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Computer science and biology have enjoyed a long and
fruitful relationship for decades. Biologists rely on computa-
tional methods to analyze and integrate large data sets, while
several computational methods were inspired by the high-
level design principles of biological systems. Recently, these
two directions have been converging. In this review, we argue
that thinking computationally about biological processes may
lead to more accurate models, which in turn can be used to
improve the design of algorithms. We discuss the similar
mechanisms and requirements shared by computational and
biological processes and then present several recent studies
that apply this joint analysis strategy to problems related to
coordination, network analysis, and tracking and vision. We
also discuss additional biological processes that can be
studied in a similar manner and link them to potential
computational problems. With the rapid accumulation of data
detailing the inner workings of biological systems, we expect
this direction of coupling biological and computational
studies to greatly expand in the future.
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Introduction

Biologists have been increasingly relying on sophisticated
computational methods, especially over the last two decades
as molecular data have rapidly accumulated. Computational
tools for searching large databases, including BLAST (Altschul
et al, 1990), are now routinely used by experimentalists.
Genome sequencing and assembly rely heavily on algorithms
to speed up data accumulation and analysis (Gusfield, 1997;
Trapnell and Salzberg, 2009; Schatz et al, 2010). Computa-
tional methods have also been developed for integrating
various types of functional genomics data and using them to
create models of regulatory networks and other interactions in
the cell (Alon, 2006; Huttenhower et al, 2009; Myers et al,
2009). Indeed, several computational biology departments

have been established over the last few years that are focused
on developing additional computational methods to aid in
solving life science’s greatest mysteries.

Computer scientists have also relied on biological systems
for inspiration, especially when developing optimization
methods (Table I). Early work on artificial intelligence in the
1960s leveraged ideas related to the activity of neurons in the
brain to develop a class of computational methods known as
neural networks (Hebb, 1949; Hopfield, 1982; Bishop, 1996),
which have been used in many machine learning applications
ranging from image segmentation to computing missile
trajectories (Bishop, 1996). Other optimization techniques,
such as genetic algorithms (Goldberg, 1989), were inspired by
common operations in DNA sequence evolution and have
been widely applied over the last 20 years. Social insects
(Dorigo et al, 2006) and particle swarms (Kennedy and
Eberhart, 2002) have also motivated the study of how self-
organization emerges from local interactions (Abelson et al,
2000; Committee on Frontiers at the Interface of Computing,
Biology, and National Research Council, 2005). These ideas
have been applied extensively to multi-agent system optimiza-
tion (Deneubourg et al, 1990; Ferber, 1999). A number of
additional methods, including non-negative matrix factoriza-
tion (Lee and Seung, 1999) and population protocols (Aspnes
and Ruppert, 2009; Chazelle, 2009) have also capitalized on
biological insights to derive new computing paradigms.

While all of these methods have led to successful applica-
tions, they only relied on a high-level (and sometimes flawed)
understanding of the biological processes they were based on,
and thus they usually did not directly lead to new biological
insights. Similarly, though novel computational methods have
been developed to help researchers learn new biology, the
application of these methods to the biological problem (i.e.,
the biological system itself) rarely fed back to help computer
scientists design better algorithms. Thus, the two directions—
relying on biological ideas to develop computational methods
and using computational methods to study biology—remained
largely separated (Figure 1).

Shared principles of computational and
biological systems

There are many parallel requirements of computational and
biological systems, which suggest that one can learn from the
other (Figure 2). First, like virtually all large-scale computing
platforms, biological systems are mostly distributed consisting
of molecules, cells, or organisms that interact, coordinate, and
make decisions without central control (Seeley, 2002;
Babaoglu et al, 2006; Figure 2A). Second, biological processes
need to be able to successfully handle failures and attacks
to thrive (Jeong et al, 2000; Kitano, 2004). Robustness is also
a key property algorithm engineers covet when designing
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computing systems that persist in noisy environments. Third,
networks serve as an important medium through which
interactions occur and information propagates (Alon, 2006;
Figure 2B). In both settings, the structure of these networks is

often directly linked to the system’s function. Fourth,
biological systems are often modular; that is, they reuse
certain components in multiple, and sometimes very different,
applications. This is a key design principle in many program-
ming languages and in large complex networks (Kashtan and
Alon, 2005; Fortunato, 2010; Figure 2C). Fifth, biological
processes are often stochastic (Kaern et al, 2005) resembling
randomized algorithms whose power has been well docu-
mented for the design of approximation algorithms and whose
use ranges from single process systems to large distributed
systems (Motwani and Raghavan, 1996; Vazirani, 2004;
Figure 2D).

