
CHAOS VOLUME 8, NUMBER 2 JUNE 1998

Do
Chaos in a dynamic model of traffic flows in an origin-destination network
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In this paper we investigate the dynamic behavior of road traffic flows in an area represented by
an origin-destination~O–D! network. Probably the most widely used model for estimating the
distribution of O–D flows is the gravity model,@J. de D. Ortuzar and L. G. Willumsen,Modelling
Transport~Wiley, New York, 1990!# which originated from an analogy with Newton’s gravitational
law. The conventional gravity model, however, is static. The investigation in this paper is based
on a dynamic version of the gravity model proposed by Dendrinos and Sonis by modifying
the conventional gravity model@D. S. Dendrinos and M. Sonis,Chaos and Social-Spatial Dynamics
~Springer-Verlag, Berlin, 1990!#. The dynamic model describes the variations of O–D flows
over discrete-time periods, such as each day, each week, and so on. It is shown that when
the dimension of the system is one or two, the O–D flow pattern either approaches an equilibrium
or oscillates. When the dimension is higher, the behavior found in the model includes equilibria,
oscillations, periodic doubling, and chaos. Chaotic attractors are characterized by~positive!
Liapunov exponents and fractal dimensions. ©1998 American Institute of Physics.
@S1054-1500~98!00302-4#
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Road traffic in an area can be characterized by aggre-
gate flows from their origins to their destinations. The
distribution of origin –destination „O–D… flows in an
area is an important source of information for traffic
management and control in the short term, as well as
for transport planning and highway design in the
longer term. Probably the most widely used model
for predicting traffic flows between each O–D pair is
the gravity model, †J. de D. Ortuzar and L. G. Willum-
sen, Modelling Transport „Wiley, New York, 1990…‡
which originated from an analogy with Newton’s gravi-
tational law. The conventional gravity model, however,
is static, although traffic flows are bound to vary with
time. A static model considers only an equilibrium
state of a traffic system, making the implicit assumption
that the equilibrium is stable. Equilibrium and stability
are most important and desirable in a traffic system.
However, whether or not an equilibrium will prevail in
the system depends on road and traffic conditions. Varia-
tions in these will tend to push the system away from
the equilibrium. The system can then be expected to
move toward another attractor which may not even be an
equilibrium. The model that will be investigated in this
paper is the dynamic version of the gravity model pro-
posed by Dendrinos and Sonis†D. S. Dendrinos and M.
Sonis, Chaos and Social-Spatial Dynamics„Springer-
Verlag, Berlin, 1990…‡. It models the variations of O–D
flows in an area over discrete-time periods, such as eac
day, each week, and so on. By investigating the mode
under various conditions represented by different pa-
5031054-1500/98/8(2)/503/11/$15.00
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rameter values, we are able to understand different types
of behavior, particularly disequilibrium behavior, in the
traffic system.

I. INTRODUCTION

Road traffic flows can be modeled at different levels
spatial scope: an area level, a road network level, and a
link level. In transport modelling, the area under consid
ation is divided into sub-areas calledzones. A journey from
one zone to another is called atrip. A particular zone may be
an origin, or a destination, or both if trips can both start a
terminate there. A zone is normally represented by a sin
point called itscentroid and trips from and to the zone ar
assumed concentrated at the centroid. Thus, the area ca
represented by an origin–destination~O–D! network, with
the nodes being the centroids and the arcs being the con
tions between O–D pairs. Each O–D pair is connected
one or moreroutes, that is, chains of road links. An O–D
network is therefore an aggregate representation of the ac
road network in the area.

Four transport models are used to estimate success
the distribution of traffic flows on a road network in an are
~1! Trip generation, in which the numbers of trips generate
from and attracted to each zone are determined given
socio-economic data in the area.~2! Trip distribution, in
which the number of trips between each O–D pair is e
mated.~3! Modal split, which splits trip makers into the al
ternative transport modes available, typically between p
vate cars and public buses.~4! Trip assignment, which
assigns trips between each O–D pair to alternative rou
connecting these O–D pairs, so that the traffic flows on e
© 1998 American Institute of Physics
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road link can be obtained. These route/link flows may th
be used for traffic congestion prediction, traffic signal s
ting, road designing, and so on. The gravity model was
veloped for trip distribution. It models traffic flows at th
O–D network level without concerning itself with whic
specific routes the O–D flows take—there may be more t
one route connecting an O–D pair.

