1
1

×
10

−3
)

4,
15
5,
20
9
(4
65
,6
13
)

48
.2
3
(5
.4
2)

SC
G
A

94
.9

(8
.1
8)

2.
63

×
10

−3
(1

.8
1

×
10

−3
)

3,
62
9,
46
1
(3
73
,3
82
)

47
.8
4
(0
.2
1)

A
E
G
A

98
(2
)

1.
31

×
10

−3
(8

.7
6

×
10

−4
)

1,
72
3,
34
2
(1
21
,0
43
)

12
,5
4
(1
.3
1)

C
lo
na
ls
el
ec
tio

n
al
go

ri
th
m

89
.2

(5
.4
4)

3.
02

×
10

−3
(1

.6
3

×
10

−3
)

5,
42
3,
73
9
(2
31
,0
04
)

47
.8
4
(6
.0
9)

A
iN

et
92
.7

(3
.2
1)

2.
79

×
10

−3
(3

.1
9

×
10

−4
)

4,
32
9,
78
3
(1
67
,9
32
)

41
.6
4
(2
.6
5)

C
A
B

10
0

(1
)

3.
32

×
10

−4
(5

.2
5

×
10

−5
)

95
3,

83
2

(9
,3

45
)

8.
82

(1
.5

1)

f 8
D
et
er
m
in
is
tic

cr
ow

di
ng

44
.2

(7
.9
3)

4.
45

×
10

−3
(3

.6
3

×
10

−3
)

2,
84
3,
45
2
(3
53
,5
29
)

23
.1
4
(3
.8
5)

Pr
ob

ab
ili
st
ic
cr
ow

di
ng

70
.1

(8
.3
6)

2.
52

×
10

−3
(1

.4
7

×
10

−3
)

4,
32
5,
46
9
(5
74
,3
68
)

49
.5
1
(6
.7
2)

Se
qu
en
tia
lfi

tn
es
s
sh
ar
in
g

58
.2

(9
.4
8)

4.
14

×
10

−3
(3

.3
1

×
10

−3
)

4,
41
6,
15
0
(6
42
,4
15
)

54
.4
3
(1
2.
6)

C
le
ar
in
g
pr
oc
ed
ur
e

67
.5

(1
0.
11
)

2.
31

×
10

−3
(1

.4
3

×
10

−3
)

4,
17
2,
46
2
(4
13
,5
37
)

52
.3
9
(7
.2
1)

C
B
N

53
.1

(7
.5
8)

4.
36

×
10

−3
(3

.5
3

×
10

−3
)

4,
71
1,
92
5
(5
84
,3
96
)

61
.0
7
(8
.1
4)

SC
G
A

87
.3

(9
.6
1)

3.
15

×
10

−3
(2

.0
7

×
10

−3
)

3,
96
4,
49
1
(4
32
,1
17
)

53
.8
7
(8
.4
6)

A
E
G
A

90
.6

(1
.6
5)

2.
55

×
10

−3
(9

.5
5

×
10

−4
)

2,
21
3,
75
4
(4
12
,5
38
)

16
.2
1
(3
.1
9)

C
lo
na
ls
el
ec
tio

n
al
go

ri
th
m

74
.4

(7
.3
2)

3.
52

×
10

−3
(2

.1
9

×
10

−3
)

5,
83
5,
45
2
(4
98
,0
33
)

74
.2
6
(5
.4
7)

A
iN

et
83
.2

(6
.2
3)

3.
11

×
10

−3
(2

.4
1

×
10

−4
)

4,
12
3,
34
2
(2
13
,8
64
)

60
.3
8
(5
.2
1)

C
A
B

97
(2

)
1.

54
×

10
−3

(4
.5

1
×

10
−4

)
1,

12
1,

52
3

(5
1,

73
2)

12
.2

1
(2

.6
6)

T
he

st
an
da
rd

un
it
of

th
e
co
lu
m
n
E
T
is
se
co
nd
s
(n
um

be
rs
in

pa
re
nt
he
se
s
ar
e
st
an
da
rd

de
vi
at
io
ns
).
B
ol
d-
ca
se

le
tte
rs
re
pr
es
en
tb

es
tr
es
ul
ts

264 9 Multimodal Swarm Algorithm …

Fig. 9.4 Circle candidate
(individual) built from the
combination of points pi , p j
and pk

ip

jp

kp

r

0 0(,)x y

problem. Considering the configuration of the edge points shown by Fig. 9.4, the
circle center (x0, y0) and the radius r of C can be computed as follows:

(x − x0)
2 + (y − y0)

2 = r2 (9.8)

considering

A =
[
x2j + y2j − (x2i + y2i) 2 · (y j − yi)
x2k + y2k − (x2i + y2i) 2 · (yk − yi)

]

B =
[
2 · (x j − xi) x2j + y2j − (x2i + y2i)
2 · (xk − xi) x2k + y2k − (x2i + y2i)

]

, (9.9)

x0 = det(A)

4((x j − xi)(yk − yi) − (xk − xi)(y j − yi))
,

y0 = det(B)

4((x j − xi)(yk − yi) − (xk − xi)(y j − yi))
, (9.10)

and

r =
√

(x0 − xd)2 + (y0 − yd)2, (9.11)

being det(.) the determinant and d ∈ {i, j, k}. Figure 9.2 illustrates the parameters
defined by Eqs. (9.8–9.11).

9.5 Application of CAB in Multi-circle Detection 265

9.5.2 Objective Function

In order to calculate the error produced by a candidate solution C, a set of test points
is calculated as a virtual shape which, in turn, must be validated, i.e. if it really exists
in the edge image. The test set is represented by S = {s1, s2, . . . , sNs }, where Ns is
the number of points over which the existence of an edge point, corresponding to C,
should be validated. In our approach, the set S is generated by the Midpoint Circle
Algorithm (MCA) [63]. The MCA is a searching method which seeks the required
points for drawing a circle digitally. ThereforeMCA calculates the necessary number
of test points Ns to totally draw the complete circle. Such a method is considered the
fastest because MCA avoids computing square-root calculations by comparing the
pixel separation distances among them.

The objective function J(C) represents the matching error produced between the
pixels S of the circle candidate C (animal position) and the pixels that actually exist
in the edge image, yielding:

J (C) = 1 −
∑Ns

v=1 E(xv, yv)

Ns
(9.12)

where E(xi , yi) is a function that verifies the pixel existence in (xv, yv), with
(xv, yv) ∈ S and Ns being the number of pixels lying on the perimeter corresponding
to C currently under testing. Hence, function E(xv, yv) is defined as:

E(xv, yv) =
{
1 if the pixel (xv, yv) is an edge point
0 otherwise

(9.13)

A value near to zero of J(C) implies a better response from the “circularity”
operator. Figure 9.5 shows the procedure to evaluate a candidate solution C with
its representation as a virtual shape S. In Fig. 9.5b, the virtual shape is compared
to the original image, point by point, in order to find coincidences between virtual
and edge points. The virtual shape is built from points pi , p j and pk shown by
Fig. 9.5a. The virtual shape S gathers 56 points (Ns = 56) with only 18 of such
points existing in both images (shown as blue points plus red points in Fig. 9.5c)
yielding:

∑Ns
v=1 E(xv, yv) = 18 and therefore J (C) ≈ 0.67.

9.5.3 The Multiple Circle Detection Procedure

In order to detect multiple circles, most detectors simply apply a one-minimum
optimization algorithm, which is able to detect only one circle at a time, repeating
the same process several times as previously detected primitives are removed from
the image. Such algorithms iterate until there are no more candidates left in the
image.

266 9 Multimodal Swarm Algorithm …

ip

jp

kp

(a) (b)

(c)

ip

jp

kp

Fig. 9.5 Evaluation of candidate solutions C: the image in (a) shows the original image while
b presents the virtual shape generated including points pi , p j and pk . The image in (c) shows
coincidences between both images marked by blue or red pixels while the virtual shape is also
depicted in green

On the other hand, the method at this paper is able to detect single or multiples
circles through only one optimization step. The multi-detection procedure can be
summarized as follows: guided by the values of amatching function, the whole group
of encoded candidate circles is evolved through the set of evolutionary operators. The
best circle candidate (global optimum) is considered to be the first detected circle
over the edge-only image. An analysis of the historical memory Mh is thus executed
in order to identify other local optima (other circles).

In order to find other possible circles contained in the image, the historical mem-
ory Mh is carefully examined. The approach aims to explore all elements, one at a
time, assessing which of them represents an actual circle in the image. Since sev-
eral elements can represent the same circle (i.e. circles slightly shifted or holding
small deviations), a distinctiveness factor DA,B is required to measure the mismatch
between two given circles (A andB). Such distinctiveness factor is defined as follows:

9.5 Application of CAB in Multi-circle Detection 267

DA,B = |xA − xB | + |yA − yB | + |rA − rB | (9.14)

being (xA, yA) and rA, the central coordinates and radius of the circleCA respectively,
while (xB, yB) and rB represent the corresponding parameters of the circle CB .
One threshold value EsT H is also calculated to decide whether two circles must be
considered different or not. Th is computed as:

Th = rmax − rmin
d

(9.15)

where
[
rmin, rmax

]
is the feasible radii’s range and d is a sensitivity parameter. By

using a high d value, two very similar circles would be considered different while a
smaller value for d would consider them as similar shapes. In this work, after several
experiments, the d value has been set to 2.

Thus, since the historical memory Mh
{
CM
1 ,CM

2 , . . . ,CM
B

}
groups the elements

in descending order according to their fitness values, the first element CM
1 , whose

fitness value represents the best value J (CM
1), is assigned to the first circle. Then, the

distinctiveness factor (DCM
1 ,CM

2
) over the next elementCM

2 is evaluatedwith respect to
the prior CM

1 . If DCM
1 ,CM

2
> Th, then CM

2 is considered as a new circle otherwise the
next element CM

3 is selected. This process is repeated until the fitness value J (CM
i)

reaches a minimum threshold JT H . According to such threshold, other values above
JT H represent individuals (cirlces) that are considered as significant while other
values lying below such boundary are considered as false circles and hence they
are not contained in the image. After several experiments the value of JT H is set to
(J (CM

1)/10).
The fitness value of each detected circle is characterized by its geometric proper-

ties. Big and well-drawn circles normally represent points in the search space with
higher fitness values whereas small and dashed circles describe points with lower
fitness values. Likewise, circles with similar geometric properties, such as radius,
size, etc., tend to represent locations holding similar fitness values. Considering that
the historical memoryMh groups the elements in descending order according to their
fitness values, the proposed procedure allows the cancelling of those circles which
belong to the same circle and hold a similar fitness value.

