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Abstract

A useful approach to the mathematical analysis of large-scale biological networks is based

upon their decompositions into monotone dynamical systems. This paper deals with two

computational problems associated to finding decompositions which are optimal in an appro-

priate sense. In graph-theoretic language, the problems can be recast in terms of maximal

sign-consistent subgraphs. The theoretical results include polynomial-time approximation al-

gorithms as well as constant-ratio inapproximability results. One of the algorithms, which has

a worst-case guarantee of 87.9% from optimality, is based on the semidefinite programming

relaxation approach of Goemans-Williamson [20]. The algorithm was implemented and tested

on a Drosophila segmentation network and an Epidermal Growth Factor Receptor pathway

model, and it was found to perform close to optimally.
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1 Introduction

In living cells, networks of proteins, RNA, DNA, metabolites, and other species process environ-

mental signals, control internal events such as gene expression, and produce appropriate cellular

responses. The field of systems (molecular) biology is largely concerned with the study of such

networks, viewed as dynamical systems. One approach to their mathematical analysis relies upon

viewing them as made up of subsystems whose behavior is simpler and easier to understand. Cou-

pled with appropriate interconnection rules, the hope is that emergent properties of the complete

system can be deduced from the understanding of these subsystems. Diagrammatically, we picture

this as in Figure 1, which shows a full system as composed of four subsystems.
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Figure 1: A system composed of four subsystems

A particularly appealing class of candidates for “simpler behaved” subsystems are monotone

systems, as in [23, 24, 42]. Monotone systems are a class of dynamical systems for which patholog-

ical behavior (“chaos”) is ruled out. Even though they may have arbitrarily large dimensionality,

monotone systems behave in many ways like one-dimensional systems. For instance, in monotone

systems, bounded trajectories generically converge to steady states, and there are no stable oscil-

latory behaviors. More precisely, see below, one must extend the notion of monotone system so as

to incorporate input and output channels, as introduced and initially developed in [5]; inputs and

outputs are required so that interconnections like those shown in Figure 1 can be defined.

Monotonicity is closely related, as explained later, to positive and feedback loops in systems.
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The topic of analyzing the behaviors of such feedback loops is a long-standing one in biology in

the context of regulation, metabolism, and development; a classical reference in that regard is the

work [33] of Monod and Jacob in 1961. See also, for example, [3, 6, 11, 28, 32, 39, 40, 44, 47].

An interconnection of monotone subsystems, that is to say, an entire system made up of

monotone components, may or may not be monotone: “positive feedback” (in a sense that can

be made precise) preserves monotonicity, while “negative feedback” destroys it. Thus, oscillators

such as circadian rhythm generators require negative feedback loops in order for periodic orbits

to arise, and hence are not themselves monotone systems, although they can be decomposed into

monotone subsystems (cf. [7]). A rich theory is beginning to arise, characterizing the behavior of

non-monotone interconnections. For example, [5] shows how to preserve convergence to equilibria;

see also the follow-up papers [4, 15, 18, 19, 26]. Even for monotone interconnections, the decomposi-

tion approach is very useful, as it permits locating and characterizing the stability of steady states

based upon input/output behaviors of components, as described in [6]; see also the follow-up papers

[3, 17, 27].

Moreover, a key point brought up in [45] is that new techniques for monotone systems in many

situations allow one to characterize the behavior of an entire system, based upon the “qualitative”

knowledge represented by general network topology and the inhibitory or activating character of

interconnections, combined with only a relatively small amount of quantitative data. The latter

data may consist of steady-state responses of components (dose-response curves and so forth), and

there is no need to know the precise form of dynamics or parameters such as kinetic constants in

order to obtain global stability conclusions.

In Section 2 of this paper, we briefly discuss monotonicity of systems described by ordinary

differential equations (the study of monotonicity can be extended to partial differential equations,

delay-differential equations, and even more arbitrary dynamical systems, see e.g. [18] in the context

of monotone systems with inputs and outputs). We explain there how the study of monotone

systems, and more generally of decompositions into monotone systems, relates to a sign-consistency

property for the graph which describes how each state variable influences each other variable in a

given system.

Generally, a graph, whose edges are labeled by “+” or “−” signs (sometimes one writes +1,−1
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instead of +,−, or uses respectively activating “→” or inhibiting “⊣” arrows as shown in Figure 2), is

−1
+1

Figure 2: A consistent and an inconsistent graph

said to be sign-consistent if all paths between any two nodes have the same net sign, or equivalently,

all closed loops have positive parity, i.e. an even number, possibly zero, of negative edges. (For

technical reasons, one ignores the direction of arrows, looking only at undirected graphs; see more

details in Section 2.) Thus, the first graph in Figure 2 is consistent, but the second one, which

differs in just one edge from the first one, is not (two paths with different parity are shown).

When applying decomposition theorems such as those described in [3–6, 15, 17–19, 26, 27, 45], it

tends to be the case that the fewer the number of interconnections among components, the easier it

is to obtain useful conclusions. One may view a decomposition into interconnections of monotone

subsystems as the “pulling out” of “inconsistent” connections among monotone components, the

original system being a “negative feedback” loop around an otherwise consistent system, as repre-

sented in Figure 3. In this interpretation, the number of interconnections among monotone compo-

�

- consistent

“−”

Figure 3: Pulling-out inconsistent connections

nents corresponds to the number of variables being fed-back. In addition, and independently from

the theory developed in the above references, one might speculate that nature tends to favor sys-

tems that are decomposable into small monotone interconnections, since “negative” feedback loops,

although required for homeostasis and for periodic behavior, have potentially destabilizing effects,
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especially if there are signal propagation delays. Some evidence is provided by work in progress

such as [31], where the authors compare certain biological networks and appropriately randomized

versions of them and show that the original networks are closer to being consistent, and by [41],

where the authors show that, in a Boolean setting, and using a mean-field calculation of sensitivity,

networks of Boolean functions behave in a more and more “orderly” fashion the closer that the

components are to being monotone.

Thus, we are led to the subject of this paper, namely computing the smallest number of edges

that have to be removed so that there remains a consistent graph. For example, for the particular

graph shown in Figure 4 the answer is that one edge (the diagonal positive one) suffices, and it is
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Figure 4: Dropping the diagonal edge gives consistency

worth remarking that no single other edge would suffice.

In this paper, we will study the computational complexity of the question of how many edges

must be removed in order to obtain consistency, and we provide a relaxation-based polynomial-time

approximation algorithm guaranteed to solve the problem to about 87.9% of the optimum solution,

which is based on the semidefinite programming relaxation approach of Goemans-Williamson [20]

(A variant of the problem is discussed as well). We also observe that it is not possible to have

a polynomial-time algorithm with performance too close to the optimal. While our emphasis is

on theory, one of the algorithms was implemented, and we show results of its application to a

Drosophila segmentation network and to an Epidermal Growth Factor Receptor pathway model. It

turns out that, when applying the algorithm, often the solution is much closer to optimal than the

worst-case guarantee of 87.9%, and indeed often gives an optimal solution.