These shared principles indicate that thinking computation-
ally about biological systems may lead to better understanding
of their function. However, there are also differences between
biological and computational systems. While computational
systems are often focused on speed, biological systems can
adapt dynamically to changing environments and pressures
and have a keen ability to reach joint decisions with very
limited knowledge of their surroundings. These aspects, while
desirable, are still not fully realized by computational systems.
By studying how biological systems operate within these
constraints and conditions to solve problems, we may be able
to infer new directions for addressing these issues within
computational systems.

With recent advances in our ability to generate and analyze
biological data, new studies have emerged that have linked
computational problems to biological problems, including
cell-fate determination, slime mold tunneling, fault tolerance
in regulatory networks, and bat navigation (Table II). In this
review, we discuss a number of these studies focusing on three
areas of interest: coordination in large distributed systems,
network processes and design, and tracking and vision
(Figure 3). For each area, we highlight several studies that
demonstrate how computational thinking (Wing, 2006) can

Table I Examples of biological systems that have inspired computational
algorithms

Biology Computer science References

Neural networks Machine learning Hebb (1949), Hopfield
(1982), Bishop (1996)

Sequence evolution Genetic algorithms Goldberg (1989)
Sequence evolution DNA computing Adleman (1994),

Benenson et al (2004),
Istrail et al (2007),
Păun et al (2004)

Ant colonies,
swarms

Search optimization Kennedy and Eberhart
(2002), Committee on
Frontiers at the Interface
of Computing, Biology,
and National Research
Council (2005),
Dorigo et al (2006)

Social insects, flocks Network design Deneubourg et al
(1990), Beckers et al
(1994), Theraulaz and
Bonabeau (1995), Coore
et al (1997), Ferber
(1999), Abelson et al
(2000), Fewell (2003),
Werfel and Nagpal
(2006)

Immune system Modeling and
optimization

Forrest et al (1994),
Kephart et al (1995),
Garrett (2005),
Greensmith et al (2005)

Visual system Dimensionality
reduction

Lee and Seung (1999)

Most of these examples were based on a high-level understanding of the system
and therefore usually did not directly lead to new biological insights.

Traditional studies Computational thinking 

Microarray Clustering

Biology Computer science Biology Computer science 

Feed-forward
neuronal network

Feedback
mechanism

Low complexity
stochastic
sfficientHuman brain 

A B

Figure 1 Traditional studies versus computational thinking. (A) Traditionally, biologists leveraged computing power to analyze and process data (e.g., hierarchically
clustering gene expression microarrays to predict protein function), and computer scientists used high-level design principles of biological systems to motivate new
computational algorithms (e.g., neural networks). Rarely these two directions were coupled and mutually beneficial. (B) By thinking computationally about how biological
systems process information (Nurse, 2008; Hogeweg, 2011), we can develop improved models and algorithms and provide a more coherent explanation of how and
why the system operates as it does.
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lead to new biological insights and new algorithms. We also
discuss several additional biological processes for which better
understanding of how they operate could lead to solutions to
long-standing computer science problems.

Note that from the computer science point of view, our focus
in this review is on algorithms. Another important area which
has both benefited from, and contributed to, the improved
understanding of biological systems relates to engineering
computational systems. We briefly discuss some examples for
this direction including robotics and synthetic biology.
However, this direction deserves its own review(s) and is thus
out of the scope of this paper.