9.5.4 Implementation of CAB Strategy for Circle Detection

The implementation of the proposed algorithm can be summarized in the following
steps:

268 9 Multimodal Swarm Algorithm …

Step 1: Adjust the algorithm parameters Np , B, H, P, NI and d.

Step 2: Randomly generate a set of Np candidate circles (position of each animal)
C = {C1,C2, . . . ,CNp } set using Eq. (9.1)

Step 3: Sort C according to the objective function (dominance) to build
X = {x1, x2, . . . , xNp }

Step 4: Choose the first B positions of X and store them into the memory Mg

Step 5: Update Mh according to Sect. 2.1.5. (during the first iteration:Mh = Mg)

Step 6: Generate the first B positions of the new solution set C ({C1,C2, . . . ,CB}. Such
positions correspond to the elements of Mh making a slight random perturbation
around them
Cl = ml

h + v; being v a random vector of a small enough length

Step 7: Generate the rest of the C elements using the attraction, repulsion and random
movements

for i=B+1: pN
if (1r < P) then
attraction and repulsion movement

{ if (2r < H) then
()nearest

i i h iC r= ± ⋅ −x m x
else if

()nearest
i i g iC r= ± ⋅ −x m x

}
else if
random movement

{
iC = r

}
end for where 1 2, , rand(0,1)r r r ∈

Step 8: If NI is not completed, the process go back to step 3. Otherwise, the best values in
Mh

{
CM
1 ,CM

2 , . . . ,CM
B

}
represents the best solutions (the best found circles)

Step 9: The element with the highest fitness value J (CM
1) is identified as the first circle C1

Step 10: The distinctiveness factor DCM
m ,CM

m−1
of circle CM

m (element m) with the next highest

probability is evaluated with respect to CM
m−1. If DCM

m ,CM
m−1

> Th, then it is

considered CM
m as a new circle otherwise the next action is evaluated

Step 11: The step 10 is repeated until the element’s fitness value reaches (J (CM
1)/10)

The number of candidate circles Np is set considering a balance between the
number of local minima to be detected and the computational complexity. In general
terms, a large value of Np suggests the detection of a great amount of circles at
the cost of excessive computer time. After exhaustive experimentation, it has been
found that a value of Np = 30 represents the best trade-off between computational
overhead and accuracy and therefore such value is used throughout the study.

9.6 Results on Multi-circle Detection 269

Table 9.5 CAB detector
parameters

Np H P B NI

30 0.5 0.1 12 200

9.6 Results on Multi-circle Detection

In order to achieve the performance analysis, the proposed approach is compared to
the BFAO detector, the GA-based algorithm and the RHT method over an image set.

The GA-based algorithm follows the proposal of Ayala-Ramirez et al. [41], which
considers the population size as 70, the crossover probability as 0.55, the mutation
probability as 0.10 and the number of elite individuals as 2. The roulette wheel
selection and the 1-point crossover operator are both applied. Theparameter setup and
the fitness function follow the configuration suggested in [41]. The BFAO algorithm
follows the implementation from [45] considering the experimental parameters as:
S = 50, Nc = 350, Ns = 4, Ned = 1, Ped = 0.25, dattract = 0.1, wattract = 0.2,
wrepellant = 10 hrepellant = 0.1, λ = 400 and ψ = 6. Such values are found to be
the best configuration set according to [45]. Both, the GA-based algorithm and the
BAFOmethod use the same objective function that is defined byEq. (9.12). Likewise,
the RHT method has been implemented as it is described in [40]. Finally, Table 9.5
presents the parameters for the CAB algorithm used in this work. They have been
kept for all test images after being experimentally defined.

Images rarely contain perfectly-shaped circles. Therefore,with the purpose of test-
ing accuracy for a single-circle, the detection is challenged by a ground-truth circle
which is determined from the original edge map. The parameters (xtrue, ytrue, rtrue)
representing the testing circle are computed using Eqs. (9.6–9.9) for three circum-
ference points over the manually-drawn circle. Considering the centre and the radius
of the detected circle are defined as (xD, yD) and rD , the Error Score (Es) can be
accordingly calculated as:

Es = η · (|xtrue − xD| + |ytrue − yD|) + μ · |rtrue − rD| (9.16)

The central point difference (|xtrue − xD| + |ytrue − yD|) represents the centre
shift for the detected circle as it is compared to a benchmark circle. The radio mis-
match (|rtrue − rD|) accounts for the difference between their radii. η and μ rep-
resent two weighting parameters which are to be applied separately to the central
point difference and to the radio mismatch for the final error Es. At this work, they
are chosen as η = 0.05 and μ = 0.1. Such particular choice ensures that the radii
difference would be strongly weighted in comparison to the difference of central
circular positions between the manually detected and the machine-detected circles.
Here we assume that ifEs is found to be less than 1, then the algorithm gets a success,
otherwise, we say that it has failed to detect the edge-circle. Note that for η = 0.05
and μ = 0.1; Es < 1 means the maximum difference of radius tolerated is 10 while
the maximummismatch in the location of the center can be 20 (in number of pixels).

270 9 Multimodal Swarm Algorithm …

In order to appropriately compare the detection results, the Detection Rate (DR)
is introduced as a performance index. DR is defined as the percentage of reaching
detection success after a certain number of trials. For “success” it does mean that
the compared algorithm is able to detect all circles contained in the image, under
the restriction that each circle must hold the condition Es < 1. Therefore, if at least
one circle does not fulfil the condition of Es < 1, the complete detection procedure
is considered as a failure.

In order to use an error metric for multiple-circle detection, the averaged Es
produced from each circle in the image is considered. Such criterion, defined as the
Multiple Error (ME), is calculated as follows:

ME =

(
1

NC

)
·
NC∑

R=1

EsR (9.17)

where NC represents the number of circles within the image according to a human
expert.

Figure 9.6 shows three synthetic images and the resulting images after applying
the GA-based algorithm [41], the BFOA method [45] and the proposed approach.
Figure 9.7 presents experimental results considering three natural images. The per-
formance is analyzed by considering 35 different executions for each algorithm.
Table 9.6 shows the averaged execution time, the detection rate in percentage and
the averaged multiple error (ME), considering six test images (shown by Figs. 9.6
and 9.7). The best entries are bold-cased in Table 9.6. Close inspection reveals that
the proposed method is able to achieve the highest success rate keeping the smallest
error, still requiring less computational time for the most cases.

In order to statistically analyze the results in Table 9.6, a non-parametric signifi-
cance proof known as the Wilcoxon’s rank test [64–66] for 35 independent samples
has been conducted. Such proof allows assessing result differences among two related
methods. The analysis is performed considering a 5% significance level over multi-
ple error (ME) data. Table 9.7 reports the p-values produced by Wilcoxon’s test for
a pair-wise comparison of the multiple error (ME), considering two groups gathered
as CAB versus GA and CAB versus BFOA. As a null hypothesis, it is assumed
that there is no difference between the values of the two algorithms. The alternative
hypothesis considers an existent difference between the values of both approaches.
All p-values reported in Table 9.7 are less than 0.05 (5% significance level) which
is a strong evidence against the null hypothesis, indicating that the best CAB mean
values for the performance are statistically significant which has not occurred by
chance.

Figure 9.8 demonstrates the relative performance of CAB in comparison with
the RHT algorithm as it is described in [40]. All images belonging to the test are
complicated and contain different noise conditions. The performance analysis is
achieved by considering 35 different executions for each algorithm over the three
images. The results, exhibited in Fig. 9.8, present the median-run solution (when
the runs were ranked according to their final ME value) obtained throughout the

9.6 Results on Multi-circle Detection 271

Ta
bl

e
9.

6
T
he

av
er
ag
ed

ex
ec
ut
io
n-
tim

e,
de
te
ct
io
n
ra
te
an
d
th
e
av
er
ag
ed

m
ul
tip

le
er
ro
r
fo
r
th
e
G
A
-b
as
ed

al
go
ri
th
m
,t
he

B
FO

A
m
et
ho
d
an
d
th
e
pr
op
os
ed

C
A
B

al
go
ri
th
m
,c
on
si
de
ri
ng

si
x
te
st
im

ag
es

(s
ho
w
n
by

Fi
gs
.8

an
d
9)

Im
ag
e

A
ve
ra
ge
d
ex
ec
ut
io
n
tim

e
±

St
an
da
rd

de
vi
at
io
n
(s
)

Su
cc
es
s
ra
te
(D

R
)
(%

)
A
ve
ra
ge
d
M
E

±
St
an
da
rd

de
vi
at
io
n

G
A

B
FO

A
C
A
B

G
A

B
FO

A
C
A
B

G
A

B
FO

A
C
A
B

Sy
nt
he
ti
c
im

ag
es

(a
)

2.
23

±
(0
.4
1)

1.
71

±
(0
.5
1)

0.
21

±
(0

.2
2)

88
99

10
0

0.
41

±
(0
.0
44
)

0.
33

±
(0
.0
52
)

0.
22

±
(0

.0
33

)

(b
)

3.
15

±
(0
.3
9)

2.
80

±
(0
.6
5)

0.
36

±
(0

.2
4)

79
92

99
0.
51

±
(0
.0
38
)

0.
37

±
(0
.0
32
)

0.
26

±
(0

.0
41

)

(c
)

4.
21

±
(0
.1
1)

3.
18

±
(0
.3
6)

0.
20

±
(0

.1
9)

74
88

10
0

0.
48

±
(0
.0
29
)

0.
41

±
(0
.0
51
)

0.
15

±
(0

.0
36

)

N
at
ur
al

im
ag
es

(a
)

5.
11

±
(0
.4
3)

3.
45

±
(0
.5
2)

1.
10

±
(0

.2
4)

90
96

10
0

0.
45

±
(0
.0
51
)

0.
41

±
(0
.0
29
)

0.
25

±
(0

.0
37

)

(b
)

6.
33

±
(0
.3
4)

4.
11

±
(0
.1
4)

1.
61

±
(0

.1
7)