The organization of this paper is as follows.

Section 2 briefly discusses monotonicity. The discussion is self-contained for the purposes of this

paper, and references are given to the dynamical systems results that motivate the problem studied
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here. The connection to consistency is also explained there. Section 3 discusses the associated

graph-theoretic problems and notions of approximability used in the paper, leading to the statement

of our main theoretical results in Section 4, which are proved in Section 5. Section 6 contains the

mentioned examples of application of the algorithm. Several technical proofs are separately provided

in an Appendix.

2 Monotone Systems and Consistency

We will illustrate the motivation for the problem studied here using systems of ordinary differential

equations

ẋ = F (x) (1)

(the dot indicates time derivative, and x = x(t) is a vector), although the discussion applies as

well to more general types of dynamical systems such as delay-differential systems or certain sys-

tems of reaction-diffusion partial differential equations. In applications to biological networks, the

component xi(t) of the vector x = x(t) indicates the concentration of the ith species in the model

at time t. We will restrict attention to models in which the direct effect that one given variable

in the model has over another is either consistently inhibitory or consistently promoting. Thus, if

protein A binds to the promoter region of gene B, we assume that it does so either to consistently

prevent the transcription of the gene or to consistently facilitate it. (Of course, this condition does

not prevent protein A from having an indirect influence, through other molecules, perhaps dimmers

of A itself, that can ultimately lead to the opposite effect on gene B.) Mathematically, we require

that for every i, j = 1 . . . n, i 6= j, the partial derivative ∂Fi/∂xj be either ≥ 0 at all states or ≤ 0

at all states.

Given any partial order ≤ defined on R
n, a system (1) is said to be monotone with respect to ≤

if x0 ≤ y0 implies x(t) ≤ y(t) for every t ≥ 0. Here x(t), y(t) are the solutions of (1) with initial

conditions x0, y0, respectively. Of course, whether a system is monotone or not depends on the

partial order being considered, but we one says simply that a system is monotone if the order is

clear from the context. Monotonicity with respect to nontrivial orders rules out chaotic attractors

and even stable periodic orbits; see [23, 24, 42], and is, as discussed in the introduction, a useful
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property for components when analyzing larger systems in terms of subsystems.

A useful way to define partial orders in R
n, and the only one to be further considered in this

paper, is as follows. Given a tuple s = (s1, . . . sn), where si ∈ {1,−1} for every i, we say that x ≤s y

if sixi ≤ siyi for every i. For instance, the “cooperative order” is the orthant order ≤s generated

by s = (1, . . . 1). This is the order ≤ defined by x ≤ y if and only if xi ≤ yi for all i = 1, . . . , n. It

is not difficult to verify if a system is cooperative with respect to an orthant order; the following

lemma, known as “Kamke’s condition,” is not hard to prove, see [42] for details (also [5] in the more

general context of monotone systems with input and output channels).

Lemma 1 Consider an orthant order ≤s generated by s = (s1, . . . , sn). A system (1) is monotone

with respect to ≤s if and only if

sisj

∂Fj

∂xi

≥ 0, i, j = 1 . . . n, i 6= j. (2)

To provide intuition, let us sketch the sufficiency part of the proof for the special case of the

cooperative order. Suppose by contradiction that the system is not monotone, and that therefore

there is a pair of initial conditions x0 ≤ y0 whose solutions x(t), y(t) cease to satisfy x(t) ≤ y(t) at

some point. This implies that at a certain critical moment in time t, there is some coordinate i so

that xi(t
−) < yi(t

−) but xi(t
+) > yi(t

+). (This argument is not entirely accurate, but it gives the

flavor of the proof.) Thus xi(t) = yi(t) for some i and the derivative with respect to time of xi is

larger than that of yi at time t, meaning that that Fi(x) > Fi(y), where x = xi(t) and y = yi(t).

However, this cannot happen if Fi is increasing on all the variables xj except possibly xi, so that

x ≤ y, xi = yi implies Fi(x) ≤ Fi(y). An equivalent way to phrase this condition is by ask that

∂Fi/∂xj ≥ 0 at all states for every i, j, i 6= j, which is the Kamke condition for the special case of

the cooperative order. The name of the order arises because in a monotone system with respect to

that order each species promotes or “cooperates” with each other.

A rephrasing of this characterization of monotonicity with respect to orthant orders can be given

by looking at the signed digraph associated to (1) and defined as follows. Let V (G) = {1, . . . , n}.

Given vertices i, j, let (i, j) ∈ E(G) and fE(i, j) = 1 if both ∂Fj/∂xi ≥ 0 and the strict inequality

holds at least at one state. Similarly let (i, j) ∈ E(G) and fE(i, j) = −1 if both ∂Fj/∂xi ≤ 0 and
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the strict inequality holds at least at one state. Finally, let (i, j) 6∈ E(G) if ∂Fj/∂xi ≡ 0. Recall

that we are assuming that one of the three cases must hold.

Now we can define an orthant cone using any function fV : V (G) → {−1, 1}, by letting x ≤fV
y

if and only if fV (i)xi ≤ fV (i)yi for all i. Given fV , we define the consistency function g : E(G) →

{true, false} by g(i, j) = fV (i)fV (j)fE(i, j). Then, the following analog of Lemma 1 holds.

Lemma 2 Consider a system (1) and an orthant cone ≤fV
. Then (1) is monotone with respect to

≤fV
if and only if g(i, j) ≡ 1 on E(G).

Proof. Let si = fV (i), i = 1 . . . n. Note that sisj∂fi/∂xj = 0 if (i, j) 6∈ E(G). For (i, j) ∈ E(G),

it holds that sisj∂fi/∂xj ≥ 0 if and only if sisjfE(i, j) = 1, that is, if and only if g(i, j) = 1. The

result follows from Lemma 1. ❑

For the next lemma, let the parity of a chain in G be the product of the signs (+1,−1) of its

individual edges. We will consider in the next result closed undirected chains, that is, sequences

xi1 . . . xir such that xi1 = xir , and such that for every λ = 1, . . . , r − 1 either (x1,λ, x1,λ+1) ∈ E(G)

or (x1,λ+1, x1,λ) ∈ E(G).

The following lemma (see [14] as well as [43, page 101]) is analogous to the fact from vector

calculus that path integrals of a vector field are independent of the particular path of integration

if and only if there exists a potential function. Since the result is key to the formulation of the

problem being considered, we provide a simple and self-contained proof in an Appendix.

Lemma 3 Consider a dynamical system (1) with associated directed graph G. Then (1) is monotone

with respect to some orthant order if and only if all closed undirected chains of G have parity 1.

