
J. theor. Biol. (1999) 196, 397–454
Article No. jtbi.1998.0842, available online at http://www.idealibrary.com on

0022–5193/99/004397+58 $30.00/0 7 1999 Academic Press

From Individuals to Aggregations: the Interplay between Behavior
and Physics

G. F*†, D. G̈‡, S. L§  D. O¶

* Department of Earth, Atmospheric and Planetary Sciences, M.I.T., Cambridge,
MA 02139, U.S.A., ‡ Department of Zoology, University of Washington, Box 351800,
Seattle, WA 98195, U.S.A. § Ecology and Evolutionary Biology, Princeton University,

Princeton, NJ 08544-1003, U.S.A. and ¶ Rosenstiel School of Marine and
Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami,

FL 33149, U.S.A.

(Received on 20 May 1997, Accepted in revised form on 18 September 1998)

This paper analyses the processes by which organisms form groups and how social forces
interact with environmental variability and transport. For aquatic organisms, the latter is
especially important—will sheared or turbulent flows disrupt organism groups? To analyse
such problems, we use individual-based models to study the environmental and social forces
leading to grouping. The models are then embedded in turbulent flow fields to gain an
understanding of the interplay between the forces acting on the individuals and the transport
induced by the fluid motion. Instead of disruption of groups, we find that flows often enhance
grouping by increasing the encounter rate among groups and thereby promoting merger into
larger groups; the effect breaks down for strong flows.

We discuss the transformation of individual-based models into continuum models for the
density of organisms. A number of subtle difficulties arise in this process; however, we find
that a direct comparison between the individual model and the continuum model is quite
favorable. Finally, we examine the dynamics of group statistics and give an example of
building an equation for the spatial and temporal variations of the group-size distribution
from individual-based simulations.

These studies lay the groundwork for incorporating the effects of grouping into models of
the large scale distributions of organisms as well as for examining the evolutionary
consequences of group formation.
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1. Introduction

The problem of animal aggregation is a central
one in both ecological and evolutionary theory.
Why do animals group, what proximate cues do
they use, and what are the ecological conse-

quences? Patterns are manifest and observable
only at the level of the population, but are
mediated at the level of the individual, the focal
point for selection. Our thesis is that it is essential
to explore the linkages between these levels, and
in particular to understand how changes in
individuals’ responses to their environments
translate into changes in observable patterns.

† Author to whom all correspondence should be
addressed.
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Because individual-based modelling provides a
powerful methodology for addressing these
issues, it will be one of the principal techniques
employed in this paper. In Section 2, we will
introduce aggregation models within a setting
that allows consideration both of physical and of
biological forces. Primary attention will be to
aggregation in homogeneous environments,
illustrating the patterns of patchiness that can
arise autonomously. In reality, however, such
self-organization occurs within environments
that also impose patterns, at least at some scales.
For marine organisms, subject to the ever-
changing fluid environment, we must understand
the degree to which patterns are imposed by the
fluid dynamics, the biology, or some combi-
nation of both. In Section 3, therefore, we will
introduce explicit consideration of turbulent flow
regimes and describe the interaction between
self-organization and fluid transport/mixing
across scales. Individual-based models allow us
to relate forces at multiple scales and to examine
the signatures of different behaviors.

While much insight can be drawn from
simulations based on following limited numbers
in a population, it is not possible to treat large
populations in this manner. Instead some level of
approximation must be made to reduce the
problem to a set of field equations, e.g. an
Eulerian description, where the variables rep-
resent statistics over the configuration. It
remains to translate from individualistic rules to
macroscopic descriptions of collective phenom-
ena and to grid-based or continuum descriptions
of fluxes of individuals through real space and
through aspect space (Levin & Segel, 1985). It is
the transformation between these two views of
the problem that holds the greatest potential for
understanding. In Sections 4 and 5, we
demonstrate how individual-based, Lagrangian
models lead to macroscopic equations for
statistical properties such as the density (4) or
group size (5). Such equations, which we call
‘‘Eulerian models’’ since they deal with these
properties at fixed spatial or aspect space points,
are much more amenable to analysis. We discuss
several examples of the dynamics of the
population density r(x, t) in Section 4, focusing
on the spontaneous development of patches
and the shape of an isolated group. Section 5

explores how individual-based rules govern the
formation and maintenance of groups of
different sizes and how fission and fusion rates
may be determined from individual rules. These
give dynamical equations for the group-size
distribution, which may be solved for equi-
librium characteristics.

1.1. 

Aggregation can result from density-
independent responses to local cues or from the
density-dependent responses of individuals to
other individuals, which we shall call social
behavior. In practice, both mechanisms are likely
to be at work, but at different spatial scales. In
many cases, for example the broad-scale
distributions of Antarctic krill, the patterns may
be best understood in terms of the passive or
active responses of individuals to local physical
or chemical conditions; yet, in other situations,
as in the fine-scale distributions of the same
species, individuals are responding to the
positions or movements of their neighbors. Data
analysis, especially the examination of corre-
lations in observed patterns, confirms this view.
Spectral analysis of patterns in the distribution
of temperature, fluorescence and krill in the
Southern Ocean suggests that krill distributions,
as well as those of phytoplankton, are well
explained by the fluid dynamics on broader
scales. At least for krill, however, another
(density-dependent) explanation is needed at the
finer scales (Levin et al., 1989). This is consistent
with data such as those of Mackas (1984), whose
transects display increasing patchiness as one
moves from temperature to phytoplankton to
zooplankton. The argument that different forces
dominate at different scales may also apply to the
distributions of insects, birds, and terrestrial
ungulates. For example, herding animals exist in
aggregations determined at large scales by
regimes that are defined in terms of soil type or
soil moisture content, at mesoscales by veg-
etation patterns, and at yet smaller scales by
responses to each other. However, patterns at
large scale are not independent of small-scale
structure, and vice versa: the nonlinearity
inherent in social behavior couples the scales
together.



     399

While the spatial structure of the physical
environment and temporal scales associated with
its variability are important to the biology of
populations, the response of the population must
be approached as a combined bio-physical
problem. Not only do individuals respond
passively to environmental forces, but they also
respond actively both to physical and biological
cues, with the latter often dominating, at least at
small scales. The cues organisms use in making
decisions may vary a great deal, and the size of
the neighborhood censused can span a wide
range. At one extreme, such as monkey troops,
each individual in a group may recognize all the
other individual members of the group and be
able to assess the total group size; in such cases,
group size itself may become an important
variable, closely linked to individual fitness. At
the opposite extreme, as in the aggregations of
marine invertebrates or terrestrial ungulates,
groups are large and much less clearly delin-
eated, changing continuously in size and
composition. In such cases, local densities
become more directly relevant than the total
group size as cues for individual decisions;
groups are largely epiphenomena, with the
action focused at much smaller scales, and group
size distributions typically will show much higher
variance.

Modelling provides an approach to exploring
the ways in which the dynamics of individuals
lead to groups, the interactions of groups, and
the effects of environmental variability and
transport. The manner in which groups develop
and move will be dependent on whether
individual motion involves apparently random
orientation, as in swarming, or orientation of
individuals relative to each other, as in
schooling. In this paper, we use individual-based
models to explore some of the macroscopic
consequences that emerge from differences in
individual rules.

Individual-based models have a long history;
indeed, some of the most successful of them have
been produced as animations, or cartoons, for
broad general audiences (Reynolds, 1987;
Parrish & Hamner, 1997). To a large extent, the
animator proceeds as would the scientist:
different mechanisms are hypothesized and
compared with observations; models are then

modified to include patterns of movement that
seem to produce more realistic simulations.
Alternative models are considered, and accepted
or rejected on the basis of how well observed
phenomena can be imitated. The scientific
approach has very different objectives: the goal
is not just to produce realistic simulations but to
understand and explain the local mechanisms
that control patterns. As such, the wealth of
behavioral data available can be incorporated.
Secondly, not only visualizations, but also
appropriate spatial and temporal statistics, need
to be applied to evaluate critically the success of
particular models under wide ranges of con-
ditions. Finally, and perhaps most importantly,
analytical methods can be used to translate the
hypothesized local mechanisms into macroscopic
dynamics.

The starting point for individual-based models
is a specification of the state of an individual in
terms of location, genotype and phenotype,
ontogenetic status (age, size, maturity), physio-
logical status (nutrient status, hunger, hormonal
state), or behavioral status (dominance, motiv-
ation). Environmental information must be
superimposed on this, ranging from physical and
chemical features to the status of neighbors, who
can affect access to resources as well as
vulnerability to natural enemies and potential for
mating. From this information, one determines
responses such as growth, mortality, reproduc-
tion, and movement (cf. Diekmann et al., 1990).
The result of this formulation is a description of
the changes in states for all members of a
population.

As the time and space scales increase, one
naturally turns to models of statistical proper-
ties, preferably derived from the individual-
based model itself and the results of simulations.
As an example of important problems that can
be addressed once a solid understanding of the
grouping dynamics is obtained, consider the
interrelationships between behavior and selec-
tion. In general, there is a trade-off between the
fitness of an individual, conditioned on whether
or not it joins a group of a particular size, and
the fitness of the individuals in the group, as
modified by the potential joiner’s action. When
the size of the group is small and individual
members recognize each other, the decisions can
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be controlled to a large extent by those already
belonging to the group. For groups with many
more individuals, however, strangers are less
easily distinguished, and the effects of a new
member would in any case be diminished. In this
situation, control shifts to the individual
contemplating joining a group. This kind of
large, transient, loosely-knit group appears
predominant in marine situations (with the
conspicuous exception of marine mammals).

In general, an individual’s ability to assess its
environment and its ability to act successfully on
that information is key, both from an ecological
and from an evolutionary perspective. Infor-
mation can be gathered in isolation by assessing
environmental conditions or, indirectly, by
observing the decisions of neighbors. Some
combination of these undoubtedly would often
be best from the viewpoint of the group, allowing
group foraging for resources or detection of
predator threats; from the viewpoint of an
individual, however, the cost–benefit calcu-
lations may appear quite different, leading to
fascinating evolutionary puzzles. To what extent
do the observed behaviors reflect a collective and
cooperative optimum, and to what extent do the
individual’s selfish interests force a suboptimal
situation for the group, in terms for example of
resource acquisition? Furthermore, how does
decision-making under uncertainty evolve? Indi-
viduals can deal with uncertainty by averaging,
spatially or temporally; by sharing information;
or by expending resources on gaining more
detailed information. Do the costs of the latter
justify the information gain? The framework for
analyzing collective behavior and its dependence
upon individual decisions developed in this
paper provides the foundation for approaching
such questions by evaluating evolutionarily
stable strategies within an individual-based
context. Applications to evolutionary problems
will be addressed in future work.

2. The Role of Biology in Inducing Pattern

We shall be discussing the dual problems of
describing social animal behaviors in quantitat-
ively rigorous ways and of generating higher
level descriptions for movements and dynamics
of social populations. In this section, we begin

with a review of some individual-based models of
social aggregation. The individual-based aggre-
gation models described here will be used in later
sections, which discuss two approaches to
deriving population-level descriptions.

2.1.      

  

We begin by describing social behavior at the
level of the individual animal, i.e. following
animals in the Lagrangian framework in terms of
their position, velocity, internal states, etc. (see
Grünbaum & Okubo, 1994, for a review). The
acceleration of an individual may include both
deterministic ai and stochastic dVi components.
Examples of deterministic forces are:

(1) locomotory forces, such as those resulting in
preferred swimming speeds;

(2) social forces, such as attraction or repulsion
between individuals;

(3) arrayal forces, equalizing speeds and direc-
tions of neighboring animals; and

(4) environmental effects, such as chemical
gradients, which could lead to directional
biases in movement.