Coordination

Coordination is a major challenge for both computational and
biological processes. At the molecular level, coordination is
required to activate sets of genes that together respond to
external conditions (Kaur et al, 2010). At the cellular level, cells
coordinate to determine cell fate during development (Afek
et al, 2011) and to synchronize heart beats (Mirollo and
Strogatz, 1990). Organisms, including the octopus, need to
coordinate the activation of limbs (Sumbre et al, 2001), while
shoals of fish coordinate to avoid predators (Ward et al, 2011).
In computational systems, coordination is required for
virtually all large-scale computing systems. Examples include
search engines that coordinate thousands of back-end servers

to quickly respond to user queries (Brin and Page, 1998),
sensor networks that aggregate data when monitoring
environments (Mainwaring et al, 2002; Werner-Allen et al,
2006), and mobile networks that synchronize data and
schedules across multiple devices (Bernard et al, 2004). Below
we discuss a few examples in detail.

The fly brain and maximal independent set

A recent example of a coordination-focused study that jointly
addressed a biological and computational problem is from
work on fly brain development. During development of the fly
brain, some cells in the pre-neural clusters become sensory
organ precursor (SOP) cells. These cells later attach to small
bristles on the fly’s forehead that are eventually used to sense
the environment. It has long been known that the distribution
of SOP and non-SOP cells follow a strict spacing pattern
(Rendel et al, 1965). In particular, cells that become SOPs
inhibit their neighbors so that SOPs are surrounded by
non-SOPs (Figure 3A, left). However, the exact process by
which such global organization is achieved in a short time and
by starting with all-equivalent cells remains unknown.

While studying this problem, Afek et al (2011) made a
new and interesting observation: the requirements from
SOP selection—that each cell was either an SOP or directly
connected to an SOP and that no two SOPs were connected—
are similar to the formulation of the maximal independent set
(MIS) problem in computer science. The MIS problem seeks to

Randomized algorithmsModular programming Modular structure

Decentralized coordinationDecentralized systems Rumor spreading Signal propagation

MAPK pathway
(partial) 

Predator

Protein
complexes

in PPI
network

Stochastic gene expression

Time A Time B

Reusable components Randomness and stochasticity

Distributed computing Network processes

You

SOS RasGRP

Ras

RAF

MAPKMEK

Bob

C D

A B

def main()

def algorithm()

def merge()

def sort()

def split ( )

Figure 2 Parallels between computational and biological systems. (A) Biological and computational systems often coordinate and maintain functionality without relying
on a central controller. (B) Networks are often the medium through which processes spread, either on the Web or in the cell. (C) Modularity is a common design principle
in programming languages and also serves as the basis for increasing complexity and flexibility in evolving systems. (D) Stochastic processes in computational and
biological settings help to remain robust in constrained, noisy environments.
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elect a set of local leaders in a graph such that all other nodes in
the graph are connected to a member of the MIS and no two
MIS members are connected to each other. An MIS in an ad-hoc
wireless network serves as a routing backbone by which nodes
can communicate. It also corresponds to a distributed
partitioning of the nodes into clusters that can be used to
optimize network bandwidth and resource distribution in the
network. Thus, this is an important practical problem that has
been studied for more than two decades. However, the solution
used by the fly seemed different from all previous algorithms
suggested for this task (Luby, 1985; Alon et al, 1986). In
particular, the fly’s solution relied on very short messages and
did not use any information regarding the number of neighbors
that can still become SOPs.

To study how the fly was still able to solve the SOP selection
problem under such limitations, Afek et al (2011) used
microscopy experiments to follow SOP selection in developing
flies. Coupling the results of these experiments with possible
molecular processes for the activation of the specific proteins
known to be involved in the SOP selection process, they
discovered that a stochastic feedback process, in which
selection probability increases as a function of time, provides
the best match to the experimental results. Based on these
findings, they were able to develop a new computational
algorithm for MIS selection that is more efficient and more
robust than previous methods. Unlike previous MIS selection
methods (Luby, 1985; Alon et al, 1986), the fly-based method
does not use any knowledge about the number of neighbors a
node has (its degree). Instead, with probability that increases
exponentially over time, each node that has not already
connected to an MIS node proposes itself as an MIS node. This
leads to a selection pattern in which denser areas in the graph
are assigned MIS nodes early on and less populated areas are

assigned at later stages (see Figure 3A). While the original
algorithm of Afek et al (2011) required that nodes know an
upper bound on the total number of nodes in the network, a
new version of this algorithm (Afek et al, 2011) removes this
requirement, leading to the first MIS selection algorithm that
does not require any knowledge of the network or its topology.
This fly-based method is specifically appropriate for sensor
networks in which nodes might be randomly and dynamically
distributed in an environment and have no knowledge of
global topology. Thus, by studying a very specific cellular
developmental system, the authors helped resolve a long-
standing computer science problem and improved our under-
standing of cell-fate determination.