2.1 Systems with Inputs and Outputs

As we discussed in the introduction, a useful approach to the analysis of biological networks consists

of decomposing a given system into an interconnection of monotone subsystems. The formulation of

the notion of interconnection requires subsystems to be endowed with “input and output channels”

through which information is to be exchanged. In order to address this we consider controlled
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dynamical systems ([46], which are systems with an additional parameter u ∈ R
m, and which have

the form

ẋ = g(x, u). (3)

The values of u over time are specified by means of a function t → u(t) ∈ R
m, t ≥ 0, called an

input pr control. Thus each input defines a time-dependent dynamical system in the usual sense.

To system (3) there is associated a feedback function h : R
n → R

m, which is usually used to create

the closed loop system ẋ = g(x, h(x)). Finally, if R
n, Rm are ordered by orthant orders ≤fV

, ≤q

respectively, we say that the system is monotone if it satisfies (2) for every u, and also

qkfV (j)
∂gj

∂uk

≥ 0, for every k, j (4)

(see also [5].) As an example, let us consider the following biological model of testosterone dynam-

ics [16, 34]:

ẋ1 = A
K + x3

− b1x1

ẋ2 = c1x1 − b2x2

ẋ3 = c2x2 − b3x3.

(5)

Drawing the digraph of this system, it is easy to see that it is not monotone with respect to any

orthant order, as follows by application of Lemma 3. On the other hand, replacing x3 in the first

equation by u, we obtain a system that is monotone with respect to the orders ≤(1,1,1), ≤(−1) for

state and input respectively. Defining h(x) = x3, the closed loop system of this controlled system is

none other than (5). The paper [16] shows how, using this decomposition together with the “small

gain theorem” from monotone input/output theory ([5]) leads one to a proof that the system does

not have oscillatory behavior, even under arbitrary delays in the feedback loop, contrary to the

assertion made in [34].

We can carry out this procedure on an arbitrary system (1) with a directed graph G, as follows:

given a set E of edges in G, enumerate the edges in EC as (i1, j1), . . . (im, jm). For every k = 1 . . . m,

replace all appearances of xik in the function Fjk
by the variable uk, to form the function g(x, u).

Define h(x) = (xi1 , . . . xim). It is easy to see that this controlled system (3) has closed loop (1).

Note that the controlled system (3) generated by the set E as above has, as associated digraph,

the sub-digraph of G generated by E. This is because for every k, one has ∂gjk
(x, u)/∂xik ≡ 0, i.e.,

the edge from ik to jk has been “erased”.
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Let the set E be called consistent if the undirected subgraph of G generated by E has no closed

chains with parity −1. Note that this is equivalent to the existence of fV such that g ≡ 1 on E, by

Lemma 4 applied to the open loop system (3). If E is consistent, then the associated system (3)

itself can also be shown to be monotone: to verify condition (4), simply define each qk so that (4) is

satisfied for k, jk. Since ∂gjk
/∂uk = ∂Fjk

/∂xik 6≡ 0, this choice is in fact unambiguous. Conversely,

if (3) is monotone with respect to the orthant orders ≤fV
, ≤q, then in particular it is monotone for

every fixed constant u, so that E is consistent by Lemma 3. We thus have the following result.

Lemma 4 Let E be a set of edges of the digraph G. Then E is consistent if and only if the

corresponding controlled system (3) is monotone with respect to some orthant orders.

3 Statement of Problem

A natural problem is therefore the following. Given a dynamical system (1) that admits a digraph

G, use the procedure above to decompose it as the closed loop of a monotone controlled system

(3), while minimizing the number ‖EC‖ of inputs. Equivalently, find fV such that P (E+) =‖E+‖ is

maximized and P (E−) =‖E−‖=‖EC
+‖ minimized. This produces the following problem formulation.

Problem 1 (Undirected Labeling Problem(ULP )) :

An instance of this problem is (G, h), where G = (V,E) is an undirected graph and h: E 7→ {0, 1}. A

valid solution is a vertex labeling function f : V → {0, 1}. Define an edge {u, v} ∈ E to be consistent

iff h(u, v) ≡ (f(u) + f(v)) (mod 2). The objective is then to find a valid solution maximizing |F |

where F is the set of consistent edges.

That ULP is a correct formulation for our problem is confirmed by the following easy equivalence.

Proposition 1 Consider an instance (G, h) of ULP with an optimal solution having x consistent

edges given by a vertex labeling function f . Let D be a set of edges of smallest cardinality that have

to be removed such that for the remaining graph, that is the graph G′ = (V,E \ D) with the same

vertex set V but an edge set E \D, there exists a vertex labeling function f ′: V → {0, 1} that makes

every edge consistent. Then, x = |E| − |D|.
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Proof. Since f produces a solution of ULP with x consistent edges, exactly |E| − x edges are

inconsistent, thus |D| ≤ |E| − x, that is, x ≤ |E| − |D|. Conversely, since there is a solution with

|E| − |D| consistent edges, x ≥ |E| − |D|. ❑

A special case of ULP , namely when h(e) = 1 for all e ∈ E, is the MAX-CUT problem (defined

in Section 3.1). Moreover, ULP can be posed as a special type of “constraint satisfaction problem”

as follows. We have |E| linear equations over GF (2), one equation per edge and each equation

involving exactly two variables, over |V | Boolean variables. The goal is to assign values to the

variables to satisfy the maximum number of equations. For algorithms and lower-bound results for

general cases of these types of problems, such as when the equations are over GF (p) for an arbitrary

prime p > 2, when there are an arbitrary number of variables per equation or when the goal is to

minimize the number of unsatisfied equations, see references such as [2, 9, 12, 22] and the references

therein.

Given orthant orders ≤fV
and ≤q for R

n and R
m respectively, we say that a feedback function

h is positive if x ≤fV
y implies h(x) ≤q h(y), and that it is negative if x ≤fV

y implies h(x) ≥q h(y).

It can be shown that the closed loop of a monotone system with a positive feedback function is

actually itself monotone, so that no system can be produced in this way that was not monotone

already. But if h is a negative feedback function, then several results become available which use the

methods of monotone systems for systems that are not monotone, see [5, 16, 18]. For the following

result, let (C,⊆) be the class of consistent subsets of E(G), ordered under inclusion.

Proposition 2 Let E be a consistent set. Then E is maximal in (C,⊆) if and only if h is a negative

feedback function for every fV such that g ≡ 1 on E.

Proof. Suppose that E is maximal, and let fV be such that g ≡ 1 on E. Given any edge

(ik, jk) ∈ EC , it holds that g(ik, jk) = −1. Otherwise one could extend E by adding (ik, jk),

thus violating maximality. That is, fV (ik)fV (jk)fE(ik, jk) = −1. By monotonicity, it holds that

qkfV (jk)∂gjk
/∂uk ≥ 0, and since ∂gjk

/∂uk = ∂Fjk
/∂xik , it follows necessarily that

qkfV (jk)fE(ik, jk) = 1.