Stochastic accelerations, dVi may come from
both behavioral and environmental variability.
This component of the acceleration may include
some of the effects discussed in the context of
deterministic forces; e.g. the grouping term may
evoke a range of responses, or accelerations, with
some probability distribution. The resulting
second order system for the position xi and
velocity vi of the i-th individual can be written

dxi = vidt+ dXi (1a)

dvi = aidt+ dVi (1b)

where we have kept stochasticity in the position
equation for our later discussions. We shall use
non-dimensional equations with the character-
istic length scale and velocity scale being those
associated with the behavior, e.g. the perception
distance and preferred swimming speed. Some
marine organisms, such as copepods, have two
distinct movement patterns—(1) slow cruising,
with fairly small accelerations and (2) sudden
‘‘hops’’ (for example as escape responses) in
which the velocities increase transiently by a
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large factor. One might represent the former
variability in the dV term and the latter in the dX
term. The papers discussed in the rest of this
section do not include the ‘‘hopping’’ behavior
and have dXi =0; for a discussion of ‘‘great
leap’’ models, see Mollison (1977), Mollison &
Levin (1995). For N individuals, we have an
order 2N system of stochastic differential
equations, with some parts of the forces
describing the outcomes of many-body social
interactions. As in the finite step model, one can
devise lattice approaches (e.g. Turchin, 1989), in
which the velocities take on a discrete set of
values, and convert the integral operators used
below into matrices.

Lagrangian models must contain specific
assumptions about several poorly-understood
aspects of social behavior. Differences in these
assumptions, too subtle to be easily resolved by
current empirical knowledge, may nonetheless
have profound effects on the dynamics of the
resulting aggregation models. An example is the
modulation of responses to neighbors by
separation distance and relative orientation, and
limits (which may vary with environmental
conditions and the degree of local crowding) to
the distances at which individuals are able to
detect and respond to neighbors. A limit to
direct interactions establishes a characteristic
aggregation length scale that may have a
fundamental role in the fragmentation and
coalescence of aggregations. For example,
groups much larger than this length may be
easily fragmented, which would then strongly
influence the population-level distribution of
individuals into groups.

Another crucial, but little-understood, aspect
of social behavior is the way in which aggre-
gating animals balance the influences of multiple
neighbors. In many Lagrangian aggregation
models, reactions to neighbors are independently
computed and summed. However, this is likely
to be an oversimplification of social behavior in
many species. Several studies have focused on
different influence-sharing schemes (Aoki, 1982;
Huth & Wissel, 1990, 1992; Warburton &
Lazarus, 1991). For example, Huth & Wissel
compared a ‘‘decision’’ algorithm, in which only
a single neighbor influences movement at any
one time, to an ‘‘averaging’’ method, in which an

individual orients relative to the arithmetic mean
of properties of the neighbors.

2.1.1. Example

To make the discussions that follow more
concrete, we shall consider a simple example in
which the only variability is from random forces
(dX=0). The acceleration is chosen to be a
relaxation back towards some preferred velocity
V which depends on the organism’s environment
(chemical gradients, closeness and direction of
neighbors, etc.):

a= a(V− v) (2)

and the stochastic variability is given by

dV= bde (3)

where de is the standard Gaussian increment
with zero mean and �deidej�= dijdt. The
relaxation rate a (with units T−1) and the
strength of the random accelerations b (with
units L T−3/2) will generally be functions of the
environmental conditions.

We can now distinguish several cases
(although an organism may have a behavior
which is some combination): the response may
be non-directional (V=0) or directional (V$ 0)
and it may be social (a, b, V depend on positions
or velocities of other organisms) or involve taxis
(parameters depend on a field that is independent
of the distribution of the organisms, e.g. chemi-
cal gradients).

2.2.  :  

In the case when there is no preferred velocity
V=0 and the random accelerations are constant
(b=const.), the organisms disperse via a random
walk (or, more strictly, random flight) (Fig. 1).
The effective diffusivity, shown below to be

k=
b2

2a2, (4)

can be used quite accurately to predict the mean
square displacement of the organisms from their
initial positions. The value of k (the ratio of the
dimensional diffusivity to the product of the
characteristic sensing distance and the preferred
movement speed) is 0.045. The pattern, not
surprisingly, is the familiar one associated with
diffusion: mean square displacement increases
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F. 1(a)—(Caption on opposite page).

linearly with time at a rate (in two dimensions)
of 4k.

2.3.    

: 

The simplest example beyond pure diffusion is
directional taxis, in which the preferred velocity
depends upon the gradient of a fixed environ-
mental cue. Gradient responses of this kind, like
hill-climbing algorithms in combinatorial optim-
ization, are the most direct way organisms can
explore a resource spectrum. Figure 2 shows the
movement for a sinusoidally distributed resource
so that V=cos(2px/10)xx with parameters
a=1.0 and b=1.5 in a doubly-periodic domain
of length 10. If we compute the numbers in unit

width bins in x or in y, we can see the clustering
around the peaks of the environmental signal.
The figure also shows the results from a
continuum model described later (Section 4)—
the two compare very well for these parameters.
In either case, individuals climb the gradient
successfully, achieving a distribution centered
around the peaks.

2.4. -  

 : 

Responding to a gradient may be the most
efficient way to explore a resource spectrum in
the absence of information sharing between
individuals, but it involves a higher-order
calculation that may be difficult to make,
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F. 1(b)

F. 1. (a) Random flight with a=1, b=0.3, dt=0.125.
Particle positions at various times. (b) Mean squared
displacement from the particles’ starting positions: (– – –)
shows the predicted spread for a diffusion model with
k= b2/2a2 =0.045; lower plot shows diffusivity estimated
by the rate of change of the mean squared displacement.

continuum models assume that the mean free
path is small compared with the scale of the
gradient, and this assumption is not sufficiently
accurate for this example.

2.5.   

Relying solely on information gathered by
solitary individuals provides direct access to
fine-scale characteristics, but limited data about
the broad-scale. One way to gain larger scale
information is by some form of social behavior.
Social behavior involves cues associated with
the characteristics of neighboring organisms:
their closeness, their velocities, their orientation,
etc.

2.5.1. Preferred velocity function of neighbors’
positions

In the simplest example, animals try to move
towards higher concentrations of their neigh-
bors. We might define the preferred velocity, Vi ,
as

Vi =SW1(xj − xi ) (5)

with

W1(z)=6Vz(1− z · z)

0

=z=Q1

=z=q 1
. (6)

Figure 4 shows examples of the evolution,
indicating the formation of groups when the
grouping tendency is strong enough compared
with the random accelerations.

To quantify the degree to which distributions
such as those in Fig. 4 are grouped, we can
calculate a form of Lloyd’s (1967) patchiness
index—the ratio of the number of neighbors in
the sensing domain compared with the number
expected in a Poisson distribution with the same
organism density r:

p=$1
N

s
i

s
j

H(1− =xj − xi =)%
>$pr+1−

p

Area% (7)

where H is the Heaviside step function and Area
is the domain area. Figure 5 shows the patchiness
for a case with the social forces turned off

especially if the scale of variation is very large
compared with the size of an individual
(although bacteria, for example overcome this
problem by adaptive probing: moving in a
random direction to gain, by sensing temporal
derivatives, information about gradients, Berg &
Brown, 1972). A simpler, if less efficient scheme,
kinesis, requires only information about the local
properties. Organisms, rather than detecting the
gradient in the cue, respond simply by increasing
or decreasing their random acceleration as the
local concentration of the chemical decreases or
increases (cf. Davis et al., 1991 and also the
discussion on ‘‘repulsive’’ and ‘‘attractive’’
random walks in Okubo, 1986). In our example,
Fig. 3, the parameters are V=0, a=1,
b=[1−0.8 sin(2px/10)]×1.5. Again, the evol-
ution shows clustering in the region of the
highest environmental signal. The continuum
model reproduces the general shape of the
distribution, but is sharper; as we shall see, the
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F. 2(a)—(Caption on opposite page).

(V=0) and for the case above. The value of p
reaches more than 10, indicating significant
patchiness. Another measure can be obtained by
identifying individual groups by collecting all
individuals that are within one sensing range

(=xj − xi =Q 1) of another member of the group.
We can use these counts to determine the
number of groups (or, inversely, the average
number in a group) or the percentage of the
population in groups of particular sizes. These
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F. 2(b)

F. 2. (a) Taxis with a sinusoidal distribution of
resource. The preferred velocity is proportional to the
gradient [cos(2px/10)xx] as shown in the first frame. The
random motion is fairly strong (k=1.125). (b) Final
density of organisms, averaged in x or y: (– – –) show the
prediction from a continuum model (Section 4).

of time for different k values; for the mean
density and V used here, groups cannot form for
k greater than 0.05. When we reduce V by half,
the diffusivity necessary to disperse the patches
is also reduced by half (to 0.02) as implied by the
inequality above. Decreasing the density r by a
factor of 2 leads to less clear results, since small
patches are still formed and then persist;
however, the average number in a group remains
smaller than five unless kQ 0.02. Thus we can
conclude that groups will form when k/Vr is
smaller than some constant (about 0.5–0.6 for
this weighting function).

2.5.2. Preferred velocity function of neighbors’
velocities

In both these cases [eqns (6), (8)], however,
groups, once formed, tend to persist. Over longer
periods the slowly wandering groups encounter
each other and merge so that the organisms
become more and more patchy. Apparently, the
inward accelerations (which increase as the
number of individuals in the group) are enough
to overcome breakup of a group by random
motions once the group has become sufficiently
large. In contrast, directional arrayal forces
(aligning with neighbors’ velocities) tend to lead
to more dynamic grouping behavior as shown in
Fig. 8. Here the preferred velocity is given by

Vi =VV	 /=V	 = (9a)

with

V	 =Svj (1− =xj − xi =2)+0.4W2(xj − xi )/V

(9b)

representing tendencies to align with and to
move towards neighbors. Now, the patchiness
index and the average group number fluctuate,
indicating the formation and break-up of groups.
Examples of such events are shown in Fig. 9.

Finally, we show examples using the schooling
model of Grünbaum (1998a). This model is
intentionally simplistic; our aim is to include
only the barest essentials of schooling behavior
(Grünbaum & Okubo, 1994). Each organism
travels at the same constant speed. The
directions are adjusted each time step by a turn
to the left or right, depending on four factors.
First, there is a random deflection through a

measures again show that the distribution is
significantly non-random.

For the weighting function W1, the groups are
very compact; if we modify the weighting
function to be repulsive at short separations,

W2(z)=63,3Vz(1− z · z)(z · z−1
4)

0

=z=Q 1

=z=q 1

(8)

we find somewhat more spread out groups
(Fig. 6). We show the statistics from five different
realizations; they show the same trends and
suggest that the standard deviations of these
properties around the time-varying mean are
small.

We can estimate how the tendency for group
formation depends on the parameters (V, a, b,
and the organism density r) as follows: the
characteristic convergent velocity is order Vr,
so that the time to accumulate (to move over a
sensing distance) is order 1/Vr. The random
motions, on the other hand, try to disperse
groups, with a characteristic time on the order of
k−1. If this time is short compared with the
accumulation time (kqVr), the groups will not
form. Figure 7 shows the patchiness as a function
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F. 3(a)—(Caption on opposite page).

fixed angle. We represent the social response by
a second contribution to the turn, which is
towards the right or left depending on which side
has more neighbors within the sensing radius. A
third contribution, also representing social

behavior, causes a turn away from the side which
has more nearby neighbors (within 0.3 sensing
distances). Thus we build in a decreasing
probability of detection or responsiveness to
neighbors at large separation distances and a
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F. 3(b)

F. 3. (a) Kinesis with a sinusoidal distribution of
resource (shown in the first frame). b=[1.5 −
1.2 sin(2px/10)]. (b) Densities from the experiment and
from the continuum theory.

movements are reduced as the number of
neighbors grows: Vi =0 and

b= b0 exp0−s
j$ i

Wb (=xj − xi =)1 (10)

with
Wb (z)=6w0(1− z2)

0

zQ 1

zq 1
.

Again grouping can occur for suitable choices of
a, b0, and w0.

In these examples, clustering is the only
measure of success considered; more generally, it
is a surrogate for more basic information. For
example, when resource detection and utilization
are important, one can introduce direct measures
of success in performing tasks (Grünbaum,
1998b). We do not discuss this topic further in
this paper, but it is a rich area for examination.

