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Coexistence and chaos in complex ecologies
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Abstract

Many complex dynamical systems in ecology, economics, neurology, and elsewhere, in which agents compete fo
resources, exhibit apparently chaotic fluctuations. This Letter proposes a purely deterministic mechanism for evolving robu
but weakly chaotic systems that exhibit adaptation, self-organization, sporadic volatility, and punctuated equilibria.
 2004 Elsevier B.V. All rights reserved.
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An ongoing debate[1,2] among ecologists cente
on the fact that while most theoretical models p
dict instability and extinction of most species[3–5],
observations in nature suggest that complex and
verse ecologies are relatively stable[6–8]. While lab-
oratory experiments with flour beetles suggest ch
[9,10], there is scant evidence of chaos in nature p
haps because of the dynamical complexity and m
surement limitations[11,12]. Our work suggests tha
erratic fluctuations, which are common and are u
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ally attributed to random external influences, may
evidence of chaos.

Many different mathematical models[13] have
been used to study the dynamics of interacting spe
or agents in a variety of different contexts and s
tems. The parameters in such models can be d
mined in several ways, including using values tak
from real ecologies[14], using random values[15],
or building up the values by choosing species r
domly from some large pool containing species
various types[16]. In addition, the parameters can
changed in time to model evolution, mutation, extin
tion, etc.[17–19]. The majority of these models us
random or stochastic terms, which can give rise
aperiodic or chaotic type behavior. In contrast, m
.
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non-evolutionary models produce chaos over a r
tively narrow range of parameters, bounded on
side by stable behaviour and on the other by ext
tion.

Here we show that a simple model with real
tic and purely deterministic adaptation can produ
highly complex systems in which most species co
ist with weakly chaotic fluctuations independent of t
initial conditions. The proposed mechanism offer
possible explanation for the observed biodiversity a
at least some of the fluctuations and unpredictabilit
nature, and it suggests why it may be difficult to sta
lize such systems by human intervention.

Our model is a variant of the generalized Lotk
Volterra equations[20,21]. This model was chosen be
cause of its simplicity and the fact that it can be view
as the first approximation in a Taylor series expans
for a much wider class of models[22]. We considerN
competing species with populationxi for i = 1 to N

satisfying

(1)
dxi

dt
= rixi

(
1−

N∑
j=1

aij xj

)
,

where the vector of growth ratesri and the matrix
of interactionsaij , are the parameters which mod
the biology (economics, sociology, etc.). The eleme
aij , which are positive to indicate competition, d
scribe the average extent to which members of spe
j compete with members of speciesi. A key point that
is often overlooked in these models is that as any g
species approaches extinction, the averaging of theaij

elements for this specieswill occur over smaller and
smaller populations, and hence more variability
comes possible, causing the model to fail.

In a general ecology, one expects the linear gro
ratesri to be different for each species as well as
species interactionsaij , to be both positive and neg
ative, especially if the species are animals rather tha
plants. However, Coste et al.[23] have shown that an
suchN -dimensional Lotka–Volterra system can be e
tended to an equivalent(N + 1)-dimensional system
with positiveaij and equal growth rates. Since we a
concerned with high-dimensional systems, in the
terest of simplicity, we takeaij � 0 and ri = 1 for
1 � i, j � N . Taking all theaij positive, i.e. look-
ing at competitive systems, also guarantees that
solutions remain bounded in the range 0 to 1, bu
ignores mutualism and the effect of varying individu
prey populations on the predators. However, the res
are not substantially altered if some of theaij are al-
lowed to be negative. Finally, without further loss
generality, we can take the self-interaction termsaii

equal to unity, which is equivalent to measuringxi in
units of its carrying capacity in the absence of the ot
species.

For competitive systems, chaos is not possible w
fewer than four species because the dynamics occu
an (N − 1)-dimensional carrying simplex. For larg
ecologies, a sense of the rarity of parameter values
lead to chaotic solutions follows from the observat
that choosingaij from a random exponential distribu
tion (so as to have a broad spectrum of positive valu
with mean 1.0, withN = 4 leads to chaotic solution
with all species coexisting in only about 1 in 105 cases
for a sample of 106 cases, and forN = 5 in only 1 in
4× 105 cases. Coexisting chaotic systems for reali
cally largeN (� 100) are vanishingly rare and almo
impossible to find in such a random search, altho
work of Smale[24] guarantees their existence. T
conditions for coexistence (an equilibrium with allxi

positive) and for chaos (the equilibrium being loca
unstable) are somewhat mutually exclusive and oc
in very small regions of this vast space of paramete

Nature probably does not choose randomly fr
all possible ecologies, but instead individual spec
adapt to their environment so as to enhance their
vival. Many models have attempted to include su
adaptation, as mention earlier. These models often
sume extinction when a species drops below a crit
level [25,26]or modify the basic equations to preve
such extinction[27], but we believe there is conside
able justification to instead consider models in wh
adaptation occurs primarilyat these points. The ind
viduals in a nearly extinct species are presumably
most fit and are those best able to survive by finding
ternate resources and by evading their predators. T
as a species approaches extinction, the increased
ability of theaij coefficients in Eq.(1) along with the
effects of directional selection may lead to a shift
the aij coefficients. Also, when the population of
species becomes too small, its predators may fin
too inefficient to prey upon, and it is thus better able
compete for resources. Finally, the model could be
terpreted as species becoming extinct and then b
replaced with new similar (perhaps mutated) spe
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how
ations in
Fig. 1. Evolution of the largest Lyapunov exponent (0.02 full scale), total biomass (0.05 full scale), and biodiversity (1 full scale) showing
a typical system with 100 species slowly evolves toward a weakly chaotic state with high diversity and then remains there with fluctu
the biodiversity suggestive of sporadic volatility and punctuated equilibria.
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that are less susceptible to the prevailing competi
[28,29]. We model this process as follows: initially th
elementsaij are taken from an exponential distrib
tion with mean 1, although any distribution of pos
tive values will suffice. The system converges fas
to the weakly chaotic state if the meanaij is close
to the desired final value, which is typically on th
order of