Therefore it must hold that qk = −fV (ik) for each k, which implies that h is a negative feedback

function.
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Conversely, if fV is such that g ≡ 1 on E and h is a negative feedback function, then qk =

−fV (ik). By the same argument as above, qkfV (jk)fE(ik, jk) = 1 for all k by monotonicity. Therefore

g ≡ −1 on EC . Repeating this for all admissible fV , maximality follows. ❑

There is a second, slightly more sophisticated way of writing a system (1) as the feedback

loop of a system (3) using an arbitrary set of edges E. Given any such E, define S(Ec) =

{i | there is some j such that (i, j) ∈ Ec}. Now enumerate S(Ec) as {i1, . . . im}, and for each k

label the set {j | (ik, j) ∈ Ec} as jk1, jk2, . . .. Then for each k, l, one can replace each appearance of

xik in Fjkl
by uk, to form the function g(x, u). Then one lets h(x) = (xi1 , . . . , xim) as above. The

closed loop of this system (3) is also (1) as before but with the advantage that there are |S(Ec)|

inputs, and of course |S(Ec)| ≤ |Ec|.

If E is a consistent and maximal set, then one can make (3) into a monotone system as follows.

By letting fV be such that g ≡ 1 on E, we define the order ≤fV
on R

n. For every ik, jkl such that

(ik, jkl) ∈ EC , it must hold that fV (ik)fV (jkl)fE(ik, jkl) = −1. Otherwise E ∪ {(ik, jkl)} would be

consistent, thus violating maximality. By choosing qk = −fV (ik), equation (4) is therefore satisfied.

See the proof of Proposition 2. Conversely, if the system generated by E using this second algorithm

is monotone with respect to orthant orders, and if h is a negative function, then it is easy to verify

that E must be both consistent and maximal.

Thus the problem of finding E consistent and such that P (E−) =‖S(E−)‖=‖S(EC)‖ is smallest,

when restricted to those sets that are maximal and consistent (this does not change the minimum

‖S(EC)‖), is equivalent to the following problem: decompose (1) into the negative feedback loop of

an orthant monotone control system, using the second algorithm above, and using as few inputs as

possible. This produces the following problem formulation.

Problem 2 (Directed Labeling Problem(DLP )) :

An instance of this problem is (G, h) where G = (V,E) is a directed graph and h: E → {0, 1}. A

valid solution is a vertex labeling function f : V → {0, 1}. Define an edge (u, v) ∈ E to be consistent

iff h(u, v) ≡ (f(u) + f(v)) (mod 2). The objective is then to find a valid solution minimizing

|g(E −F )| where g(C) = {u ∈ V | ∃y ∈ V, (u, y) ∈ C} for any C ⊆ E and F is the set of consistent

edges.
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3.1 Summary of Key Concepts and Results in Approximation Algo-

rithms

For any γ ≥ 1 (resp. γ ≤ 1), a γ-approximate solution (or simply an γ-approximation) of a

minimization (resp., maximization) problem is a solution with an objective value no larger than γ

times (resp., no smaller that γ times) the value of the optimum, and an algorithm achieving such

a solution is said to have an approximation ratio of γ.

In [38] Papadimitriou and Yannakakis defined the class of MAX-SNP optimization problems and

a special approximation-preserving reduction, the so-called L-reduction, that can be used to show

MAX-SNP-hardness of an optimization problem. The version of the L-reduction that we provide

below is a slightly modified but equivalent version that appeared in [10].

Definition 5 [10, 38] Given two optimization problems Π and Π′, we say that Π L-reduces to Π′

if there are three polynomial-time procedures T1,T2, T3 and two constants a and b > 0 such that

the following two conditions are satisfied: (1) For any instance I of Π, algorithm T1 produces an

instance I ′ = f(I) of Π′ generated from T1 such that the optima of I and I ′, OPT (I) and OPT (I ′),

respectively, satisfy OPT (I ′) ≤ a · OPT (I). (2) For any solution of I ′ with cost c′, algorithm T2

produces another solution with a cost c′′ no worse than c′, and algorithm T3 produces a solution of I of

Π with cost c (possibly from the solution produced by T2) satisfying |c − OPT (I)| ≤ b·|c′′ − OPT (I ′)|.

An optimization problem is MAX-SNP-hard if any problem in MAX-SNP L-reduces to that problem.

The importance of proving MAX-SNP-hardness results comes from a result proved by Arora et al. [8]

which shows that, assuming P6=NP, for every MAX-SNP-hard minimization (resp., maximization)

problem there exists a constant ε > 0 such that no polynomial time algorithm can achieve an

approximation ratio better than 1 + ε (resp., better than 1 − ε).

A special case of the ULP problem, namely when h(e) = 1 for all e ∈ E, is the well-known MAX-

CUT problem. An instance of this problem is an undirected graph G = (V,E). A valid solution is a

set S ⊆ V . The objective is to find a valid solution that maximizes the number of edges {u, v} ∈ E

such that |{u, v} ∩ S| = 1. The MAX-CUT problem is known to be MAX-SNP-hard. For further

details on these topics, the reader is referred to the excellent book by Vazirani [49].
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3.2 Notations and Terminology

The following notations are used in the rest of the paper. V (G) and E(G) are the vertex set and

edge set of graph G, respectively, and Ĝ is the underlying undirected graph of a directed graph

G obtained by ignoring the directions of the edges. For S ⊆ V , G(S) denotes the subgraph of G

vertex-induced by S, and E out (S) = {(u, v) ∈ E(G) | u ∈ S} is the set of out-bound edges of

vertices in S. OPTP (I) denotes the size of an optimal solution for a problem P with instance I.

The length of a circuit c with respect to weight function w: E 7→ R is defined as
∑
e∈c

w(e); if no

weight function is specified, then w(e) = 1 for all e ∈ E is assumed.

4 Theoretical Results

Our theoretical results are summarized as follows.

Theorem 6 (a) For some constant ε > 0, it is not possible to approximate in polynomial time the

ULP and the DLP problems to within an approximation ratio of 1−ε and 1+ε, respectively, unless

P=NP.

(b) For ULP , we provide a polynomial time α-approximation algorithm where α ≈ 0.87856 is the

approximation factor for the MAX-CUT problem obtained in [20] via semidefinite programming.

(c) For DLP , if dmax
in denotes the maximum in-degree of any vertex in the graph, then we give a

polynomial-time approximation algorithm with an approximation ratio of at most dmax
in ·O(log |V |).

Our computational results are illustrated in Section 6 by an implementation of the algorithms

applied to a 13-node Drosophila segmentation network, as well as to a 200+ node recently published

network of the Epidermal Growth Factor Receptor pathway.