We shall return to these examples from the
continuum point of view (Section 4) and in
the presence of turbulent flow (Section 3).

3. The Role of Physics in Inducing Pattern

A starting point for discussion of patterns is
the determination of what needs to be explained.
As discussed in the earlier sections, many
features of biological distributions simply mimic
patterns seen in driving physical variables, from
soil features to oceanic thermal fronts; therefore,
we must first understand the patterns imposed by
the physics. For example, Langmuir circulations
(Leibovich, 1993) concentrate zooplankton in
the surface layer of lakes, estuaries, and the
oceans in rows tens to hundreds of meters in size.
The ‘‘squirts’’ and ‘‘jets’’ found in eastern
boundary current systems (Abbott & Zion, 1987)
cause zooplankton concentrations on the scale of
tens to hundreds of kilometers. The ocean’s
ubiquitous mesoscale eddies (Robinson, 1983)
also exert profound concentrating effects over
the scales of 50 to hundreds of kilometers (Lobel
& Robinson, 1988). And the larger ring
structures that are generated by western bound-
ary currents like the Gulf Stream (Ring Group,
1981) provide persistent environments separated
from the rest of the sea, which allow entire
plankton communities to interact over broad

switch from attractive to repulsive interactions as
neighbors get too close. Finally, we include a
tendency to align with neighbors (Inagaki et al.,
1976; Aoki, 1982; Matsuda & Sannomiya, 1980,
1985; Huth & Wissel, 1990, 1992; Warburton &
Lazarus, 1991; Grünbaum, 1994, 1997; Gueron
et al., 1996): this small fourth contribution
represents turning towards the direction of travel
of a randomly selected neighbor. Figure 10
shows examples of the development of schools in
this model. For these simulations, we considered
larger populations with 512 to 2048 individuals,
but a larger domain, corresponding to densities
of 0.078 to 0.312 (as opposed to 0.39 for the
other experiments). Note again the frequent
mergers and splittings; we infer that models
where the velocity decreases substantially as
groups form are unlikely to split in comparison
with cases where the organisms maintain their
speed.

2.6. -  

The previous example involved a kind of taxis,
with the gradient representing the variation in
local density of organisms. Again, clustering can
also occur by kinesis, with the random
accelerations related to the local density. In this
vein, Fig. 11 shows an example where the
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F. 4. Social taxis with a preferred velocity directed towards neighbors [eqn (5)]. The parameters are a=1, b=0.2,
V=0.2, k=0.02, and dt=0.125. The domain is doubly-periodic, with 25.6 units on a side. There are 256 organisms in
the domain (r=0.39).

time scales as long as years (Mann & Lazier,
1991).

Furthermore, nonlinearity and threshold be-
havior, persistent features of the dynamics of
populations, mean that even biological patterns

that are driven entirely by the physical
environment may show features that are distinct
from those in the driving variables; this
complicates the picture fundamentally. For
example a large literature exists on critical patch
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F. 5. (a) Lloyd’s patchiness index [eqn (7)] for
doubly-periodic domain showing (– – –) the case without
any social forces and (—) the index calculated from the
numerical experiment shown in Fig. 4; (b) average number
in a group (which must have two or more members); (c)
percentage of the population in groups of different sizes.

terns that result. This approach removes the
nonlinearities stemming from the responses of
individuals to each other and the feedbacks that
can result. Such an approach has been used by
Yamazaki & Osborne (1988) and Olson &
Podesta (1988) to describe the responses of
individuals to thermal cues, and by Hofmann
(1993) to describe the movement of the eggs and
larvae of krill in response to physical features of
the environment. In this approach, typically, one
adopts a Lagrangian description of individual
movement, for example writing a force equation
for determining the acceleration of each
individual. Because individuals are moving
independently of each other, it is relatively easy
to pass to a description of collective behavior.
The situation is made much more complicated,
as we shall see in the next section, when
individuals are actually responding to each other
(Sakai, 1973; Okubo, 1980; Grünbaum, 1992;
Gueron & Levin, 1993; Gueron et al., 1996),
rather than simply to features of the physical
environment.

3.1.     

A classic form of animal aggregation is fish
schooling. One question on the macroscale is
how fish behavior leads to aggregations that then
socially form schools. Here the effect of simple
non-directional responses to local conditions
(kinesis) is considered as a source for migratory
aggregations in a large pelagic, the Atlantic
Bluefin tuna (Thunnus thynnus). These fish spawn
in spring in the Gulf of Mexico and then migrate
northwards to New England waters to feed
through the summer and early fall. As a null
hypothesis, this may be treated as a response to
local thermal conditions, i.e. that the fish change
their movement behavior depending on whether
they are at a comfortable temperature or not.
The model assumes the tuna have no sense of
conditions other than at their current position,
and that they sense ambient temperature relative
to some preferred temperature, similar to Neill’s
(1979) klinokinetic model of behavioral ther-
moregulation. The individual fish adjusts its
probability of changing direction according to
the difference between ambient (T ) and preferred
(T0) temperatures. If the difference is very small,
the tuna tends to continue moving in the same

sizes in plankton (Kierstead & Slobodkin, 1953;
Platt & Denman, 1975; Okubo, 1980), demon-
strating that patchiness will not develop at all in
finite regions where intrinsic growth rates are
below some threshold value (which varies
inversely with the size of the region). Beyond that
threshold, distributions respond nonlinearly to
variability in the nutrient fields. Nonlinearity in
population dynamics, moreover has been shown
to drive patchiness in homogeneous regions
(Segel & Levin, 1976; Okubo, 1974; Levin &
Segel, 1976; Segel & Jackson, 1972) or to
exaggerate the effects of underlying heterogen-
eity through quasiperiodic and chaotic responses
(Hastings & Powell, 1991; Pascual-Dunlap,
1995).

A first step in the development of individual-
based models is to specify only individual
responses to environmental cues, rather than to
other individuals, and to characterize the pat-
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F. 6(a)—(Caption on opposite page).

direction as the previous time step. As the
difference increases, the fish maintains less of its
previous velocity and begins to move in a more
random manner. If the fish is far outside its
comfort range, movement becomes a random
walk. In terms of eqns (2)–(3), we choose

a=1−0.75 exp[−(T−T0)2/2s2]

and

b=1−0.9 exp[−(T−T0)/2s2].

The first experiment was run on a Cartesian
grid with the temperature initially set to

optimum at the origin and decreasing as a cosine
function of Y. A seasonal temperature cycle is
simulated by then raising the temperature as a
cos(t) (Olson et al., 1996; Humston et al., 1998).
As the temperature rises at the origin, the fish
migrate out along the Y-axis to maintain their
preferred thermal domain. This takes them
1000 km out the Y-axis until the temperature
begins to cool and the return migration starts.

The first simulation (Fig. 12) considers the
annual migration from south to north and then
back again to the Gulf of Mexico. The
temperature changes as a sinusoidal function of
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F. 6(b)

F. 6. (a) Social taxis with a repulsion from near
neighbors [eqn (8)] as shown in first frame: (—) W2, (– – –)
W1. (b) Patchiness index and average number in a group for
five different realizations.

also reproduces the observed distribution of
bluefin schools on surface thermal fronts in the
Gulf of Maine. Aerial spotting of surface schools
[Fig. 13(a)] shows them to be aggregated in
temperatures just above 18°C. The simulation
with this isotherm gives similar patterns
[Fig. 13(b)]. Again, other factors are involved in
determining these patterns. In fact tuna have to
move through colder waters to show up in places
like the warm region inside the hook of Cape
Cod in Fig. 13(a). The simple kinesis model does,
however, produce a reasonable description of
bluefin schools along thermal fronts, and
therefore is a good starting place for a more
complete behavioral model.

3.2.    

In the previous section, it was shown that
common responses to environmental cues can
result in aggregation. This is consistent with
observations of a wide range of organisms,
including birds, ungulates, and a variety of
terrestrial and marine invertebrates. Physical
forces such as turbulence, however, can also
serve to disrupt aggregation patterns established

F. 7. Patchiness index for different diffusivities k in (4).

time, causing the preferred isotherm to migrate
northwards with the onset of summer and then
back southwards in the fall and winter. The fish
are initialized at y=0 at t=0 years. The figure
shows the second year of simulation. At t=1
year most of the tuna have returned to the origin,
although there is a more or less even distribution
of ‘‘lost’’ fish distributed over the entire domain.
As the origin begins to warm in spring, the mode
in the distribution moves northward (t=1.25
years). The distribution of fish is not symmetric,
but has a sharp leading edge and a long tail of
fish that are behind the preferred isotherm
position. In the summer, the bluefin reach their
preferred thermal regime (t=1.5 years) and then
return southward in the fall. While there are
undoubtedly other factors such as water clarity
that influence the annual migration of this
species in the western North Atlantic, the model
shows that temperature alone with simple kinesis
leads to a realistic aggregated group migration.
At finer spatial scales the simple kinesis model
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F. 8(a)—(Caption on opposite page).

in response to other factors. In the ocean, species
with natural grouping tendencies must fight
against the dispersive effects of turbulence. To
what degree can they succeed? Does the
turbulence affect the grouping in the same way

as an increased diffusivity would, or are the
effects more complex?

To answer these questions, we have coupled
an aggregation model to a two-dimensional
fluid flow model (three dimensions being
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F. 8(b) and (c)

F. 8. (a) Social taxis with tendency to align velocities
as well as attraction/repulsion [eqn (9)]. (b) Velocity pattern,
showing the tendency for alignment. (c) Patchiness index
and average number in a group.

has its level lines instantaneously parallel to the
flow): u=(−1c/1y, 1c/1x). In this case, the
Navier–Stokes equations can be reduced to a
single PDE for the evolution of the vorticity 92c

(twice the local rotation rate of fluid parcels):

1

1t
92c+ u · 9(92c)=Forcing

+ n−19−2c+Filter. (11)

The flow is forced randomly (Maltrud & Vallis,
1991) and dissipated at both large and small
scales to keep the energy concentrated in eddies
that are well resolved but do not fill the domain
(Sundermeyer, 1995). The flow is doubly periodic
[c(x+mL, y+ nL)=c(x, y) for integer m, n
and domain size L]. A high wavenumber filter
is used to prevent buildup of mean square
vorticity in the small scales while the low
wavenumber filter prevents energy accumulation
in the largest scales. The flow was begun with a
specified spectrum and allowed to evolve until
the forcing and dissipation came into balance.
The energy continues to fluctuate to a small
degree (Fig. 14). Maps of the streamfunction for
the period after equilibration are also shown.

We have explored the individual-based ap-
proach in which the flow is seeded with
organisms that are advected by the flow as well
as moving under their own volition

1

1t
x= u(x, t)+ v(x, t). (12)

3.3.   

To understand how behavior modifies the
distributions, we must begin with the passive
case (a= b=0). Figure 15(a,b) show the
locations and trajectories of a set of ‘‘floats’’ in
the turbulent flow. Figure 15(c) shows the
evolution of the mean squared displacement,
D= =xi (t)− xi (0)=2, with time. Note that the
displacement grows more or less linearly;
however, if we examine the Taylor (1921)
estimate of the diffusivity

k=
1
4

1

1t
D, (13)

we find that k varies between 0.5 and 2, with an
average value of about 1. Thus the turbulent
diffusion is rather strong.

computationally too expensive!). To enforce
incompressibility of the fluid, the velocities are
written in terms of a streamfunction c (which
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F. 9. Group breakup (top six panels) and merger (bottom six) events.

3.4.  

Against this background, we consider the
simplest form of grouping, kinesis, given by eqns
(2), (3), (6) with V=0. We choose an
exponential dependence of b upon c giving

positive values and about a two order of
magnitude range: b=2.5 exp(c−2). When the
flow is steady (c held fixed at its initial value),
the organisms gradually migrate to the areas
where b (or the diffusivity) is small—the lows in
the streamfunction field (Fig. 16). The flow
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F. 10. Schooling behavior, showing one initial state and final states for three different densities. The schools are not
fixed, but merge and split frequently (Section 5).

cannot concentrate the particles, since it is
non-divergent; rather it advects and, via shear
dispersion, mixes them along the streamlines.
Kinesis results in cross-streamline movement
and the high particle concentrations in the
favorable regions.