The O–D flow pattern in an area is represented by atrip
matrix. This is essentially a two-dimensional array of ce
where each row corresponds to an origin and each colum
a destination, as shown in Table I. In this table,xi j is the
number of trips from zonei to zonej , oi is the total number
of trips originating in zonei , dj is the total number of trips
attracted to zonej , X is the total number of trips from al
origins or to all destinations,I is the number of origins, and
J is the number of destinations. The relationship between
entries of the matrix and the marginal totals can be expres
as

S j xi j 5oi , i 51,2, . . . ,I , ~1a!

S ixi j 5dj , j 51,2, . . . ,J. ~1b!

For the convenience of the analysis and description, we s
consider relative quantities of trips. In other words, we
sume

S i j xi j 51. ~1c!

Clearly, we must then haveS ioi51 and S jdj51 as well.
The marginal totalsoi and dj are normally estimated by
trip generation model and can be used as inputs to a
distribution model, which in turn gives the entries of a tr
matrix. If a trip distribution model satisfies both~1a! and
~1b!, in other words, if the total number of trips originatin
and terminating in each zone given by the model equals
predetermined totals, then the model is said to bedoubly
constrained. If a model satisfies~1a! or ~1b! but not both
then it is origin constrained or destination constrained.
These models are also calledsingly constrainedmodels. If a
model satisfies neither set of constraints, it is called anun-
constrained model, although the normalization conditio
~1c! must still be fulfilled. Which type of constraint shoul
be involved in a model depends mainly on the availability
information about theoi anddj . Other factors may also b
considered. For example, for non-work trips such as trips
shopping, the total number of trips from an origin~for ex-
ample, a residential area! may be regarded as fixed while th
total number of trips to a destination~for example, a city
center! should be considered to be variable. In this case

TABLE I. A general form of a trip matrix.

Destination Total
Origin 1 2 ••• j ••• J S j

1 x11 x12 ••• x1 j ••• x1J o1

2 x21 x22 ••• x2 j ••• x2J o2

•••
i x i1 xi2 ••• xi j ••• xiJ oi

•••
I xI1 xI2 ••• xI j ••• xIJ oI

Total S i d1 d2 ••• dj ••• dJ X51
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origin-constrained model may be suitable. That the total fl
attracted to each zone is known does not necessarily m
that a doubly constrained model should be used.

Associated with each O–D pair there is a travel cost
may be measured in terms of distance, time or mone
units, or a combination of these. It is normally referred to
thegeneralized cost of travel.In the gravity model, the num-
ber of trips between each O–D pair is determined based
the cost through adeterrence functionwhich relates the num-
ber of trips to the cost. For example, in one of the earli
doubly constrained gravity models, it was assumed, follo
ing Newton’s gravitational law, that the number of trips b
tween each O–D pair is proportional tooi and dj , and is
inversely proportional to the square of the distance betw
the O–D pair. In this model, the deterrence function is
power function with the power of22. More general types o
deterrence function have been considered,1 including an ex-
ponential function, a power function, and a combined ex
nential and power function. The exponential and power
terrence functions are both decreasing functions of costs.
combined function is not a monotonic function of cost; t
number of trips first increases and then decreases with
cost. It has been observed that, in the case of motorized t
the combined function can fit the data better than the ot
two functions. This is because comparatively few people
cars for very short trips while the power and exponen
functions cannot reproduce this feature.

The history of the family of gravity models can be trac
back to over one century ago. However, it was not until
1950s that the model was applied to the trip distribution. T
model provides a rigorous tool for modeling and analyzi
transport network problems in a fairly simple mathemati
form. Apart from the trip distribution, the gravity model ha
also been used in another closely related transport prob
namely, thetrip matrix estimationproblem.1 This is an alter-
native way of estimating a trip matrix, but from traffic cou
data on road links. The trip matrix estimation problem m
be considered as a dual of trip assignment problems—
input of one problem is the output of the other.