√
10/N . A time on the order oft = 106 is

usually required to reach a state that is chaotic in
absence of adaptation. Initialxi values are not criti-
cal, and they can be either random in the range
1 or purely deterministic. At each iteration for whic
any xi falls below 10−6, xi is clamped at 10−6 and
its matrix elementsaij are replaced withaij (1− ε1xj )

for j = 1 to N andj �= i until the decline is arrested
In addition to this species-specific adaptation, all
off-diagonal elements of the matrix are increased
the factor (1+ ε2) every 20 iterations to model gener
adaptation of the entire ecosystem over time towar
enhanced competition or to model a slowly increas
environmental stress (e.g., climate change or hum
encroachment[30]). The values are not critical, bu
they should be small and are here taken asε1 = 10−4

andε2 = 10−6. There may be some advantage to st
ing with relatively largeε values and slowly reducin
them in the spirit of simulated annealing.

In this way, the system is guaranteed to have alN

species coexisting with near optimal fitness. Note
this model is purely deterministic (no stochastic co
ponent) even while it is adapting, and thus any per
tent aperiodic fluctuations are evidence of determi
tic chaos. In addition to its ecological plausibility, th
method provides a powerful numerical algorithm
finding the rare chaotic solutions for largeN .

Such a system slowly evolves into one that
weakly chaotic with a typical largest Lyapunov exp
nent of 0.001± 0.001, whereupon it remains chao
with all or most of the species coexisting even if t
adaptation mechanism described above is turned off
The Lyapunov exponent[31,32] is a measure of th
sensitivity to initial conditions, with a positive valu
signifying chaos. Abrupt or premature termination
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off.
Fig. 2. Typical chaotic fluctuations in the total biomass and biodiversity for a system with 100 species after adaptation has been turned
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Fig. 3. A portion of the strange attractor for the same typical system as inFig. 2with 100 species after adaptation has been turned off.
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the adaptation mechanism, however, may result in
extinction of some species and the suppression o
chaos.

Fig. 1 shows the evolution of the largest Lyapun
exponent along with the total biomass

(2)M = 1

N

N∑
i=1

xi

and biodiversity

(3)D = 1− 1

2(N − 1)

N∑
i=1

∣∣∣∣ xi

M
− 1

∣∣∣∣
for a typical highly competitive case that starts w
most of the 100 species on the verge of extinction
strongly chaotic dynamics. As it evolves, the larg
Lyapunov exponent generally decreases but rem
mostly positive, while the biomass and biodiversity
crease. Fluctuations in the biodiversity are sugges
of sporadic volatility andpunctuated equilibria[33].
A similar final state is reached if the initialaij values
are small, giving a high initial degree of coexisten
and stability with a temporally increasing Lyapunov
exponent.

Fig. 2 shows the chaotic fluctuations in the to
biomass and biodiversity for a typical such syst
with N = 100 after adaptation has been turned
Note the very different time scales for the adaptat
in Fig. 1 and the fluctuations inFig. 2. Fig. 2 can be
viewed as a slice of the dynamics inFig. 1over a short
time scale where adaptation is negligible. Fluctuati
in the population of individual species are much lar
than in the total biomass.

Fig. 3 shows a portion of the strange attractor
the same system projected onto the space of total
mass and biodiversity. The Kaplan–Yorke dimens
[34] of the attractor is about 6.3 with two positive Ly
punov exponents, making it hyperchaotic, althou
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only weakly so with a largest Lyapunov exponent
about 0.0021. This value implies that the system
memory and predictability on the time scale of 5
growth times for a typical species.

There does not appear to be a unique distributio
aij toward which the model evolves, suggesting t
a wide variety of weakly chaotic ecologies is poss
ble, although the mean value of the matrix eleme
for the case inFigs. 2 and 3is about 0.38, which is
typical of cases withN = 100. We have generate
model ecologies with up to 400 surviving species
this method. Since these systems are fully conne
with relatively large connection strengths, they viola
the May–Wigner stability condition[35], which states
that a network whose stability matrix contains e
ments from a normal random distribution with me
zero and varianceσ 2 is almost certainly stable (an
hence non-chaotic) ifNCσ 2 < 1, where the connec
tivity C is the probability that a matrix element
non-zero.

In conclusion, we expect that the evolution meth
would work for almost any network model charact
ized by a matrix of interactions between its agen
and it is not restricted to models of ecology. Other n
works that involve competition for resources and t
are subject to crashes include financial markets,
electrical power grid, the Internet, traffic flow, and t
brain. It is possible that all these systems are pus
toward a weakly chaotic dynamic by a mechani
similar to the one described here, and that such a s
is relatively robust to modest disturbances, either
tentional or unintentional. This state has been ca
“the edge of chaos”[36], and it provides the cond
tion under which complex systems exhibit adaptati
self-organization, scale invariance, self-organized cri
icality, and similar features that characterize dissi
tive systems that are driven far from equilibrium
the throughput of energy or some equivalent quantity
Thus models of this type are ripe for further stu
and detailed comparison with the corresponding n
ural systems.
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