3.5.   

If we now allow the flow to evolve, we see
similar migration, though somewhat less success-
ful (Fig. 17). Whereas the tuna example above
had single time and space scales, the flow here
has full frequency and wavenumber spectra. The
value of c now changes with time following a
particle, so that favorable (low b) regions may
become unfavorable. If this happens too rapidly,
the kinesis will not be effective, and groups will
not form. For the parameters we have used,
however, the organisms can overcome the
dispersion and the changing conditions to collect
in favorable regions.

3.6.  :  

  

Turbulence is often regarded as causing a
much-enhanced ‘‘eddy diffusivity,’’ which is
nearly unity in the experiments [Fig. 15(c)]. If
that were the case, we could predict grouping
behavior by adding back randomness of suitable
strength to the model without flows. The b value
that would give an equivalent growth in
=xi (t)− xi (0)=2 is about 1.4, far beyond the range
in which groups can survive. Eddy diffusion,
however, turns out to be a poor approximation
for turbulent flow.

When we add more physically realistic
turbulence, we find that the groups can still form
(Fig. 18); although the physical dispersion (as
measured by the eddy diffusivity) is stronger than
the grouping tendency, the turbulence does not
inhibit the formation of groups. We shall see that
the result reappears below when we use the
continuum model and calculate the stability—
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F. 11(a)—(Caption on opposite page).

the turbulent diffusivity is strong enough to
stabilize the uniform state, yet groups still form
in the actual turbulent flow. We attribute this to
the presence of temporary ‘‘refuges,’’ where the
shear and strain fields are not too large and the
groups can condense.

However, the turbulence has a much more
profound effect once groups form: it increases
the encounter rate between groups (or groups
and individuals) so that mergers occur much
more frequently. The patchiness index [eqn (7)]
increases rapidly. The average group size appears
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F. 11(b)

F. 11 (a). Social kinesis with the random motion
decreasing as the number of neighbors increases [eqn (10)].
The pattern is changing slowly after t=100, with small
groups being absorbed occasionally into larger groups. (b)
Patchiness indices for non-directional social behavior.

such that groups form in the same configurations
(in the case without flow), but in a shorter or
longer time. To double the grouping rate in
(1)–(3), we require exactly the same dxi values
but with time steps dt that are half as large.
Therefore we need vi to be twice as large. This
requires V and a to be doubled also and b to be
multiplied by a factor of 23/2 (since de is reduced
by a factor of 1/z2, or, alternatively, k is
doubled). Similar arguments apply for other
speed-up or slow-down factors. As we increase

F. 12. Simulation of tuna migration.

initially similar to the run without turbulence,
but the group size distribution becomes quite
different: at the end of the run shown, one group
has 77% of the individuals, one group 9% and
the rest of the groups consist of single
individuals.

The interplay between grouping and turbu-
lence can be studied either by beginning with a
flow regime and considering stronger and
stronger grouping tendencies until patches form,
or by beginning with a grouping model and
increasing the strength of the turbulence until
groups disintegrate. When there are no grouping
forces (Fig. 19), the organisms do not aggregate
and the patchiness index remains small. The eye
does pick out larger scale aggregations occasion-
ally; calculating group sizes where individuals
are within a distance of 1.5 of each other (50%
larger than the sensing radius) does reveal these
groupings, but they are transient, essentially
statistical fluctuations. We now consider varying
the grouping strength by altering the parameters
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F. 13. (a) Observed distribution of bluefin schools. (b)
Simulation using kinesis model.

These experiments show that strong turbulence
can tear apart groups and prevent patchiness,
but weak flow actually enhances grouping; such
flows do not cause disintegration, but rather
increase the rates of contact of individuals and
groups, hence speeding group formation and
merger. This seems analogous to the problem of
the optimal design of spider webs (Craig, 1987):
web characteristics that lead to slight oscillations
enhance prey capture by increasing contact.
Similarly, Rothschild & Osborn (1988) showed
that turbulence can increase encounter rates of
predators with their prey. Not surprisingly, how-
ever, strong turbulence added to the grouping
model destroys the fine-scale structures.

The perception distance still plays an import-
ant role in the group formation process, of
course. The density must become high enough
locally to initiate group-formation; after that, the
turbulence simply brings new members close
enough to be brought in or brings groups within
the range where they can merge. The late-stage
groups can be quite widely separated, but remain
compact. Of course, large scale structure can be
generated by other means; studies of taxis with
light or depth as a cue suggest that upward
swimming and convergent flow (Stommel, 1949;
Olson & Backus, 1985, Franks, 1992; Epstein,
1996), can generate patterns similar to observed
distributions.

4. From Microscopic to Macroscopic

We shall now examine two approaches to
generating higher level descriptions for move-
ments and dynamics of social populations. The
first attempts to generate spatially explicit
partial-differential equation approximations to
the density distribution resulting from the social
behavior, i.e. models of the spatial dynamics of
groups. The second approach (in the next
section) attempts to describe directly the
‘‘population dynamics’’ of groups, i.e. the
group-size distribution resulting from size-
specific group characteristics that determine
fusion and fission rates. Usually this description
is non-spatial and statistical, typically yielding a
set of coupled, nonlinear ordinary differential
equations for the number of groups in each size
bin. Group-size distributions may subsequently

the grouping strength, we find that groups form
for a strength of 70% of the original parameters
(or, alternatively, a flow that is 43% stronger),
but are transient and small (Fig. 20). For
stronger grouping tendencies relative to the flow,
we see distinct grouping and group mergers such
as those shown in Fig. 19. In Fig. 21, we compare
the patchiness vs. time for different grouping
rates with and without turbulent flow.

The final figure in 21(b) shows that the
simultaneous rescaling of time and the grouping
strength parameters gives consistent results.



20100

t = 0

5

10

15

20

25

0
20100

t = 10

5

10

15

20

25

0
20100

t = 20

5

10

15

20

25

0

20100

t = 50

5

10

15

20

25

0
20100

t = 100

5

10

15

20

25

0
20100

t = 200

5

10

15

20

25

0

20100

t = 500

5

10

15

20

25

0

0
Time

1000–1000–2000

5

6

7

8
107

4

20100

t = 750

5

10

15

20

25

0
20100

t = 1000

5

10

15

20

25

0

E
n

er
g

y

0.5 1.0
log10 (k)

1.50.0–0.5

–5

0

5

10

–10

lo
g

10
 (

E
(k

))

     419

be approximated by partial differential
equations. To obtain a spatially explicit model,
local estimates of group-size distributions,
together with size-specific velocity and taxis,

may, with appropriate assumptions, be com-
bined into population-level advection–diffusion
equations. These implicitly incorporate the
effects of individual social behaviors in the form

F. 14. Streamfunction greyscale maps and energy time history for the turbulent flow (the last 1000 time units are used
for the c plots and later calculations). Highs (white) in c correspond to centers of clockwise circulation, while lows (black)
are centers of counterclockwise swirl. Also shown is the final wavenumber spectrum (– – –) are k−5/3 and k−3.
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F. 15(a)—(Caption on opposite page).

of density-dependent advection and diffusion
coefficients. In this context, ‘‘local’’ implies
length scales much larger than that of groups,
but small compared with distances over which
group densities change significantly. These
approximate, higher level descriptions for social
animals form a complementary set of tools,
which may by themselves or in combination help
determine both the role of social behaviors in
creating observed patterns of animal distribution
and some of the pressures driving the evolution
of specific social interactions.

In general, the spatial density of a population
of socially interacting organisms, r, will be

changed by convergence or divergence of the
flux, J:

1

1t
r=−9 · J. (14)

In the more standard population-level descrip-
tions of asocial behaviors such as chemotaxis,
the flux in eqn (14) is usually derived from a
Fokker–Planck equation and takes the form of
an advection–diffusion equation with coefficients
that are functions of t and x. If instead we are
principally interested in socially interacting
populations, we anticipate that the flux rep-
resented by J will be a functional of r as well. A
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F. 15(b) and (c)

F. 15. (a) Positions of floats in turbulent flow. In this
case, the flow itself has a periodicity of 25.6 units in both
directions, but we seed it only in one region; i.e. the absolute
displacement of each float is calculated. (b) Trajectories of
16 of the particles. (c) Growth of the mean squared
displacement with time: (– – –) shows the spread predicted
by a diffusion model with k=1.03; the lower panel
compares the two terms in (13).

number of studies investigate population distri-
butions resulting from nonlinear diffusion,
advection, and/or reaction terms (Mimura &
Yamaguti, 1982; Dal Passo & de Mottoni, 1984;
Grindrod, 1991). However, the nonlinearities in
these models are not associated with particular
individual-level behaviors that give rise to the
population-level movements. In this section, our
primary focus is to derive explicitly population-
level fluxes in eqn (14), beginning with specific
social responses between neighbors at the
individual level.

4.1.    

Carrying out this explicit derivation immedi-
ately presents the difficulty that in order to
calculate the flux, J, we are forced to represent
the probability distributions of forces such as Fi,g

(social attraction and repulsion) in terms of
functionals of macroscopic variables such as r.
However, the expected value of something like
the grouping force, which is generally a
nonlinear function of the set of vector distances
to neighbors [e.g. eqns (4)–(6)], cannot be
expressed as a functional only of the density.
Instead, it will also depend upon the detailed
shape of the probability distribution for the
positions. In other words, the spatial occurrences
of individuals is underdetermined by the density
r in the case of social interactions between
neighbors.

Thus, density is by itself generally not
sufficient in the case of social behaviors and even
its interpretation is open to question. To yield an
equation describing density flux, the higher order
statistics must be somehow implicit in the density
distribution, a requirement not present for
density-independent behaviors and one not
addressed in most models to date. Otherwise, the
model must be formulated to include these
statistics as part of the calculation. We are aware
of three basic strategies for overcoming the
under-determination of the micro-scale individ-
ual distributions while retaining only r:

(1) assumption of a specific relationship between
the spatial density (or zeroth moment), r,
and higher joint probability distributions of
neighbors. For example, assuming individ-
uals occur as Poisson points specifies all
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F. 16. Kinesis in frozen field. The random motion is small in regions where c is negative. The final panel shows a
histogram of the number of particles between various levels of c with (– – –) being the initial distribution.

statistics of individuals occurring in a
neighborhood (Grünbaum, 1994). We dis-
cuss this approach in detail in Section 4.2
and the following development. Alterna-
tively, characteristic relationships between
moments could be ‘‘measured’’ from
individual-based simulations;

(2) an ‘‘internal energy’’ approach (Cohen &
Murray, 1981; Murray, 1990), in which a
given population density is associated with a
characteristic internal energy whose gradient
determines population flux. The internal

energy could be derived analytically from
individual behaviors, in which case some
assumptions such as those in (1) would be
required. Again, the energy function could
be ‘‘measured’’ from individual-based simu-
lations, in which case the higher statistics of
spatial distributions would be implicitly
contained in the estimated energies;

(3) assumption that group boundaries essen-
tially represent discontinuities of population
density and behavior (analogous to surface
tension), and that the dynamics of these
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boundaries can be represented directly
without explicit computation of spatial
distributions within them (Gueron & Levin,
1993). In this case, the problem is reduced to
the interactions of neighbors in the vicinity
of group boundaries. Within this restricted
spatial domain, however, the same options as
in (2) are presented.

All these approaches emphasize the fact that the
definition and use of density distributions for
interacting individuals (i.e. ones following
density-dependent rules) involve some subtle
issues that do not arise in models of density-

independent behavior such as chemotaxis.
Mathematically, if we have many realizations of
the animal distribution—or, in the case of a
statistically stationary distribution, multiple
sample of the same realization over time—we
can define the expected number of animals n̄i in
a given volume Vi at time t. This is related to the
density distribution at a point by

n̄i =E4ni5=gni

dxr(x, t)

(Papoulis, 1984), where ni is the number in
volume Vi in a particular realization. The rate of

F. 17. Kinesis in turbulent flow.
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F. 18(a)—(Caption on opposite page).

change of this expected value is given by the
expected flux of animals across the boundary of
the volume (and internal population dynamics
changes). This leads back to the point-wise
formulation (14).