83
89

10
0

0.
81

±
(0
.0
42
)

0.
77

±
(0
.0
51
)

0.
37

±
(0

.0
55

)

(c
)

7.
62

±
(0
.9
7)

5.
36

±
(0
.1
7)

1.
95

±
(0

.4
1)

84
92

99
0.
92

±
(0
.0
75
)

0.
88

±
(0
.0
81
)

0.
41

±
(0

.0
66

)

272 9 Multimodal Swarm Algorithm …

(a) (b) (c)
Original images

GA-based algorithm

BFOA

CAB

Fig. 9.6 Synthetic images and their detected circles for: GA-based algorithm, the BFOA method
and the proposed CAB algorithm

Table 9.7 p-values produced
by Wilcoxon’s test comparing
CAB to GA and BFOA over
the averaged ME from
Table 9.2

Image p-value

CAB versus GA CAB versus BFOA

Synthetic images

(a) 1.8061e−004 1.8288e−004

(b) 1.7454e−004 1.9011e−004

(c) 1.7981e−004 1.8922e−004

Natural images

(a) 1.7788e−004 1.8698e−004

(b) 1.6989e−004 1.9124e−004

(c) 1.7012e−004 1.9081e−004

9.6 Results on Multi-circle Detection 273

(a) (b) (c)
Original images

GA-based algorithm

BFOA

CAB

Fig. 9.7 Real-life images and their detected circles for: GA-based algorithm, the BFOA method
and the proposed CAB algorithm

35 runs. On the other hand, Table 9.4 reports the corresponding averaged execution
time, detection rate (in %), and average multiple error [using (10)]for CAB and RHT
algorithms over the set of images (the best results are bold-cased). Table 9.8 shows
a decrease in performance of the RHT algorithm as noise conditions change. Yet the
CAB algorithm holds its performance under the same circumstances.

274 9 Multimodal Swarm Algorithm …

A

B

C

Original image RHT CAB

Fig. 9.8 Relative performance of the RHT and the CAB

Table 9.8 Average time, detection rate and averaged error for CAB and HT, considering three test
images

Image Average time ± Standard
deviation (s)

Success rate
(DR) (%)

Average ME ± Standard
deviation

RHT CAB RHT CAB RHT CAB

(A) 7.82 ± (0.34) 0.30 ± (0.10) 100 100 0.19 ± (0.041) 0.11 ± (0.017)

(B) 8.65 ± (0.48) 0.22 ± (0.13) 64 100 0.47 ± (0.037) 0.13 ± (0.019)

(C) 10.65 ± (0.48) 0.25 ± (0.12) 11 100 1.21 ± (0.033) 0.15 ± (0.014)

Bold data represent the best results

9.7 Conclusions 275

9.7 Conclusions

In recent years, several metaheuristic optimization methods have been inspired from
nature-like phenomena. In this article, a new multimodal optimization algorithm
known as the Collective Animal Behavior Algorithm (CAB) has been introduced.
In CAB, the searcher agents emulate a group of animals that interact to each other
depending on simple behavioral rules which are modeled as mathematical operators.
Such operations are applied to each agent considering that the complete group hold
a memory to store its own best positions seen so far, using a competition principle.

CABhas been experimentally evaluated over a test suite consisting of 8 benchmark
multimodal functions for optimization. The performance of CAB has been compared
to some other existing algorithms includingDeterministic Crowding [17], Probabilis-
tic Crowding [18], Sequential Fitness Sharing [15], Clearing Procedure [20], Clus-
tering Based Niching (CBN) [19], Species Conserving Genetic Algorithm (SCGA)
[21], elitist-population strategies (AEGA) [22], Clonal Selection algorithm [24] and
the artificial immune network (aiNet) [25]. All experiments have demonstrated that
CAB generally outperforms all other multimodal metaheuristic algorithms regard-
ing efficiency and solution quality, typically showing significant efficiency speedups.
The remarkable performance of CAB is due to two different features: (i) operators
allow a better exploration of the search space, increasing the capacity to findmultiple
optima; (ii) the diversity of solutions contained in the Mh memory in the context of
multimodal optimization, is maintained and even improved through of the use of a
competition principle (dominance concept).

The proposed algorithm is also applied to the engineering problem of multi-circle
detection. Such a process is faced as a multi-modal optimization problem. In contrast
to other heuristic methods that employ an iterative procedure, the proposed CAB
method is able to detect single ormultiple circles over a digital image by running only
one optimization cycle. The CAB algorithm searches the entire edge-map for circular
shapes by using a combination of three non-collinear edge points as candidate circles
(animal positions) in the edge-only image. A matching function (objective function)
is used to measure the existence of a candidate circle over the edge-map. Guided by
the values of such matching function, the set of encoded candidate circles is evolved
using the CAB algorithm so that the best candidate can be fitted into an actual circle.
After the optimization has been completed, an analysis of the embedded memory is
executed in order to find the significant local minima (remaining circles). The overall
approach generates a fast sub-pixel detector which can effectively identify multiple
circles in real images despite some circular objects exhibit a significant occluded
portion.

In order to test the circle detection performance, both speed and accuracy have
been compared. Score functions are defined by Eqs. (9.16) and (9.17) in order to
measure accuracy and effectively evaluate the mismatch between manually detected
and machine-detected circles. We have demonstrated that the CAB method outper-
forms both the GA (as described in [41]) and the BFOA (as described in [45]) within
a statistically significant framework (Wilcoxon test). In contrast to the CABmethod,

276 9 Multimodal Swarm Algorithm …

the RHT algorithm [40] shows a decrease in performance under noisy conditions.
Yet the CAB algorithm holds its performance under the same circumstances. Finally,
Table 9.6 indicates that the CAB method can yield better results on complicated and
noisy images compared with the GA and the BFOA methods.

References

1. Ahrari, A., Shariat-Panahi, M., Atai, A.A.: GEM: a novel evolutionary optimization method
with improved neighbourhood search. Appl. Math. Comput. 210(2), 376–386 (2009)

2. Fogel, L.J., Owens, A.J.,Walsh,M.J.: Artificial Intelligence through Simulated Evolution. John
Wiley, Chichester, UK (1966)

3. De Jong, K.: Analysis of the behavior of a class of genetic adaptive systems, Ph.D. thesis,
University of Michigan, Ann Arbor, MI (1975)

4. Koza, J.R.: Genetic programming: a paradigm for genetically breeding populations of computer
programs to solve problems, Rep. No. STAN-CS-90-1314, Stanford University, CA (1990)

5. Holland, J.H.: Adaptation in Natural and Artificial Systems. University ofMichigan Press, Ann
Arbor, MI (1975)

6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison
Wesley, Boston, MA (1989)

7. de Castro, L.N., Von Zuben, F.J.: Artificial immune systems: Part I—Basic theory and appli-
cations. Technical report, TR-DCA 01/99 (1999)

8. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science
220(4598), 671–680 (1983)

9. İlker, B., Birbil, S., Shu-Cherng, F.: An electromagnetism-like mechanism for global optimiza-
tion. J. Global Optim. 25, 263–282 (2003)

10. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.G.S.A.: A gravitational search algorithm. Inf.
Sci. 179, 2232–2248 (2009)

11. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony
search. Simulation 76(2), 60–68 (2001)

12. Lee,K.S.,Geem,Z.W.:Anewmeta-heuristic algorithm for continues engineering optimization:
harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 194, 3902–3933
(2004)

13. Geem, Z.W.: Novel derivative of harmony search algorithm for discrete design variables. Appl.
Math. Comput. 199, 223–230 (2008)

14. Gao, X.Z., Wang, X., Ovaska, S.J.: Uni-modal and multi-modal optimization using modified
harmony search methods. Int. J. Innov. Comput. Inf. Control. 5(10A), 2985–2996 (2009)

15. Beasley, D., Bull, D.R., Matin, R.R.: A sequential niche technique for multimodal function
optimization. Evol. Comput. 1(2), 101–125 (1993)

16. Miller, B.L., Shaw, M.J.: Genetic algorithms with dynamic niche sharing for multimodal func-
tion optimization. In: Proceedings of the 3rd IEEE Conference on Evolutionary Computation,
pp. 786–791 (1996)

17. Mahfoud, S.W.: Niching methods for genetic algorithms. Ph.D. dissertation, Illinois Genetic
Algorithm Laboratory, University of Illinois, Urbana, IL (1995)

18. Mengshoel, O.J., Goldberg, D.E.: Probability crowding: deterministic crowding with proba-
bilistic replacement. In: Banzhaf, W. (ed.), Proceedings of International Conferences GECCO-
1999, Orlando, FL, pp. 409–416 (1999)

19. Yin, X., Germay, N.: A fast genetic algorithmwith sharing scheme using cluster analysis meth-
ods in multimodal function optimization. In: Proceedings of the 1993 International Conference
on Artificial Neural Networks and Genetic Algorithms, pp. 450–457 (1993)

References 277

20. Petrowski, A.: A clearing procedure as a nichingmethod for genetic algorithms,. In: Proceeding
of the 1996 IEEE International Conference on Evolutionary Computation, pp. 798–803. IEEE
Press, New York (1996)

21. Li, J.P., Balazs, M.E., Parks, G.T., Glarkson, P.J.: A species conserving genetic algorithms for
multimodal function optimization. Evol. Comput. 10(3), 207–234 (2002)

22. Lianga, Y., Kwong-Sak, L.: Genetic Algorithm with adaptive elitist-population strategies for
multimodal function optimization. Appl. Soft Comput. 11, 2017–2034 (2011)

23. Wei, L.Y., Zhao, M.: A niche hybrid genetic algorithm for global optimization of continuous
multimodal functions. Appl. Math. Comput. 160(3), 649–661 (2005)

24. Castro, L.N., Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE
Trans. Evol. Comput. 6, 239–251 (2002)

25. Castro, L.N., Timmis, J.: An artificial immune network for multimodal function optimization.
In: Proceedings of the 2002 IEEE International Conference on Evolutionary Computation.
IEEE Press, New York, pp. 699–704 (2002)

26. Xu,Q., Lei,W., Si, J.: Predication based immunenetwork formultimodal function optimization.
Eng. Appl. Artif. Intell. 23, 495–504 (2010)

27. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the 1995 IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

28. Liang, Jj, Qin, A.K., Suganthan, P.N.: Comprehensive learning particle swarm optimizer for
global optimization of multi-modal functions. IEEE Trans. Evol. Comput. 10(3), 281–295
(2006)

29. Chen, D.B., Zhao, C.X.: Particle swarm optimization with adaptive population size and its
application. Appl. Soft Comput. 9(1), 39–48 (2009)

30. Sumper, D.: The principles of collective animal behaviour. Philos. Trans. R. Soc. Lond. B Biol.
Sci. 36(1465), 5–22 (2006)

31. Petit, O., Bon, R.: Decision-making processes: the case of collective movements. Behav. Proc.
84, 635–647 (2010)

32. Kolpas, A., Moehlis, J., Frewen, T., Kevrekidis, I.: Coarse analysis of collective motion with
different communication mechanisms. Math. Biosci. 214, 49–57 (2008)

33. Couzin, I.: Collective cognition in animal groups. Trends in Cogn. Sci. 13(1), 36–43 (2008)
34. Couzin, I.D., Krause, J.: Self-organization and collective behavior in vertebrates. Adv. Stud.