Additional coordination problems

Several additional coordination problems have been studied,
separately, in biology and computer science. The octopus
presents a particularly interesting case with its eight arms.
From what we know (Mather et al, 2010), the octopus employs
a hierarchy of coordination elements. At the top level, the brain
is in charge of what arm to use when, for example, seeking
prey; however, at the lowest level each arm appears to act
independently, adjusting its grip, size, and rotation without
consulting the brain (Sumbre et al, 2001). It is believed that a
large number of neurons in the octopus are outside the brain
and in the arms which is highly unusual for vertebrates
(Mather et al, 2010). Further, Mather et al (2010) claim that
there is a third intermediate layer that allows coordination
and communication between neighboring arms without
going through the brain. Hierarchical distributed systems
have also been studied as a means to improve load balancing,
scheduling, and fault tolerance (Feitelson, 1990). Though no

Table II Examples of new synergistic relationship between biology and computer science

Area Biological system Computational problem References Model Algorithm

Coordination Fly SOP selection Maximal independent set Afek et al (2011) | |
Fireflies flashing Synchronization Glass (2001), Lucarelli and Wang (2004),

Hong and Scaglione (2005), Werner-
Allen et al (2005), Babaoglu et al (2007),
Pagliari and Scaglione (2011)

| |

*Octopus neural control Hierarchical computing Sumbre et al (2001) 3 3
*Fish shoals/honeybees Ensemble methods Marshall et al (2009), Conradt (2011),

Ward et al (2011)
| 3

*Quorum sensing Consensus (Marshall et al, 2009) | 3
*DNA replication Resource allocation Farkash-Amar et al, (2008) 3 3
*Mate selection Graph matching — 3 3

Networks Slime mold tunneling Network design Li et al (2010), Tero et al (2010),
Watanabe et al (2011)

| |

Gene regulation Fault tolerance Gu et al (2003), Balaji et al (2006), Gitter
et al (2009), Pomerance et al (2009)

| |

*Protein localization Routing Shapiro et al (2009) 3 3
*Brain networks Network design Chen et al (2006) 3 3
*Cell signaling Clustering Wokoma et al (2005), Charalambous

and Cui (2008)
| |

Tracking and
Vision

Visual cortex Object recognition Riesenhuber and Poggio (1999), Serre
et al (2007a, b)

| |

Echolocation in bats Localization Ghose et al (2006), Yovel et al (2010) | |
*Visual cortex One-shot machine learning Li et al (2006), Serre and Poggio (2010) 3 3

The biological systems are divided into three areas: coordination, networks, and tracking and vision. For each system, we show the analogous computational problem
and whether a model or algorithm was derived by previous works. Rows beginning with a star denote potential future work.
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works that we are aware of has attempted to integrate these
studies, lessons learned from the octopus can potentially be
used to improve these systems, while also helping to better
understand how different layers of control collectively
coordinate actions.

Another example of a problem pertinent to biological and
computational systems is distributed consensus (Simeone
et al, 2008). Consensus is a building block in several
computational procedures and is known to be an extremely
hard problem for massive, asynchronous, and failure-prone
systems (Lynch, 1996). In biology, consensus has an important
role in coordinating populations. Fish, for example, are
constantly under the threat of predation and must be able to
quickly sense the environment and make decisions. The
formation of groups can aid in collective vigilance because
surveillance can be distributed among a set of fish. In addition,
the group is likely to avoid individual errors by pooling
sensory data together. However, the group also bears
additional communication costs of propagating information
to other members of the group, which delays decision making

(Ward et al, 2011). Ward et al (2011) have empirically shown
that fish make faster and more accurate decisions under
predation threat in large groups (shoals) compared with
smaller groups. The self-organization of shoals, the authors
argue, naturally emerges from quick reaction to local
neighbors that spreads quickly through the shoal. Honeybees
have also been shown to optimally minimize the decision time
for a desired level of accuracy (under certain models) when
deciding between candidate new homes (Marshall et al, 2009).
Here, honeybees also attempt to balance between accuracy
(choosing the best home) and speed (time to make a decision).