But to calculate the flux, we need to compute
the expected value of an animal’s social
responses. Let the social behavioral decision of
an individual at position x (which may have
consequences such as changes of speed or
heading) be expressed as f(x, t, n1, n2, . . . , nM ), a
function of the numbers in a set of M volumes
Vi near the organism’s position. Virtually any
social algorithm (at least without memory) can
be written in this form (for example f can be
stochastic, M : a can yield continuous vari-

ation in space, etc.). The decision function may
be expanded in a Taylor series,

f(x, t, n1, n2, . . . , nM )= f(x, t, n̄1, n̄2, . . . , n̄M )

+ n'i
1f
1ni

+
1
2

n'i n'j
12f

1ni1nj
+ · · ·

(summation convention used) where n'i = ni − n̄i

is the deviation from the average in a given
realization, and the derivatives are evaluated at
n̄i . Calculation of the density flux requires an
expression for the expected value of the decision
function, f(x, t)=E4 f 5. In expanded form,

f(x, t)= f(x, t, n̄1, n̄2, . . . , n̄M )

+
1
2

E4n'i n'j 5
12f

1ni1nj
+ · · · . (15)
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In (15), nonlinear behavioral terms appear in the
expected decision as functions of joint prob-
ability distributions between volumes and/or
higher order statistics within volumes.

4.1.1. Canonical one-parameter distributions

We can test two canonical statistical distri-
butions as models for how neighbors occur in
simulation models, spanning the spectrum of the
‘‘randomness’’ present in a system. One extreme
is to assume no variance, i.e. individuals exist in
a crystallized state with little or no relative
motion; thus all higher moments in (15) vanish,
allowing the expected value of the behavioral
decision to be estimated from the density alone.
The opposite alternative is the maximally
random case, i.e. that neighbors occur as Poisson
points governed by the mean density distribution
(Papoulis, 1984). For such a set, the probability
of observing k individuals in Vi is Poisson
distributed,

Pr(ni = k)= e−n̄i
nk

i

k!
. (16)

All higher moments, and thus the expected value
of the social behavior, can be calculated from
(16).

The stochastic processes giving rise to Poisson
points are defined in part by the requirement that
the number of individuals observed within
non-overlapping intervals must be independent
random variables. Unlike density-independent
behaviors such as chemotaxis, density-dependent
social behaviors give rise to distributions of
individuals in which non-overlapping intervals
are not independent. In fact, many social
behaviors violate this requirement explicitly. For
example when individuals maintain a minimum
distance from neighbors, the observation of an
individual at a given position implies a lower
probability of occupation of immediately adja-
cent positions. In this case, we expect that using
an assumption of Poisson points to predict

F. 18(b) and (c)—(Caption opposite).

F. 18 (a) Social behavior in turbulent flow. (b)
Patchiness with turbulent flow (—) and without (– – –).
Lower figure is a magnified view of the upper. (c) Group
sizes with flow (—) and without (– – –). Top: average group
size; middle: number of groups of different sizes; bottom:
number of individuals belonging to groups of different sizes.
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F. 19. Movement in the periodic domain with turbulent flow in the absence of grouping forces (V=0, a=1, b=0.2
or k=0.02).

population-level movements can fail rather
dramatically.

However, in other models of social behaviors,
the extent to which the Poisson point assumption
could apply as an approximation is less clear.
For example in many social aggregation models,
individuals respond to the total number of other
individuals within surrounding neighborhoods.
If the neighborhoods are large relative to typical
spacing between individuals, and if the stochastic
fluctuations in a neighborhood from one
behavioral response to the next are of a sufficient

magnitude, the incidence of individuals in
individual-based simulation may closely re-
semble those generated by Poisson processes.
This was found to be the case in the 1D social
aggregation model of Grünbaum (1994), de-
pending on the choice of parameters determining
rates of stochastic fluctuation and behavioral
adjustments to neighbors. The relevant question
therefore seems not to be whether the Poisson
point assumptions can be rigorously justified (for
that is quite unlikely) but whether there are
ways of defining local densities and utilizing
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the Poisson point assumption to obtain accept-
able predictions of population-level fluxes due to
individual-level social behaviors.

We note that the level of stochasticity is to a
large extent an ‘‘emergent phenomenon’’ in these
types of dynamical systems: a large component
of the stochastic forcing for any given individual
is determined by the degree of stochasticity
displayed by its neighbors, and vice versa.
Behavioral conditions leading to large levels of
stochasticity (and perhaps therefore validity of
Poisson point assumptions) have not been

sufficiently explored to allow a priori analytical
predictions, but this would be a fruitful line of
investigation.

Having made these comments, we now give an
example of how the Poisson point assumption
can be applied to obtain useful characteristics of
the population-level fluxes.

4.1.2. Example

We can estimate the expected preferred
velocity from the model (5) or (8) with the

F. 20(a)—(Caption on following page).
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F. 20(b)

F. 20. (a) Weak grouping forces (70%) (V=0.14, a=0.7, b=0.117 or k=0.014). (b) Slightly stronger grouping forces
(75%) (V=0.15, a=0.75, b=0.130 or k=0.0150).

assumption of uniform or Poisson distributed
particles. In each case, the higher moments in
(15) vanish, so that we can replace the sums by
integrals and find

V(x)=g=z=Q 1

dzr(x+ z)W(z)

When W has the form W= zF(=z=), we can
rewrite it as −9W(=z=) and integrate by parts to
find

V(x)=g=z=Q 1

dzW(=z=)9r(x+ z)

=9g=z=Q 1

dzW(=z=)r(x+ z). (17)
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When the density r varies slowly, we can
approximate this by

V=$g=z=Q 1

dzW(=z=)%9r

=V
p

12
9r

W=V0=z=2
2

−
=z=4
4

−
1
41 for (6),

V=V
11p

160
9r,

W=3.3V05=z =4
16

−
=z=2
8

−
=z=6
6

−
1
481 for (8),

showing that the preferred velocity is up-
gradient.

4.2.     

 

In the theory of gases, there are three basic
approaches to modeling the dynamics. The

F. 21(b) and (c)

F. 21. (a) Patchiness vs. times for various grouping
strengths (counting upwards: (—)=0%, (– – –)=50%,
(–.–.–)=60%, (. . . .)=70%, second (—)=75%, second
(– – –)=80%, second (–.–.–)=100%). The second panel
is a magnified version of the first; the third panel shows
the case without flow. (b) Same but with time rescaled,
so that the grouping strength is effectively fixed and the
flow is reduced in strength: (—)=0%, (– – –) =50%,
(–.–.–)=60%, (. . .)=70%, second (—)=75%, second
(– – –)=80%, second (–.–.–)=100%. (c) Patchiness at
t=1000 for 10 realizations as a function of the grouping
strength.F. 21(a)—(Caption opposite).
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simplest, but computationally overwhelming,
approach is to simulate the motions of individual
molecules by using the rules of Newtonian
dynamics and representations of collision pro-
cesses. This is directly equivalent to the
individual-based simulations described above.
At the opposite end of the spectrum are the
Navier–Stokes equations that view the gas as
a continuum and introduce viscosity and
diffusion to incorporate effects of momentum
and energy transfer via collisions. In between
these two approaches lies the Boltzmann
equation, which predicts the evolution in space
and time of the probability distribution for the
molecular velocities. This equation proves
crucial in that it forges a direct link between
molecular dynamics and continuum mechanics
and makes possible calculation of the form
and coefficients of the viscous/diffusive terms in
the Navier–Stokes equations, as well as an
approach to problems where corrections to these
are needed. An analogous equation for organ-
isms should play an equivalent and important
role in aiding our understanding of the
relationship between the continuum and individ-
ual-based models and the limits of validity of
the former.

Thus, we identify several possible stages in
developing a continuum model for the distri-
bution of organisms. If we begin with the
dynamics of the individual as outlined above, we
can then develop an equation for the spatial/
velocity distribution n(x, v, t) where n(x, v, t)
dx dv/N is the probability that an individual is in
the domain of size dx around x and has velocity
in the range dv around v. N is the total number
of organisms. This is the Boltzmann equation.
But if we wish to have a closed expression for
the expected density of organisms, r(x, t) 0
fdvn(x, v, t), we must reduce the equation
further; this can be done using either a
Fokker–Planck differential equation version of
the Boltzmann equation or it can be done
directly from the integral equation. In gas
dynamics, the latter reduction procedure was
formalized by Chapman (1916) and Enskog
(1917).

We shall now discuss procedures for deriving
continuum models from our individual-based
grouping models, beginning with an examination

of the equation for the evolution of the spatial/
velocity density n(x, v, t). Let PdV(z; x', v', t) be
the probability that a particle at position x' with
velocity v' at time t has a random acceleration
dV= z. Define a similar function PdX(z; x', v', t)
for the random hops. Then we find

n(x, v, t+ dt)=g dx' dv'PdX(x− x'− v'dt;

x', v', t)PdV(v− v'− adt; x', v', t)n(x', v', t)

(18)

under the assumption that the accelerations dV
and hops dX are uncorrelated. The density is
determined by the v integral of this equation:

r(x, t+ dt)=g dx' dv'PdX(x− x'

− v'dt; x', v', t)n(x', v', t).

(19)

4.2.1. Fokker–Planck simplification

The Fokker–Planck approach (cf.
Chandrasekhar, 1943) can be used to simplify
integrals such as (18) when one or both
probability functions are sharply peaked. In
particular, consider an integral

I(x, v', t)=g dx'PdX(x− x'

− v'dt; x', v', t)f(x', v', t)

= e g dzPdX(ez; x− v'dt

− ez, v', t)f(x− v'dt− ez, v', t)

(20)

We assume PdX varies rapidly with the first
argument (i.e. has order one variation as z
varies), while the variation in the second
argument and in f are presumed to be slow—the
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ratio of scales of variation being e. Taylor-
expanding with e0 dt1/2 leads to

I2 eg dzPdX(ez; x, v', t)f(x, v', t)

− e2 1

1xi g dzziPdX(ez; x, v', t)f(x, v', t)

+
e3

2
12

1xi1xj g dzzizjPdX(ez; x, v', t)f(x, v', t)

− edt
1

1xi
v'i g dzPdX(ez; x, v', t)f(x, v', t)

We can now perform the z integrals and arrive
at

I2f(x, v', t)+ dt
1
2

12

1xi1xj
[sij (x, v', t)f(x, v', t)]

− dt
1

1xi
[v'i f(x, v', t)] (21)

with

sij (x, v', t)0
1
dtg dZZiZjPdX(Z; x, v', t)

The assumption on the statistics of dX is that
they have zero mean and the variance remains of
order dt in the appropriate limit.

4.2.2. Hopping movements

The common reduction (cf. van Kampen,
1992, or Okubo, 1980, 1986) deals with
situations in which the particle does not retain
memory of the initial velocity, either because the
damping is rapid, the time steps of interest are
long compared with velocity decorrelation times,
or hops dominate. In that case, we can apply (21)
to (19) to find

r(x, t+ dt)= r(x, t)

+ dt
1
2

12

1xi1xj $g dv'sij (x, v', t)n(x, v', t)%
− dt

1

1xi $g dv'v'i n(x, v', t)%

If PdX is independent of the initial velocities, then
sij is also, and the second term can be simplified.
Likewise, we can assume that the expected
velocities are the preferred value V(x, t) so that
n(x, v, t)= r(x, t)d(v−V). In that case, we
obtain the simple expression

r(x, t+ dt)= r(x, t)

+ dt
1
2

12

1xi1xj
[sij (x, t)r(x, t)]

− dt
1

1xi
[Vir(x, t)]

or

1

1t
r(x, t)=

1
2

12

1xi1xj
[sij (x, t)r(x, t)]

−
1

1xi
[Vir(x, t)] (22)

Thus the density flux is given by

Ji = uir(x, t)− kij
1

1xj
r(x, t) (23)

with an advective velocity

ui =Vi −
1
2

1

1xj
sij (23)

which can very well be convergent (and may
depend on r). The diffusivity is

kij =
1
2

sij (23)

It is worth noting that even for a Lagrangian
model in which individual movement is governed
by a nonlinear equation, the resulting equation
for the probability density function (22) is linear
in r. The nonlinearity is parametrically disguised
in terms of the coefficients V and s. We shall
treat density dependence with the Fokker–
Planck formalism by introducing a dependence
of the phase transition probability on the animal
density at the points of departure. (Okubo, 1986,
shows that making the transition probability
depend on the point of arrival leads to equations
with the moments outside the derivatives.)