The conventional gravity model is static with travel cos
independent of traffic flows. This may be based on two
sumptions. First, the underlying traffic system would stick
an equilibrium state defined by the model. In general, ho
ever, an equilibrium may not be the only possible type
steady state of a dynamical system; there may also be o
types of steady states, such as oscillations or chaos. In a
tion, any equilibrium need not be unique, nor always stab
Secondly, the effects of congestion are negligible in the s
tem. In practice, the costs will normally increase with flow
because of congestion effects.

In recent years, there have been many dynamic anal
of trip assignment models and trip matrix estimation mode
but hardly any dynamic considerations of the gravity mod
for a trip distribution. Dendrinos and Sonis introduced ite
tive dynamics to the conventional gravity model.2 In the dy-
namic gravity model, the O–D flows at each time period a
generated from the travel costs at the previous time pe
and the travel costs are assumed to be a function of O
flows.
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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Dendrinos and Sonis suggested that the dynamic gra
model had a potential to show interesting behavior such
chaos, but they did not give any detailed analysis. An unc
strained version of this model was investigated by Jarrett
Zhang.3 It was found that a gravity model with the expone
tial or the power deterrence function can have only po
attractors and period-2 attractors. With the combined de
rence function, the model was found to be chaotic for so
values of parameters in the model. On the other hand,
existence, uniqueness and the stability of an equilibrium
the dynamic gravity model have been analyzed by Zhang
Jarrett,4 where multiple equilibria were identified.

In this paper, the dynamic gravity model, including t
unconstrained, singly constrained and doubly constrai
versions, is investigated. We shall concentrate on mo
with the combined deterrence function and on identifyi
different types of attractors in the model. Different initi
conditions and parameter values will be considered; the c
otic behavior found in the model will be characterized
Liapunov exponents and fractal dimensions. The mode
described in the next section, which is followed by the n
merical analysis of the model in the subsequent section.
apunov exponents and fractal dimensions for chaotic att
tors are calculated in the fourth section. The paper
summarized in the last section. For briefness the term ‘‘gr
ity model’’ means the dynamic gravity model unless oth
wise stated.

II. THE MODEL

Let x be a trip matrix withxi j being the number of trips
from origin i to destinationj . Denote the set of all possibl
values of x by S. This will be defined by non-negativity
constraints on thexi j and appropriate marginal constraint
Then the dynamic gravity model is defined by a mapping2

F: S→S, Fi j ~x!5c i j ~x! f „ci j ~xi j !…,

i 51,2, . . . ,I , j 51,2, . . . ,J, ~2!

wherec i j (x) is an appropriate normalizing factor determin
from the marginal constraints,ci j is the travel cost, which is
normally assumed to be an increasing function ofxi j , f (•) is
the deterrence function. The map~2! defines a discrete-time
dynamical system: ifn is the discrete time, andx(n) the
O–D flow pattern at timen, thenx(n11)5F„x(n)… is the
O–D flow pattern at timen11. For nonwork trips, such a
trips for shopping, we may consider the variations of O–
flows over time periods like each day or each week beca
the number of trips between each O–D pair is the resul
daily or weekly decisions of trip makers. For work trips, o
the other hand, a longer time slice may be more appropr
since the choices of origins~for example, residence loca
tions! and/or destinations~for example, the work place! are
normally based on longer-term decisions.