Finally, synchronization is another form of coordination
that many biological systems rely on, including pacemaker
cells in the heart (Kuramoto and Yamagishi, 1990) and fireflies
that flash in unison (Winfree, 1967; Mirollo and Strogatz,
1990). By developing models and methods based on studying
how fireflies synchronize (Mirollo and Strogatz, 1990), the
theory of pulse-coupled oscillators has flourished and has been
used in wireless sensor networks (Lucarelli and Wang, 2004;
Hong and Scaglione, 2005; Werner-Allen et al, 2005; Pagliari
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and Scaglione, 2011) and in overlay networks (Babaoglu et al,
2007) for clock management purposes and to integrate time-
sensitive data. Algorithms based on these systems have
resulted in faster convergence times and improved our under-
standing of biological self-stabilization (Daliot et al, 2003,
2004). In all cases, as modeling efforts continue, it is possible
that better distributed ensemble protocols can be developed,
which may lead to new testable biological hypotheses.

Networks

Networks underlie many computational systems. Understand-
ing the structure and dynamics of networks such as the
Internet, social networks, and mobile networks has been the
focus of several recent studies (Easley and Kleinberg, 2010).
Key questions studied include how to best design such
networks, how to determine what are the important nodes,
how to route messages efficiently from one node to another,
and how to maintain functionality despite errors or noise.
These issues have also recently been the focus of several
biological studies that have investigated how entities in
molecular (signaling, regulatory, and metabolic) networks,
cellular networks in the brain, and organism-level networks
collectively interact and self-organize to efficiently accomplish
tasks. We highlight a few recent examples below.

Slime mold tunneling for network design

When the slime mold Physarum polycephalum forages in an
environment, it grows to become a tubular structure that links
all the resources it finds together via direct connections or
intermediate junctions (Figure 3B, left). Evolution has
designed the network such that sources are connected via
efficient paths, while also ensuring minimal production cost
and robustness to disconnection. To better understand the
design principles balancing these requirements, Tero et al
(2010) created a map of 36 food sources (‘cities’) placed on a
map of the Tokyo area. Remarkably, they found that the slime-
mold designed network and the actual Tokyo rail system were
very similar. In particular, both networks had comparable cost
(rail length), efficiency (short paths), and resiliency (redun-
dant paths)—all under various definitions and models of these
factors. What is interesting, however, is that the slime mold
designed its tunneling system in a completely distributive
manner without any global coordination. Clearly, the same
cannot be said of the rail system.

Inspired by the characteristics of this process, Tero et al
(2010) developed an algorithm for adaptive network construc-
tion based on driving flow through the network and
dynamically selecting for preferential tubes (Figure 3C, right).
They show that their model can produce networks that closely
resemble the actual networks grown by the slime mold. Such a
model—which mathematically captures how the slime mold
self-organizes, self-optimizes, and self-repairs itself (Marwan,
2010)—can be used to quantify the trade-off between various
desired network properties. These principles can be applied to
designing mobile communication networks, in which various
nodes or devices need to maintain communication pathways
under a changing and dynamic environment. Indeed, follow-

up work has shown that a model inspired by the slime mold
foraging strategy can be used to design path formation
protocols in wireless sensor networks (Li et al, 2010) and
optimize traffic distribution in transportation networks (Wa-
tanabe et al, 2011) . On the other hand, mapping the slime mold
tunneling process to a network design problem has also led to
a greater understanding of how the slime mold balances
conditions and constraints when foraging.

Gene backup and fault tolerant systems

Errors, failures, and attacks commonly occur in molecular
processes. Examples includes DNA replication errors, protein
failures due to misfolding or mutations affecting transcription,
and pathogens that enter the cell and interfere with normal
function. DNA repair, backup, and innate immunity are all
cellular processes that have been remarkably designed to
identify and overcome these issues. Gaining a better under-
standing of how these systems operate is important for many
health-related studies.