4.2.3. Boltzmann equation

When the stochastic term dX in the position
equation (1a) is missing, so that the only random
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variability is in the forces, the transition
probability can be simplified

PdX(x− x'− v'dt; x', v', t)= d(x− x'− v'dt)

and therefore sij =0. Now applying the Fokker–
Planck expansion procedure (21) to the original
eqn (18) gives

n(x, v, t+ dt)=g dv'PdV(v− v'− adt;

x, v', t)n(x, v', t)− dt
1

1xi g dv'v'i PdV(v− v'

− adt: x, v', t)n(x, v', t)

For a peaked PdV, the last term can be replaced
to O(dt) by

−dt
1

1xi
vin(x, v, t)

and we can expand the left-hand side to obtain
the Boltzmann equation

1

1t
n(x, v, t)+9 · [vn(x, v, t)

=g dv'c(v; x, v', t)n(x, v', t) (24a)

with the transition rate c given by

c(v; x, v', t)=
1
dt

[PdV(v− v'− adt; x,v', t)

− d(v− v')]. (24b)

This is the integral form of the Boltzmann
equation and is applicable if our time steps are
large enough that the kernel is well defined.

From the definition of c, it is clear that

g dvc(v; x, v', t)=0 (25)

so that the v integral of the Boltzmann equation
(24) will lead to the density equation (14) with
the flux being

J=g dv vn(x, v, t). (26)

Note that the transition rate does not appear
directly in the equation for the time rate of
change of the density; thus we have two time
scales, one for the readjustment of the velocity
distribution (involving the rate determined by c)
and one for spatial grouping, involving the
characteristic velocities and spatial scales.

4.2.4. General Fokker–Plank reduction

If we consider our equation including both
random hops and accelerations (under the
assumption that dV and dX are uncorrelated),
we can apply the reduction procedure (21) twice
to show that

1

1t
n(x, v, t)=−

1

1xi
[vin(x, v, t)]

−
1

1vi
[ain(x, v, t)]

+
1
2

12

1xi1xj
[sijn(x, v, t)]

+
1
2

12

1vi1vj
[gijn(x, v, t)]

where g is defined in terms of the second
moments of dV.

gij (x, v, t)0
1
dt g dZZiZjPdV(Z; x, v, t)

When random hops do not occur, we obtain the
differential form of the Boltzmann equation

1

1t
n(x, v, t)=−

1

1xi
[vin(x, v, t)

−
1

1vi
[ain(x, v, t)]

+
1
2

12

1vi1vj
[gijn(x, v, t)]. (27)

Each of the terms on the right-hand side has a
straightforward interpretation: density in a
particular region and velocity band changes by
(1) spatial fluxes associated with advection, by
(2) changes in velocity from the deterministic
forces, and by (3) diffusion of velocity because of
the stochastic forces (although the latter is not
strictly a diffusion, since it appears within the
two derivatives).
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4.3.   

We can use either the integral or differential
forms of the Boltzmann equation to parameter-
ize the density flux in the case where the animals
are sensitive only to the vector distances to
neighbors but not to their velocity (no arrayal
forces). In that case, we may expect that the
forces depend only on r and it would make sense
to try and represent J in terms of the density.

4.3.1. Moment method

In our example, where

a=−a(x, r, t)[v−V(x, r, t)],

gij = dijb
2(x, r, t),

we can take moments of the differential
equation (27):

1

1t
r(x, t)=−

1

1xi g dv[vin(x, v, t)]

=−
1

1xi
Ji (28a)

1

1t
Ji =−

1

1xj g dv[vivjn]− aJi + aVir.

(28b)

The second moment is given by

1

1t g dv[vivjn]=−
1

1xj g dv[vivjvkn]

−2a g dv[vivjn]+ a(ViJj +VjJi )+ gijr (28c)

(using the symmetry of gij ). When the biological
time-scales are short, so that a and g are large,
the density flux relaxes rapidly to the steady-state
solution of (28b)

Ji : Vir−
1
a

1

1xj g dv[vivjn] (28d)

and, when the preferred velocity V is small, we
can write the second moment in terms of the
density

g dv[vivjn]=
1
2a

gijr (28e)

and thereby close the flux expression

Ji =Vir−
1
a

1

1xj

1
2a

gijr (28f)

corresponding to an advection velocity

ui =Vi −
1
a

1

1xj

1
2a

gij (28g)

and a diffusivity

kij =
1

2a2 gij . (28h)

To estimate V and/or b, we replace the sums in
(5), (10) by integrals over the density:

V(x)=g dzW(z)r(x+ z)

=9 g dzW(=z=)r(x+ z) (29a)

and

b= b0 exp(−g dzWb (z)r(x+ z)) (29b)

or, when a is constant,

k= k0 exp(−2 g dzWb (z)r(x+ z))

= k0 exp(−g dzWk (z)r(x+ z)). (29c)

The formulae (29), together with the expression
for the flux

J=Vr−
1
a

9 b2

2a
r

=Vr−
1
a

9(akr)

=$V−
1
a

9(ka)%r− k9r
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complete the link between the microscopic
behavioral rules and the macroscopic density
equation.

Some sample results, shown in Fig. 22,
indicate that the continuous model reproduces
features of the discrete model quite well. We had

F. 22(a)—(Caption on p. 439)
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F. 22(b)—(Caption on p. 439)

to increase the perception radius to 4 rather than
1 to have adequate spatial resolution with a
64×64 pseudospectral model (with a grid
spacing of 0.4)—the equations are rather stiff

and numerical problems can arise as the density
approaches zero. In addition, for ease of
calculation, we have replaced the weighting
function W2 with the sum of two Gaussians,
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since their Fourier transform is easily defined [cf.
Fig. 22(c)]

The major difference between the continuum
model and the individual-based simulation is the

rate of merger during the last half of the run. For
some parameters, merger appears to occur
earlier in the continuum model, while for others
it occurs later. The details of a group merger

F. 22(c)—(Caption on p. 439)
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F. 22(d)—(Caption on p. 439)

event are shown in Fig. 23. The differences
in merger events appear to be associated with
the more random movement of the groups
in the individual-based model, which enhances
their encounter rate; on the other hand,
the groups in the continuum model appear
to have longer tails (with very low, but
non-zero, densities, perhaps associated with
the longer range of the Gaussians) so that
the groups are always interacting, albeit
weakly.

4.3.2. Chapman–Enskog method

In the alternative approach to deriving density
fluxes, we deal directly with the integral equation
(24) [although the same procedure can actually
be used on the differential equation (27)].
Consider the case where the conditions are
spatially uniform. Then

1

1t
n(v, t)=g dv'c(v; v', t)n(v', t)
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and we assume that the velocity decays to an
equilibrium distribution. The rate of decay
depends upon the eigenvalues l of the integral
operator

g dv'c(v; v', t)el (v', t)=−lel (v, t)

All of the eigenvalues and eigenvectors may
depend parametrically upon space and animal
density. Note that there is one zero eigenvalue
[since the constant 1 is a left eigenfunction

solution by (25)]. For the Boltzmann equation to
be reducible, all the other eigenvalues must be
negative. [Note—in the gas problem, the zero
eigenvalue is multiply degenerate (Harris, 1971);
we shall assume for the biological dynamics that
it is not.] The basic assumption is that the other
eigenvalues are large: the velocity equilibrates
rapidly compared with the group formation
process. In effect, then, the velocity distribution
remains nearly in local equilibrium. But the
equilibrium distributions vary from place to
place. Advection then causes weak disequilibria

F. 22(e)—(Caption opposite page).
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F. 22(f )

F. 22. (a) Individual-based grouping calculation using a model to (6), but with a radius of influence 4 and longer range
sensing W3 =−9[0.28 exp(−z2/8)−0.2277 exp(−z2/4)]. The first frame shows the weighting function W3. The last frame
shows the patchiness (using squares with side 2). Parameters are a=1, b=1. (b) Density computed from the previous figure.
At each of the 64×64 grid points, we count the number of individuals within a square with side length 2 centered on the
gridpoint; then r=N/4. The last frame shows the patchiness estimated from

p̃= ff dxr(x)ffz $ (−1. . .1,−1. . .1) dzr(x+ z)

4 1
Area [ff dxr(x)]2

While the values are somewhat different from those in Fig. 22(a), the pattern is very similar. (c) Continuum model with
the weighting function W3 shown in the first frame. The contour intervals are the same. The initial conditions are from
the t=0 frame in 22(b). The final frame shows the patchiness index; it shows different development in the early stages,
but similar growth rates as the patches develop. The continuum model does not show the merger events occurring as
frequently. (d) Individual-based grouping calculation in the presence of turbulent flow. (e) Density computed from the
previous figure. (f) Continuum model for grouping in turbulent flow.
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F. 23. Merger in the continuum model. Each group was produced by starting with an initial isolated patch and letting
it evolve for 200 time units. The final states were then added together to produce the initial condition. The first frame shows
a section through the groups at the initial time.

and leads to asymmetric distributions, which, by
(26), result in density fluxes.

When the biological time-scales are rapid
compared with grouping times, the first approxi-
mation to (24) is

n(x, v, t)= r(x, t)n̄(x, v, t)

where n̄ is the right eigenfunction, e0, for l=0

g dv'c(v; x, v', t)n̄(x, v', t)=0

and is normalized by f dvn̄(x, v, t)=1.

There are two cases we can now consider,
depending upon whether n̄(x, v, t)= n̄(x,− v, t)
or not. The symmetric case will arise if the
transition rate from velocity v' : v is the same as
the transition rate from −v' : −v. In the
symmetric case, the flux from f dvvin̄(x, v, t) is
zero and we must consider higher order
corrections. These lead to ‘‘kinesis’’—the ani-
mals can move up or down a gradient (as we
shall see) without being able to sense the gradient
or determine a direction. In contrast, in the
‘‘taxis’’ case, the organisms determine their
direction based on conditions and n̄ is not
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symmetric. The interesting limit is the case when
the asymmetry is weak, so that its effects enter at
the same order as those of kinesis.

In this case, we split c into the part associated
with a symmetric equilibrium cs and the rest cu.
We choose cs so that e†0 =1 is still a left null
eigenfunction (and therefore it is also a null
vector of cu). If we define n= rn̄+ n', we find
the correction to the local equilibrium velocity
distribution satisfies

g dv'cs(v, x', v', t)n'(x, v, t)

=− g dv'cun(x', v', t)+
1

1t
n(x, v, t)

+ 9 · [vn(x, v, t)]

2−rg dv'cun̄(x', v', t)+
1

1t
[r(x, t)n̄(x, v, t)]

+ 9 · [vrn̄(x, v, t)]. (30)

The 1r/1t term is higher order; therefore, the
r.h.s. is still orthogonal to e†0 , (30) will be
solvable for n', and we will be able to evaluate
the density flux

Ji =g dvvin'(x, v, t). (31)

By the definition (31), we are only concerned
with the antisymmetric part of n'; that will be
generated by the antisymmetric parts of the r.h.s.
of (30). We shall assume that c depends only
upon n (if at all) through r. In that case n̄ may
depend on r, but the term r1n̄/1t is still
symmetric and can be ignored. We can now see
that the flux has a term proportional to r, acting
as an advection, and a term proportional to 9r,
giving diffusion.