Remark 1 It should be noted that the complexity of ULP becomes tractable if the network is biased

significantly towards excitatory connections. Obviously, if all the edges of the given graph G = (V,E)

are labeled 0, then it is possible to label the vertices such that all the edges are consistent. Moreover,

given any graph G, it is easy to check in O((|V | + |E|)3) time if an optimal solution contains all
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the edges as consistent by solving a set of linear equations via Gaussian elimination. Now, suppose

that at most L of the edges of G are labeled 1. Then, obviously at most L inconsistent edges

exist in any optimal solution. Thus a straightforward way to solve the problem is to consider all

possible subsets of edges in which at most L edges are dropped and checking, for each such subset,

if there is an optimal solution that contains all the edges as consistent. The total time taken is

O(|V |2L. · (|V | + |E|)3), which is a polynomial in |V | + |E| if L is a constant.

5 Proof of Theorem 6

This section provides the proof of Theorem 6, broken up into a series of technical parts.

5.1 Proof of Theorem 6(a)

Based on the discussion in Section 3.1, it suffices to show that both these problems are MAX-SNP-

hard. ULP is MAX-SNP-hard since its special case, the MAX-CUT problem, is MAX-SNP-hard.

To prove MAX-SNP-hardness of DLP, we need the definitions of the following two problems.

Problem 3 (Node Deletion Problem with Bipartite Property (NDBP )) :

An instance of this problem is an undirected graph G = (V,E). A valid solution is a vertex set

S ⊆ V , such that G(V −S) is a bipartite graph. The objective is to find a valid solution minimizing

|S|.

Problem 4 (Variance of Node Deletion Problem (V NDP )) An instance of this problem is

(G, h) where G = (V,E) is a directed graph and h: E → {0, 1}. A valid solutions is a vertex set S ⊆

V with the following property: if GS = (VS, ES) is the graph with VS = V and ES = E −E out (S),

then ĜS is free of odd length circuit with respect to weight function h. The objective is to find a

valid solution minimizing |S|.

First, we note that DLP is equivalent to VNDP. If one identifies the solution set S in UNDP

with the solution set g(E−F ) in DLP, then the set of consistent edges F in DLP corresponds to the
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ES in UNDP since every edge (u, v) ∈ F satisfying h(u, v) ≡ (f(u) + f(v)) (mod 2) is equivalent

to stating that ĜS is free of odd length circuit with respect to weight function h.

Thus, to prove the MAX-SNP-hardness of DLP it suffices to prove that of VNDP. NDBP is

known to be MAX-SNP-hard [29]. We provide a L-reduction from NDBP to VNDP. For an instance

of VNDP with graph G = (V,E), construct an instance of DLP with instance (G′, h) as follows

(note that G′ is a digraph): V ′ = V (G′) = V ∪ {Au,v, Bu,v | {u, v} ∈ E}, E ′ = E(G′) =

{(u,Au,v), (Au,v, Bu,v), (v,Bu,v) | {u, v} ∈ E}, and h(e) = 1 for all e ∈ E ′ Now, the following

holds:

(1) If S is a solution to NDBP , it is also a solution to the generated instance of UNDP . The

reason is as follows. Notice that every odd length (resp., even length) circuit C in G corresponds

to an odd length (resp., even length) circuit C′ in Ĝ′ with respect to the weight function h. Since

G(V − S) is a bipartite graph, it is free of odd length circuits. So for each odd length cycle C of G,

there exists u ∈ S such that the deletion of all out-bound edges of u in G′ breaks its corresponding

odd length cycle C′.

(2) If S ′ is a solution to UNDP , then we can construct a solution S of NDBP in the following

manner: for each x ∈ S ′:

if x = Au,v, add u to T ;

if x = Bu,v, add v to T ;

if x = u or x = v, add x to T .

It is now easy to see that since the graph ĜS′ is free of odd length circuit with respect to h, G(V −S)

has no odd length circuit either.

Hence, we have OPTUNDP (G′, h) ≤ OPTNDBP (G). Moreover, given a solution S ′ of UNDP ,

we are able to generate a solution S of NDBP such that

||S| − OPTNDBP (G)| ≤ ||S ′| − OPTUNDP (G′, h)|.

Thus, our reduction satisfies the Definition 5 of a L-reduction with a = b = 1.
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5.2 Proof of Theorem 6(b)

Our algorithm for ULP uses the semidefinite programming (SDP) technique used by Goemans and

Williamson in [20]; hence we use notations and terminologies similar to that used in the paper

(readers not very familiar with this technique are also referred to the excellent explanation of this

technique in the book by Vazirani [49]). For each vertex v ∈ V , we have a real vector xv ∈ R
|V |

with ||xv||2 = 1. Then, we can generate from ULP the following vector program (where · denotes

the vector inner product):

Solve the following vector program via SDP methods:

maximize 1
2

∑
h(u,v)=1

(1 − xu · xv) + 1
2

∑
h(u,v)=0

(1 + xu · xv)

subject to: for each v ∈ V : xv · xv = 1 for each v ∈ V : xv ∈ R
|V |.

Select a uniformly random vector r in the |V |-dimensional unit sphere and set

f(v) =





0 if r · xv ≥ 0

1 otherwise

This proof of the claimed approximation performance of the above vector program is obtained by

adapting the proof in Section 26.5 of [49] for the MAX-2SAT problem to deal with fact that, in our

problem, aij = bij = 1
2

as opposed to a different set of values in [49]. Since there are some subtleties

in adapting that proof for readers unfamiliar with this approach, we provide a sketch of the proof in

the appendix. The procedure can be derandomized via methods of conditional probabilities (e.g.,

see [30]).

5.3 Proof of Theorem 6(c)

For an instance of (G, h) of DLP , construct instance (G′ = (V ′, E ′), h′) as follows:

V ′ = V ∪ {Cu,v | (u, v) ∈ E & h(u, v) = 0},

E ′ = {e | e ∈ E & h(e) = 1} ∪ {(u,Cu,v), (Cu,v, v) | (u, v) ∈ E & h(u, v) = 0},

and

h′(e) = 1 for all e ∈ E ′.
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Note that every odd (resp., even) length circuit in G with respect to weight function h corresponds

to an odd (resp., even) length circuit in G′ with respect to weight function h′, and vice versa. Let F

is a set of consistent edges in (G, h) with a vertex labeling function f . Now, observe the following:

(1) F ′ is a set of consistent edges in (G′, h′) with a vertex labeling function f ′ with f ′(x) = f(x)

for x ∈ V ′ ∩ V and f ′(Cu,v) = f(u) = f(v) for an edge (u, v) ∈ F with h(u, v) = 0; thus, an

edge (u, v) in F correspond to an edge (u, v) in F ′ if h(u, v) = 1 and correspond to a pair of edges

(u,Cu,v), (Cu,v, v) in F ′ if h(u, v) = 0.

(2) If (u, v) ∈ E − F is an inconsistent edge in (G, h), then the edge (Cu,v, v) in G′ can always be

made consistent by choosing f ′(Cu,v) = f(v).