In order to model the congestion effect between e
O–D pair, Dendrinos and Sonis suggested the following c
function:2

ci j ~xi j !5ci j
0 @11a~xi j /qi j !

g#,
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where ci j
0 is the uncongested travel cost from origini to

destinationj , qi j is the corresponding capacity of the roa
~the ability that roads can accommodate traffic flows!, anda
andg are positive constants. In this function, the minimu
function value is the uncongested cost atxi j 50. Whenxi j

.0, the cost increases with the flow.
The deterrence function is a generalized function

travel costs with one or more parameters for calibration. T
three types of deterrence functions mentioned in the In
duction can be written as1

f ~ci j !5ci j
m exp~2b ci j !,

wherem andb are parameters. Whenm50 andb.0, f is an
exponential deterrence function; whenm,0 andb50 it is a
power deterrence function; and whenm.0 andb.0 it is a
combined deterrence function. The parameters are estim
so that the model reproduces, as close as possible, the
served trip length~cost! distribution, or the distribution of
the number~or equivalently the frequency! of trips over
travel costs.

The normalizing factorc i j (x) in ~2! is chosen so tha
one or more of the marginal constraints~1a!–~1c! are satis-
fied. We can have three types of models with different co
straints, as follows.

~1! Unconstrained model:

Fij~x!5
f „ci j ~xi j !…

(kl f „ckl~xkl!…
, xi j >0, (

i j
xi j 51.

~2! Singly-constrained model. There are two types: t
origin-constrained model,

Fij~x!5oi

f „ci j ~xi j !…

( l f „cil ~xil !…
, xi j >0, (

j
xi j 5oi ;

and the destination-constrained model,

Fi j ~x!5dj

f „ci j ~xi j !…

(kf „ck j~xk j!…
, xi j >0, (

i
xi j 5dj .

~3! The doubly constrained model. In a doubly constrain
model, the normalizing factor is replaced by two sets
constants,ai(x) andbj (x). The model is

Fi j ~x!5ai~x!bj~x! f „ci j ~xi j !…,

xi j >0,

(
i

xi j 5dj , (
j

xi j 5oi , ~3a!

whereai(x) andbj (x) satisfy the equations

ai~x!5
oi

( jbj~x! f „ci j ~xi j !…
, ~3b!

bj~x!5
dj

( iai~x! f „ci j ~xi j !…
. ~3c!

Clearly the state space of the unconstrained model has
mension I 3J21. It can be seen that in the origin
constrained modelFi j depends only on the elements of th
i th row of trip matrix x. Therefore the model consists ofI
independent equations. Each equation, after further norm
ization by dividing each element of the trip matrix byoi , is
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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equivalent to the unconstrained model with a dimensioJ
21. Similarly, the destination-constrained model consists
J independent equations and each component of the m
can be normalized to get a model equivalent to the unc
strained model with a dimensionI 21. Therefore, the uncon
strained and singly constrained models can be written in
more general form, using single subscripts for simplificati

Fi~x!5
f „ci~xi !…

(kf „ck~xk!…
,

xi>0, (
i

xi51, i 51,2, . . . ,K, ~4!

where

ci~xi !5ci
0@11a~xi /qi !

g#, i 51,2, . . . ,K,

f ~ci !5ci
mexp~2bci !, i 51,2, . . . ,K.

WhenK5I 3J the equation represents an unconstrained
namic gravity model; while whenK equalsI or J the equa-
tion represents one component of a singly constrained m
with oi or dj being set to 1 for normalization. A doubl
constrained model, however, is different. The model ha
state space of dimension (I 21)3(J21) and it contains two
sets of parametersai(x) andbj (x) which are interdependen
This will be discussed further in the numerical investig
tions.

In the numerical calculations in the next section, diffe
ent initial conditions and parameter values will be conside
while all other conditions, including the uncongested tra
cost and capacity of each O–D pair, and the marginal to
in the doubly constrained model will be assumed to be giv
The analysis of the unconstrained or singly constrain
model will be based on the generalized form~4! and the
doubly constrained model will be investigated separately

III. NUMERICAL INVESTIGATIONS

A. Unconstrained or singly constrained model

Given an initial condition and the values of paramete
the gravity model~4! can be iterated until a steady state or
attractor is reached. It was found that when the numbe
dimensions is 1 or 2, the system either converges a fi
point or approaches a period-2 orbit. When the dimensio
higher~3 or more!, however, more complicated behavior o
curs in the model. Period doubling and apparently irregu
behavior or chaos were found to be quite typical. The ph
portrait projection of a chaotic attractor found in a model
two origins and two destinations is shown in Fig. 1~a!, where
it can be seen that the attractor is geometrically a very c
plicated object. When the initial condition is chang
slightly, the orbit will soon diverge. Sensitive dependence
initial conditions is shown in Figure 1~b!, where the solid
line is the series starting atx5@0.0300 0.3521 0.5313
0.0866#, while the dashed line is the series starting
x5@0.0301 0.3520 0.5313 0.0866#. The starting time isn
51000. It can be seen that the orbits distinguish themse
after less than 20 iterations.