Ji = uir− kij
1

1xj
r

Notice that the advecting velocity u is non-zero
even when c has only symmetric transitions and
local equilibrium. This derivation implies that
aggregation processes are similar under many
different assumptions about the microscopic

behavior: as long as the time-scales for the
velocity distribution to come to local equilibrium
are short and the transition rates depend on (at
most) the density of the organisms (along with
external environmental cues), we end up with a
diffusion and a convergent/divergent velocity. Of
course, the rates do depend strongly upon
microscopic assumptions.

4.4.     



As Fig. 22 demonstrated, the spatially-
uniform density state can be unstable to
disturbances which develop into nearly isolated
groups. We would like to consider the linear and
nonlinear development for an example of patch
growth, taking the case of social taxis.

1

1t
r=−9 · [ur−k9r]

and modelling the social behavior by taking the
velocity to be

u=9f

with

f=gg dzW(z)r(x+ z)

Non-dimensionalizing these equations can be
helpful in studying their properties. We scale
lengths by L, the characteristic perception
distance (the scale inherent in W), time by L2/k,
velocity by k/L, f by k, and densities by r0. The
equations become

1

1t
r=−9 · [ur−9r]

u=9f

f= e gg dzW(z)r(x+ z) (32)

with the non-dimensional parameter being the
Peclet number e= r0W0L2/k= ubioL/k. Here W0

is the characteristic magnitude of W (defined as
the area integral of W divided by L2)—implying
we have the normalization ffW=1 for the non-
dimensional weighting function. The parameter
ubio 0 r0W0L is the characteristic movement
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speed for the organisms; thus the Peclet number
compares movement rates to diffusive rates.

If we substitute r= r̄+ r' exp(ik · x+st) and
linearize (=r'=�r̄), we find the growth rate is
given by

s= =k=2[r̄eW
 (k)]− =k=2

W
 (k)=ggW(z) exp(ik · z) (33)

and the uniform state is unstable if s is positive.
Since W
 (0)= ffW=1, s will be positive as
=k== : 0 if r̄eq 1.

To analyse the nonlinear behavior, we take
solutions of the form

r= s
n

rn (t) exp(ink · x). (34)

For this form, we can also find f since the
integral equation (32) is linear:

f= e s
n

rn (t)W
 (nk) exp(ink · x). (35)

Substituting (35) into the dynamical equations
(32) and combining terms gives

1

1t
rn = n =k=2 s

m

[emW
 (mk)rmrn−m − nrn ].

(36)

For a weakly nonlinear stability calculation, we
truncate (36) to include n=−2, −1, 0, 1, 2 and
find

1

1t
r0 =0

1

1t
r1 = =k=2[eW
 (k)r0r1

+ e(2W
 (2k)−W
 (k))r2r *1 − r1]

1

1t
r2 =2=k=2[2eW
 (2k)r0r2 + eW
 (k)r2

1 −2r2]

(r*1 being the complex conjugate of r1) or

1

1t
r1 = s1r1 + =k=2e(2W
 (2k)−W
 (k))r2r*1

1

1t
r2 = s2r2 +2=k=2eW
 (k)r2

1 (37)

with the sn being the growth rates for
perturbations of the uniform state with r̄= r0

from (33). When s2 Q 0, we can expect a center
manifold approximation to hold, so that
r2 2R(r1) and the leading term will be quadratic
r2 2 rr2

1 . Substituting this in (37) and solving the
second equation for r gives

r2 2
2=k=2eW
 (k)

2s1 − s2
r2

1

and the first gives

1

1t
r1 2 [s1 +N =r1=2r1 (38)

with

N=
2=k=4e2W
 (k)(2W
 (2k)−W
 (k))

2s1 − s2
. (39)

Thus, the nonlinearity will be destabilizing if
2W
 (2k)qW
 (k) and s1 q 0, s2 Q 0. Below, we
shall look at a specific example; however, we can
readily show that nonlinearity destabilizes long
waves and that these are the waves excited when
er0 =1+ dq 1—the system is just above
threshold. For long waves,

W
 (nk)2ggW(z)[1+ ink · z−
1
2
(nk · z)2]

2 1− an2=k=2 (40)

with a=1/2ffW(z)(k
 · z)2 being a constant in
the case of a radially symmetric W. Then the
growth rates look like

sn = n2=k =2[(1+ d)(1− an2=k=2)−1]

2 n2=k=2[d− an2=k=2].

Therefore the unstable waves are long: =k=2 Q d/
a. Returning to (40), we see that 2W
 (2k) −
W
 (k)2 1 when =k=2 is small—the nonlinearity is
destabilizing.

We have calculated the growth rates and
nonlinear coefficients for some of the models
used in Sections 2 and 3. Figure 24 shows
examples of these. Near the critical value of r̄e,
the growing waves are long and nonlinearity is
destabilizing, but the scale becomes order one as
the parameter becomes larger. There is a range
of k for which the nonlinearity is destabilizing
(and in other regions, multiple wavenumbers are
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F. 24(a)—(Caption on p. 445)

unstable), so that instabilities, once started, will
grow to large amplitude.

In view of analytical and numerical difficulties
posed by partial integro-differential equations, it
is of interest to consider the convolution form in
relation to the regular differential forms associ-
ated with it via Taylor expansion (Alt, 1985). As
an example, we compare the linear stability of
this two-dimensional version of the Kawasaki
(1978) model to that estimated from differential
approximations to it. Approximating the non-lo-
cal distribution of r in the convolution (32) by
a Taylor series of n-th order gives an expression
for velocity which is a linear function of
derivatives of r, evaluated at x, and moments of

the weighting function W,

f2 r+9irggziW+
1
2

9i9jrggzizjW+ · · ·

(41)

This approximation gives a growth rate (if the
necessary moments exist) of

s=−=k=2 + =k=2r� e$W
 =k=0 + iki
1W

1ki bk=0

−
kikj

2
12W

1ki1kj bk=0

+ · · · %
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In general, for an n-th order of the Taylor
expansion of (41), the approximate growth rate
will be the n-th order expansion of W
 (k) around
k=0. The factor appearing in the growth rate
derived from the integral equation, W
 (k), is
bounded as the wavenumber k approaches
infinity, while the differential approximation
gives a polynomial of finite order for the growth
rate which goes to infinity (with the correct or
incorrect sign depending on n) with increasing k.
Thus (41) can give rapidly growing short wave
modes which are not present in the integral
equation form. We conclude that convolutions
such as (31) cannot be replaced with differential
forms, even if the true density distributions are

smooth and well approximated locally by Taylor
expansions of low order (see also Alt, 1985).

4.5.  

We can solve for steady-state groups that
decay to a uniform exterior density, which we
can normalize to r=1 (cf. Fig. 25). For the
exterior to be stable, we require eQ 1. (If we
want to define a larger Peclet number, we can
choose a different background density value r0).
The isolated group will be radially symmetric
and the flux must vanish at each r; thus,

r
1

1r
f=

1

1r
r

F. 24(b)—(Caption on opposite page).
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F. 24(c)

F. 24. Growth rates s1 (—) and nonlinear coefficients N (– – –) for various k values for the weighting (6),
W(z)=V(0.25−05=z=2 +0.25=z=4). These are dimensional, rather than non-dimensional. (b) Growth rates and nonlinear
coefficients for various k values for the weighting (7), W(z)=V(0.06875+0.4125=z=2 −1.03125=z=4 +0.55=z=6). (c) Growth
rates and nonlinear coefficients for various k values for the weighting used in (14c),
W(z)=0.28 exp(−0.125=z=2)−0.2277 exp(−0.25=z=2).

which implies

f= e+ln r (42)

where the integration constant is chosen to
match the far-field conditions, r : 1 and eqns
(32) and the normalization condition on W have
been used.

Thus, we can write the problem in terms of a
single integral equation

e ggW(z)[r(x+ z)−1]= ln r(x). (43)
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4.5.1. Green’s function

For particular choices of W, we can rewrite
(43) as a differential equation and look for
solutions with a numerical shooting algorithm.
One simple case is

W(z)=
1
2p

K0(=z=)

which satisfies

92
z W(z)−W(z)=−d(z)

with the subscript on 92
z serving as a reminder

of which variables the Laplacian is acting upon.
If we multiply by −f(x+ z) and integrate over
z, we find

f(x)=− gg f(x+ z)(92
z −1)W(z)

=− ggW(z)(92
z −1)f(x+ z)

=− ggW(z)(92
x+ z −1)f(x+ z). (44)

Comparison with (32) shows that

(92
x −1)f(x)=−er(x)=−e exp(f− e)

F. 26. Growth rates s1 for two different er̄ values:
(– – –) show s2. The third plot shows the nonlinear
coefficient N for er̄=1.2 (—) and 2.0 (– – –).

with the last identity from (42). If we define
f'=f− e=ln r, we derive a simple nonlinear
equation for the steady structure:

(92 −1)f'(x)= e(1−ef')

We have solved this in radial coordinates, using
a second order Runge–Kutta integration, start-
ing with the initial conditions f=f0, fr =0 at
r=0. The constant f0 is adjusted to give
well-behaved solutions as r : a (actually at
r=40). The solutions for two values of e are
shown in Fig. 25. Note that the groups get
sharper and narrower as e decreases.

4.5.2. Growth rates/nonlinearity

For this form of weighting, we can evaluate
W
 (k) explicitly [though the simplest way is to
follow a procedure like (44)]

W
 (k)=
1

1+ =k=2
F. 25. Steady solutions for e=0.9 (– – –), 0.7 (–.–.–)

and 0.5 (—).
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allowing us to plot the growth rates [from (33)]

s= =k=2$ er̄

1+ =k=2 −1%
as shown in Fig. 26. We also show the nonlinear
coefficient N from (39).

4.6. 

Our derivations emphasize the generality of
the advective–diffusive form for the flux and
demonstrate that we can, at least in simple cases,
find the forms of the velocities and diffusivities
from the model for individual behavior. In
general, we expect convergent velocity fields will
arise, either from taxis or kinesis with chemical
or social cues. The more random component of
the motion can balance this convergence,
resulting in organized groups. The continuum
models show the development of such structures,
as well as the phenomenon of group merger and
(we expect) breakup.

At the same time, continuum models do
require additional statistical assumptions which
can only be validated as reasonable by detailed
analysis and/or individual-based simulations.
We also note that some processes, such as the
slow random-walking of a group tend not to
appear in the continuum models. Likewise,
schooling behavior has not been examined, but
we expect that a continuum description will
require additional fields beyond density to
capture the overall movement of the school (as
discussed in the following section).

5. Population-level Movements through Group
Size Distribution Dynamics

5.1.       



One of the ultimate goals of modeling social
grouping behaviors is to understand and predict
the ecological role of such behaviors in shaping
spatial and temporal distributions of social
animals and their associated predator and prey
species. These types of ecosystem-level questions
typically deal with time and space scales much
larger than those characterizing group move-
ments. In many cases, the scales over which

interesting population dynamics take place are
so large that, relatively speaking, groups lose
their identities (due to fragmentation and fission)
over very brief periods. In situations where this
difference of scales exists, modeling approaches
that focus on explicit group-by-group dynamics
seem to be limited by practical constraints to
time and space scales too small to answer
ecological questions. On the other hand, this
difficulty suggests alternative mathematical ap-
proaches specifically based on multiple space/
time-scales. One established line of mathematical
development that falls into this category is the
literature on non-spatial descriptions of group
size distributions (Okubo, 1986; Gueron &
Levin, 1993). Another relatively well studied type
of analysis stemming from multiple scales is the
translation of spatially-explicit, individual-based
biased random walks to advection–diffusion
equations for populations (Patlak, 1953; Keller
& Segel, 1971; Alt, 1980; Othmer et al., 1988). In
this section, we suggest an approach combining
these two kinds of analysis to obtain population-
level advection–diffusion equations that im-
plicitly contain both the dynamics of group
fusion and fission and the different biased
random walk characteristics associated with
groups of different sizes.