Thus, if F ′′ is the set of consistent edges obtained from F following rules (1) and (2) above, then

|g(E ′−F ′′)| = |g(E−F )| and thus OPTDLP (G′, h′) = OPTDLP (G, h). Consider the NDBP problem

on Ĝ′. Any solution to DLP on (G′, h′) with vertex labeling function f ′ and set of consistent edges

F ′ cannot contain an odd cycle of consistent edges and thus provides a solution to NDBP on Ĝ′ of

size |g(E ′−F ′)|. Thus, OPTNDBP (Ĝ′) ≤ OPTDLP (G′, h′) = OPTDLP (G, h). OPTNDBP (Ĝ′) can be

approximated in polynomial time to within an approximation ratio of O(log |V ′|) [29], i.e., we can

find a solution SNDBP (Ĝ′) in polynomial time such that |SNDBP (Ĝ′)| ≤ O(log |V ′|)·OPTNDBP (Ĝ′) ≤

O(log |V |) · OPTDLP (G, h). Now, SDLP (G, h) = SNDBP (G′) ∪ {u | ∃v ∈ SNDBP (G′), (u, v) ∈ E}, is

obviously a solution to DLP on (G, h). Remember that dmax
in denotes the maximum in-degree of

any vertex in G. Thus, |SDLP (G, h)| ≤ dmax
in · |SNDBP (G′)| ≤ dmax

in · O(log |V |) · OPTDLP (G, h).

6 Two Examples of Applications of the ULP Algorithm

We have implemented the SDP-based algorithm for calculating approximate solutions of the undi-

rected labeling problem using Matlab, and we illustrate this algorithm with two applications to

biological systems. The first application concerns the relatively small-scale 13-variable digraph of

a model of the Drosophila segment polarity network. The second application involves a digraph

with 300+ variables associated to the human Epidermal Growth Factor Receptor (EGFR) signaling

network. This model was published recently and built using information from 242 published papers.
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Figure 5: A digram of the Drosophila embryo during early development. A part of the segment

polarization process is displayed. Courtesy of N. Ingolia and PLoS [25]

6.1 Drosophila Segment Polarity

An important part of the development of the early Drosophila (fruit fly) embryo is the differentiation

of cells into several stripes (or segments), each of which eventually gives rise to an identifiable part

of the body such as the head, the wings, the abdomen, etc. Each segment then differentiates

into a posterior and an anterior part, in which case the segment is said to be polarized. (This

differentiation process continues up to the point when all identifiable tissues of the fruit fly have

developed.) Differentiation at this level starts with differing concentrations of certain key proteins in

the cells; these proteins form striped patterns by reacting with each other and by diffusion through

the cell membranes.

A model for the network that is responsible for segment polarity [13] is illustrated in Figure 6.

As explained above, this model is best studied when multiple cells are present interacting with each

other. But it is interesting at the one-cell level in its own right — and difficult enough to study

that analytic tools seem mostly unavailable. The arrows with a blunt end are interpreted as having

a negative sign in our notation. Furthermore, the concentrations of the membrane-bound and

inter-cell traveling compounds PTC, PH, HH and WG(membrane) on all cells have been identified

in the one-cell model (so that, say, HH→ PH is now in the digraph). Finally, PTC acts on the

reaction CI→ CN itself by promoting it without being itself affected, which in our notation means
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Figure 6: The network associated to the Drosophila segment polarity, as proposed in [13], Courtesy

of N. Ingolia and PLoS. The three edges that have been crossed have been chosen in order to let

the remaining edges form an orthant monotone system.

PTC
+
→ CN and PTC

−
→CI.

The Implementation The Matlab implementation of the algorithm on this digraph with 13

nodes and 20 edges produced several partitions with as many as 17 consistent edges. One of these

possible partitions simply consists of placing the three nodes ci, CI and CN in one set and all

other nodes in the other set, whereby the only inconsistent edges are CL
+
→ wg, CL

+
→ ptc, and

PTC
+
→ CN. But note that it is desirable for the resulting open loop system to have as simple

remaining loops as possible after eliminating all inconsistent edges. In this case, the remaining

directed loops

EN
−
→ ci

+
→ CI

+
→ CN

−
→ en

+
→ EN

EN
−
→ ci

+
→ CI

+
→ CN

−
→wg

+
→ WG

+
→ WG(membrane)

+
→ en

+
→ EN

can still cause difficulties.

A second partition which generated 17 consistent edges is that in which EN, hh, CN, and the

membrane compounds PTC, PH, HH are on one set, and the remaining compounds on the other.

The edges cut are ptc
+
→ PTC, CI

+
→ CN and en

+
→ EN, each of which eliminates one or several

positive loops. By writing the remaining consistent digraph in the form of a cascade, it is easy to

see that the only loop whatsoever remaining is wg ↔ WG; this makes the analysis proposed in [18]

easier.
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In this relatively low dimensional case we can prove that in fact OPT = 17, as the results below

will show.

Lemma 7 Any partition of the nodes in the digraph in Figure 6 generates at most 17 consistent

edges.

Proof. From Lemma 3, a simple way to prove this statement is by showing that there are three

disjoint cycles with odd weighted length in the network associated to Figure 6 (disjoint in the sense

that no edge is part of more than one of the cycles). Such three disjoint cycles exist in this case,

and they are CI-CN-wg, CI-ptc-PTC, CN-en-EN-hh-HH-PH-PTC. ❑

Multiple Copies

It was mentioned above that the purpose of this network is to create striped patterns of protein

concentrations along multiple cells. In this sense, it is most meaningful to consider a coupled

collection of networks as it is given originally in Figures 5 and 6. Consider a row of k cells, each of

which has independent concentration variables for each of the compounds, and let the cell-to-cell

interactions be as in Figure 6 with cyclic boundary conditions (that is, the k-th cell is coupled with

the first in the natural way). We show that the results can be extended in a very similar manner

as before.

Given a partition fV of the 1-cell network considered above, let f̂V be the partition of the k-cell

network defined by f̂V (eni) := fV (en) for every i, etc. Thus f̂V consists of k copies of the partition

fV in a natural way.

Lemma 8 Let fV be a partition of the nodes of the 1-cell network with n consistent edges. Then

with respect to the partition f̂V , there are exactly kn consistent edges for the k-cell coupled model.

Proof. Consider the network consisting of k isolated copies of the network, that is, k groups of

nodes each of which is connected exactly as in the 1-cell case. Under the partition f̂V , this network

has exactly kn consistent edges. To arrive to the coupled network, it is sufficient to replace all

edges of the form (HHi, PHi) by (HHi+1, PHi) and (WGi, eni) by (WGi+1, eni), i = 1 . . . k (where we
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EN

ci en
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Figure 7: A sub-digraph of the network in Figure 6, using the notation defined in the previous sec-

tions. Note that this sub-digraph doesn’t include any of the two edges (WGmem,en) and (HH,PH),

which connect the networks of different cells in Figure 6; this will be important in the proof of

Lemma 9.

identify k + 1 with 1). Since by definition f̂V (HHi+1) = f̂V (HHi) and f̂V (WGi+1) = f̂V (WGi), the

consistency of these edges does not change, and the number of consistent edges therefore remains

constant. ❑

In particular, OPT≥ 17k for the coupled system. The following result will establish an upper

bound for OPT.