Behav. 32, 1–75 (2003)
35. Bode, N., Franks, D., Wood, A.: Making noise: emergent stochasticity in collective motion. J.

Theor. Biol. 267, 292–299 (2010)
36. Couzi, I., Krause, I., James, R., Ruxton, G., Franks, N.: Collective memory and spatial sorting

in animal groups. J. Theor. Biol. 218, 1–11 (2002)
37. Couzin, I.D.: Collective minds. Nature 445, 715–728 (2007)
38. Bazazi, S., Buhl, J., Hale, J.J., Anstey, M.L., Sword, G.A., Simpson, S.J., Couzin, I.D.: Col-

lective motion and cannibalism in locust migratory bands. Curr. Biol. 18, 735–739 (2008)
39. Atherton, T.J., Kerbyson, D.J.: Using phase to represent radius in the coherent circle Hough

transform. In: Proceedings of IEE Colloquium on the Hough Transform. IEE, London (1993)
40. Xu, L., Oja, E., Kultanen, P.: A new curve detection method: Randomized Hough transform

(RHT). Pattern Recognit. Lett. 11(5), 331–338 (1990)
41. Ayala-Ramirez,V.,Garcia-Capulin, C.H., Perez-Garcia,A., Sanchez-Yanez, R.E.: Circle detec-

tion on images using genetic algorithms. Pattern Recognit. Lett. 27, 652–657 (2006)
42. Cuevas, Erik, Ortega-Sánchez, Noé, Zaldivar, Daniel, Pérez-Cisneros, Marco: Circle detection

by harmony search optimization. J. Intell. Rob. Syst. 66(3), 359–376 (2012)
43. Cuevas, Erik, Oliva, Diego, Zaldivar, Daniel, Pérez-Cisneros, Marco, Sossa, Humberto: Circle

detection sing electro-magnetism optimization. Inf. Sci. 182(1), 40–55 (2012)
44. Cuevas, Erik, Zaldivar, Daniel, Pérez-Cisneros, Marco, Ramírez-Ortegón, Marte: Circle detec-

tion using discrete differential evolution optimization. PatternAnal.Appl. 14(1), 93–107 (2011)
45. Dasgupta, Sambarta, Das, Swagatam, Biswas, Arijit, Abraham, Ajith: Automatic circle detec-

tion on digital images with an adaptive bacterial foraging algorithm. Soft. Comput. 14(11),
1151–1164 (2010)

278 9 Multimodal Swarm Algorithm …

46. Bode, N., Wood, A., Franks, D.: The impact of social networks on animal collective motion.
Anim. Behav. 82(1), 29–38 (2011)

47. Lemasson, B., Anderson, J., Goodwin, R.: Collective motion in animal groups from a neuro-
biological perspective: The adaptive benefits of dynamic sensory loads and selective attention.
J. Theor. Biol. 261(4), 501–510 (2009)

48. Bourjade, M., Thierry, B., Maumy, M., Petit, O.: Decision-making processes in the collective
movements of Przewalski horses families Equus ferus Przewalskii: influences of the environ-
ment. Ethology 115, 321–330 (2009)

49. Banga, A., Deshpande, S., Sumanab, A., Gadagkar, R.: Choosing an appropriate index to
construct dominance hierarchies in animal societies: a comparison of three indices. Anim.
Behav. 79(3), 631–636 (2010)

50. Hsu, Y., Earley, R., Wolf, L.: Modulation of aggressive behaviour by fighting experience:
mechanisms and contest outcomes. Biol. Rev. 81(1), 33–74 (2006)

51. Broom, M., Koenig, A., Borries, C.: Variation in dominance hierarchies among group-living
animals: modeling stability and the likelihood of coalitions. Behav. Ecol. 20, 844–855 (2009)

52. Bayly, K.L., Evans, C.S., Taylor, A.: Measuring social structure: a comparison of eight domi-
nance indices. Behav. Proc. 73, 1–12 (2006)

53. Conradt, L., Roper, T.J.: Consensus decision-making in animals. Trends Ecol. Evol. 20,
449–456 (2005)

54. Okubo, A.: Dynamical aspects of animal grouping. Adv. Biophys. 22, 1–94 (1986)
55. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioural model. Comp. Graph. 21,

25–33 (1987)
56. Gueron, S., Levin, S.A., Rubenstein, D.I.: The dynamics of mammalian herds: from individual

to aggregations. J. Theor. Biol. 182, 85–98 (1996)
57. Czirok, A., Vicsek, T.: Collective behavior of interacting self-propelled particles. Phys. A 281,

17–29 (2000)
58. Ballerini, M.: Interaction ruling collective animal behavior depends on topological rather than

metric distance: evidence from a field study. Proc. Natl. Acad. Sci. U.S.A. 105, 1232–1237
(2008)

59. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)
60. Gandomi, A.H., Yang, X.-S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach

to solve structural optimization problems. Eng. Comput. https://doi.org/10.1007/s00366-011-
0241-y

61. Zang, H., Zhang, S., Hapeshi, K.: A review of nature-inspired algorithms. J. Bionic Eng. 7,
S232–S237 (2010)

62. Gandomi, A., Alavi, A.: Krill herd: a new bio-inspired optimization algorithm. Commun.
Nonlinear Sci. Numer. Simul. 17, 4831–4845 (2012)

63. Bresenham, J.E.: A linear algorithm for incremental digital display of circular arcs. Commun.
ACM 20, 100–106 (1977)

64. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)
65. Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests

for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special
session on real parameter optimization. J. Heurist. (2008). https://doi.org/10.1007/s10732-008-
9080-4

66. Santamaría, J., Cordón, O., Damas, S., García-Torres, J.M., Quirin, A.: Performance evaluation
of memetic approaches in 3D reconstruction of forensic objects. Soft Comput. (2008). https://
doi.org/10.1007/s00500-008-0351-7

https://doi.org/10.1007/s00366-011-0241-y
https://doi.org/10.1007/s10732-008-9080-4
https://doi.org/10.1007/s00500-008-0351-7

Chapter 10
Locust Search Algorithm Applied
for Template Matching

Abstract For a wide-range of image processing tasks (such as feature tracking,
object recognition, stereo matching and remote sensing), Template Matching (TM)
serves as a crucial strategy to allow the localization and recognition of objects and/or
patterns within digital images. The purpose of a TM approach is to find the location
(region) within a source image which manifest the best possible resemblance to a
given sub-image (commonly known as image template). Any TM algorithm (inde-
pendently of their particularities) incorporates two important elements: 1. a search
strategy; and 2. a similaritymeasurement. In its simplest form, a TMmethod involves
exhaustive search processes were a similarity measurement (such as the Normalized
Cross-Correlation) is applied for each available location within the source image.
Intuitively, such an extensive amount of function evaluations has a strong impact on
the algorithms computational cost, an issue that happens to be extremely detrimental
for many real-world applications. In the last few years, Evolutionary Algorithms
(EAs) have been proposed as an alternative to aid on the search process of TM
approaches by reducing the amount of locations that are evaluated within a given
source image; however, it is known that many of these methods carry with them
several critical flaws which could negatively impact the TM process, including an
insufficient exploration of the source image (which often leads to premature conver-
gence). In this chapter, the swarm optimization algorithm known as Locust Search
(LS) is applied to aid on solving the of template matching. The LS method includes
a series of unique evolutionary operators that allows to explicitly avoid the con-
centration of search agents toward the best-known solutions, which in turn allows
these agents to better explore of the available image’s search region. According to a
series of experimental results, when compared to other TM approaches which inte-
grates EAs as a part of their search strategy, LS achieves the best between estimation
accuracy and computational load.

10.1 Introduction

The localization and recognition of objects or patterns in digital images represents
one of the most important tasks for several image processing and computer vision

© Springer Nature Switzerland AG 2020
E. Cuevas et al., New Advancements in Swarm Algorithms: Operators
and Applications, Intelligent Systems Reference Library 160,
https://doi.org/10.1007/978-3-030-16339-6_10

279

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16339-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-16339-6_10

280 10 Locust Search Algorithm Applied for Template Matching

applications, such as industrial inspection, target classification, digital photometry,
remote sensing, among others [1].

Template matching (TM) is an image processing technique which aims to define
the localization of objects or patters within a digital image by finding the best-
possible resemblance between a sample sub-image (usually known as template) and
a coincident region within a source image. On a typical TM procedure, the similarity
between a template and a region within a given digital image is determined by
applying a specific similarity measurement over a neighborhood around a given pixel
location within such image. Several measurements, such as the Sum of Absolute
Differences (SAD), the Sum of Squared Differences (SSD), and the Normalized
Cross-Correlation (NCC) are among the most common metrics used to evaluate the
similarity between the template and the source image. However, the calculation of
such similaritymeasurements comes at the expense of a high computational cost, and
as such they usually represent the most time-consuming operation on a TM process;
this, added to the fact that most traditional TM algorithms exhaustively search on
every single pixel location of the source image, limits the use of such recognition
techniques in most real-time computer vision applications [2–4]. With that being
said, research on modern TM techniques aim to improve the template’s detection
performance in terms of two particular tasks: (1) the image search strategy, and (2)
the similarity measurement criteria [5, 6].