5.2. -   

Non-spatial group size distribution models
describe the dynamics after individuals have
collected into schools or swarms which can move
around in the area of interest, can interact with
other groups, and can change sizes by losing or
gaining members (Okubo, 1986; Gueron &
Levin, 1993). Small schools are created by the
fission of existing larger schools, large schools
are created by the fusion of smaller schools, and
so on. For a given set of social behavioral
algorithms, school properties such as size and
shape, average velocity, and cohesiveness typi-
cally vary with the number of school members.
Thus, we expect that fission and fusion rates are
functions of school size. Of course, for any
particular school, the probability of splitting, or
of encountering and fusing with another school,
depends on the exact spatial arrangement of that
school and its neighbors. However, for a
relatively large area containing numerous
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schools, an average rate of fusion and fission can
be defined for schools of a given size, based on
school properties and the overall density of other
schools in the area.

Using these size-dependent fission and fusion
rates, a non-spatial description of the local
density of schools of size j, gj (t), can be written
as a function of time in the form of a dynamical
system,

d gj

d t
=

1
2

s
j−1

k=1

a(k, j− k)gkgj− k − s
a

k=1

a(j, k)gkgj

+ s
a

k= j+1

b(k, j )gk −
1
2

s
j−1

k=1

b(j, k)gj (45)

where a(j, k) is the rate at which schools of size
j fuse with schools of size k, and b(j, k) is the rate
at which schools of size j split to form schools
size k and (j− k) (Okubo, 1986). In (45), the first
and third terms on the right hand side represent
creation of j-schools by fusion of smaller schools
and fission of larger schools, respectively. The
remaining terms represent disappearance of
j-schools by fusion or fission.

5.3.    

In (45), fusion rates are assumed to be
quadratic in school density, while fission rates
are proportional to the density. These functional
forms are based on the assumption that fission is
essentially an intra-group phenomenon; i.e. it
does not depend on the presence or absence of
neighboring groups. In contrast, fusion is
assumed to be principally determined by
encounter rates between schools—how often
groups come close enough to detect and respond
to neighboring groups—and simple analyses
suggest that any particular group’s rate of
encounter is simply proportional to the density
of other groups in the area. This implies the
quadratic functional form for fusion.

The quadratic form in turn suggests that as
population densities become larger, fusion rates
typically increase more quickly than fission
rates. At low population densities, then, we
expect a small mean school size at the
equilibrium of (45); with increasing population
density, we expect not only an increase in

number of schools but also a shift towards larger
modal school size.

5.4.  :  2 

Of course, dynamical systems descriptions of
group size distribution like (45) do not of
themselves solve the problem of tying individual
social behavior to population fluxes. However,
they can be useful as intermediate descriptions
that can be coupled rigorously both to the lower
level of individual behavior and to the higher
level of moving populations. As a concrete
(though highly incomplete) example of how this
coupling might be attempted, we begin with a
highly simplified model of schooling behavior,
and carry out some of the steps required to
derive the dynamical systems description.

For this example, we use the schooling model
described briefly in Section 2 (Fig. 10); more
details of behavior and some of the interactions
between social and tactic behaviors are described
in Grünbaum (1998a). We used simulations with
large numbers of individuals (shown in Fig. 10),
together with some basic analysis, to estimate the
rates of fission and fusion appropriate to use in
(45) for this schooling model. The group size
distribution is assumed to be approximately
stationary, with fusion roughly balancing fission
at each group size.

5.5.  

In our example, we estimate fusion rates using
a two-dimensional version of the encounter rate
models of Koopman (1956), Gerritsen &
Strickler (1977), and Rothschild & Osborne
(1988). According to this model, a(j, k), the rate
at which j-sized schools will encounter k-sized
schools, is given by

a(j, k)=
4
p

(R(j )+R(k))(U(j )

+U(k))E02zU(j ) ( U(k)
U(j )+U(k) 1. (46)

In (46), R(j ) and R(k) are the characteristic
lengths of schools of size j and k, respectively,
U(j ) and U(k) are the characteristic velocities,
and E is the complete elliptic integral of the
second kind. Equation (46) makes it clear that we
have to know the variation of R and U with
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F. 27. (a) School length R vs. group size j. (b) School
velocity U vs. group size j.

5.6.  

Fission rates in the simulations are approxi-
mately linear as a function of school size, but
have a non-zero intercept (Fig. 28),

b(j, k)

=g
G

G

F

f

b00 j− v
j−2n1

0

jq vn & nQ kQ j− n

otherwise

.

(47)

This means that schools smaller than a threshold
‘‘unit’’ size (n) virtually never split, while larger
schools have a relatively short ‘‘half-life.’’ The
unit size observed in the simulation corresponds
to 2–3 times the number of neighbors perceived
by an individual within a school (n3 11,
b0 2 0.00011 in these simulations).

5.7.   

Using (46), (47) as the fusion and fission
functions for (45), we can numerically estimate
the group size distributions that would result
from our schooling behavior in simulations with
many more individuals than our computational
capacity allows us to carry out. It turns out that
the groups resulting from the simple schooling
algorithm are very nearly exponentially dis-
tributed [Fig. 29(a)]. This is not altogether
surprising—Okubo (1986) used a maximum
entropy analysis to argue that the exponential
distribution is in some sense a ‘‘natural’’ group

F. 28. Splitting rates vs. group size.

group size. Since we cannot calculate them
analytically for our schooling behavior, these
parameters must be measured from simulations.
Figure 27 shows frequency diagrams for R and
U observed in our simulations; we approximate
these distributions by curve-fitting as

R(j )=L0jL1

U(j )= c1 10−c2j.

From our simulations, we estimate that
L0 =0.52, L1 =0.85, c1 =0.823, and c2 =0.002.
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F. 29. (a) Group size distributions for various densities.
(—) p=0.0001, (–.–.–) p=0.001, (– – –) p=0.01, (. . .)
p=0.025. (b) Group size exponent vs. density.

movement of the population due to the random
motion of groups will change also (probably
decrease as density increases). As an attempt to
anticipate the consequences of schooling behav-
ior for population fluxes, we present a heuristic
discussion of how a diffusion equation with
density-dependent coefficients might describe
such a situation. A rigorous analysis would most
likely follow derivations from the random walk
literature, which use perturbation techniques
(Grünbaum, 1998b). To be maximally useful,
such an analysis would also take into account
not only environmental advection terms but also
directional biases corresponding to taxis at the
group level.

Our heuristic argument is as follows: the
density gj of any given group size j will diffuse
due to the random motion of the groups (Okubo,
1980, 1986; Edelstein-Keshet, 1988; Murray,
1990) as

1

1t
gj =−9(Dj9gj ). (48a)

In (48), the size-specific diffusivity, Dj , is
estimated as

Dj =
1
2

U2(j )tj . (48b)

tj , the directional persistence time for a school of
size j, should be measured from school
trajectories, but since we do not have this
information, we assume it to be constant, tj = t.
In practice, large groups probably have greater
directional persistence than small groups; how-
ever, in our simulations, the half-life of larger
groups is so short that they almost invariably
split before turning, so we expect the error from
this simplification to be small. We then sidestep
the whole issue by scaling our time variable by t.

Multiplying both sides of (48) by j, summing
over all group sizes, and rearranging gives

1

1t
r=−9(D� (r)9r). (49a)

where

D� (r)= s
a

j=0

jDj (r
1

1r
fj + fj ), fj (r)=

1
r

gj .

(49b)

size distribution, and went on to document
numerous instances of this type of distribution
observed in social animals. In our case, it is a
particularly convenient result, because it allows
us to characterize the group size distribution
with a single density-dependent exponent
[Fig. 29(b)]. Note that increasing density has the
expected result of shifting the group size
distribution towards larger groups.

5.8.     -



As shown in Fig. 27, group speeds tend to
decrease with increasing group sizes; and, since
groups tend to get larger as total population
density, r, increases, we expect that the
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F. 30. Effective diffusivity vs. density.

spread of an initially clumped population.
Compared to an asocial population, the popu-
lation concentration is dispersed more slowly,
but diffusion is rapid at low densities at the
fringes. Asocial diffusion from an initially
clumped distribution results in the standard
Gaussian; in contrast, effective diffusivity in a
social population apparently results in a
leptokurtic distribution (Zar, 1996).

6. Concluding Remarks

The problems of understanding the collective
dynamics of ensembles of individual agents is a
fundamental one throughout science. Animal
aggregations provide an ideal system for
studying such processes because the responses of
individuals to their local environments can be
well characterized in terms of observations, or
via hypotheses developed to explore ecological
or evolutionary processes, and because a
remarkable diversity of macroscopic patterns are
observed in Nature.

The evolutionary determinants of grouping
behavior differ from system to system; depending
on the circumstances, the ultimate causes may
involve improved foraging for resources, defense
against predators, or mating success. Whatever
the explanations, however, the mechanisms of
aggregation are almost always mediated proxi-
mally in terms of individual responses to their
local environments. One of the central challenges
in the subject, therefore, is to relate macroscopic
dynamics to local behavior, and to scale from the
individual to the group. The approach we take is
a well established one (see, e.g. Grünbaum &
Okubo, 1994), beginning from a Lagrangian
representation of an individual’s acceleration as
a sum of forces due to intrinsic and extrinsic
factors, including those deriving from the fluid
dynamics, chemical and resource gradients, and
inter-individual attraction and repulsion. By
varying the importance of the various factors,
and the responsiveness to them, we explore their
interplay, and distinguish the determinants of
pattern on different scales.

We have reviewed the fundamental
approach and assumptions in individual-based
(Lagrangian) and continuum (Euler) models of
animal aggregation, as well as methods for

In (49), fj is the relative frequency of group size
j at total density r, and D� (r) is the effective
diffusivity at population density r.

Equation (49) is our heuristic estimate of the
diffusive flux of population density for individ-
uals schooling according to our simple behavior,
and is the principal result of this section. The
effective diffusivity based on the parameters from
our simulation results is a strongly decreasing
function of school size (Fig. 30). This confirms
the expectation that a dense social population
diffuses relatively more slowly than the same
density of an asocial species would (i.e. a
population composed entirely of group size one).
Figure 31 shows how social behavior affects the

F. 31. Diffusion of an initial concentration (. . .) in the
case without social behavior (–.–.–) and with social
behavior (—). In the latter case, the individuals are
organized into many small schools.
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relating one to the other. In the individual-based
approach, the forces, both deterministic and
stochastic, are specified (along with hopping
movements if applicable), and the equations for
each organism’s velocity and position are
integrated. Aggregation can result from either
environmental or social responses. Both direc-
tional responses (taxis), where the accelerations
depend on the gradient of the cue field, and
non-directional (kinesis), where only the local
concentration of the cue field matters, can lead
to group formation. We have shown that
environmental variability or flow may not
seriously impede grouping and, indeed, may
enhance it by increasing the encounter and
merger rates of groups. Turbulent flows, which
might be expected to break groups apart, do not
have the same effects as enhanced diffusivity.
Instead, because the small scale shears are weak,
groups can form readily and merge more rapidly.

The continuum models allow analytical
approaches to questions of spontaneous emer-
gence of patches and the structure of isolated
patches. Patch merger rates may likewise be
accessible via perturbation approaches.
Although derivation of continuum equations
from individual-based models does require
statements about the statistics that are not
strictly accurate for social behavior, our
experiments show that the continuum model
nevertheless reproduces the results of the original
individual-based model quite well. Whether or
not this will hold for other forms of social
interaction remains an open question.

Finally, the study of individual-based models
can lead to formulation of models for group-size
distributions. We can extend these to a spatial
domain with environmental variability; however,
they will have multiple state variables at each
point. In effect, we are supplementing the density
with information about the group statistics.
More study is required to gain insight into the
minimal amount of information which must be
carried in large-scale models in order to
represent properly the aggregation process.

We have not dealt here with the effects of
grouping on predator–prey or competitive
interactions. That investigation is ongoing. The
common biological models for interacting
species assume, in effect, that the distributions

are Poisson. Thus, it seems clear that such
interactions will be strongly influenced by the
non-random distributions induced by social
behavior or environmental responses (including
response to prey or predator distributions). We
believe that the combined use of individual-
based, continuum, and group statistics models
will allow us to assess the effects of spatial
patchiness on species interaction and to under-
stand how such behaviors might evolve.
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