Lemma 9 Any partition of the nodes in the digraph in the k-cell coupled network generates at most

17k consistent edges.

Proof. Consider the signed graph in Figure 7, which is a sub-digraph of the network associated

to Figure 6. Since the inter-cell edges (WGmem,en) and (HH,PH) are not in this graph, it follows

that there are k identical copies of it in the k-cell model. If it is shown that at least three edges

need to be cut in each of these k sub-digraphs, the result follows immediately.
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Consider the negative cycle ci-CI-wg-CN-en-EN, which must contain at least one inconsistent

edge for any given partition. The remaining edges of the subgraph form a tetrahedron with four

negative parity triangles, which cannot all be cut by eliminating any single edge. If follows that

no two edges can eliminate all negative parity cycles in this signed graph, and that therefore

20k − 3k = 17k is an upper bound for the number of consistent edges in the k-cell network. ❑

Corollary 10 For the k-cell linearly coupled network described in Figure 6, it holds OPT=17k.

Proof. Follows from the previous two results. ❑

6.2 EGFR Signaling

The protein called epidermal growth factor is frequently stored in epithelial tissues such as skin,

and it is released when rapid cell division is needed (for instance, it is mechanically triggered

after an injury). Its function is to bind to a receptor on the membrane of the cells, aptly called

the epidermal growth factor receptor. The EGFR, on the inner side of the membrane, has the

appearance of a scaffold with dozens of docks to bind with numerous agents, and it starts a reaction

of vast proportions at the cell level that ultimately induces cell division.

In their May 2005 paper [37], Oda et al. integrate the information that has become available

about this process from multiple sources, and they define a network with 330 known molecules

under 211 chemical reactions. The network itself is available from the supplementary material in

SBML format (Systems Biology Markup Language, www.sbml.org), and will most likely be subject

to continuous updates.

The Implementation Each reaction in the network classifies the molecules as reactants, prod-

ucts, and/or modifiers (enzymes). We imported this information into Matlab using the Systems

Biology Toolbox, and constructed a digraph G in our notation by letting sign(i, j) = 1 if there exists

a reaction in which j is a product and i is either a reactant or a modifier. We let sign(i, j) = −1 if

there exists a reaction in which j is a reactant, and i is also either a reactant or a modifier. Similarly
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sign(i, j) = 0 if the nodes i, j are not simultaneously involved in any given reaction, and sign(i, j)

is undefined (NaN) if the first two conditions above are both satisfied.

An undefined edge can be thought of as an edge that is both positive and negative, and it can

be dealt with, given an arbitrary partition, by deleting exactly one of the two signed edges so that

the remaining edge is consistent. Thus, in practice, one can consider undefined edges as edges with

sign 0, and simply add the number of undefined edges to the number of inconsistent edges in the

end of each procedure, in order to form the total number of inputs. This is the approach followed

here; there are exactly 7 such entries in the digraph G.

The Results After running the algorithm 100 times for this problem, and choosing that partition

which produced the highest number of consistent edges, the induced consistent set contained 633

out of 852 edges (ignoring the edges on the diagonal and the 7 undefined edges). Contrary to

the previous application, many of the reactions involve several reactants and products in a single

reaction. This induces a denser amount of negative and positive edges: even though there are

211 reactions, there are 852 (directed) edges in the 330 × 330 graph G. It is very likely that this

substantially decreases OPT for this system.

The approximation ratio of the SDP algorithm is guaranteed to be at least 0.87 for some r,

which gives the estimate OPT≤≈ 633/0.87 ≈ 728 (valid to the extent that r has sampled the right

areas of the 330-dimensional sphere, but reasonably accurate in practice).

One procedure that can be carried out to lower the number of inputs is a hybrid algorithm

involving out-hubs, that is, nodes with an abnormally high out-degree. Recall from the description

of the DLP algorithm that all the out-edges of a node xi can be potentially cut at the expense

of only one input u, by replacing all the appearances of xi in fj(x), j 6= i, by u. We considered

the k nodes with the highest out-degrees, and eliminated all the out-edges associated to these hubs

from the reaction digraph to form the graph G1. Then we run the ULP algorithm on G1 to find

a partition fV of the nodes and a set of edges that can be cut to eliminate all remaining negative

closed chains. Finally, we put back on the digraph those edges that were taken in the first step, and

which are consistent with respect to the partition fV . The result is a decomposition of the system

as the negative feedback loop of a controlled monotone system, using at most k + m edges.

24



An implementation of this algorithm with k = 60 yielded a total maximum number of inputs

k + m = 137. This is a significant improvement over the 226 inputs in the original algorithm.

Clearly, it would be worthwhile to investigate further the problem of designing efficient algorithms

for the DLP problem to generate improved hybrid algorithmic approaches. The approximation

ratios in Theorem 6(c) are not very satisfactory since dmax
in and log |V | could be large factors; hence

future research work may be carried out in designing better approximation algorithms.

We conclude with another, more tentative way to drastically reduce the number of inputs nec-

essary to write this system as the negative closed loop of a controlled monotone system. The idea

is to make suitable changes of variables in the original system using the mass conservation laws.

Such changes of variables are discussed in many places, for example in [50] and [5]. In terms of the

associated digraph, the result of the change of variables is often the elimination of one of the closed

chains. The simplest target for a suitable change of variables is a set of three nodes that form part

of the same chemical reaction, for instance two reactants and one product, or one reactant, one

product and one modifier. It is easy to see that such nodes are connected in the associated digraph

by an odd length triangle of three edges.

In order to estimate the number of inputs that can potentially be eliminated by suitable changes

of variables, we counted pairwise disjoint, odd length triangles in the digraph of the EGFR network.

Using a greedy algorithm to find and tag disjoint negative feedback triangles, we found a maximal

number of them in the subgraph associated to each of the 211 chemical reactions. Special care was

taken so that any two triangles from different reactions were themselves disjoint. After carrying

out this procedure we found 196 such triangles in the EGFR network. This is a surprisingly high

number, considering that each of these triangles must have been opened in the ULP algorithm

implementation above and that therefore each triangle must contain one of the 226 edges cut. To

the extent to which most of these triangles can be eliminated by suitable changes of variables,

this can yield a much lower number of edges to cut, and it could provide a way to thus stress the

underlying structure of the system.
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7 Supplementary Material: MATLAB Implementation Files

A set of MATLAB programs have been written to implement the algorithms described in this paper.

They can be accessed from the URL http://www.math.rutgers.edu/~sontag/desz_README.html.