Recently, several TM algorithms based on evolutionary optimization techniques
have been proposed as an alternative to reduce the computational cost that is inher-
ently related to the matching process; this is achieved by strategically searching
over a limited subset of pixel locations within the image plane, which in turn allows
a substantial reduction on the number of function evaluations (similarity measure-
ments) that are required by such matching process. Such approaches have yield
to several robust detectors based on many different optimization methods such as
the well-known Genetic Algorithms (GA) approach [7], the popular Particle Swarm
Optimization (PSO) algorithm [8], and the interesting Imperialist Competitive Algo-
rithm (ICA) method [9]. Although such optimization approaches allow a significant
reduction in the number of searched image locations, they often suffer from pre-
mature convergence as a result of an ineffective exploration strategy, yielding to
sub-optimal (or even erroneous) detections [10]. Such difficulties are often related
to both, the operators used to guide de algorithm’s search process, and the lack of an
appropriate exploitation mechanism [11, 12].

Recently, a swarm optimization method known as Locust Search (LS) has been
proposed to solve unconstrained optimization problems [13]. Such approach emu-
lates the exotic and distinctive behaviormanifested by swarms of locustwhen looking
for food sources. In LS, search agents are modeled as individuals within a swarm of
locust which interact to each other based on series of evolutionary operators which
mimic several distinctive biological behaviors commonly found in such groups of
insects. In the LS method, the entire search space is represented as a plantation,
which all locusts explore in search for appropriate food sources. At each stage of the
LS’s evolutionary process, every locust within such plantation receives a food quality
index according to the fitness value corresponding to its current position. Different

10.1 Introduction 281

to most existent Evolutionary Algorithms (EA), the behavioral model proposed in
LS explicitly avoids the concentration of individuals over the current best solutions,
which in turn allows to avoid several critical flaws commonly found in other EA,
such as premature convergence and the lack of balance between exploration and
exploitation [14].

In this paper, the LS method is proposed for solving the previously illustrated TM
matching problem. In the proposed approach, individuals within a swarm of locust
are represented by pixel positions defined over a specific search region within a given
digital image. Each individual within the swarm moves through several positions of
the source image in search of the better food sources, which are further represented
by the positions in which the value of NCC coefficient (computed with respect to
a given image template) yields to higher values. In this sense, the best food source
(optimal solution) is represented by the location within the image in which the NCC
score attains its maximum value.

In order to prove the feasibility of the proposed TM method, our experimental
results are further compared with several other TM approaches based on popular EA
methods, such as the Genetic Algorithms (GA) [7], Particle Swarm Optimization
(PSO) [8], Artificial Bee Colony (ABC) [15], and Imperialist Competitive Algorithm
(ICA) [9].

10.2 Template Matching Process

In order to illustrate the process known as Template Matching (TM), let I denote
an intensity image with a certain spatial resolution (size) M × N , and let R repre-
sent a reference image (or image template) of size m × n. Furthermore, let (x, y)
denote a coordinate pair of positions of R. If we consider the shifted reference image
Ru,v(x, y) = R(x − u, y − v) such that u and v represent and horizontal and vertical
displacement over the source image I respectively, then the matching problem may
be summarized as follows: Given a source image I and a reference image R, find the
offset (u, v)within a search region S ∈ I such that the similarity between the shifted
reference image Ru,v(x, y) and the corresponding sub-image of I is maximum. In
order to solve such a problem, two important issues must first be addressed: (1)
determining and appropriate similarity measurement to validate a match occurrence,
and (2) develop an efficient search strategy to find the optimal template displacement
(u, v) (Fig. 10.1).

Although there exist several metrics used to evaluate the similarity between two
images, in the TM process the most commonly used measurements include the Sum
of Absolute Differences (SAD), the Sum of Squared Differences (SSD), and the
Normalizes Cross-Correlation (NCC). However, it is known that the calculation of
any of such similarity measurements demands a high computational cost, and as
such, it represents the most time-consuming operation on a typical TM process [16].
Furthermore, although suchmetrics allow an adequate measurement of the similarity

282 10 Locust Search Algorithm Applied for Template Matching

Fig. 10.1 Template matching process. The reference image R is shifted by an offset (u, v) across
the a search region S defined within a given source image I . The total search region S depends on
both, the size of source image I (M × N) and the size of the reference image R (m × n)

between a given pair of images, the NCC coefficient is considered to be the most
robust measurement among them, and as such is most commonly used [16].

The NCC value between a given source image I of size N × M and an image
template R of size m × n, at a given image displacement (u, v), is given as follows:

NCC(u, v) =
∑m

i=1
∑n

j=1

[
I (u + i, v + j) − I (u, v)

] · [
R(i, j) − R

]

√[∑m
i=1

∑n
j=1

[
I (u + i, v + j) − I (u, v)

]]2 ·
[∑m

i=1
∑n

j=1

[
R(i, j) − R

]]2

(10.1)

where I (u, v) denotes the gray-scale average intensity of the source image I for the
coincident region of the image template R, while R stand for the gray-scale average
intensity of the image template R. Such values are given as follows:

I (u, v) = 1

m · n
m∑

i=1

n∑

j=1

I (u + i, v + j) R = 1

m · n
m∑

i=1

n∑

j=1

R(i, j) (10.2)

The NCC computation yields to values defined between the interval of [−1, 1],
where score of NCC = 1 implies the best possible similarity between the image
template R and its corresponding sub-image on I , whereas a value of NCC = −1
means that both of such images are completely different.

Furthermore, in the context of the TM process, let
(
û, v̂

)
denote the position

within the source image I in which the best-best possible resemblance (maximum
NCC value) between R and I is found. Such image position is defined as follows:

10.2 Template Matching Process 283

(
û, v̂

) = arg max
(u,v)∈S

NCC
(
û, v̂

)
(10.3)

where S = {(u, v)|1 ≤ u ≤ M − m, 1 ≤ v ≤ N − n}, as previously stated, denotes
a search region defined within the source image I .

In a typical TM algorithm, the process to find the image displacement
(
û, v̂

)

which satisfies a maximum degree of resemblance involves an exhaustive search
over all valid pixel positions within the source image I . While this approach yield
to an optimal detection with respect to the NCC score, such exhaustive search, in
conjunction with the NCC coefficient’s high computational cost, seriously constrains
the use of classic TM approaches in many image processing and computer vision
applications.

With the previous being said, it is clear that developing an adequate search strategy
to find the optimal image displacement

(
û, v̂

)
is important to increase the efficiency

of the TM process. In fact, as illustrated by Eq. (10.3), the modeled as a global
optimization problem, in which we aim to find the optimal combination of discrete
horizontal and vertical displacements, û and v̂ respectively, such that the similarity
between the image template and its corresponding sub-image in position

(
û, v̂

)
yields

to a maximum NCC value. In this sense, the use of optimization techniques, as an
alternative to solve the problem of efficient TM matching, become intuitive [17].

Figure 10.2 illustrates the TM process with regard to the NCC coefficient:
Fig. 10.2a and b illustrate both, an example source image and an image template,
respectively; Fig. 10.2c shows the color-encoded NCC values corresponding to all
locations within the valid search region S on the source image (full search strategy);
finally, Fig. 10.2d presents the NCC surface, which exhibits the highly multimodal
nature of a typical TM problem. Furthermore, by observing both, Fig. 10.2c and d,
it is clear that the surface generated by the NCC values has several local maxima
positions, while it only has a single global maximum. In such situations, classical
optimization methods (particularly those founded on gradient-based techniques) are
subject to be trapped in local optimal values, and as such, they are unfeasible for
solving this kind of optimization problems.

10.3 The Locust Search (LS) Algorithm

TheLocust Search (LS) algorithm is a swarmoptimizationmethod inspired in several
behaviors commonly found in swarms of locust [18]. In the LS method, the entire
search space is assumed as a plantation, where all individuals within the swarm
interact to each other. In the LS approach, each solution within the search space
represents a locust position within the plantation. Also, each locust receives a food
quality index based on the fitness value related to the solution that is represented by
each of such individuals [19]. Furthermore, and unique to the LSmethod, individuals
within the swarm’s population are guided by a set of evolutionary operators based

284 10 Locust Search Algorithm Applied for Template Matching

(a)
(b)

(c)
(d)

Fig. 10.2 a Example of a source image, b a reference image (image template), c color-encoded
NCC values corresponding to the template matching process between (a) and (b), and d the NCC
multimodal surface of (c)

on two distinctive behaviors that are commonly observed in swarms of locust: (1) a
solitary phase, and (2) a social phase.

10.3.1 LS Solitary Phase

One distinctive feature of the LS method is the integration of a unique behavior
known as solitary phase.Under this behavioralmodel, each locustwithin the swarm is
assumed to be displaced as a result of a social force, which is related to their positional
relationships with respect to other members of the aggregation. Therefore, the net
effect caused by such social force are: (1) an attraction toward distant individuals, or
(2) a repulsion between nearer individuals.

In the LS approach, the concept of social force is applied to develop a solitary oper-
ator specifically devised to explicitly avoid the concentration of individual toward
the best solutions found during the evolutionary process, which in turn allows a
sufficient exploration of the entire search space [20]. In order to illustrate such oper-

10.3 The Locust Search (LS) Algorithm 285

ator, let Lk = {
lk1, l

k
2, . . . , l

k
N

}
denote a population (set of solutions) comprised by

N locusts, where k = 1, 2, . . . , gen denotes the current iteration number of whole
the evolutionary process (with gen denoting the maximum number of iterations). At
each iteration k, the solitary operation produces a new position pki by perturbing the
current locust position lki with a change of position �lki , such that:

pki = lki + �lki (10.4)

The position change �lki results from the social force experimented by the indi-
vidual lki with respect to the other N − 1 individuals in the entire locust population.
With that being said, the social force exerted between a given individual lki and any
other locust lkj within the swarm is calculated as follows:

ski j = ρ
(
lki , l

k
j

) · s(ri j
) · di j + rand(1,−1) (10.5)

where ri j =
∥
∥
∥lki − lkj

∥
∥
∥ denotes the Euclidian distance between individuals lki and lkj ,

Furthermore, di j =
(
lkj − lki

)
/ri j represent a unit vector which points from lki to lkj ,

while rand(1,−1) stands for a randomly generated number from within the interval
[1,−1]. Also, s

(
ri j

)
represents the so called social relation between lki and lkj , as

defined as follows:

s
(
ri j

) = F · e−ri j /L − e−ri j (10.6)

where F and L denote, an attractionmagnitude and an attractive length scale, respec-

tively [21]. On the other hand, ρ
(
lki , l

k
j

)
stand for what is referred as the dominance

value between lki and l
k
j . In theLSapproach, each individual fromLk

({
lk1, l

k
2, . . . , l

k
N

})

is ranked according to their fitness values, with the best individual (most dominant
locust) receiving a rank of 0 (zero), whereas the worst individual (least dominant

locust) gains the rank N −1. With that being said, the value of ρ
(
lki , l

k
j

)
is computed

by considering the rank corresponding to the individuals lki and lkj , as defined as
follows:

ρ
(
lki , l

k
j

) =
⎧
⎨

⎩

e−(rank(lki)/N) if rank
(
lki

)
< rank

(
lkj

)

e
−

(
rank

(
lkj

)
/N

)

if rank
(
lki

)
> rank

(
lkj

) (10.7)

where rank
(
lki

)
and rank

(
lkj

)
stand for the ranks of the individuals lki and lkj respec-

tively. Intuitively, the value ρ
(
lki , l

k
j

)
has the property to magnify or weaken the

social force experimented between the individuals lki and l
k
j depending on the fitness

of the most dominant member among them.