More features of the dynamic behavior in the model c
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be found by the use of bifurcation diagrams. These are p
duced by increasing the bifurcation parameter step by s
and, at each step, iterating the model until an attracto
reached. When producing these diagrams, the initial co
tions were taken in two ways. One way is simply to use
same initial conditions for all steps of the parameter and
other to use the final states of the system at the previous
of the parameter, given the initial condition at the first ste
There may be a longer transient in the first method than
the second. By starting from different initial conditions, d
ferent attractors may be detected if there is more than
attractor for the same value of the parameter. Figures 2–3
two sets of bifurcation diagrams forb but with different
values ofm. Each set contains two diagrams with two wa
of starting. Figures 4~a!–4~b! are local enlargements of Fig
ures 3~a!–3~b!, respectively, showing the bifurcation se
quences in more detail. For example, there is aperiodic win-
dow when b is approximately between 3.15 and 3.18
Figure 4~a!.

Two important features can be seen in these bifurca
diagrams. First, there are some discontinuous points in F
2~a!, 3~a!, and 4~a!. The reason for this is the existence
multiple attractors in the state space. As the bifurcation
rameter varies, the basins of attractors vary too. Iterati
from the same initial conditions may converge to differe
attractors for different values of the parameter. When
initial condition is the final state of the system at the previo
step of the parameter, as in Figs. 2~b!, 3~b!, and 4~b!, the
system is more likely to approach the same attractor at s
cessive steps of the parameter because the increment o
parameter is very small. The multiplicity of attractors is al
confirmed by the fact that in Figs. 2–3, different starti
points lead to different bifurcation sequences and differ
sets of attractors.

The second feature in the bifurcation diagrams is t
there seems to be a typical bifurcation sequence. As
value of parameter increases, the system starts with an e
librium, followed by aperiod doublingsequence. With the
exception of Fig. 2~b!, the period doubling sequence leads
chaos. In Fig. 2~b!, there is the period doubling up to 16 an
then undoubling to period 2 without going through chao
What is more, chaotic behavior is also followed by period
undoubling, to a periodic orbit. This behavior may be e
plained by the form of the deterrence function. As was m
tioned in the Introduction, a previous study by Jarrett a
Zhang3 indicated that with the exponential and power det
rence functions, the gravity model will have only point a
tractors and period-2 attractors. Both types of deterre
function are monotonic decreasing functions. The combin
deterrence function is not monotonic and has a maximum
c5m/b. For a fixed value ofm, asb→0, the function tends
to an increasing function. This is clearly not a suitable det
rence function. Asb increases gradually, the position of th
maximum moves to the left, and the function becomes
decreasing function in the limit. The typical bifurcation s
quence of the model is equilibrium→periodic doubling and
chaos→ period-2 orbit asb increases. This seems to ind
cate that it is the non-monotonic nature of the deterre
function that causes complicated behavior in the grav
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 1. Chaotic attractor of the unconstrained or singly constrained gravity model, withm 5 8.0, b53.25,a51.0, g51.0. ~a! Phase portrait projection;~b!
sensitive dependence on initial conditions.
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model. It also appears that the model can have only sim
attractors such as equilibrium and period-2 orbit if the de
rence function is monotonic. It is easy to prove this resul
the one-dimensional case, although we have not been ab
prove it in higher dimensions.