The appendix contains more details about it.
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APPENDIX

A More Details on SDP Algorithm

In this appendix, we provide details regarding the proof of the SDP algorithm for Theorem 6(b)

described in Section 5.2. The proof method is similar to that used in better-known problems. For

simplicity, we do not describe the derandomization methods and provide a proof for the expected

approximation ratio only. Define the following notations for convenience:

• The vertex set V of the graph for ULP is simply {1, 2, . . . , |V |};

• fOPT is an optimal vertex labeling for ULP with FOPT being the set of consistent edges;

• SDPOPT is the maximum value of the objective value of the vector program

maximize 1
2

∑
h(u,v)=1

(1 − xu · xv) + 1
2

∑
h(u,v)=0

(1 + xu · xv)

subject to: for each v ∈ V : xv · xv = 1

for each v ∈ V : xv ∈ R
|V |

It is easy to see that SDPOPT ≥ |FOPT| as follows. For every v ∈ V if fOPT(v) = 0 then set

xv = (1, 0, 0, . . . , 0︸ ︷︷ ︸
|V |−1|

),

whereas if fOPT(v) = 1 then set

xv = (−1, 0, 0, . . . , 0︸ ︷︷ ︸
|V |−1|

);

this provides a solution for the vector program with an objective value of precisely |FOPT|. Thus,

it suffices if we prove our claim on the approximation ratio relative to SDPOPT

Next, note that the vector program can indeed be solved by a SDP approach. Let Y ∈ R
|V |×|V |

be an unknown real matrix with yi,j denoting the (i, j)th element of Y . It is not difficult to see (via

Cholesky decomposition for real symmetric matrices) that the above vector program is equivalent

to the following semidefinite programming problem:
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maximize 1
2

∑
h(u,v)=1

(1 − yu,v) + 1
2

∑
h(u,v)=0

(1 + yu,v)

subject to: for each v ∈ V : yv,v = 1

Y is a positive semidefinite matrix

Such a problem can be solved in polynomial time within an additive error of any constant ε > 0

via ellipsoid, interior-point or convex-programming methods [1, 21, 35, 36, 48].

Let θu,v denote the angle between the two vectors xu, xv ∈ R
|V | in an optimal solution of the

vector program. Then, using standard trigonometric results,

SDPOPT =
1

2

∑

h(u,v)=1

(1 − cos θu,v) +
1

2

∑

h(u,v)=0

(1 + cos θu,v).

Let W be the expected value of the number of consistent edges of ULP after we have performed

the randomized rounding step, namely the step:

select a uniformly random vector r in the |V |-dimensional unit sphere;

set f(v) =





0 if r · xv ≥ 0

1 otherwise

Then, via linearity of expectation, it follows that

E[W ] =
∑

h(u,v)=1

Pr[f(u) 6= f(v)] +
∑

h(u,v)=0

Pr[f(u) = f(v)].

Because the vector r was chosen randomly, it is true that

Pr[f(u) 6= f(v)] =
θu,v

π
and Pr[f(u) = f(v)] = 1 −

θu,v

π
.

Thus,

E[W ] =
∑

h(u,v)=1

θu,v

π
+

∑

h(u,v)=0

(
1 −

θu,v

π

)

≥ ∆ ·


1

2

∑

h(u,v)=1

(1 − cos θu,v) +
1

2

∑

h(u,v)=0

(1 + cos θu,v)




= ∆ · SDPOPT

where

∆ = min

{
2

π
min

0≤θ≤π

θ

1 − cos θ
, min

0≤θ≤π

2 − 2θ
π

1 + cos θ

}

can be shown to satisfy ∆ > 0.87856 using elementary calculus.
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A.1 Proof of Lemma 3

Proof. Suppose that the system is monotone with respect to ≤fV
, that is,

fV (i)fV (j)fE(i, j) = 1 for all i, j, i 6= j.

(by Lemma 2). Let V (G) = A ∪ B, where i ∈ A if fV (i) = 1, and i ∈ B otherwise. Note that by

hypothesis fE(i, j) = 1 if xi, xj ∈ A or if xi, xj ∈ B. Also, fE(i, j) = −1 if xi ∈ A, xj ∈ B or vice

versa. Noting that every closed chain in G must cross an even number of times between A and B,

it follows that every closed chain has parity 1.

Conversely, let all closed chains in G have parity 1. We define a function fV as follows: consider

the partition of V (G) induced by letting i ∼ j if there exists an undirected open chain joining i and

j. Pick a representative ik of every equivalence class, and define fV (ik) = 1, k = 1, . . . , K. Next,

given an arbitrary vertex i and the representative ik of its connected component, define fV (i) as the

parity (+1 of −1) of any undirected open chain joining ik with i. To see that this function is well

defined, note that any two chains joining i and j can be put together into a closed chain from ik to

itself, which has parity 1 by hypothesis. Thus the parity of both open chains must be the same.

Let now i, j be arbitrary different vertices. If ∂Fj/∂xi ≡ 0, then (2) is satisfied for i, j; otherwise

there is an edge joining i with j. By construction of the “potential” function fV , it holds that if

fV (i) = fV (j) then fE(i, j) = 1, i.e., ∂Fj/∂xi ≥ 0, and so (2) holds as well. If fV (i) 6= fV (j), then

fE(i, j) = −1, i.e. ∂Fj/∂xi ≤ 0. In that case (2) also holds, and the proof is complete. ❑

B Supplementary Material: MATLAB Implementation Files

(more details)

A set of MATLAB programs have been written to implement the algorithms described in this paper.

They can be accessed from the following URL:

http://www.math.rutgers.edu/~sontag/desz_README.html
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The files in this directory are MATLAB functions and scripts in .m format. They can be opened

using any text editor, and each contains descriptions regarding its purpose and use. Two useful

packages to be used when running these functions are:

1. The Systems Biology Toolbox for MATLAB, which allows for networks in SBML format to

be imported into the MATLAB environment. This toolbox also allows for processing of the

MATLAB structures as well as the creation of SBML format files from MATLAB structures.

It can be downloaded at http://sbml.org/.

2. The SeDuMi Optimization Toolbox, one of the most popular implementations of the SDP

algorithm for MATLAB. It is freely available for download at http://sedumi.mcmaster.ca/.

The most important functions in this directory are listed below:

(i) ReactionDigraph.m: this function receives a model in SBML format and produces the associ-

ated reaction digraph associated to the reaction.

(ii) RepeatPartition.m: this function produces a partition p which optimizes the number of

consistent edges of a given signed digraph G. It implements the SDP-based ULP algorithm.

(iii) DLPtrim.m: this function implements the hybrid ULP-DLP algorithm mentioned in the end

of the discussion of the SGFR network.

(iv) PlunderNTriangle.m: this function uses a greedy algorithm to eliminate odd parity, pairwise

disjoint triangles from a given subgraph of a signed digraph G (to be used in connection to

the discussion regarding changes of variables to eliminate inputs in the decomposition).

34