286 10 Locust Search Algorithm Applied for Template Matching

Finally, the total social force experimented by individual lki is computed as a
superposition of all pairwise interactions exerted on it, as given as follows:

Ski =
N∑

j=1
j �=1

ski j (10.8)

Therefore, the change of position �lki is given by the total social force S
k
i experi-

mented by lki , such that (Fig. 10.3):

�lki = Ski (10.9)

Once a new set of positions Pk = {
pk1,p

k
2, . . . ,p

k
N

}
, corresponding to the individ-

uals within the populationLk
({
lk1, l

k
2, . . . , l

k
N

})
, has been computed, each individual’s

position lki for the next iteration of the evolutionary process is updated as follows:

lk+1
i =

{
pki if f

(
pki

)
> f

(
lki

)

lki otherwise
(10.10)

where f
(
pki

)
and f

(
lki

)
denotes the fitness evaluation function with respect to posi-

tions pki and lki respectively. In other words, the position of a given individual lki
for the iteration k + 1 is updated only if its respective position pki promotes such
individual to get a better fitness value than that on its current position; otherwise, its
position remains unchanged. It is important to note that the previous is illustrated by
considering a maximization optimization problem.

Fig. 10.3 LS solitary phase. Under this behavioral model, each locust’s movement is computed
respective to the total social force experimented by such individual

10.3 The Locust Search (LS) Algorithm 287

10.3.2 LS Social Phase

Different to the solitary phase illustrated in Sect. 10.3.1, in the LS approach, the so
called social phase represents a selective operator used to refine a particular subset
of individuals B = {

b1,b2, . . . ,bq
}
in order to improve their solution quality. Such

subset B is formed by the q best individuals within the set of solutions Lk+1 ={
lk+1
1 , lk+1

2 , . . . , lk+1
N

}
, which correspond to the individuals’ positions for the next

iteration of the evolutionary process. Therefore, for each individual within the subset
B ∈ Lk+1, a subspace C j around each of such individuals is created. The limits of
each of such subspaces depend on distance r , as defined as follows:

r =
∑n

d=1

(
bhighd − blowd

)

n
· β (10.11)

where blowd and bhighd denote the lower and upper bounds in the d-th dimension, while
n stand for total number of decision variables (dimensions). Furthermore, β ∈ [0, 1]
represents a scalar factor used to modulate the size of the subspace. Therefore, for

each individual lk+1
j =

[
lk+1
j,1 , lk+1

j,2 , . . . , lk+1
j,n

]
(where lk+1

j ∈ B), the limits of each

subspace C j is given as follows:

Clow
j,d = lk+1

j,d − r

Chigh
j,d = lk+1

j,d + r
(10.12)

where Clow
j,d and Chigh

j,d represent the upper and lower bounds of each subspace C j

at the d-th dimension, respectively. Finally, for each of subspace C j , a new set of

h new solutions M j =
{
m j

1,m
j
2, . . . ,m

j
h

}
is generated within the bounds of each

of such subspaces (see Fig. 10.4). If any of the fitness value of any of the solutions
withinM j is better than that of their corresponding individual lk+1

j ∈ B, then lk+1
j is

replaced with such better solution; otherwise, no changes are made to lk+1
j .

10.4 Template Matching (TM) Algorithm Based
on the Locust Search (LS) Method

As illustrated in Sect. 10.2, a typical Template Matching (TM) method is able to
find the accurate detection position (u, v) by computing a certain similarity metric
over all valid pixel locations within a specific search region S of a given source
image. However, such approach demands a high computational cost for practical
use [14]. In an effort to overcome such issue, several TM algorithms [21–23] have
been proposed to accelerate the search process by computing only a reduced subset
of search locations. Although these methods allow a significant reduction on the

288 10 Locust Search Algorithm Applied for Template Matching

(b)(a)

Fig. 10.4 LS social phase. a Initial locusts’ configuration and rank according to their respective
food quality indexes, and b social phase operator applied by considering q = 2 and h = 3

average TM’s computational cost, they lack the ability to explore the whole search
region S effectively and, as a result, they often suffer from premature convergence,
which inevitably yields to sub-optimal solutions. Such problems are usually related
to the operators that are used tomodify the particles positions during the evolutionary
process. Furthermore, in most of these methods, the position of each search agent for
the next iteration is updated by considering an attraction toward the best individual
seen-so-far [24]. Due to this particularity, the entire population has a tendency to
concentrate around the best-known coincident location within the source image,
which in turn, favors a premature convergence toward a possible local optima of the
image’s multi-modal surface.

Different to most recent TM algorithms, the unique operators implemented in the
LS approach explicitly avoid the concentration of individuals over the current best
solutions. This important trait allows the LS method to keep an appropriate balance
between exploration and exploitation, and, as a result, avoid premature convergence
[13]. In the proposed LS-based TM algorithm, individuals a represented by a pair of
coordinated search positions (u, v)within the search space S of a given source image
I . Each of such individuals moves though the search space S while looking for the
optimal match position with respect to a given image template T . Furthermore, the
NCC coefficient, which evaluates the matching quality between the image template
T and the source image I , is computed for each individual’s search position and used
as a fitness value.

Formally speaking, the search space S consists of a set of 2-D discrete search
positions u and v, each representing the horizontal and vertical components of the
detection locations, respectively. With that being said, in the proposed LS-based TM
approach, each individual (locust) is defined as follows:

10.4 Template Matching (TM) Algorithm Based on the Locust Search (LS) Method 289

li = {(ui , vi)|1 ≤ ui ≤ M − m, 1 ≤ vi ≤ N − n} (10.13)

where m and n, as illustrated in Sect. 10.2, stand for the horizontal and vertical sizes
of the image template T , respectively. Furthermore, for each individual position li
within the search space S, a corresponding fitness value fi is assigned by computing
the NCC coefficient (see Eq. 10.1) with respect to their individual positions (ui , vi),
such that:

fi = NCC(ui , vi) (10.14)

In the context of the LS method, the fitness value fi represents the quality of
the food source represented by a particular locust li . Furthermore, as illustrated in
Sect. 10.3, each individual li within a locust population L is ranked according to
the quality of their respective food sources and then operated by the LS algorithm’s
solitary and social operators in order to update each individual’s position as the
process evolves.

Therefore, the proposed LS-TM approach may be summarized as follows:

Step 1 Read a gray-scale image I .
Step 2 Select an image template T .
Step 3 Initialize a set L = {l1, l2, . . . , lN } of N locust (particles) within the search

space S.
Step 4 Initialize global memory with the best individual li of the entire population

L.
Step 5 Evaluate the NCC coefficient (see Eq. 10.1) for each individual li within

the entire population L and assign a rank to each of such individuals (see
Sect. 10.3).

Step 6 Apply the LS algorithm’s solitary operator (see Sect. 10.3.1).
Step 7 Apply the LS algorithm’s social operator (see Sect. 10.3.2).
Step 8 Update global memory with the new best individual (matching position) li

of L.
Step 9 If the maximum number of iterations hasn’t been reached, go to Step 5;

otherwise, the process ends.

10.5 Experimental Setup and Results

In order to verify the feasibility and effectiveness of the proposed LS-TM approach,
a set of comparative experiments against other state-of-the-art TM methods, which
consider a set of several different image cases, were performed. In Appendix we
illustrate the image dataset that was employed on our experimental setup. Further-
more, for each of such experiments, the evolution of the NCC coefficient’s value
is used to evaluate the performance of each of the compared TM methods, which
include the PSO-TM algorithm [8], ABC-TM [15] and the ICA-TM approach [9].

290 10 Locust Search Algorithm Applied for Template Matching

Also, for each individual experiment, the maximum iteration number has been set to
500 iterations. Such stop criterion has been selected in order to keep compatibility
to other similar works reported on the literature [9, 8].

The parameter setup for each of the compared TM approaches is described as
follows:

1. PSO-TM: The algorithm’s learning factors are set to c1 = 2 and c2 = 2; also,
the inertia weight factor is set to decreases linearly from 0.9 to 0.2 as the process
evolves [8].

2. ABC-TM: The algorithm was implemented by considering the guidelines pro-
vided by [15], with the parameter limit = 500.

3. ICA-TM: The parameter are set to:Ncountries = 100, NImper = 10, NColony = 90,
Tmax = 500, ξ = 0.1, ε1 = 0.15, ε2 = 0.9. Such values represent the best
parameter setup for this approach, as illustrated by [9].

4. SMS-TM: This algorithm was implemented by considering the guidelines pro-
vided in [17]. The parameter setup for each individual stage of the SMS method
are:

a. Gas state: α = 0.8, β = 0.8, H = 0.9, ρ = [0.8, 1.0].
b. Liquid state: α = 0.2, β = 0.4, H = 0.2, ρ = [0.3, 0.6].
c. Solid state: α = 0.0, β = 0.1, H = 0.0, ρ = [0.0, 0.1].