B. The doubly constrained model

The doubly constrained model cannot be iterated dire
like the unconstrained or singly constrained model, beca
it contains two sets of parametersai(x) andbj (x) which are
interdependent. The calculation of one set needs the va
of the other set. This suggests an iteration process.
wnloaded 06 May 2007 to 128.112.139.195. Redistribution subject to AIP 
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method from Ortu´zar and Willumsen1 will be used here.
Given the values of deterrence functions for each O–D p
f (ci j ), the algorithm in outline is as follows:

~1! Set all bj (x)51.0 and findai(x)’s by ~1a! that satisfy
the origin constraints.

~2! With the latestai(x)’s and by ~1b!, find bj (x)’s which
satisfy the destination constraints.

~3! Keeping thebj (x)’s fixed, calculateai(x)’s, again by
~1a!.

~4! Repeat steps~2! and ~3! until convergence is achieved

Once the ai(x)’s and bj (x)’s are determined, the
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 2. Bifurcation diagram of the unconstrained or singly constrained gravity model forb, with m57.0, a51.0, g51.0. ~a! Initial conditions are the same
for all values ofb; ~b! initial conditions are the final states of the previous step ofb.
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Fi j (x)’s can be obtained by~3a!. Thus the numerical calcu
lations of the doubly constrained model involve two nes
iterations. The inner iteration is the one outlined above
obtain ai(x)’s and bj (x)’s so as to getFi j (x)’s; the outer
iteration isx(n11)5F„x(n)…, made forn.

Numerical calculations showed that the dynamic beh
ior in the doubly constrained model is similar to that in t
unconstrained or singly constrained models. When the
mension is lower, there are still only point and period-2
tractors. When the dimension is higher~4 or more!, the be-
havior is more complicated. Chaos was found to exist wid
in the model. Figures 5~a!–5~b! show one of the chaotic
attractors found in a model of three origins and three de
nations. The time series appears to be even more irreg
than that for the chaotic attractor in the unconstrained
singly constrained model@Figure 1~b!#. The power spectrum
is continuous, implying the motion is chaotic.
wnloaded 06 May 2007 to 128.112.139.195. Redistribution subject to AIP 
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Bifurcation diagrams were produced for the four para
etersa, g, m andb in the model and for models with up t
four origins and four destinations. The diagrams are, ag
more complicated than those for the unconstrained or sin
constrained model. There does not seem to be an obv
periodic doubling sequence or any other clear bifurcat
route in the diagrams. The reason for the more irregular
havior in the doubly constrained gravity model may be th
the model and the state space are more complicated.
unconstrained or singly constrained model is a mapping o
simplex onto itself while the domain of a doubly constrain
model is an (I 21)(J21)-dimensional closed convex subs
of a Cartesian product of simplexes.

IV. CHARACTERIZATION OF CHAOTIC BEHAVIOR

In this section, chaotic behavior found in the gravi
model is examined by Liapunov exponents and fractal
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 3. Bifurcation diagram of the unconstrained or singly constrained gravity model forb, with m58.0, a51.0, g51.0. ~a! Initial conditions are the same
for all values ofb; ~b! initial conditions are the final states of the previous step ofb.
re
th
ca
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he

e
g

mensions. The algorithms for calculating the two measu
adopted here will be outlined briefly and then applied to
gravity models. The programs developed were tested by
culating the two measures of a chaotic attractor of the w
known Hénon map5 and good agreements with those in t
literature6,7 were obtained.

A. Liapunov exponents

Chaotic attractors are the attractors with sensitive dep
dence on initial conditions.8 The divergence of neighborin
trajectories can be measured by positiveLiapunov exponents.
Consider the gravity modelx(n11)5F„x(n)…. Let J~x! be
the Jacobian matrix ofF~x! at xPS:J(x)5]F(x)/]x. Denote
wnloaded 06 May 2007 to 128.112.139.195. Redistribution subject to AIP 
s
e
l-

l-

n-

the Jacobian matrix]F(n)(x…/]x of the nth iterationF(n)(x)
by J. Then, by the chain rule of differentiation we have

J5J„F~n21!~x!…•••J„F~x!…J~x!, ~5!