Fault tolerance is also a critical design principle of
computational systems. Consider a popular website backed
by thousands of servers. At any time, one or more of these
servers may fail due to error or malicious attack. Overcoming
these issues and making them transparent to the user (by, e.g.,
redirecting queries to active servers that also act as backup
mechanisms; Guerraoui and Schiper, 1996) is an important
algorithm design problem. Improving these techniques is key
in creating better and more usable distributed systems.

So, how do molecular systems deal with failures? Recent work
suggests that molecular systems do not in fact use dedicated
failure detection mechanisms. Rather, they seamlessly integrate
backup resources into their design. Using single gene-deletion
mutants in S. cerevisiae, Gu et al (2003) found that knocking out
duplicate genes (genes with paralogs) resulted in a higher
probability of functional compensation (i.e., higher fitness) than
when knocking out non-paralogous genes.

Gitter et al (2009) reported a similar result in gene regulatory
networks. These networks encode the relationships between
transcription factors (TFs) and the genes they regulate. When
knocking out TFs with a strong paralog, it was observed that the
expression level of its regulated genes did not significantly
change, due to compensation by the TF’s paralog. On the other
hand, when knocking out a singleton TF, there was a bigger
change in expression of direct targets due to the lack of a backup
mechanism. Balaji et al (2006) propose a fault tolerant
computational model based on the design of regulatory net-
works. To create a network that is fault tolerant to hub deletion
they propose to take the original network and do a transforma-
tion (multiplying A0A where A is adjacency matrix for the
network). In the resulting network, two nodes (or TFs) will be
connected if they share many common neighbors in the network.
This common-neighbors structure arises naturally in biological
systems from the duplication-divergence model discussed below.

Together, these studies show how backup is naturally built
into decentralized molecular systems. Evolutionarily, it is
possible that backup naturally emerged from the process of
duplication and divergence. In this model, a gene is duplicated
to yield a functional equivalent, which over time diverges to
specialize in a similar subtask. Thus, the gene and its duplicate
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share similar sequence and interaction partners and either can
be used as a backup gene for the other. The challenge, from the
design standpoint, is to determine which local nodes (genes)
should be replicated in order to globally minimize the effect of
errors. Recent work on robustness of networks to node and
edge failures (Ciliberti et al, 2007; Zhong et al, 2009) may
provide further information on how such ideas can be applied
to computational systems.

Additional network problems

Effective routing of proteins to their designated subcellular
locations is another problem that may benefit from joint
computational and biological modeling. It is known that routing
occurs via signals encoded in the amino-acid sequence of the
protein (Shapiro et al, 2009); however, we are not aware of any
model of distributed routing inspired by protein localization.
Such a model, as with most other biological systems, might have
several desired properties, such as efficiency and fault tolerance
to specific conditions or environments.

Another network that holds much promise for future work is
the network of neurons that are active in the brain. As
mentioned previously, neural networks represent a computa-
tional optimization framework that is based on these net-
works. However, with our increased ability to study brain
activity (Sporns, 2010), we can start addressing other ques-
tions about the design and architecture of real neural
networks. For example, some models have been proposed to
generate networks with brain-like connectivity (Kaiser and
Hilgetag, 2004; Koene et al, 2009) while minimizing wiring
and path lengths (Chen et al, 2006). What local rules do these
models employ and what do they tell us about why the brain is
organized the way it is?

Vision and tracking

The visual system in the mammalian brain has an exceptional
ability to process imagery and build a coherent representation
of the world. It can seamlessly detect and track objects,
reconstruct scenes, and restore images (Shapiro and Stockman,
2001), all in real time and under various amounts of noise,
lighting conditions, and transformations. No computer algo-
rithm today comes close to matching its performance. Under-
standing how this system works and replicating it in the
computer has been a long sought goal of biology and computer
scientists, respectively. By teaching a computer how to ‘see’,
automated systems can be designed for face detection and
authentication, 3D model building, medical image processing,
tracking, and surveillance, among many more (Szeliski, 2010).