5. LS-TM: Our proposed approach was implemented by considering the following
parameter setup: N = 50, q = 10, and h = 3.

The parameter setup for each of the compared methods is kept with no modifi-
cations during all experimental work. The parameter configurations chosen for each
of the compared methods were obtained though exhaustive experimentation over
the proposed template matching approach, and as such, represent the best possible
parameters foundonour experiments.All experimentswere performedonMatLAB®
R2016a, running on a computer with an Intel® Core™ i7—3.40 GHz processor, and
Windows 8 (64-bit, 8 GB of memory) as it operating system.

The results, corresponding to 30 individual runs for each compared method, are
reported in Table 10.1. The comparisons are analyzed by considering the following
performance indexes: (1) the Average-Best NCC value (ABNCC), (2) the Median-
Best NCC value (MBNCC), (3) the Standard Deviation of the NCC value (SDNCC),
(4) the Average Number of Iterations in which the best match is found (NI) and
(5) the Average Success Rate (SR) which represent the percent of all test runs in
which a given image template was successfully detected. According to Table 10.1,
for the proposed test images (see Appendix), LS-TM delivers significantly better
results in comparison to those of PSO-TM, ICA-TM, ABC-TM and SMS-TM. Also,
in Fig. 10.5, the NCC values evolution curves corresponding to each of the compared
TM method are shown.

Furthermore, the non-parametric statistical significance proof known as the
Wilcoxon’s rank sum test for independent samples [25, 26] was also conducted.
Such test is performed over the Average-Best NCC values (ABNCC) provided by

10.5 Experimental Setup and Results 291

Table 10.1 Performance comparison of PSO-TM, ICA-TM,ABC-TM, SMS-TMand the proposed
method for the experimental set show in Appendix

Algorithms Images ABNCC MBNCC SDNCC NI %SR

LS-TM (a) 9.989E−01 0.9989 1.00E−04 349 100

(b) 9.985E−01 0.9985 3.83E−02 70 100

(c) 9.978E−01 0.9978 1.38E−03 206 100

(d) 9.990E−01 0.9990 7.66E−03 317 100

(e) 9.991E−01 0.9991 7.87E−05 113 100

(f) 9.998E−01 0.9998 5.37E−03 111 97

PSO-TM (a) 8.403E−01 0.8304 3.79E+03 397 92

(b) 8.641E−01 0.8159 1.59E+01 451 96

(c) 8.322E−01 0.8357 1.35E+04 430 93

(d) 8.658E−01 0.8987 4.26E+00 464 95

(e) 8.252E−01 0.8321 4.26E+04 465 91

(f) 7.651E−01 0.7741 7.42E+02 489 88

ICA-TM (a) 8.984E−01 0.8321 7.13E+02 489 95

(b) 9.252E−01 0.9321 3.19E+01 412 98

(c) 8.653E−01 0.8357 7.44E+00 432 96

(d) 8.046E−01 0.8123 3.12E+01 496 97

(e) 8.655E−01 0.8564 7.07E−01 431 94

(f) 7.985E−01 0.7864 5.74E−01 395 90

ABC-TM (a) 8.111E−01 0.8403 2.08E−01 367 96

(b) 8.985E−01 0.8252 7.96E+02 361 98

(c) 8.068E−01 0.8266 5.00E−01 254 96

(d) 8.173E−01 0.8173 1.27E−02 310 95

(e) 8.895E−01 0.8252 6.66E+01 398 96

(f) 7.213E−01 0.7776 1.55E−01 420 92

SMS-TM (a) 8.931E−01 0.8950 1.99E−01 380 98

(b) 9.518E−01 0.9598 2.96E−02 331 98

(c) 9.687E−01 0.9612 3.11E−01 360 98

(d) 9.656E−01 0.9756 2.74E−02 456 98

(e) 9.315E−01 0.9499 3.66E−01 339 98

(f) 8.277E−01 0.8841 2.98E−01 135 95

Bold data represent the best results

292 10 Locust Search Algorithm Applied for Template Matching

(a) (b)

(c) (d)

(e) (f)

Fig. 10.5 Evolution curves for PSO-TM, ICA-TM, ABC-TM, SMS-TM and the proposed
approach, by considering the image cases illustrated in Appendix

Table 10.1, by considering a 5% of significance level. Table 10.2 reports the p-values
corresponding to the Wilcoxon’s test pair-wise comparison between the ABNCC val-
ues of three particular groups. Such groups are constituted by: (1) LS-TM versus
PSO-TM, (2) LS-TM versus ABC-TM, (3) LS-TM versus ICA-TM, and (4) LS-TM
versus SMS-TM. With respect to so called Wilcoxon’s test significance level, a null
hypothesis assumes that there is no significant difference between the ABNCC values
of two different methods. On the other hand, an alternative hypothesis considers that
there exist a significant difference between the ABNCC values of both of the com-
pared approaches. The fact that all p-values reported on Table 10.2 are less than

10.5 Experimental Setup and Results 293

Table 10.2 p-values corresponding to the Wilcoxon’s test

Image cases PSO-TM versus
LS-TM

ICA-TM versus
LS-TM

ABC-TM versus
LS-TM

SMS-TM versus
LS-TM

(a) 1.83E−04 1.73E−02 1.83E−04 7.65E−05

(b) 3.85E−01 1.83E−04 1.83E−04 6.37E−05

(c) 1.83E−04 6.23E−01 3.12E−02 1.98E−03

(d) 2.57E−02 5.21E−01 1.83E−04 7.46E−05

(e) 4.73E−01 1.83E−04 1.40E−01 6.88E−08

(f) 6.39E−05 2.15E−03 4.73E−01 2.69E−02

Table 10.3 Computational times (in seconds) for each of the compared template matching
approaches

Image cases LS-TM PSO-TM ICA-TM ABC-TM SMS-TM Exhaustive-
TM

(a) 13.309 seg. 3.950 seg. 5.951 seg. 14.01 seg. 4.038 seg. 25.719 seg.

(b) 10.034 seg. 3.385 seg. 5.739 seg. 13.92 seg. 4.063 seg. 22.547 seg.

(c) 12.345 seg. 3.995 seg. 5.152 seg. 15.54 seg. 5.109 seg. 26.107 seg.

(d) 12.672 seg. 3.813 seg. 5.913 seg. 17.98 seg. 4.287 seg. 25.013 seg.

(e) 11.806 seg. 3.546 seg. 5.164 seg. 13.29 seg. 4.333 seg. 107.123
seg.

(f) 11.225 seg. 4.225 seg. 6.866 seg. 22.31 seg. 5.984 seg. 138.682
seg.

0.05 (and thus, below the significance level value of 5%) provides a strong evidence
against the null hypothesis. With that being said, it is clear that the results provided
by the proposed LS-TM approach are not a product of coincidence, and as such, are
statistically significant.

Finally, in Table 10.3, the computational times (in units of seconds) corresponding
to each of the compared methods are shown. In addition to this, the computational
times corresponding to a typical exhaustive search template matching approach [3]
are also shown. As evidenced by such table, the PSO-TM approach takes much less
time to find a solution in comparison to the other methods, whereas ABC-TM takes
the most time (without accounting on the exhaustive search approach). Also, it could
be appreciated that our proposed method (LS-TM) has similar computation times to
those reported for the ABC-TM approach. While our proposed template matching
approach is clearly outperformed by other methods in terms of computational time,
it must be noted that, as evidenced by the data reported in Table 10.1, our proposed
approachyields to significantly better results in termsof solution quality. Furthermore
it is also worth noting that, in exchange for some accuracy, all of the compared
approaches are easily able to outperform the classic exhaustive search approach in
terms of computational time. This further evidence the viability of such approaches
for solving such a complex problem.

294 10 Locust Search Algorithm Applied for Template Matching

10.6 Conclusions

In this paper, the swarm optimizationmethod known as Locust Search (LS) is applied
to solve the problem of template matching (TM). The operators employed by LS
during the exploration and exploitation of new solutions are devised to explicitly
avoid the concentration of search agents around the best-known solutions, which in
turn prevents several issues commonly found in other swarm optimization methods,
such as those related to premature convergence.

In the proposed approach, individuals represent search positions within an image
search region. The NCC coefficient (represented as a fitness value) is computed
for each individual search agent, and then, used to evaluate the matching quality
between a given image template and a coincident region of the source image. Guided
by the LS unique evolutionary operators, individuals move through several positions
within the source image while looking for the locations corresponding to an optimal
degree of resemblance with respect to the image template. The exploration strategy
employed by LS algorithm allows a better exploration of an image’s search region,
while considering only a limited number of search locations. This fact allows both, a
more accurate detection and a significant reduction on the TM’s computational cost.

The performance of the proposed approach has been compared to other state-
of-the-art TM algorithms, by considering a set of several different image cases.
Experimental results show that the LS-TM approach yields to a high performance in
terms of both, precision and computational cost.

Appendix

Images dataset used on our experimental setup. a Waldo 1, b Circuit board 1, c
Satellite image, d Waldo 2, e Circuit board 2, and f Circuit board 3.

Appendix 295

Image Template NCC surface Image
resolution

(a) 768 × 1024

(b) 474 × 700

(c) 641 × 1483

(d) 768 × 1024

(e) 2137 × 3027

(f) 2448 × 3264

References

1. Brunelli, R.: Template matching techniques in computer vision: theory and practice. Wiley,
London (2009). ISBN 978-0-470-51706-2

2. Hadi, G., Mojtaba, L., Hadi, S.Y.: An improved pattern matching technique for lossy/lossless
compression of binary printed Farsi and Arabic textual images. Int. J. Intell. Comput. Cybern
2(1), 120–147 (2009)

296 10 Locust Search Algorithm Applied for Template Matching

3. Krattenthaler, W., Mayer, K.J., Zeiler, M.: Point correlation: a reduced-cost template matching
technique. In: Proceedings of the First IEEE International Conference on Image Processing,
pp. 208–212 (1994)

4. Rosenfeld, A., VanderBrug, G.J.: Coarse-fine template matching. IEEE Trans. Syst. Man
Cybern. SMC-7(2), 104–107 (1977)

5. Tanimoto, S.L.: Template matching in pyramids. Comput. Vision Graph. Image Proc. 16(4),
356–369 (1981)

6. Dong, N., Wu, C.-H., Ip, W.-H., Chen, Z.-Q., Chan, C.-Y., Yung, K.-L.: An improved species
based genetic algorithm and its application in multiple template matching for embroidered
pattern inspection. Expert Syst. Appl. 38, 15172–15182 (2011)

7. Mitchell, M.: An Introduction to Genetic Algorithms. Cambridge, MA (1996)
8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE

International Conference on Neural Networks, vol. 4, pp. 1942–1248 (1995)
9. Haibin, D., Chunfang, X., Senqi, L., Shan, S.: Template matching using chaotic imperialist

competitive algorithm. Pattern Recogn. Lett. 31, 1868–1875 (2010)
10. Chen, G., Low, C.P., Yang, Z.: Preserving and exploiting genetic diversity in evolutionary

programming algorithms. IEEE Trans. Evol. Comput. 13(3), 661–673 (2009)
11. Adra, S.F., Fleming, P.J.: Diversity management in evolutionary many-objective optimization.