whereJ„F(m)(x)… is the Jacobian matrix ofF evaluated at the
point F(m)(x). Let s i be theith eigenvalue of the matrix,

Lim
n→`

@J* J#1/2n,

where J* stands for the transpose ofJ. Then theith Li-
apunov exponent is defined as8

l i5Logus i u.
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FIG. 4. Enlargements of Figs. 3~a!–3~b!. ~a! Enlargement of Fig. 3~a!; ~b! enlargement of Fig. 3~b!.
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Two methods for calculating Liapunov exponents have b
suggested by Wolfet al.9 and Eckmann and Ruelle,8 respec-
tively. The second algorithm, which involves calculating t
product~5! by QR factorizations, is usually preferred6 and is
used here. The algorithm can be used directly to calculate
Liapunov exponents for the unconstrained or the singly c
strained gravity model. Liapunov exponents for the chao
attractor shown in Fig. 1 were calculated. The three ex
nents were found to be@0.2020.0220.70#, with the first one
being positive. Shown in Fig. 6 is the first Liapunov exp
nent againstb with the same values of parameters as thos
Fig. 2~a!. The second and the third exponents are both ne
tive. By comparing Fig. 6 with Fig. 2~a! it can be seen tha
wnloaded 06 May 2007 to 128.112.139.195. Redistribution subject to AIP 
n

he
-

c
-

in
a-

the first exponent is negative for nonchaotic attractors an
positive for chaotic ones.

For the doubly constrained gravity model, the partial d
rivatives in the Jacobian matrix need to be calculated
merically because the two sets of normalizing factors in
model are interdependent. Consider the doubly constra
model ~3!. The partial derivatives can be found to be

]Fi j

]xkl
5bj~x! f „ci j ~xi j !…

]

]xkl
ai~x!

1ai~x! f „ci j ~xi j !…
]

]xkl
bj~x!

1ai~x!bj~x!
]

]xkl
f „ci j ~xi j !…, ~6!
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FIG. 5. Chaotic attractor of the doubly constrained gravity model, withm54.5, b51.25,a51.5, g51.5. ~a! Number of trips from origin 2 to destination 1
~b! power spectrum.
where

]

]xkl
f „ci j ~xi j !…5H d

dxkl
f „ckl~xkl!, if i 5k, j 5 l ,

0, otherwise.

By equations ~3b! and ~3c!, the partial derivatives
]ai(x…/]xkl and]bj (x…/]xkl should satisfy
wnloaded 06 May 2007 to 128.112.139.195. Redistribution subject to AIP 
]

]xkl
ai~x!5

oi

~( jbj~x! f „ci j ~xi j !…!2

3(
j

F f „ci j ~xi j !…
]

]xkl
bj~x!

1bj~x!
]

]xkl
f „ci j ~xi j !…G ,
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]

]xkl
bj~x!5

dj

~( iai~x! f „ci j ~xi j !…!2

3(
i

F f „ci j ~xi j !…
]

]xkl
ai~x!

1ai~x!
]

]xkl
f „ci j ~xi j !…G ,

which can be simplified as

]

]xkl
ai~x!52

@ai~x!#2

oi
(

j
F f „ci j ~xi j !…

]

]xkl
bj~x!

1bj~x!
]

]xkl
f „ci j ~xi j !…G ,

]

]xkl
bj~x!52

@bj~x!#2

dj
(

i
F f „ci j ~xi j !…

]

]xkl
ai~x!

1ai~x!
]

]xkl
f „ci j ~xi j !…G ,

for i , k51,2,...,I , and j ,l 51,2,...,J.
There are (I 1J)3I 3J equations which are linear with

respect to the same number of unknowns,]ai(x…/]xkl and
]bj (x…/]xkl . Thus, the set of equations can be solved
merically. The partial derivatives can then be found by~6! to
get the Jacobian matrix. The algorithm by Eckmann a
Ruelle can now be used to calculate the Liapunov expon
for the doubly constrained gravity model. Liapunov exp
nents were calculated for the chaotic attractor shown in F
5 and the result is@0.124820.144920.359720.9477#. The
first one is positive, which confirms the attractor is chaot