Bat echolocation and tracking

Bats are notoriously well versed at tracking objects at night.
Using their highly evolved sonar system, bats rely on echoes to
forage and navigate efficiently at night. In biology, pursuit is a
basic task to all prey-seeking animals. In computer science,
localization is an important problem with many applications
to defense and guidance (Figure 3C, left) systems. A common
strategy for localization is to keep the stimulus of interest

constantly centered in the field of view. However, recent
results from bats led to the discovery that this common
perception is not optimal.

Yovel et al (2010) studied how Egyptian fruit bats use
echolocation to home-in on a target (Figure 3C, left). They
measured the direction of the bats’ sonar clicks in darkness and
found that, instead of centering the sonar beam onto the target,
they alternated the beam to the left and right of the target and
thereby pointed the maximum slope of the beam onto the
target. As a result, any subsequent motion of the object
(relative to the bat) will maximally change the echo intensity
and the sign of the change will indicate the direction of motion.
They show that this strategy results in a less jittery path (i.e., a
smoother trajectory) to the target that is easier and quicker to
follow. In fact, the authors proved that this strategy is optimal
with respect to localization, though it does pay some cost of
possible misdetection (since less sound is emitted by not
pointing the beam directly at the target; see Figure 3C, right).

This study shows that even high-level biological processes
can reveal interesting and computationally relevant models
that can help clarify the logic of biological actions.

The visual cortex and computer vision

Visual processing in the brain has long been modeled by
hierarchical models. By encoding objects at varying levels of
sophistication, hierarchies are believed to be capable of
recognizing objects under various scales, perspectives, and
natural conditions. Different levels of the hierarchy respond to
stimuli that become increasingly complex; neurons in the
lower levels respond to simple bars and shapes, whereas
neurons in the upper levels respond to more complex
combinations and whole objects (Serre and Poggio, 2010).
Recently, Riesenhuber and Poggio (1999) and others (Serre
et al, 2007a, b) ‘opened up’ the brain to see how well such
hierarchical models fared to actual neurophysiological data of
neuron activation patterns in the inferotemporal cortex in the
macaque brain. From these data, they proposed a new
hierarchical feed-forward model for object recognition that
adheres better to anatomical and physiological constraints and
that better matched the corresponding neural recordings. The
model is based on a novel way to pool or integrate responses
from lower level neurons by identifying the strongest, most
active signal present. This makes recognition robust to random
noise and fluctuation. By representing features that are
invariant to transformations, the model also illustrates how
the visual system is able to recognize objects across different
scales given only a single view at one scale. From the
computational standpoint, the model has been shown to
perform well for robust object recognition, action recognition,
and face processing compared with many previous (non-
biologically inspired) techniques (Jhuang et al, 2007; Serre
et al, 2005, 2007a; Meyers and Wolf, 2008).

Additional tracking and vision problems

Research in computational neuroscience holds much promise
for inspiring new models of visual processing (Serre and
Poggio, 2010). While hierarchical feed-forward models were
shown to closely replicate neural recordings for immediate
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recognition (before eye movement and high-level processing
occurs), feed-back projections are also extremely prevalent in
the cortex and must be incorporated to model visual perception
beyond immediate recognition (Serre and Poggio, 2010). Better
understanding of how feed-forward and feed-back connections
interface with one another will likely lead to better algorithms
and better understanding of how more advanced processing
(e.g., memory and learning) occurs in the brain.

Another area where neuroscience may be helpful is in
learning. Humans have a remarkable ability to recognize and
detect objects very quickly (Thorpe et al, 1996) and using only
a few training examples. Most computational classifiers today,
however, typically require hundreds or even thousands of
training examples to robustly learn discriminative features. It
may be possible to develop additional one-shot machine
learning algorithms (Li et al, 2006) by studying how visual
processing circuits in the brain generalize concepts. There has
also been work on drawing parallels between human and
machine semisupervised learning (Zhu et al, 2007). In return,
these computational models may lead to better theories of
human learning that quantify its limitations and biases.