IEEE Trans. Evol. Comput. 15(2), 183–195 (2011)
12. Tan, K.C., Chiam, S.C., Mamun, A.A., Goh, C.K.: Balancing exploration and exploitation

with adaptive variation for evolutionary multi-objective optimization. Eur. J. Oper. Res. 197,
701–713 (2009)

13. Cuevas, E., González, A., Zaldívar, D., Pérez-Cisneros, M.: An optimisation algorithm based
on the behaviour of locust swarms. Int. J. Bio-Inspir. Comput. 7(6), 402–407 (2015)

14. Sadoghi Yazdi, H.: An improved pattern matching technique for lossy/lossless compression of
binary printed farsi and arabic textual images. Int. J. Intell. Comput. Cybern., 120–147 (2009)

15. Karaboga,D.:An idea based onhoneybee swarm for numerical optimization. TechnicalReport-
TR06. Engine, Engineering Faculty, Computer Engineering Department, Erciyes University
(2005)

16. Hossein, A., Hossein-Alavi, A.: Krill herd: a new bio-inspired optimization algorithm. Com-
mun. Nonlinear Sci. Numer. Simul. 17, 4831–4845 (2012)

17. Cuevas, E., Echavarría, A., Zaldívar, D., Pérez-Cisneros, M.: A novel evolutionary algorithm
inspired by the states of matter for template matching. Expert Syst. Appl. 40, 6359 (2013)

18. Topaz, C.M., Bernoff, A.J., Logan, S., Toolson, W.: A model for rolling swarms of locusts.
Eur. Phys. J. Spec. Top. 157, 93–109 (2008)

19. Topaz, C.M., D’Orsogna, M.R., Edelstein-Keshet, L., Bernoff, A.J.: Locust dynamics: behav-
ioral phase change and swarming. Plos Comput. Biol. 8(8), 1–11

20. Cuevas, E., González, A., Fausto, F., Zaldívar, D., Pérez-Cisneros, M.: Multithreshold segmen-
tation by using an algorithm based on the behavior of locust swarms. Math. Probl. Eng. 2015,
25 (2015). Article ID 805357. https://doi.org/10.1155/2015/805357

21. Dong, N., Wu, C.-H., Ip, W.-H., Chen, Z.-Q., Chan, C.-Y., Yung, K.-L.: An improved species
based genetic algorithm and its application in multiple template matching for embroidered
pattern inspection. Expert Syst. Appl. 38(12), 15172–15182 (2011)

22. Liu, F., Duan, H., Deng, Y.: A chaotic quantum-behaved particle swarm optimization based on
lateral inhibition for image matching. Optik-Int. J. Light Electron Opt. 123(21), 1955–1960
(2012)

23. Wu, C.-H., Wang, D.-Z., Ip, A., Wang, D.-W., Chan, C.-Y., Wang, H.-F.: A particle swarm
optimization approach for components placement inspection on printed circuit boards. J. Intell.
Manuf. 20(5), 535–549 (2009)

24. Chen, G., Low, C.P., Yang, Z.: Preserving and exploiting genetic diversity in evolutionary
programming algorithms. IEEE Trans. Evol. Comput. 13(3), 661–673 (2009)

25. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)
26. Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of nonparametric tests

for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special
session on real parameter optimization. J. Heuristics (2008)

https://doi.org/10.1155/2015/805357

	Preface
	Contents
	1 An Introduction to Nature-Inspired Metaheuristics and Swarm Methods
	1.1 Optimization Techniques: A Brief Summary
	1.2 The Rise of Nature-Inspired Metaheuristics
	1.3 General Framework of a Nature-Inspired Metaheuristic
	1.4 Classification of Nature-Inspired Metaheuristics
	1.4.1 Evolution-Based Methods
	1.4.2 Swarm-Based Methods
	1.4.3 Physics-Based Methods
	1.4.4 Human-Based Methods

	1.5 Nature-Inspired Metaheuristics on the Literature
	1.6 Conclusions
	References

	2 Metaheuristics and Swarm Methods: A Discussion on Their Performance and Applications
	2.1 On the Performance of Nature-Inspired Metaheuristics
	2.1.1 Computational Complexity
	2.1.2 Memory Efficiency
	2.1.3 Exploration Versus Exploitation
	2.1.4 Implementation

	2.2 Nature-Inspired Metaheuristics and Their Applications
	2.2.1 Engineering Design
	2.2.2 Digital Image Processing and Computer Vision
	2.2.3 Networks and Communications
	2.2.4 Power and Energy Management
	2.2.5 Data Analysis and Machine Learning
	2.2.6 Robotics
	2.2.7 Medical Diagnosis

	2.3 Nature-Inspired Metaheuristics: Research Gaps and Future Directions
	2.4 Concluding Remarks
	References

	3 The Selfish Herd Optimizer
	3.1 Introduction
	3.2 The Selfish Herd Theory
	3.3 The Selfish Herd Optimizer Algorithm
	3.3.1 Initializing the Population
	3.3.2 Survival Value Assignation
	3.3.3 Structure of a Selfish Herd
	3.3.4 Herd Movement Operators
	3.3.5 Predators Movement Operators
	3.3.6 Predation Phase
	3.3.7 Restoration Phase

	3.4 Summary of the SHO Algorithm
	3.5 Discussion About the SHO Algorithm
	3.6 Comparative Experiments and Results
	3.7 Conclusions
	References

	4 The Swarm Method of the Social-Spider
	4.1 Introduction
	4.2 Biological Concepts
	4.3 The SSO Algorithm
	4.3.1 Fitness Assignation
	4.3.2 Modeling of the Vibrations Through the Communal Web
	4.3.3 Initializing the Population
	4.3.4 Cooperative Operators
	4.3.5 Mating Operator
	4.3.6 Computational Procedure
	4.3.7 Discussion About the SSO Algorithm

	4.4 Experimental Results
	4.4.1 Performance Comparison to Other Metaheuristic Algorithms

	4.5 Conclusions
	Appendix: List of Benchmark Functions
	References

	5 The Locust Swarm Optimization Algorithm
	5.1 Introduction
	5.2 Biological Fundamentals and Mathematical Models
	5.2.1 Solitary Phase
	5.2.2 Social Phase

	5.3 The Locust Search (LS) Algorithm
	5.3.1 Solitary Operation (A)
	5.3.2 Social Operation (B)
	5.3.3 Complete LS Algorithm
	5.3.4 Discussion About the LS Algorithm

	5.4 Experimental Results
	5.4.1 Performance Comparison

	5.5 Conclusions
	Appendix: List of Benchmark Functions
	References

	6 A Swarm Algorithm Inspired by the Collective Animal Behavior
	6.1 Introduction
	6.2 Biological Fundamentals
	6.3 Collective Animal Behavior Algorithm (CAB)
	6.3.1 Description of the CAB Algorithm

	6.4 Experimental Results
	6.4.1 Effect of the CAB Parameters
	6.4.2 Performance Comparison

	6.5 Summary
	References

	7 Auto-calibration of Fractional Fuzzy Controllers by Using the Swarm Social-Spider Method
	7.1 Introduction
	7.2 Fractional-Order Models
	7.2.1 Fractional Calculus
	7.2.2 Approximation of Fractional Operators

	7.3 Fuzzy Controller
	7.4 Social Spider Optimization (SSO)
	7.5 Problem Formulation
	7.6 Numerical Simulations
	7.6.1 Results Over High-Order Plants (G1 (s))
	7.6.2 Results Over Non-minimum Systems (G2 (s))
	7.6.3 Results Over Fractional Systems (G3 (s))

	7.7 Conclusions
	References

	8 Locust Search Algorithm Applied to Multi-threshold Segmentation
	8.1 Introduction
	8.2 Gaussian Mixture Modelling
	8.3 The Locust Search (LS) Algorithm
	8.3.1 LS Solitary Phase
	8.3.2 LS Social Phase

	8.4 Segmentation Algorithm Based on LS
	8.4.1 New Objective Function Jnew
	8.4.2 Complete Segmentation Algorithm

	8.5 Segmentation Results
	8.5.1 Performance of LS Algorithm in Image Segmentation
	8.5.2 Histogram Approximation Comparisons
	8.5.3 Performance Evaluation of the Segmentation Results

	8.6 Conclusions
	References

	9 Multimodal Swarm Algorithm Based on the Collective Animal Behavior (CAB) for Circle Detection
	9.1 Introduction
	9.2 Biological Fundaments
	9.3 Collective Animal Behavior Algorithm (CAB)
	9.3.1 Description of the CAB Algorithm

	9.4 Results on Multi-modal Benchmark Functions
	9.4.1 Experiment Methodology
	9.4.2 Comparing CAB Performance for Smooth Landscapes Functions
	9.4.3 Comparing CAB Performance in Rough Landscapes Functions

	9.5 Application of CAB in Multi-circle Detection
	9.5.1 Individual Representation
	9.5.2 Objective Function
	9.5.3 The Multiple Circle Detection Procedure
	9.5.4 Implementation of CAB Strategy for Circle Detection

	9.6 Results on Multi-circle Detection
	9.7 Conclusions
	References

	10 Locust Search Algorithm Applied for Template Matching
	10.1 Introduction
	10.2 Template Matching Process
	10.3 The Locust Search (LS) Algorithm
	10.3.1 LS Solitary Phase
	10.3.2 LS Social Phase

	10.4 Template Matching (TM) Algorithm Based on the Locust Search (LS) Method
	10.5 Experimental Setup and Results
	10.6 Conclusions
	Appendix
	References