B. Fractal dimensions

Fractal dimensions may be used to characterize the
metric feature of chaotic attractors. Several types of fra
dimension have been defined in the literature.10 The main
reason here for choosing one type of dimension over ano
is the ease and accuracy of its computation. The commo
used box-counting algorithm for calculating the fractal
mension is very inefficient.10 The algorithm for computing
thecorrelation dimensiondue to Grassberger and Procacc7

FIG. 6. The first Liapunov exponents againstb for the unconstrained or
singly constrained gravity model.
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is more efficient and is therefore employed to estimate
correlation dimension for chaotic attractors in the grav
models.

The correlation dimension is defined based on thecor-
relation functionof an attractor. A correlation function is
the average fraction of points within a certain radiusr on
the attractor. Let the sequence ofN points
$x(1),...,x(n),...,x(N)%be an orbit on an attractor in syste
~2!. Then the correlation functionC(r) of the attractor is
given by10

C~r!5 Lim
N→`

1

N2 $The number of points ~x~m!,x~n!!

such that ux~m!2x~n!u,r%.

The correlation dimensionDC is defined as10

Dc5Lim
r→0

log C~r!

log r
.

In other words, it is the slope of the plot of log„C(r)… versus
log(r).

Using the above algorithm, the dimension for the chao
attractor in Fig. 1 found in the unconstrained or singly co
strained gravity model is calculated. The dimension e
mated from the log–log plot of the correlation function
1.8251, though the attractor lies in a three-dimensional s
space. Also calculated is the correlation dimension for
chaotic attractor shown in Fig. 5 in the doubly constrain
gravity model. The state space of this model is four dime
sional. The slope of the log–log plot of the correlation fun
tion, or the correlation dimension, is found to be 1.65
These results mean that the dynamic gravity model is adis-
sipative system: the phase volume shrinks with time. Th
state space of the models considered above is three or
dimensional, but the evolution of the system is such that
final variations of O–D flows settle down in the state spa
to a region of dimension 1.7 or 1.8.

V. CONCLUSIONS

The dynamic gravity model has been investigated
merically in an attempt to identify different types of dynam
behavior in the model. Point attractors and period-2 attr
tors have been found to be the main feature in the model
lower dimensions. When the dimension is higher~3 or more
for unconstrained or singly constrained model, and 4 or m
for the doubly constrained model!, period doubling, chaos
and other complicated bifurcations were found. The prese
of chaos was confirmed by positive Liapunov exponents
fractal dimension. What behavior the system would exh
in practice will depend on the values that the parameters
take. These parameter values are normally different for
ferent geographical areas. For a particular area, empir
studies are needed to determine the type of model and
values of parameters in the model. Then we are able to
out if the system would stick to a stable equilibrium or if th
behavior would be chaotic.

The significance of the results of the paper may be
twofold. First, it is important for transport planners and e
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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gineers to be aware of the potential of irregular or chao
behavior in the gravity model. It is also important to b
aware that an equilibrium in the gravity model may not
unique and stable. Even though the unstable or chaotic
havior is not dominant in the system, it may occur temp
rarily as a result of disturbances caused by traffic incide
or accidents. It would be misleading to predict an O–D flo
pattern~at a presumed equilibrium! from a static model when
an underlying system is not at an equilibrium steady st
Secondly, when the system is in a chaotic regime, we can
use the model to predict the future variations of the system
we normally do with a deterministic model. However, t
variations will be confined in the region of the chaotic attra
tor, whose shape, position, and so on can be examined to
some idea on the variations and distributions of O–D flo
in the state space. For example, here, the final variation
O–D flows in three- or four-dimensional systems were fou
to settle down in the state space to a region of dimens
between 1 and 2. Further research should put more emph
on the validation and calibration of the gravity model, and
finding out to what extent the form of deterrence functio
and parameters values may be ‘‘borrowed’’ or transfer
from one area to another. It would also be of interest to ca
out theoretical analysis on the typical bifurcation seque
found in the unconstrained or singly constrained grav
model.
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