Engineering-based studies

While our focus in this review is on algorithmic aspects of
bidirectional studies, another area that has proliferated in
recent years involves the engineering of various systems by
tightly linking computational thinking and biology. We briefly
mention a few examples here, though as mentioned above
these deserve a separate review. One example of such an
approach is recent studies in robotics in which researchers aim
to mimic several aspects of living organisms for tasks that
include flying (Franceschini et al, 2007), crawling (Hatton and
Choset, 2010) and distributed control of arm movements
(Laschi et al, 2009). These studies often involve careful
analysis of how these tasks are performed by organisms
ranging from birds to snakes to octopuses. In some cases, such
an analysis can also lead to new insights about biological
systems. For example, Franceschini et al (2007) recently
developed a robotic helicopter that demonstrated how flying
insects manage to avoid the ground by using an optic-flow
regulator, which shed new light on unexplained findings
regarding insects’ visually guided performances.

Synthetic biology and DNA computing are another biocom-
putational area that has received tremendous interest recently.
Here, the goal is either to engineer novel systems using
biological components (synthetic biology) or to use molecules

to perform computations (DNA computing). In many cases,
these biological constructs utilize ideas that were previously
used when designing computational systems. One of the first
studies that demonstrated the computational power of biology
was done by Adleman who showed how DNA can be
manipulated to solve complex graph-theoretic optimization
problems (Adleman, 1994; Păun et al, 2004). More recent
studies have focused on the logical control of gene expression
(Benenson et al, 2004), the construction of synthetic genomes
and cells (Tian et al, 2004; Gibson et al, 2010), and the
replication of neural systems using DNA computing (Qian
et al, 2011).

Discussion and conclusions

The mutual relationship between biology and computer
science goes back a long time. However, until recently, the
application of computational methods to study biological
processes and the influence of biological systems on the design
of algorithms remained mostly separate. The former involved
developing computational methods to solve specific biological
problems, while the latter primarily viewed biological systems
as motivation to derive new optimization methods.

With the improvement in our ability to study detailed
aspects of molecular, cellular, and organism-level biological
systems, it is now possible to unite these two directions. This
direction involves thinking about biological processes as
algorithms that nature has designed to solve difficult real-
world problems under a variety of constraints and conditions.
By viewing these systems as information processing units, we
can better understand their biological properties and their
survival mechanisms, and can use the gained knowledge to
design and improve computational systems.

Over the last few years, this strategy has been successfully
used in a number of different application areas including
coordination, networks, and tracking and vision. The list of
studies in Table II is not meant to be comprehensive but rather
is meant to point out various systems that have been studied
this way and additional systems that are ripe for analysis.
Table III lists the shared principles that were identified as the
basis for some of these studies. Such studies usually begin by
identifying a problem addressed by both computational and
biological systems. For example, methods to cluster networks
have been widely studied in computer science (Schaeffer,
2007; Fortunato, 2010); a number of biological processes,
including lateral induction during intercell signaling (Char-
alambous and Cui, 2008) and decision-making processes by

Table III The five primary studies highlighted in this review (rows) each annotated with the principles it shares with computational systems (columns)

Distributed Robust Networks Modular Stochastic Adaptive

Fly SOP selection | | | | | 3
Slime mold tunneling | | | 3 | |
Gene regulation | | | | 3 |
Bat localization 3 | 3 3 3 |
Brain processing | | | | 3 |

Most biological systems operate distributedly and seek a design that is robust and adaptive to changing environments. Networks often serve as a basis for carrying forth
interactions and propagating information. These similarities provide a deep basis for the shared analysis of biological processes and computational algorithms.
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quorum-sensing bacteria (Wokoma et al, 2005; Ren and Meng,
2006), perform a very similar task. The next step, before
designing experiments, is to think about the biological
system’s computational requirements. For example, is the
system distributed? What is known about how communication
occurs within the system? What qualities (e.g., robustness and
efficiency) may the system be trying to optimize? Does
randomness or stochasticity have a role? Such questions can
help pinpoint particular biological questions regarding the
function of the process and may provide a unique point of view
for even well-studied processes. Next, a model is often
constructed based on the experimental results and this model
is used to design an improved solution to the computational
problem. In the clustering example, perhaps the model can
lead to improved clustering algorithms that operate in noisy
and distributive environments.

In this review, we argued that by adopting a ‘computational
thinking’ approach to studying biological processes, we can
improve our understanding of biological processes and at the
same time improve the design of algorithms.
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